
VeriTable: Fast Equivalence Verification of Multiple
Large Forwarding Tables

Garegin Grigoryan
grigorg@clarkson.edu
Clarkson University

Yaoqing Liu
liu@clarkson.edu

Clarkson University

Michael Leczinsky
leczinm@clarkson.edu

Clarkson University

Jun Li
lijun@cs.uoregon.edu
University of Oregon

Abstract—Due to network practices such as traffic engineering
and multi-homing, the number of routes—also known as IP
prefixes—in the global forwarding tables has been increasing
significantly in the last decade and continues growing in a super
linear trend. One of the most promising solutions is to use smart
Forwarding Information Base (FIB) aggregation algorithms to
aggregate the prefixes and convert a large table into a small one.
Doing so poses a research question, however, i.e., how can we
quickly verify that the original table yields the same forwarding
behaviors as the aggregated one? We answer this question in this
paper, including addressing the challenges caused by the longest
prefix matching (LPM) lookups. In particular, we propose the
VeriTable algorithm that can employ a single tree/trie traversal
to quickly check if multiple forwarding tables are forwarding
equivalent, as well as if they could result in routing loops or
black holes. The VeriTable algorithm significantly outperforms
the state-of-the-art work for both IPv4 and IPv6 tables in every
aspect, including the total running time, memory access times
and memory consumption.

I. INTRODUCTION

While every router on the Internet has a main Forwarding
Information Base (FIB) (i.e. forwarding table) to direct traffic
transmission, there are various scenarios where we need to
verify if two or more forwarding tables residing in the same
or different routers have the same forwarding behaviors. This
identical forwarding behavior is also known as forwarding
equivalence. The capability to conduct quick, simultaneous
equivalence verification on multiple router forwarding tables
is vitally important to ensure efficient and effective network
operations. We will use two examples to demonstrate the
fundamental significance of this research topic.

First of all, when router vendors develop, test and run
their router software and hardware, they must verify that
the Forwarding Information Base (FIB) table in the data
plane is correctly derived from the Routing Information Base
(RIB) table in the control plane. A typical carrier-grade router
consists of three primary components: a control engine running
various routing protocols, collecting routing information and
selecting the best routes to a master forwarding table; many
pieces of parallel forwarding engines, called line cards; and
a switch fabric linking the control engine and forwarding
engines [1]. Based on such distributed system design, routers
can achieve better scalability and reliability. This also results
in at least three copies of the same forwarding table within
a single router. One copy is in the control plane, also known
as the master forwarding table, which contains the best routes
selected by the RIB. Another copy, mirrored from the master

forwarding table, resides in the local memory of each line
card. The third copy is maintained in each forwarding ASIC
chip, which is in charge of fast IP routing lookup and packet
forwarding. In theory, the three copies of forwarding tables
should have exactly identical forwarding behaviors. However,
in reality, this may not always be true. Thus, we are required
to use a highly efficient forwarding table verification scheme
for debugging and diagnosis purposes. Moreover, routes are
frequently updated by neighbors and these changes need to be
simultaneously reflected in all three copies of the forwarding
table, which makes fast verification between the copies more
challenging. For example, Cisco Express Forwarding (CEF)
relies on real-time consistency checkers to discover prefix
inconsistencies between RIB and FIB ([2], [3]), due to the
asynchronous nature of the distribution mechanism for both
databases.

Second, when Internet Service Providers (ISPs) use FIB
aggregation techniques to reduce FIB size on a linecard, they
must ensure that the aggregated FIB yields 100% forwarding
equivalence as the original FIB ([4], [5], [6]). The basic idea
is that multiple prefixes which share the same next hop or
interface can be merged into one. The best routes that are
derived from routing decision processes, e.g., BGP decision
process, will be aggregated according to the distribution of
their next hops before they are pushed to the FIB. The
aggregated copy of the routes with a much smaller size will
then be downloaded to the FIB. Unlike many other approaches
that require either architectural or hardware changes ([7], [8]),
FIB aggregation is promising because it is a software solution,
local to single routers and does not require coordination
between routers in a network or between different networks.
This actually leads to an essential question, how can we
quickly verify that the different FIB aggregation algorithms
yield results which have the same semantical forwarding as
the original FIB, particularly in the case where we need to
handle many dynamic updates? Therefore, quick simultaneous
equivalence verification on multiple forwarding tables is of
great importance to verify the correctness of FIB aggregation
algorithms’ implementation. Although the real-time require-
ment of equivalence verification is not very high here, it yields
great theoretical value to design advanced algorithms to reduce
CPU running time.

