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This paper describes a framework for automated classification and labeling of patterns in electroencephalographic (EEG) and
magnetoencephalographic (MEG) data. We describe recent progress on four goals: 1) specification of rules and concepts that
capture expert knowledge of event-related potentials (ERP) patterns in visual word recognition; 2) implementation of rules in
an automated data processing and labeling stream; 3) data mining techniques that lead to refinement of rules; and 4) iterative
steps towards system evaluation and optimization. This process combines top-down, or knowledge-driven, methods with bottom-
up, or data-driven, methods. As illustrated here, these methods are complementary and can lead to development of tools for
pattern classification and labeling that are robust and conceptually transparent to researchers. The present application focuses on
patterns in averaged EEG (ERP) data. We also describe efforts to extend our methods to represent patterns in MEG data, as well as
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in MATLAB and are freely available on request.
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1. INTRODUCTION

The complexity of brain electromagnetic (EM) data has led
to a variety of processes for EM pattern classification and la-
beling over the past several decades. The absence of a com-
mon framework may account for the dearth of statistical
metaanalyses in this field. Such cross-lab, cross-paradigm re-
views are critical for establishing basic findings in science.
However, reviews in the EM literature tend to be infor-
mal, rather than statistical: it is difficult to generalize across
datasets that are classified and labeled in different ways.

To address this problem, we have designed a framework
to support automated classification and labeling of patterns
in electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) data. In the present paper, we describe the
framework architecture and present an application to aver-
aged EEG (event-related potentials, or ERP) data collected
in a visual word recognition paradigm. Results from this
study illustrate the importance of combining top-down and

bottom-up approaches. In addition, they suggest the need
for ongoing system evaluation to diagnose potential sources
of error in component analysis, classification, and labeling.
We conclude by discussing alternative analysis pathways and
ways to improve efficiency of implementation and testing of
alternative methods. It is our hope that this framework can
support increased collaboration and integration of ERP re-
sults across laboratories and across study paradigms.

1.1. Classification of ERPs

A standard technique for analysis of EEG data involves aver-
aging across segments of data (trials), time-locking to stim-
ulus or response events. The resulting measures are charac-
terized by a sequence of positive and negative deflections dis-
tributed across time and space (scalp locations). In princi-
ple, activity that is not event-related will tend towards zero
as the number of averaged trials increases. In this way, ERPs
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provide increased signal-to-noise, and thus increased sen-
sitivity, to functional (e.g., task) manipulations. Signal av-
eraging assumes that the brain signals of interest are time-
locked to (or “evoked by”) the events of interest. As illus-
trated in recent work on induced (nontime-locked) versus
evoked (time-locked) EEG activity, this assumption does not
always hold ([1, 2]).

In the past several decades, researchers have described
several dozen spatiotemporal ERP patterns (or components),
which are thought to index a variety of neuropsychologi-
cal processes. Some patterns are observed across a range of
experimental contexts, reflecting domain-general processes,
such as memory, decision-making, and attention. Other pat-
terns are observed in response to specific types of stimuli,
reflecting human expertise in domains such as mathematics,
face recognition, and reading comprehension (for reviews see
[3, 4]). Previous investigations of these patterns have demon-
strated the effectiveness of ERP methods for addressing basic
questions in nearly every area of psychology.

Given the success of this methodology, ERPs are likely
to remain at the forefront of research in clinical and cog-
nitive neuroscience, even as newer methods for EEG and
MEG analyses are developed as alternatives to signal averag-
ing (e.g., [1, 2, 5–7]).

At the same time, ERP methods face some important
challenges. A key challenge is to identify standardized meth-
ods for measure generation, as well as objective and reli-
able methods for identification and labeling of ERP com-
ponents. Traditionally, researchers have characterized ERP
components in respect to both physiological (spatial, tem-
poral) and functional criteria [8, 9]. Physiological criteria in-
clude latency and scalp distribution, or topography. For ex-
ample, as illustrated in Figure 1, the visual “P100 compo-
nent” is characterized by a positive deflection that peaks at
∼100 milliseconds after onset of a visual stimulus (A) and is
maximal over occipital electrodes, reflecting activity in visual
cortex (B).

Despite general agreement on criteria for ERP compo-
nent identification [9], in practice such patterns can be hard
to identify, particularly in individual subjects. This difficulty
is due in part to the superposition of patterns generated by
multiple brain regions at each time point [10], leading to
complex spatial patterns that reflect the mixing of under-
lying patterns. Given this complexity, ERP researchers have
adopted a variety of solutions for scalp topographic analysis
(e.g., [11, 12]). It can therefore be difficult to compare re-
sults from different studies, even when the same experimen-
tal stimuli and task are used.

Similarly, researchers use a variety of methods for de-
scribing temporal patterns in ERP data [13]. For example,
early components, such as the P100, tend to be character-
ized by their peak latency, while the time course of later com-
ponents, such as the N400 or P300, is typically captured by
averaging over time “windows” (e.g., 300–500 milliseconds).
The latency of other components, such as the N400, has been
quantified in a variety of ways. Finally, there is variability
in how functional information (e.g., subject-, stimulus-, or
task-specific variables) is used in ERP pattern classification.
Some patterns, such as the P100, are easily observed as large

deflections in the raw ERP waveforms. Other patterns, such
as the mismatch negativity are more reliably seen in differ-
ence measures, calculated by subtracting ERP amplitude in
one condition from the ERP amplitude in a contrasting con-
dition. This inconsistency may lead to confusion, particularly
when the same label is used to refer to two different measures,
as is often the case.

1.2. Outline of paper

In summary, the complexity of ERP data has led to multi-
ple processes for measure generation and pattern classifica-
tion that can vary considerably across different experiment
paradigms and across research laboratories. Ultimately, this
limits the ability both to replicate prior results and to gener-
alize across findings to achieve high-level interpretations of
ERP patterns.