More generally, service providers and network operators
may want to periodically check if two or more forwarding
tables in their network cover the same routing space. Ideally,

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 621
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

TABLE I: FIB Table Forwarding Equivalence

(a) FIB table 1

Prefix Next hop
- A

000 B
01 B
11 A

1011 A

(b) FIB table 2

Prefix Next hop
- B

001 A
1 A

100 A

all forwarding tables in the same domain are supposed to yield
the same set of routes to enable reachability between cus-
tomers and providers. Otherwise, data packets forwarded from
one router may be dropped at the next-hop receiving router,
also known as “blackholes”. The occurrence of blackhole may
stem from multiple reasons, such as misconfigurations, slow
network convergence, protocol bugs and so forth. To this end,
another essential question is that how we can quickly check if
two or more forwarding tables cover the same routing space
with consistent routes?

There are at least three challenges to overcome. An efficient
algorithm must be able to:

(1) Verify forwarding equivalence over the entire IP address
space, including 32-bit IPv4 and 128-bit IPv6, using the
Longest Prefix Matching (LPM) rule in a super-fast manner.
LPM rule refers to that the most specific routing entry and the
corresponding next hop will be selected when there are multi-
ple matches for the same packet. For example, in Table Ia, one
packet destined to 01100011 (assume 8-bit address space) has
two routing matches: ” ” (0/0) with next hop A and 01 with
next hop B. However, only the longest prefix 01 and the next
hop B will be used to forward the packet out. When we refer
to forwarding equivalence, the next hops, derived from LPM
lookups against all participating forwarding tables should be
identical for every IP address, thus we need to cover the entire
IP address space (232 addresses for IPv4 and 2128 addresses
for IPv6) quickly to check if the condition is satisfied.

(2) Handle very large forwarding tables with a great number
of routing entries. For instance, current IPv4 forwarding table
size has been over 700,000 entries [9]. IPv6 forwarding tables
are fast growing in a super-linear trend (more than 40,000
entries as of July 2017) [10]. It is estimated that millions
of routing entries will be present in the global forwarding
tables in the next decade [11]. Can we scale up our verification
algorithm to handle large forwarding tables efficiently?

(3) Mutually verify the forwarding equivalence over mul-
tiple forwarding tables simultaneously. For example, Table I
shows two forwarding tables with different prefixes and next
hops, how can we quickly verify whether they yield forwarding
equivalence or not under the aforementioned LPM rule? Can
we scale out our algorithm to deal with many tables together
but still yield good performance?

In this work, we conquered all of the challenges and
made the following contributions: (1) We have designed and
implemented a new approach to verify multiple snapshots of
arbitrary routing/forwarding tables simultaneously through
a single PATRICIA Trie [12] traversal; (2) It is the first time
that we examined the forwarding equivalence over both real

and large IPv4 and IPv6 forwarding tables; (3) The perfor-
mance of our algorithm VeriTable significantly outperforms
existing work TaCo and Normalization. For TaCo, VeriTable
is 2 and 5.6 times faster in terms of verification time for IPv4
and IPv6, respectively, while it only uses 36.1% and 9.3% of
total memory consumed by TaCo in a two-table scenario. For
Normalization approach, VeriTable is 1.6 and 4.5 times faster
for their total running time for IPv4 and IPv6, respectively;
and (4) In a relaxed version of our verification algorithm, we
are able to quickly test if multiple forwarding tables cover the
same routing space. If not, what are the route leaking points?

This paper has been structured as follows: first we introduce
the state-of-the-art verification algorithm TaCo and Normal-
ization between two tables in Section II; then we present our
work VeriTable with a compact tree data structure. We depict
the design of the algorithm in Section III. We evaluate both
IPv4 and IPv6 forwarding tables in terms of running time,
number of memory accesses as well as memory usage in the
scenarios with two and more tables in Section IV. We describe
related work in Section V. Finally, we conclude the paper with
future work in Section VI.

II. STATE OF THE ART

To the best of our knowledge, there are two state-of-the-
art algorithms designed for Forwarding Table Equivalence
Verification: TaCo [13] and Normalization [14].

A. TaCo

TaCo verification algorithm bears the following features: (1)
Uses separate Binary Trees (BTs) to store all entries for each
forwarding/routing table; (2) Was designed to compare only
two tables at once; (3) Has to leverage tree leaf pushing to
obtain semantically equivalent trees; and (4) Needs to perform
two types of comparisons: direct comparisons of the next hops
for prefixes common between two tables and comparisons
that involve LPM lookups of the IP addresses, extended from
the remaining prefixes of each table. More specifically, TaCo
needs to use four steps to complete equivalence verification
for the entire routing space for Tables Ia and Ib: (a) Building
a Binary Tree (BT) for each table, as shown in Figure 1;
(b) BT Leaf Pushing, Figure 2 shows the resultant BTs; (c)
Finding common prefixes and their next hops, then making
comparisons; and (d) Extending non-common prefixes found
in both BTs to IP addresses and making comparisons. Due to
space constraint, we skip the detailed process.

Finally, when all comparisons end up with the equivalent
results, TaCo theoretically proves that the two FIB tables yield
semantic forwarding equivalence. As a result, TaCo undergoes
many inefficient operations: (a) BT leaf pushing is time and
memory consuming; (b) To find common prefixes for direct
comparisons TaCo must traverse all trees and it is not a trivial
task; (c) IP address extension and lookups for non-common
prefixes are CPU-expensive; and (d) To compare n tables and
find the entries that cause possible nonequivalence, it may
require (n−1)∗n times of tree-to-tree comparisons (example:
for 3 tables A, B, C there are 6 comparisons: A vs B, A

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

622
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

(a) Table 1 (b) Table 2

Fig. 1: Binary Prefix Trees
(a) Table 1 (b) Table 2

Fig. 2: Binary Prefix Trees After Leaf Pushing
(a) Table 1 (b) Table 2

Fig. 3: Binary Prefix Trees After Normalization
vs C, B vs C, B vs A, C vs B, C vs A). For instance, it
may require 90 tree-to-tree combinations to compare 10 tables
mutually. On the contrary, our work-VeriTable eliminates all
these expensive steps and accomplishes the verification over
an entire IP routing space through a single tree/trie traversal.
We describe it in detail in Section III.

B. Tree Normalization

Rétvári et al. in [14] show that a unique form of a BT can be
obtained through Normalization, a procedure that eliminates
brother leaves with identical labels (e. g. next hop values)
from a leaf-pushed BT. Indeed, if a recursive substitution
is applied to the BTs in Figure 2, BT (a) and (b) will
be identical. It is possible to prove that the set of tables
with the same forwarding behavior have identical normalized
BTs. More specifically, Normalization verification approach

has three steps involved: leaf pushing, tree compression, and
side-by-side verification. Leaf pushing refers to formalizing
a normal binary tree to a full binary tree, where a node is
either a leaf node or a node with two children nodes. The
leaf nodes’ next hops are derived from their ancestors who
have a next hop value originally. Tree compression involves
compressing two brother leaf nodes that have the same values
to their parent node. This is a recursive process until no brother
leaf nodes have the same next hops. The final verification
process will traverse every leaf node on both BTs to verify
the forwarding equivalence side by side. Figure 3 shows
the normalized BTs after the first two steps. As we can
observe, normalizing BTs to a unique form involves several
inefficient operations including time-consuming leaf pushing
and complicated leaf compression. Section IV presents the
evaluation results between our algorithm and both TaCo and
Normalization approaches.

III. DESIGN OF VERITABLE

In this section, we introduce the main data structures used
in our work first, then describe the terms, design steps and the
algorithms of VeriTable. Along with the presentation, we use
an example to show how the verification scheme works.

A. PATRICIA Trie
Instead of using a BT to store a forwarding table, we

use a PATRICIA (Practical Algorithm to Retrieve Information
Coded in Alphanumeric) Trie [12] data structure, which is
based on a radix tree using a radix of two. PATRICIA Trie
(PT) is a compressed binary tree and can be quickly built
and perform fast IP address prefix matching. For instance,
Figure 4 demonstrates the corresponding PTs for FIB Table Ia
and FIB Table Ib. The most distinguished part for a PT is
that the length difference between a parent prefix and its child
prefix can be equal to and greater than 1. This is different
than a BT, where the length difference must be 1. As a
result, as shown in the example, PTs only require 7 and 4
nodes, but BTs require 10 and 7 nodes for the two tables,
respectively. While the differences for small tables are not
significant, however, they are significant for large forwarding
tables with hundreds of thousands of entries. An exemplar
IPv4 forwarding table with 575,137 entries needs 1,620,965
nodes for a BT, but only needs 1,052,392 nodes for a PT.
We have detailed comparison in terms of running time and
memory consumption in Evaluation Section IV. These features
enable a PT to use less space and do faster search, but results
in more complicated operations in terms of node creations
and deletions, e.g., what if a new node with prefix 100 needs
to be added in Figure 4a? It turns out that we have to use
an additional glue node to accomplish this task. There are a
number of other complex cases, but out of the scope of this
work.