In light of these challenges, the goal of this paper is
to describe a framework for automated classification and
labeling of ERP patterns. The framework presented here
comprises both top-down (knowledge-driven) and bottom-
up (data-driven) methods for ERP pattern analysis, classi-
fication, and labeling. Following, we describe this frame-
work in detail (Section 2) and present an application to pat-
terns in ERP data from a visual word processing paradigm
(Section 3). Section 4 describes approaches to system eval-
uation. Section 5 describes data mining for refinement of
expert-driven (top-down) methods. In Section 6, we draw
some general conclusions and discuss extensions of our
framework for representation of patterns in source space,
and ontology development to support cross-paradigm,
cross-laboratory, and cross-modal integration of results in
EM research.

2. PATTERN CLASSIFICATION FRAMEWORK

As illustrated in Figure 2, our framework comprises five main
processes.

(i) Knowledge engineering. Known ERP patterns are cata-
loged (1). High-level rules and concepts are described
for each pattern (2).

(ii) Pattern analysis and measure generation. Analysis
methods are selected and applied to ERP data (3). The
goal is transformation of continuous spatiotemporal
data into discrete patterns for labeling. Statistics are
generated (4) to capture the rules and concepts identi-
fied in (2).

(iii) Data mining. Unsupervised clustering (7) and super-
vised learning (8) are used to explore how measures
cluster, and how these clusters may be used to identify
and label patterns using rules derived independently of
expert knowledge.

(iv) Operationalization and application of rules. Rules are
operationalized by combining metrics in (4) with prior
knowledge (2). Data mining results (7-8) may be used
to validate and refine the rules. Rules are applied to
data, using an automated labeling process (6) detailed
below.
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Figure 1: (a) Time course of P100 pattern, plotted at left occipital electrode, O1. Time is plotted on the x-axis (0–700 milliseconds); each
vertical hash mark represents 100 milliseconds. Amplitude is plotted on the y-axis (scale, ±4 μV). The dark vertical line marks the time of
peak amplitude (∼120 milliseconds). (b) Scalp topography of the P100 pattern, plotted at the time of peak amplitude. Red, positive. Blue,
negative.

Following, we describe how these processes have been im-
plemented in a series of MATLAB procedures. We then re-
port results from the application of this process to data from
a visual word processing experiment. Results are evaluated
against a “gold standard” that consists of expert judgments
regarding the presence or absence of patterns, and their pro-
totypicality, for each of 144 observations (36 subjects ×4 ex-
periment conditions).

2.1. Knowledge engineering (process 1, 2)

The goal of knowledge engineering is to identify concepts
that have been documented for a particular research domain.
Based on prior research on visual word processing we have
tentatively identified eight spatiotemporal patterns that are
commonly observed from ∼100 to ∼700 milliseconds after
presentation of a visual word stimulus, including the P100,
N100, late N1/N2b, N3, P1r, MFN, N400, and P300. Space
limitations preclude a detailed discussion of each pattern (see
reviews in [3, 4]). The left temporal N3 and medial frontal
negativity (MFN) components are less well known, but have
been described in several high-density ERP studies of visual
word processing (e.g., [14–16]). The P1r [17] has also been
referred to as a posterior P2 [18]. The late N1/N2b has var-
iously been referred to as an N2, an N170, and a recogni-
tion potential (see [15] for discussion and references). It is
not clear that the late N1/N2 represents a component that is
functionally distinct from the N1 and N3, though it some-
times emerges in tPCA results as a distinct spatiotemporal
pattern (e.g., see Section 3). These eight patterns reflect a
working taxonomy of ERP in research on visual word pro-
cessing between ∼60–700 milliseconds. Application of the
present framework to large numbers of datasets collected
across a range of paradigms, and across different ERP re-
search labs, would contribute to the refinement of this tax-
onomy.

A note of caution is in order, concerning the labels for
scalp regions of interest (ROIs). By convention, areas of the

Table 1: Spatial and temporal concepts used to define the eight tar-
get patterns. Regions of interest (ROIs) are defined in Appendix A.

Pattern Window ROI

P100 60–150 occipital

N100 151–230 occipital

N2 231–300 post-temporal

P1r 250–400 parietal

N3 250–400 left anterior

MFN 250–450 frontal

N4 350–550 parietal

P300 401–700 parietal

scalp are associated with anatomical labels, such as “occipi-
tal,” “parietal,” “temporal,” and “frontal” (see Table 1). It is
well known, however, that a positive or negative deflection
over a particular scalp ROI is not necessarily generated in
cortex directly below the measured data. ERP patterns can
reflect sources tangential to the scalp surface. In this instance,
the positive and negative fields may be maximal over remote
regions of the scalp, reflecting a dipolar scalp distribution
(e.g., with a positive maximum over frontal scalp regions,
and a negative maximum over temporal scalp regions). Thus,
the ROI labels should not be interpreted as literal references
to brain regions. The ROI clusters used in the present study
are shown in Appendix A.

2.2. Data summary

Prior to analysis, ERP data consist of complex waveforms
(time series), measured at multiple electrode sites. To sim-
plify analysis and interpretation of these data, a standard
practice is to transform the ERPs into discrete patterns. Tra-
ditional methods for data summary include identification of
peak latency within a specified time window (“peak picking”)
and computing the mean amplitude over a time window
for each electrode (“windowed analysis”), or averaged over
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Figure 2: Pattern classification and labeling scheme. Knowledge engineering (processes 1, 2) includes “top-down” specification of ERP con-
cepts and rules, formulated by domain experts. Component analysis and measure generation (processes 3, 4) yield summary metrics that are
used for pattern classification and labeling. Implementation and operationalization of pattern rules (processes 5, 6) are detailed in Section 2.
Data mining (processes 7, 8) includes “bottom-up” or data-driven methods for clustering and discovery of pattern rules (Section 5). System
evaluation is detailed in Section 4.

electrode clusters (regions of interest—ROIs). An alternative
method is principal components analysis (PCA), which de-
composes the data into “latent” patterns, or factors. The fol-
lowing subsection describes this method in detail, and ex-
plains the utility of PCA for automated pattern classification.