B. Design
Our design consists of two primary tasks: Building and

initializing a joint PT, and verifying forwarding equivalence
in a post-order traversal over the joint PT.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

623
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

(a) Table 1 (b) Table 2

Hollow nodes denote GLUE nodes helping build the trie structure, other
non-hollow nodes are called REAL nodes, whose prefixes were from one of

the forwarding tables
Fig. 4: PATRICIA Tries (PTs)

TABLE II: Trie Node’s Attributes
Name Data Type Description
parent Node Pointer Points to a node’s parent node
l Node Pointer Points to a node’s left child node if

exists
r Node Pointer Points to a node’s right child node if

exists
prefix String Binary string
length Integer The length of the prefix, 0-32 for

IPv4 or 0-128 for IPv6
nexthop Integer Array Next hops of this prefix in T1...Tn,

size n
type Integer Indicates if a node is a GLUE or

REAL

1) Building a Joint PT: Building a joint PT for all rout-
ing/forwarding tables. Rather than building multiple BTs for
each individual table and comparing them in an one-to-one
peering manner, as TaCo and Normalization do, we build an
accumulated PT using all tables one upon another. When
building the trie, we use a number of fields on each node to
help make various decisions. At the beginning, we take the
first table as input and initiate all necessary fields to construct
a PT accordingly. Afterwards, during the joining process with
other tables, the nodes with the same prefixes will be merged.
Regarding next hops, we use an integer array to store hops for
the same prefix which is located at the same node. The size of
the array is the same as the number of tables for comparison.
The next hops cannot be merged because they may be different
for the same prefix in different tables and also will be used
for comparisons, thus they will be placed at the corresponding
nth element in the array starting from 0, where n is the index
number of the input FIB table (we assume only one next hop
for each distinct prefix in an FIB table in this work). For
instance, the next hop A of prefix 001 in FIB Table 2 will
be assigned as the second element in the Next Hop Array on
the node with prefix 001. If there is no next hop for a prefix
in a particular table, the element value in the array will be
initialized as “ ” by default, or called “empty” next hop (we
used “-1” in our implementation). If there is at least one “non-
empty” next hop in the array, we mark the Node Type value

as REAL, indicating this node contains a real prefix and next
hop derived from one of the tables. Otherwise, we call it a
GLUE node. Algorithm 1 elaborates the detailed workflow to
build a joint PT for multiple tables. Table II describes a trie
node’s attributes in our data structure. Figure 5a shows the
resultant joint PT for FIB Table Ia and Ib.

Algorithm 1 Building a Joint PT T

1: procedure BuildJointPT (T1..n)
2: Initialize a PT T with its head node
3: Add prefix 0/0 on its head node.
4: Set default next hop values in the Next Hops array.
5: for each table Ti ∈ T1..n do
6: for each entry e in Ti do
7: Find a node n in T such as n.prefix is a

longest match for e.prefix in T
8: if n.prefix = e.prefix then
9: n.nexthopi ← e.nexthop

10: n.type← REAL
11: else
12: Generate new node n′

13: n′.prefix← e.prefix
14: n′.nexthopi ← e.nexthop
15: n′.type← REAL
16: Assume n has a child nc

17: if the overlapping portion of nc and n′ is
longer than n.length but shorter than n′.length bits then

18: Generate a glue node g
19: n′.parent← g
20: nc.parent← g
21: g.parent← n
22: g.type← GLUE
23: Set g as a child of n
24: Set n′ and nc as children of g
25: else
26: n′.parent← n
27: nc.parent← n′

28: Set nc as a child of n′

29: Set n′ as a child of n
30: end if
31: end if
32: end for
33: end for
34: end procedure

There are a few advantages for the design of a joint PT: (a)
Many common prefixes among different tables will share the
same trie node and prefix, which can considerably reduce
memory consumption and computational time for new
node creations; (b) Common prefixes and uncommon prefixes
will be automatically gathered and identified in one single tree
after the combination; and (c) The design will greatly speed up
subsequent comparisons of next hops between multiple tables
without traversing multiple tries.

2) Post-Order Equivalence Verification: After building the
joint PT and initializing all necessary fields, we start the

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

624
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

(a) Initial Joint PT (b) Joint PT after top-down process (c) Joint PT after bottom-up verification
In Figure a, for REAL nodes, the nth element denotes the next hop value of the corresponding prefix from the nth forwarding table. “ ” indicates that no

such prefix and next hop exist in the forwarding table. In Figure b, after each top-down step, the fields with previous “ ” value will be filled with new next
hop values derived from the corresponding Next Hop array elements of its nearest REAL node. In Figure c, F denotes False and T denotes True for the

LEAK flag. GLUE nodes will carry T over to its parent recursively until finding a REAL node.