2.2.1. Temporal PCA methods (process 3)

PCA belongs to a class of factor-analytic procedures, which
use eigenvalue decomposition to extract linear combinations
of variables (latent “factors”) in such a way as to account
for patterns of covariance in the data parsimoniously, that is,
with the fewest factors. Mathematically, the goal of PCA is to
take intercorrelated variables (x1, . . . , xn) and combine them
such that the tranformed data, the “principal components”
(PC), are linear combinations of x, weighted to maximize the
amount of variance captured by each eigenvector (vi):

PC1 = v11x1 + v12x2 + · · · + v1nxn. (1)

In this way, the original set of variables (x1, . . . , xn) is “pro-
jected” into a new data space, where the dimensions of this
new space are captured by a small number of latent factors
(the eigenvectors).

In ERP data, the variables (x1, . . . , xn) are the microvolt
readings either at consecutive time points (temporal PCA)
or at each electrode (spatial PCA). The major source of co-
variance isassumed to be the ERP components, characteristic
features of the wave form that are spread across multiple time
points and multiple electrodes. Ideally, each latent factor cor-
responds to a separate ERP component, providing a statis-
tical decomposition of the brain electrical patterns that are
superposed in the scalp-recorded data. To achieve this ideal
factor-to-pattern mapping, the factors may be “rotated” so
that the variance associated with the original variables (time-
points) is redistributed across the factors in such a way that
maximizes “simple structure,” that is, that achieves a simple
and transparent mapping from variables to factors. (See [19]
for a review of PCA and related factor-analytic methods for
ERP data decomposition.)

In the present application, we used temporal PCA (tPCA)
as implemented in the Dien PCA Toolbox [20]. In temporal
PCA, the data are organized with the variables correspond-
ing to time points and observations corresponding to the dif-
ferent waveforms in the dataset. The waveforms vary across
subjects, electrodes, and experimental conditions. Thus, sub-
ject, spatial, and task variance are collectively responsible for
covariance among the temporal variables. The data matrix
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is then self-multiplied and mean-corrected to produce a co-
variance matrix. The covariance matrix is subjected to eigen-
value decomposition, and the resulting nonnoise factors are
rotated using Promax to obtain a more transparent relation-
ship between the PCA factors and the latent variables of in-
terest (i.e., ERP components).

After transformation of the ERP data into factor space,
the data are projected back into the original data space, by
multiplying factor scores by factor loadings and by the stan-
dard deviation at each timepoint (see the appendix in [21]).
In this way, it is possible to visualize and extract information
about the strength of the pattern at each electrode, to deter-
mine the spatial distribution of the pattern for a given subject
and experiment condition. Visualizing the spatial projection
of each factor in this way is useful in interpreting tPCA re-
sults (e.g., see Figure 3(b)).

For our initial attempts to automate data description
and classification, tPCA offered several advantages over tra-
ditional methods. First, tPCA is able to separate overlap-
ping spatiotemporal patterns. Second, tPCA automatically
extracts a discrete set of temporal patterns. Third, when im-
plemented and graphed appropriately, tPCA results are eas-
ily interpreted with respect to previous findings, as illus-
trated below. tPCA is therefore easily incorporated in an
automated process for ERP pattern extraction and classifi-
cation. In the final section, we address some limitations of
tPCA as a method of ERP pattern analysis.

2.2.2. Measure generation (process 4)

For each tPCA factor, we extracted 32 summary metrics that
characterize spatial, temporal, and functional dimensions of
the data. The full set of metrics, along with their definitions,
is listed in Appendix C. Note that our expert-defined rules,
which were used for the tPCA autolabeling process, mainly
involved two metrics (see Section 2.2.3 for details): In-mean
(ROI) and TI-max. In-mean (ROI) represents the amplitude
over a region-of-interest (ROI), averaged over electrode clus-
ters for each latent factor at the time of peak latency, after the
factor has been projected back into channel space. TI-max
is the peak latency and is measured on the factor loadings,
which are sign-invariant.

Although these two metrics intuitively capture the spa-
tial and temporal dimensions of the ERP data that are most
salient to ERP researchers, our prior data mining results sug-
gested that additional metrics might improve the tPCA au-
tolabeling results [22, 23]. In particular, some failures in the
autolabeling process (i.e., cases where the modal factor for
a given pattern did not show a match to the rule in a given
condition, for a given subject) were due to component over-
lap that remained even after tPCA. For example, in one of
our four pilot datasets [23], the P100 pattern was partially
captured by a factor corresponding to the N100. For some
subjects, most of the P100 was in fact captured by this “N100
factor.” The factor showed a slow negativity, beginning before
the stimulus onset, and the P100 appeared as a positive going
deflection that was superposed on this sustained negativity.
However, because the rule specified that the mean amplitude

over the occipital electrodes should be positive, the factor did
not meet the P100 rule criteria.

To address this issue, we implemented onset and offset
metrics. Each onset latency was estimated as the midpoint of
four consecutive sliding windows in which corresponding t-
tests (threshold, P = .05) indicated that the means of their re-
spective windowed signals diverged significantly from a base-
line value, typically zero. The subsequent offset was the tem-
poral midpoint at which the four consecutive t-tests showed
their windowed signal means returned to baseline. The pro-
cedure is implemented as described in [24].

Using the onset latency to determine a “baseline” (0-
point or onset) for each pattern, we then computed peak-to-
baseline and baseline-to-peak metrics to capture phasic de-
flections that could be confused with slow potentials. The
baseline intensity was computed as the signal mean within
an interval centered on component onset. We predicted that
data mining results would incorporate these measures to
yield improved accuracy in the labeling process.

In addition, we added metrics to capture variations in
amplitude due to experimental variables. Four measures
were computed: Pseudo-Known (difference in response to
nonwords versus words), RareMisses-RareHits (difference in
response to unknown rare words versus words that we cor-
rectly recognized), RareHits-Known (difference in response
to rare versus low-frequency words), and Pseudo-RareMisses
(difference in nonwords versus missed rare words). Because
prior research has shown that semantic processing can affect
the N2, N3, MFN, N4, and P3 patterns, we predicted that the
data mining procedures would identify one or more of these
metrics as important for pattern classification.

2.2.3. Rule operationalization (process 5)

Rules for each ERP pattern were formulated initially based on
results from prior literature and were operationalized using
metrics defined in Process 4 (Section 2.2.2). After application
of the initial rules to test data, we evaluated the results against
a “Gold Standard” (see Section 4 for details) and modified
the pattern rules to improve accuracy. For example, after ini-
tial testing, the visual “P100” pattern (P100v) was defined as
follows: for any n, FAn = P100v if and only if

(i) 80 ms < TI-max (FAn) ≤ 150 milliseconds,

(ii) In-mean(ROI) > 0,

(iii) EVENT (FAn) = stimon,

(iv) MODALITY (EVENT) = visual,

where FAn is defined as the nth tPCA factor, and P100v is
the visual-evoked P100 (“v” stands for “visual”). TI-max is
the time of peak amplitude, In-mean(ROI) is the mean am-
plitude over the region-of-interest (ROI), and ROI for P100v
is specified as “occipital” (i.e., mean intensity over occipital
electrodes). “Stimon” refers to stimulus onset, which is the
event that is used for time-locking single trials to derive the
ERP. “MODALITY” refers to the stimulus modality (e.g., vi-
sual, auditory, somatosensory, etc.). See Appendix B for a full
listing of rule formulae.
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These rules represent informed hypotheses, based on ex-
pert knowledge. As described below (Section 5), bottom-
up methods can be used to refine these rules. Further, as
the rules are applied to larger and more diverse sets of
data, they are likely to undergo additional refinements (see
Section 4.1).

2.2.4. Automated labeling (process 6)

For each condition, subject, and tPCA factor, we used MAT-
LAB to compute temporal and spatial metrics on that fac-
tor’s contribution to the scalp ERP. The values of the met-
rics specified in the expert defined rules were then com-
pared to rule-specific thresholds that characterized specific
ERP components. Thresholds were determined through ex-
pert definitions that were formulated and tested as de-
scribed in Section 2.2.3). The results of the comparisons were
recorded in a true/false table, and factors meeting all crite-
ria were flagged as capturing the specified ERP component
for that subject and condition. All data were automatically
saved to Excel spreadsheets organized by rule, condition, and
subject.

2.3. Data mining

As described in Section 2.1, ERP patterns are typically dis-
covered through a “manual” process that involves visual in-
spection of spatiotemporal patterns and statistical analysis to
determine how the patterns differ across experiment condi-
tions. While this method can lead to consensus on the high-
level rules and concepts that characterize ERP patterns in
a given domain, operationalization of these rules and con-
cepts is highly variable across research labs, as described in
Section 1. Bottom-up (data-driven) methods can contribute
to standardization of rules for classifying known patterns,
and possibly to discovery of new patterns, as well. Here
we describe two bottom-up methods, unsupervised learning
(i.e., clustering) and supervised learning (i.e., decision tree
classifiers).

2.3.1. Clustering (process 7)

In this study, we used the expectation-maximization (EM) al-
gorithm for clustering [25], as implemented in WEKA [26].
EM is used to approximate distributions using mixture mod-
els. It is a procedure that iterates around the expectation (E)
and maximization (M) steps. In the E-step for clustering, the
algorithm calculates the posterior probability, hi j , that a sam-
ple j belongs to a cluster Ci:

hi j = P
(
Ci | Dj

) = p
(
Dj | θi

)
πi

∑ C
m=1p

(
Dj | θm

)
πm

, (2)

where πi is the weight for the ith mixture component, Dj

is the measurement, and θi is the set of parameters for
each density functions. In the M-step, the EM algorithm
searches for optimal parameters that maximize the sum of
weighted log-likelihood probabilities. EM automatically se-

lects the number of clusters by maximizing the logarithm of
the likelihood of future data. Observations that belong to the
same pattern type should ideally be assigned to a single clus-
ter.

2.3.2. Classification (process 8)

We use a traditional classification technique, called a deci-
sion tree learner. Each internal node of a decision tree rep-
resents an attribute, and each leaf node represents a class la-
bel. We used J48 in WEKA, which is an implementation of
C4.5 algorithm [27]. The input to the decision tree learner
for the present study consisted of a pattern factor metrics
vector of dimension 32, representing the 32 statistical met-
rics (Appendix C). Cluster labels were used as classification
labels. The labeled data set was recursively partitioned into
small subsets as the tree was being built. If the data instances
in the same subset were assigned to the same label (class),
the tree building process was terminated. We then derived
If-Then rules from the resulting decision tree and compared
them with expert-generated rules.