Fig. 5: VeriTable Algorithm

verification process, which only needs one post-order PT
traversal and includes two steps to accomplish the forwarding
equivalence verification as follows:

(A) Top-down inheriting next hops. First, we follow a
simple but very important rule: According to the LPM rule,
the real next hop value for a prefix that has an “empty”
next hop on the joint PT should be inherited from its closest
REAL ancestor, whose next hop exists and is “non-empty”.
For example, to search the LPM matching next hop for prefix
000 in the second table using Figure 5a, the next hop value
should return B, which was derived from the second next
hop B of its nearest REAL ancestor – the root node. The
top-down process will help each specific prefix on a REAL
node in the joint PT to inherit a next hop from its closest
REAL ancestor if the prefix contains an “empty” next hop.
More specifically, when moving down, we compare the Next
Hops array in the REAL ancestor node with the array in the
REAL child node. If there are elements in the child array
with “empty” next hops, then our algorithm fills them out
with the same values as the parent. If there are “non-empty”
next hops present in the child node, then we keep them. Note
that all GLUE nodes (hollow nodes in Figure 5a) will be
skipped during this process, because they are merely ancillary
nodes helping build up the trie structure and do not carry any
next hop information. After this step, every REAL node will
have a new Next Hops array without any “empty” next hops.
The instantiated next hops will facilitate the verification
process without additional retrievals of next hops from
their distant ancestors. Figure 5b shows the results after the
top-down step. If there is not a default route 0/0 in the original
forwarding tables, we make up one with next hop value 0 and
node type REAL for calculation convenience.

(B) Bottom-up verify LPM next hops. In fact, this process
is interwoven with the top-down process in our recursive
post-order verification program. While the program moves
downward, the top-down operations will be executed. While

it moves upward, a series of operations will be conducted
as follows. First of all, a leaf node at the bottom may be
encountered, where the Next Hops array will be checked
linearly, element by element. If there are any discrepancies,
then we can immediately conclude that the forwarding tables
yield different forwarding behaviors, because the LPM prefixes
end up with different next hops. In other words, they are not
forwarding equivalent. If all next hops share the same value,
we move upward to its directly connected parent node, where
we check the prefix length difference from the recently visited
child node.

Since we use a PT as our data structure, two cases may
occur: d = 1 and d > 1, where d denotes the length difference
between the parent node and the child node. The first case
d = 1 for all children nodes implies that the parent node has
no extra routing space to cover between itself and the children
nodes. On the contrary, the second case d > 1 indicates the
parent node covers more routing space than that of all children
nodes. If d > 1 happens at any time, we will set a LEAK
flag variable at the parent node to indicate that all of the
children nodes are not able to cover the same routing space as
the parent, which will lead to “leaking” certain routing space
to check for verification. Therefore, in this case, the parent
itself needs to be checked by the LPM rule to make sure the
“leaking” routing space is checked as well. If there is no child
for a given parent, we consider it as d > 1. As long as there
is one LEAK flag initiated at a parent node, the flag will be
carried over up to the nearest REAL node, which can be the
parent node itself or a further ancestor. The verification process
of forwarding equivalence will be conducted on the Next Hops
array of this REAL node. Once the process passes over a REAL
node, the flag will be cleared so that the “leaking” routing
space will not be double checked. Intuitively, we check the
forwarding equivalence over the routing space covered by leaf
nodes first, then over the remaining “leaking” routing space
covered by internal REAL nodes. Figure 5c demonstrates the

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

625
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

bottom-up LEAK flag setting and carried-over process. For
example, d = 2 between parent 10 and its child 1011, so the
LEAK flag on node 10 will be set to True first. Since node
10 is a GLUE node, the LEAK flag will be carried over to
its nearest REAL ancestor node 1 with the Next Hops array
(A,A), where the leaking routing space will be checked and
accordingly the LEAK flag will be cleared to False to avoid
future duplicate checks.

In Algorithm 2, we show the pseudocode of our recursive
function VeriTable that quickly verifies whether the multiple
forwarding tables are equivalent or not. If not, the correspond-
ing LPM prefixes and next hops will be printed out. The
algorithm consists of both a top-down next hop inheritance
process and a bottom-up LPM matching and verification
process. We have mathematically proved the correctness of
the algorithm but do not present the proof here due to limited
space.

IV. EVALUATION

All experiments are run on a machine with Intel Xeon
Processor E5-2603 v3 1.60GHz and 64GB memory. Datasets
are provided by the RouteViews project of the University of
Oregon (Eugene, Oregon USA) [15]. We collected 12 IPv4
RIBs and 12 IPv6 RIBs on the first day of each month in
2016, and used AS numbers as next hops to convert them
into 24 routing/forwarding tables. By the end of 2016, there
were about 633K IPv4 routes and 35K IPv6 routes in the
global forwarding tables. We then applied an optimal FIB
aggregation algorithm to these tables to obtain the aggregated
forwarding tables. IPv4 yields a better aggregation ratio (about
25%) than IPv6 (about 60%), because IPv4 has a larger
number of prefixes. The original and aggregated tables were
semantically equivalent and used to evaluate the performance
of our proposed VeriTable vs the state-of-the-art TaCo and
Normalization (see description in Section II) verification algo-
rithms in a two-table scenario. We use the following metrics
for the evaluations: tree/trie building time, verification time,
number of node accesses, and memory consumption.