3. APPLICATION: VISUAL WORD PROCESSING

The ERP data for this study consisted of 144 observations (36
subjects ×4 experiment conditions) that were acquired in a
lexical decision task (see [28] for details). Participants viewed
word and pseudoword stimuli that were presented, one stim-
ulus at a time, in the center of a computer monitor and made
word/nonword judgments to each stimulus using their right
index and middle fingers to depress the “1” and “2” keys on a
keyboard (“yes” key counterbalanced across subjects). Stim-
uli consisted of 350 words and word-like stimuli, including
low-frequency words that were familiar to subjects (based on
pretesting) and rare words like “nutant” (which were unlikely
to be known by participants). Letters were lower-case Geneva
black, 26 dpi, presented foveally on a white screen. Words and
nonwords were matched in mean length and orthographic
neighborhood [29, 30].

3.1. ERP experiment data

ERP data were recorded using a 128-channel electrode ar-
ray, with vertex recording reference [31]. Data were sam-
pled at a rate of 250 per second and were amplified with a
0.01 Hz highpass filter (time constant∼10 seconds). The raw
EEG was segmented into 1500 milliseconds epochs, starting
500 milliseconds before onset of the target word. There were
four conditions of interest: correctly classified, low-frequency
words (Known); correctly classified rare words (RareHits),
rare words rated as nonwords (RareMisses); and correctly
classified nonwords (Pseudo).

Segments were marked as bad if they contained ocular
artifacts (EOG > 70 μV), or if more than 20% of channels
were bad on a given trial. The artifact-contaminated trials
were excluded from further analysis.

Segmented data were averaged across trials (within sub-
jects and within conditions) and digitally filtered with a 30-
Hz lowpass filter. After further channel and subject exclusion,
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bad (excluded) channels were interpolated. The data re-
referenced to the average of the recording sites [32], using
a polar average reference to correct for denser sampling over
superior, as compared with inferior, scalp locations [33, 34].
Data were averaged across individual subjects, and the result-
ing “grand-averaged” ERPs were used for inspection of wave-
forms and topographic plots.

4. TPCA AUTOLABELING RESULTS

Temporal PCA (tPCA) was used to transform the ERP data
into a set of latent temporal patterns (see Section 2.2.1 for
details). We extracted the first 15 latent factors from each of
the four datasets, accounting for approximately 80% of the
total variance. These 15 tPCA factors were then subjected to
a Promax rotation.

After the tPCA factors were projected back into the
original data space (Section 2.2.1), we applied our expert-
defined rules to determine the percentage of observations
that matched each target pattern. Results are shown in
Table 2.

We assigned labels to the first 10 factors based on the
correspondence between the target patterns and the tPCA
factors. Results were as follows: Factor 4 = P100, Factor 3 =
N100, Factor = N2, Factor 7 = N3/P1r, Factor 2 = MFN/N4,
and Factor 9 = P3. Figure 3 displays the time course and to-
pography for these six pattern factors.

Note that many patterns showed splitting across two or
more factors. This may reflect misallocation of pattern vari-
ance across the factors (i.e., inaccuracies in the tPCA decom-
position), inaccuracies in rule definitions, or both. A com-
plementary problem is seen in the case of factors 2, 7, and 10,
which show matches to more than one target pattern. Again,
this may reflect misallocation of variance. Alternatively, these
results may suggest a need to refine our pattern descriptions,
the rules that are used to identify pattern instances, or both.
In either case, these findings point to the need for systematic
evaluation of results. Diagnosing potential sources of error is
the first step towards systematic improvements of methods.

4.1. Evaluation of top-down methods

In our framework, top-down methods for pattern classifica-
tion are dependent on the accuracy of both the data sum-
mary methods and the expert-defined rules. In particular,

(1) data summary methods should yield discrete patterns
that reflect different underlying neuropsychological
processes, or “components;”

(2) rules that are applied to summary metrics should be
implemented in a way that effectively discriminates be-
tween separate patterns.

Our initial efforts have led to encouraging classification re-
sults, as illustrated above. However, several findings suggest
the need to consider possible misallocation of variance in the
data summary process, and ways of optimizing pattern rules.

4.1.1. Diagnosing misallocation of variance

A well-known critique of PCA methods, including tempo-
ral PCA, is that inaccuracies in the decomposition can lead
to misallocation of variance ([21, 35]). For example, in our
results, the left temporal N3 and parietal P1r patterns were
both assigned to a single factor (cf. [15] for similar results).
Recent methods can achieve separation of patterns that have
been confounded in an initial PCA (see [19] for a discus-
sion). A more serious problem is that of the pattern split-
ting: well-known patterns like the P100 are expected to map
to a single rule (factor). Indeed, this simple mapping was
obtained in 3 or our 4 pilot datasets [23]. Splitting of the
P100 across two factors therefore suggests a possible misal-
location of variance in the tPCA. A future challenge will be
to develop rigorous methods of diagnosing misallocation of
variance in the decomposition of ERPs. In the final section,
we consider alternatives to tPCA, which may address this
issue.

4.1.2. Comparison with a “gold standard”

The validity of our tPCA autolabeling procedures was as-
sessed by comparing autolabeling results with a “gold stan-
dard,” which was developed through manual labeling of pat-
terns. Two ERP analysts visually inspected the raw ERPs for
each subject and each condition. For each target pattern, the
analysts indicated whether the pattern was present, based
on inspection of temporal data (waveforms, butterfly plots)
and spatial data (topography at time of peak activity in pat-
tern interval). Analysts also provided confidence ratings and
rated the typicality of each pattern instance using a 3-point
scale.

An initial set of ratings on 100 observations (25 subjects
×4 conditions) was collected. Raters met to discuss results
and to calibrate procedures for subsequent ratings. Experts
then proceeded to label another 116 ERP observations (4 ob-
servations were omitted due to a technical error in the data
file). This set of labeled data constituted the “gold standard”
for system evaluation.

Interrater reliability for test data was computed for two
of the patterns (P100 and N100) using the Spearman-Brown
prophecy coefficient [36]. Results are graphed in Table 3 (“∗”
= moderate reliability, “∗∗” = high reliability).

For both patterns, the highest level of reliability was re-
flected in the typicality ratings. In addition, reliability was
considerably higher for the P100 pattern. Inspection of the
data revealed that the low reliability for N100 “presence”
judgments was due to a systematic difference in use of cat-
egories: one rater consistently rated as “not present” cases
where the other rater indicated the pattern was “present” but
atypical (“1” on typicality scale).

Accuracy of the autolabeling procedures was defined
as the percentage of system labels that matched the gold-
standard labels (%Agr; see Table 4). Across the eight patterns,
the autolabeling results and expert ratings had an averaged
Pearson r correlation of +.36. This leads to an effective inter-
rater reliability of +.52 as measured by the Spearman-Brown
formula. Note that while the %Agr was relatively high for the



8 Computational Intelligence and Neuroscience

Table 2: Percentage of ERP observations for each factor that matched expert-defined rule criteria.

% Observations meeting pattern criteria

Factor P100 N100 N2 N3 P1r MFN N4 N3

Fac#01 — — — — — — — —

Fac#02 — — — — — 36.81 9.72 59.72

Fac#03 — 82.64 — — — — — —

Fac#04 82.64 — — — — — — —

Fac#05 — — — — — — — —

Fac#06 — — — — — — — —

Fac#07 — — 69.44 42.36 64.58 22.92 — —

Fac#08 34.72 — — — — — — —

Fac#09 — — — — — — — 56.94

Fac#10 — 51.39 51.39 — — — — —

Fac#11 — — — 47.92 25.69 34.03 35.42 —

Fac#12 — — — — — — — —

Fac#13 — — — 59.03 62.50 40.97 — —

Fac#14 — — — — — — — —

Fac#15 — — — — — — — 9.72

Pattern Fac01 Fac02 Fac03 Fac04 Fac05 Fac06 Fac07

P1 - - - 82.64 - - -

N1 - - 82.64 - - - -

N2 - - - - - - 69.44

N3 - - - - - - 42.36

P1r - - - - - - 64.58

MFN - 36.81 - - - - 22.92

N4 - 9.72 - - - - -

P3 - 59.72 - - - - -

(a) (b)

Fac04
(102 ms)

Fac03
(204 ms)

Fac07
(276 ms)

Fac02
(408 ms)

(c)

Figure 3: Autoclassification and labeling results. (a) Percentage of observations matching rule criteria for each pattern. (b) Topogragraphy
and (c) time course of pattern factors.

Table 3: Interrater reliability (Spearman-Brown r).

Presence Confidence Typicality

P100 .51∗ .41∗ .72∗∗

N100 −.04 .35∗ .45∗

N100 (0.84), the Spearman-Brown coefficient was consider-
ably lower (0.41), consistent with the lower interrater relia-
bility observed between ERP analysts for this pattern.

5. DATA MINING RESULTS

Input to the data mining (“bottom-up”) analyses consisted
of 32 metrics for each factor, weighted across each of the
144 labeled observations (total N = 4608). Pattern labels

Table 4: Comparison of autolabeling with expert labels.

Pattern Person r Spearman-Brwon %Agr

P100 0.60 0.75 0.90

N100 0.26 0.41 0.84

N2 0.12 0.21 0.53

N3 0.41 0.58 0.63

P1r 0.47 0.64 0.76

MFN 0.33 0.49 0.40

N4 0.37 0.54 0.81

P3 0.30 0.46 0.64

for each observation were a combination of the autolabel-
ing results (pattern present versus pattern absent for each
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factor, for each observation), combined with typicality rat-
ings, as follows. Observations that met the rule criteria (“pat-
tern present” according to autolabeling procedures) and were
rated as “typical” (rating > “1”) were assigned to one cat-
egory label. Observations that either failed to meet pattern
criteria (“pattern absent”) or were rated as atypical (“1” on
rating scale), or both, were assigned to a second category. The
combined labels were used to capitalize on the high reliabil-
ity and greater sensitivity of the typicality + presence/absence
ratings, as compared with the presence/absence labels by
themselves.

For the EM procedures, we set the number of clusters to
be 9 (8 patterns + nonpatterns). We then clustered the 144
observations derived from the pattern factors, based on the
32 metrics. As shown in Table 5, the assignment of obser-
vations to each of the 9 clusters largely agreed with the re-
sults from the top-down (autolabeling) procedures (compare
Table 2).

Ideally, each cluster will correspond to a unique ERP pat-
tern. However, as noted above, inaccuracies in either the data
summary (tPCA) procedures, or the expert rules, or both,
can lead to pattern splitting. Thus, it is not surprising that
patterns in our clustering analysis were occasionally assigned
to two or more clusters. For instance, the P100 pattern split
into two clusters (clusters 4 and 5), consistent with the auto-
labeling results (Table 2).

Supervised learning (decision tree) methods were used to
derive pattern rules, independently of expert judgments. Ac-
cording to the information gain rankings of the 32 attributes,
TI-max and In-mean(ROI) were most important, consistent
with our previous results [22]. These findings validate the use
of these two metrics in expert-defined rules. Decision trees
revealed the importance of additional spatial metrics, sug-
gesting the need for finer-grained characterization of pattern
topographies in our rule definitions. In addition, difference
measures (Pseudo-RareMisses and RareMisses-RareHits) were
highly ranked for certain patterns (the N2 and P300, resp.),
suggesting that functional metrics may be useful for classifi-
cation of certain target patterns.