A. Tree/Trie Building Time

TaCo, Normalization and VeriTable need to build their data
structures using forwarding table entries before the verification
process. TaCo and Normalization need to build two separate
BTs while VeriTable only needs to build one joint PT. Figure 6
shows the building time for both IPv4 and IPv6. Our algorithm
VeriTable outperforms TaCo and Normalization in both cases.
In Figure 6a for IPv4, TaCo uses minimum 939.38ms and
maximum 1065.41ms with an average 986.27ms to build
two BTs. For Normalization, it is 1063.42ms, 1194.95ms
and 1113.96ms respectively. Our VeriTable uses minimum
608.44ms and maximum 685.02ms with an average 642.27ms
to build a joint PT. VeriTable only uses 65.11% of the building
time of TaCo and 57.65% of the building time of Normal-
ization for IPv4 tables. In the scenario of IPv6 in Figure 6b,
TaCo uses minimum 137.94ms and maximum 186.73ms with
an average 168.10ms to build two BTs; for Normalization

Algorithm 2 Forwarding Equivalence Verification. The initial
value of ancestor is NULL, and the initial value of node is
T → root. For simplicity, we assume the root node is REAL.

1: procedure VeriTable(ancestor, node)
2: if node.type = REAL then
3: ancestor = node . The closest ancestor node for

a REAL node is the node istelf
4: end if
5: l← node.l
6: r ← node.r
7: if l 6= NULL then
8: if l.type = REAL then
9: InheritNextHops(ancestor, l) .

A REAL child node inherits next hops from the closest
REAL ancestor to initialize “empty” next hops

10: end if
11: LeftF lag ← V eriTable(ancestor, l) . LeftFlag

and RightFlag signify the existing leaks at the branches
12: end if
13: if r 6= NULL then
14: if r.type = REAL then
15: InheritNextHops(ancestor, r)
16: end if
17: RightF lag ← V eriTable(ancestor, r)
18: end if
19: if l = NULL ∧ r = NULL then
20: CompareNextHops(node) . The leaf nodes’

next hops are always compared; a verified node always
returns the false LeakFlag.

21: LeakF lag ← False
22: return LeakF lag
23: end if
24: if l 6= NULL ∧ l.length− node.length > 1 then
25: LeakF lag ← True
26: else if r 6= NULL∧r.length−node.length > 1 then
27: LeakF lag ← True
28: else if l = NULL ∨ r = NULL then
29: LeakF lag ← True
30: else if LeftF lag = True∨RightF lag = True then
31: LeakF lag ← True
32: end if
33: if LeakF lag = True ∧ node.type = REAL then
34: CompareNextHops(node)
35: LeakF lag ← False
36: end if

return LeakF lag
37: end procedure

these numbers are 162.40ms, 225.75ms and 197.25ms. Our
VeriTable uses minimum 36.39ms and maximum 49.99ms
with an average 45.06ms to build a joint PT. VeriTable only
uses 26.78% and 22.84% of the building time of TaCo and
Normalization respectively for IPv6 tables. Although IPv6 has
much larger address space than IPv4, VeriTable yields much
less building time under IPv6 than that of IPv4, which we
attribute to the small FIB size and the usage of a compact

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

626
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

(a) IPv4 Building Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

01/16 03/16 05/16 07/16 09/16 11/16

T
im

e
 (

m
s
)

Date

TaCo
Normalization

VeriTable

(b) IPv6 Building Time

 0

 50

 100

 150

 200

 250

01/16 03/16 05/16 07/16 09/16 11/16

T
im

e
 (

m
s
)

Date

TaCo
Normalization

VeriTable

Fig. 6: IPv4 and IPv6 Tree/Trie Building Time
data structure – a joint PT in our algorithm. Note the slower
Normalization building time due to the operation of tree
compression performed by that algorithm.

B. Verification Time

A valid verification algorithm needs to cover the whole
routing space (232 IP addresses for IPv4 and 2128 IP addresses
for IPv6) to check if two tables bear the same forwarding
behaviors. The verification time to go through this process is
one of the most important metrics that reflects whether the
algorithm runs efficiently or not. Figure 7 shows the running
time of TaCo, Normalization and VeriTable for both IPv4
and IPv6, respectively. Our VeriTable significantly outperforms
TaCo in both cases. TaCo takes minimum 355.06ms and
maximum 390.60ms with an average 370.73ms to finish
the whole verification process. Our VeriTable takes minimum
51.91ms and maximum 57.48ms with an average 54.63ms
to verify the entire IPv4 routing space. VeriTable only takes
14.73% of the verification time of TaCo for verification over
two IPv4 tables. Taking building time into consideration,
VeriTable is about 2 times faster than TaCo for IPv4
verification (1356ms VS 696ms). Normalization verification
time for IPv4 tables is slightly faster than that of VeriTable
(which is not the case for IPv6 tables). This is achieved due to
the compression that shrinks the size of the BTs for verification
process. However, Normalization has much longer building
time than VeriTable. Overall, considering both building and
verification time, VeriTable is faster than Normalization by
40% (696.90ms VS 1154.08ms) for IPv4 verification.