6. CONCLUSION

The goal of this study was to define high-level rules and
concepts for ERP components in a particular domain (vi-
sual word recognition) and to design, evaluate, and optimize
an automated data processing and labeling stream that im-
plements these rules and concepts. By combining rule def-
initions based on expert knowledge (top-down approach)
with rule definitions that are generated through data mining
(bottom-up approach), we predicted that our system would
achieve higher accuracy than a system based on either ap-
proach in isolation. Results suggest that the combination
of top-down and bottom-up methods is indeed synergistic:
while domain knowledge was used effectively to constrain the
number of clusters in the data mining, decision tree classi-
fiers revealed the importance of additional metrics, including
multiple measures of topography and, for certain patterns,
functional metrics that correspond to experiment manipula-
tions.

Ongoing work is focused on the following goals:

(i) refinement of procedures for expert labeling of pat-
terns in the “raw” (untransformed) ERP data;

(ii) testing of alternative data summary and autolabeling
methods;

(iii) modification of rules and concepts, based on integra-
tion of bottom-up and top-down classification meth-
ods.

6.1. Alternative data summary procedures

In the present study, we applied temporal PCA (tPCA) to de-
compose ERP data into discrete patterns that are input to
our automated component classification and labeling pro-
cess. PCA is a useful approach because it is automated, is
data-driven, and has been validated and optimized for de-
composition of event-related potentials [21]. At the same
time, as illustrated here, PCA is prone to misallocation of
variance across the latent factors. Further, differences in the
time course of patterns across subjects and experiment con-
ditions are a particular problem for tPCA methods: latency
“jitter” can lead to mischaracterization of patterns [7].

For this reason, we are currently testing alternative ap-
proaches to ERP component analysis. One approach involves
application of sequential (temporo-spatial) PCA. Temporo-
spatial PCA is a refinement and extension of temporal PCA
(see [12, 19] for details). The factor scores from the tempo-
ral PCA, which quantify the extent to which their respective
latent factors are present in the ERP data, undergo a spatial
PCA. The spatial PCA further decomposes the factor scores
into a second tier of latent factors that capture correlations
between channels across subjects and conditions. The latent
factors from the two decompositions are then combined to
yield a finer decomposition of the patterns of variance that
are present in the ERP data.

6.1.1. Windowed analysis of ERPs

The second approach is to adopt the traditional methods
of parsing ERP data into discrete temporal “windows” for
analysis. By focusing on temporal windows corresponding to
known ERP patterns, the algorithms we developed for ex-
tracting statistics from the tPCA factors can be extended to
the raw ERP, with some modification. While the raw ERP
is more complex, with overlapping temporo-spatial patterns,
the autolabeling process applied to raw ERPs would corre-
spond directly to the expert “gold standard” labeling proce-
dure. Furthermore, it would not be subject to one weakness
of tPCA, namely, that the time courses of the factor loadings
are invariant across subjects and conditions.

6.1.2. Microstate analysis

We are also evaluating the use of microstate analysis, an ap-
proach to ERP pattern segmentation that was introduced
by Lehmann and Skrandies [37]. Microstate analysis is a
data parsing technique that partitions the ERP into win-
dows based upon characteristics of its evolving topography.
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Table 5: EM clustering results (NP: nonpatterns).

0 1 2 3 4 5 6 7 8

P100 0 0 0 0 60 49 0 0 0

N100 1 0 0 0 0 0 7 30 77

N2 104 0 0 0 17 0 0 3 8

N3 5 0 0 0 4 2 2 40 1

P1r 11 0 14 0 14 6 5 51 0

MFN 0 0 0 56 0 9 0 0 0

N4 0 0 0 15 0 1 0 0 0

P3 0 113 0 2 0 0 0 0 0

NP 26 28 22 197 39 16 33 64 20

Consecutive time slices, whose topographies are similar un-
der a metric, such as global map similarity, are grouped
together into a single microstate. This microstate in turn
corresponds to a distinct distribution of neuronal activity.
Microstate analysis may hold promise for separating ERP
components that have minimal temporal overlap. Moreover,
this method has been implemented as a fully automated
process (see [38] for downloadable software and [39, 40]
for discussion of automated segmentation using microstate
analysis).

6.2. Development of neural electromagnetic
ontologies (NEMO)

In previous work [22] we have described progress on the de-
sign of a domain ontology mining framework and its ap-
plication to EEG data and patterns. This represents a first
step in the development of Neural ElectroMagnetic Ontolo-
gies (NEMO). The tools that are developed for the NEMO
project can be used to support data management and pattern
analysis within individual research labs. Beyond this goal,
ontology-based data sharing can support collaborative re-
search that would advance the state of the art in EM brain
imaging, by allowing for large-scale metaanalysis and high-
level integration of patterns across experiments and imag-
ing modalities. Given that researchers currently use different
concepts to describe temporal and spatial data, ontology de-
velopment will require us to develop a common framework
to support spatial and temporal references.

A practical goal for the NEMO project is to build a
merged ERP-ERF ontology for the reading and language do-
main. This accomplishment would demonstrate the utility of
ontology-based integration of averaged EEG and MEG mea-
sures, and make strong contributions to the advancement of
multimodal neuroinformatics. To accomplish this goal, we
have developed concurrent strategies for representation of
ERP and ERF data in sensor space and in source (anatom-
ical) space. To link to these ontology databases and to sup-
port integration of EM measures with results from other
neuroimaging techniques, we are working to extend our pat-
tern classification process to brain-based coordinate systems,
through application of source analysis to dense-array EEG
and whole-head MEG datasets.

APPENDICES

A. CHANNEL GROUPINGS FOR SPATIAL METRICS
(REGIONS OF INTEREST—ROIS)

Left occipital
77, 78, 83, 84, 85, 86,
89, 90, 91, 92, 95, 96

Right occipital
59, 60, 64, 65, 66, 67,
69, 70, 71, 72, 74, 75

Left
anterotemporal

27, 28, 33, 34, 35, 39,
40, 41, 44, 45, 46, 49,
128

Right
anterotemporal

1, 2, 109, 110, 114,
115, 116, 117, 120,
121, 122, 123, 125

Left
posterotemporal

50. 56, 57, 58, 63, 64
65, 69

Right
posterotemporal

91, 96, 97, 100, 101,
102, 108

Medial frontal
5, 6, 7, 12, 13, 21
107, 113, 119

Left parietal
7, 31, 32, 37, 38, 42,
43, 48, 52, 53, 54, 60,
61, 67

Right parietal
78, 79, 80, 81, 86, 87,
88, 93, 94, 99, 104,
105, 106, 107

B. ERP PATTERN RULES HYPOTHESIZED FOR
VISUAL WORD RECOGNITION

Rule #1 (pattern PT1 = P100)

Let ROI = occipital (average of left and right occipital). For any
n, FAn = PT1 iff

(i) 60 ms < TI-max (FAn) ≤ 150 ms AND
(ii) |IN-mean(ROI) | ≥ .4 mV AND

(iii) IN-mean(ROI) > 0.
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Table 6

Metric Description

Function

Pseudo-known Difference in mean intensity over ROI at time of peak latency (Nonwords-Words)

RareMisses-RareHits Difference in mean intensity over ROI at time of peak latency (RareMisses-RareHits)

RareHits-Known Difference in mean intensity over ROI at time of peak latency (RareHits-Known)

Pseudo-RareMisses Difference in mean intensity over ROI at time of peak latency (Nonwords-RareMisses)

Intensity

IN-max Maximum intensity (in microvolts) at time of peak latency

IN-max to Baseline Maximum intensity (in microvolts) at time of peak latency with respect to intensity at TI-begin

IN-min Maximum intensity (in microvolts) at time of peak latency

IN-min to Baseline Maximum intensity (in microvolts) at time of peak latency with respect to intensity at TI-begin

SP-max Channel associated with maximum intensity, IN-max

SP-max ROI Channel group (ROI) containing SP-max

SP-min Channel associated with manimum intensity, IN-min

SP-min ROI Channel group (ROI) containing SP-min

Space

IN-mean ROI Mean intensity (in microvolts) at time of peak latency for a specified channel group

IN-LOCC Mean intensity (in microvolts) at time of peak latency for left occipital channel group

IN-ROCC Mean intensity (in microvolts) at time of peak latency for right occipital channel group

IN-LPAR Mean intensity (in microvolts) at time of peak latency for left parietal channel group

IN-RPAR Mean intensity (in microvolts) at time of peak latency for right parietal channel group

IN-LPTEM Mean intensity (in microvolts) at time of peak latency for left posterior temporal channel group

IN-RPTEM Mean intensity (in microvolts) at time of peak latency for right posterior temporal channel
group

IN-LATEM Mean intensity (in microvolts) at time of peak latency for left anterior temporal channel group

IN-RATEM Mean intensity (in microvolts) at time of peak latency for right anterior temporal channel group

IN-LORB Mean intensity (in microvolts) at time of peak latency for left orbital channel group

IN-RORB Mean intensity (in microvolts) at time of peak latency for right orbital channel group

IN-LFRON Mean intensity (in microvolts) at time of peak latency for left frontal channel group

IN-RFRON Mean intensity (in microvolts) at time of peak latency for right frontal channel group

SP-cor Correlation between factor topography and topography of target pattern

Time

TI-max Latency (in milliseconds) of maximum or minimum amplitude

TI-begin Onset (in milliseconds) of waveform excurstion containing peak intensity

TI-end Conclusion (in milliseconds) of waveform excurstion containing peak intensity

TI-duration Duration (in milliseconds) of pattern, equal to TI-begin minus TI-end

Rule #2 (pattern PT2 = N100)

Let ROI = occipital (average of left and right occipital). For any
n, FAn = PT2 iff

(i) 151 ms < TI-max (FAn) ≤ 229 ms AND

(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) < 0.

Rule #3 (pattern PT3 = N2)

Let ROI = occipital-temporal (average of occipital, posterior
temporal). For any n, FAn = PT3 iff

(i) 230 ms < TI-max (FAn) ≤ 300 ms AND

(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) < 0.

Rule #4 (pattern PT4 = N3)

Let ROI = left anterior temporal. For any n, FAn = PT4 iff

(i) 250 ms < TI-max (FAn) ≤ 400 ms AND

(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) < 0.

Rule #5 (pattern PT5 = P1r)

Let ROI = parietal temporal (average of left parietal, right pari-
etal) For any n, FAn = PT5 iff

(i) 250 ms ≥ TI-max (FAn) ≤ 400 ms AND

(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) > 0.
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Rule #6 (pattern PT6 = MFN)

Let ROI = frontocentral (average of left frontocentral, right
frontocentral) For any n, FAn = PT6 iff

(i) 250 ms < TI-max (FAn) ≤ 450 ms AND
(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) < 0.

Rule #7 (pattern PT7 = N4)

Let ROI = parietal temporal (average of left parietal, right pari-
etal) For any n, FAn = PT7 iff

(i) 350 ms < TI-max (FAn) ≤ 550 ms AND
(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) < 0.

Rule #8 (pattern PT8 = P300)

Let ROI = parietal temporal (average of left parietal, right pari-
etal) For any n, FAn = PT8 iff

(i) 401 ms ≥ TI-max (FAn) ≤ 700 ms AND
(ii) |IN-mean(ROI)| ≥ .4 mV AND

(iii) IN-mean(ROI) > 0.

C. STATISTICAL METRICS

For statistical metrics see Table 6.
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