Figure 7b shows the IPv6 scenario (note the Y-axis is
a log scale). TaCo takes minimum 75.17ms and maximum
103.18ms with an average 92.79ms to finish the whole ver-
ification process. For Normalization it is 11.47ms, 15.58ms,
13.87ms respectively. Our VeriTable takes minimum 1.44ms
and maximum 1.97ms with an average 1.75ms to verify the
entire IPv6 routing space. VeriTable only takes 1.8% and
12.6% of the verification time of TaCo and Normalization
respectively for verification over two IPv6 tables. Considering
both building and verification time, VeriTable is 5.6 times
faster than TaCo (261ms VS 47ms) and 4.5 times faster
than Normalization (211ms VS 47ms) for IPv6 verification.
The fundamental cause for such a large performance gap is due
to the single trie traversal used in VeriTable over a joint PT
with intelligent selection of certain prefixes for comparisons
without tree normalization, see Section III-B2 in detail. Note,
that the leaf pushing operation over IPv6 forwarding table
causes a significant inflation of the BTs which explains much

(a) IPv4 Verification Time

 0

 100

 200

 300

 400

 500

01/16 03/16 05/16 07/16 09/16 11/16

T
im

e
 (

m
s
)

Date

TaCo
Normalization

VeriTable

(b) IPv6 Verification Time

 1

 10

 100

01/16 03/16 05/16 07/16 09/16 11/16

T
im

e
 (

m
s
)

Date

TaCo
Normalization

VeriTable

Fig. 7: IPv4 and IPv6 Verification Time

(a) IPv4 Node Accesses

 1x10
6

 1x10
7

 1x10
8

01/16 03/16 05/16 07/16 09/16 11/16N
u
m

b
e
r

o
f
th

e
 a

c
c
e
s
s
e
d
 n

o
d
e
s

Date

TaCo
Normalization

VeriTable

(b) IPv6 Node Accesses

 10000

 100000

 1x10
6

 1x10
7

01/16 03/16 05/16 07/16 09/16 11/16N
u
m

b
e
r

o
f
th

e
 a

c
c
e
s
s
e
d
 n

o
d
e
s

Date

TaCo
Normalization

VeriTable

Fig. 8: IPv4 and IPv6 Number of Node Accesses

slower speed of TaCo and Normalization verification for IPv6
tables than for IPv4 tables.

C. Number of Node Accesses

Node accesses, similarly to memory accesses, refer to
how many tree/trie nodes will be visited during verification.
The total number of node accesses is the primary factor to
determine the verification time of an algorithm. Figure 8 shows
the number of total node accesses for both IPv4 and IPv6
scenarios. Due to the novel design of VeriTable, we are able to
control the total number of node accesses to a significantly low
level. For example, node accesses range from 1.1 to 1.2 million
for 580K and 630K comparisons, which is less than 2 node
accesses per comparison for IPv4, and it yields similar results
for IPv6. On the contrary, TaCo and Normalization requires
larger number of node accesses per comparison. For instance,
TaCo bears 35 node accesses per comparison, on average, for
IPv4 and 47 node accesses per comparison, on average, in
IPv6. Normalization has 4 node accesses per comparison in
both cases. There are two main reasons for the gaps between
VeriTable and TaCo and Normalization: (a) VeriTable uses a
joint PT but TaCo and Normalization uses separate BTs. In a
BT, it only goes one level down for each search step while
multiple levels down in a PT; and (b) VeriTable conducts only
one post-order PT traversal. TaCo conducts many repeated
node accesses over a BT, including searching for a match from
the BT root, using simply longest prefix matching process for
each comparison. Due to the the unique form of a normalized
BT, Normalization requires no mutual IP address lookups and
thus conducts significantly less node accesses than TaCo.

D. Memory Consumptions

Memory consumption is another important metric to eval-
uate the performance of algorithms. Figure 9 shows the
comparisons between TaCo, Normalization and VeriTable for
both IPv4 and IPv6 in terms of their total memory con-
sumptions. In both scenarios, VeriTable outperforms TaCo and

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

627
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

(a) IPv4 Memory Consumption

 0

 50

 100

 150

 200

 250

 300

01/16 03/16 05/16 07/16 09/16 11/16

M
e
m

o
ry

 a
llo

c
a
te

d
 (

M
B

)

Date

TaCo
Normalization

VeriTable

(b) IPv6 Memory Consumption

 0

 10

 20

 30

 40

 50

 60

 70

01/16 03/16 05/16 07/16 09/16 11/16

M
e
m

o
ry

 a
llo

c
a
te

d
 (

M
B

)

Date

TaCo
Normalization

VeriTable

Fig. 9: IPv4 and IPv6 Memory Consumption
Normalization significantly. VeriTable only consumes around
38% (80.86MB) of total memory space than that of TaCo
and Normalization (223MB) on average for the same set of
IPv4 forwarding tables. In the IPv6 case, VeriTable bears
even more outstanding results, which only consumes 9.3%
(4.9MB) of total memory space than that of TaCo (53MB)
and Normalization on average. Overall, thanks to the new
design of our verification algorithm, VeriTable outperforms
TaCo and Normalization in all aspects, including total running
time, number of node accesses and memory consumption.

The differences in memory consumption by VeriTable, Nor-
malization and TaCo are caused by the unique combined trie
data structure used in VeriTable. A node in Normalization and
TaCo holds a single next hop instead of an array of next
hops, because TaCo and Normalization build separate BTs for
each forwarding table. Moreover, those BTs inflate after leaf
pushing.

E. Performance for Multiple Tables

We also evaluated the performance of VeriTable to check the
forwarding equivalence and differences over multiple forward-
ing tables simultaneously. In the experiments, we intentionally
added 2000 distinct errors when a new forwarding table was
added. Then we verified that the same number of errors will
be detected by VeriTable algorithm. Starting from 2 tables,
we gradually checked up to 10 tables simultaneously. The
evaluation results have been shown in Table III. There are
two primary observations. First, VeriTable is able to check the
whole address space very quickly over 10 large forwarding
tables (336.41ms) with relatively small memory consumptions
(165MB). Second, the building time, verification time, node
accesses, and memory consumptions grow much slower than
the total number of forwarding entries. This indicates that Veri-
Table can scale quite well for equivalence checking of a large
number of tables. On the contrary, TaCo and Normalization
naturally was not designed to compare multiple forwarding
tables. In theory, TaCo may need n ∗ (n − 1) table-to-table
comparisons to find the exact entries that cause differences,
which is equal to 90 comparisons for this 10-table scenario. On
the other hand, Normalization needs additional decompression
steps to find such entries. We skip evaluation of TaCo and
Normalization for multiple tables due to the high complexity.

F. “Blackholes” Detection

A relaxed version with minor changes of our VeriTable al-
gorithm is able to quickly detect the routing space differences

between multiple FIBs. More specifically, after building the
joint PT for multiple FIBs, VeriTable goes through the same
verification process recursively. When traversing each Next
Hops array, it checks if there is a scenario where the array
contains at least one default next hop (the next hop on default
route 0/0) and at least one non-default next hop. If yes, it
indicates that at least one FIB misses some routing space while
another FIB covers it, which may lead to routing “blackholes”.
In our experiments, we used data from RouteViews [15]
project, where 10 forwarding tables that contain the largest
number of entries were collected and then merged to a super
forwarding table with 691,998 entries. Subsequently, we one-
to-one compared the routing spaces of the 10 individual
forwarding tables with the super forwarding table. The results
of these comparisons (see Table IV in detail) show that none
of these 10 forwarding tables fully cover the routing space
of the merged one. The Leaking Routes in Table IV were
calculated by the number of subtrees in the joint PT under
which an individual forwarding table “leaks” certain routes
but the merged super forwarding table covers them. These
facts imply that the potential routing blackholes may take
place between routers in the same domain or between different
domains. To this end, our VeriTable verification algorithm can
identify these potential blackholes efficiently. On the contrary,
TaCo and Normalization may not be easily used to detect block
holes and loops because different FIBs may result in different
shapes of BTs (even normalized), which makes it hard for
comparison.

V. RELATED WORK

TaCo algorithm, proposed by Tariq et al. [13], is designed
to verify forwarding equivalence between two forwarding
tables. TaCo builds two separate binary trees for two tables
and performs tree normalization and leaf-pushing operations.
Section II elaborates the algorithm in detail. VeriTable is very
different from TaCo. VeriTable builds a single joint PATRICIA
Trie for multiple tables and leverages novel ways to avoid
duplicate tree traversals and node accesses, thus outperforms
TaCo in all aspects as shown in Section IV. Inconsistency of
forwarding tables within one network may lead to different
types of problems, such as blackholes, looping of IP packets,
packet losses and violations of forwarding policies. Network
properties that must be preserved to avoid misconfiguration
of a network can be defined as a set of invariants. Mai et al.
introduced Anteater in [16], that converts the current network
state and the set of invariants into instances of boolean sat-
isfiability problem (SAT) and resolves them using heuristics-
based SAT-solvers. Zeng et al. introduced Libra in [17], and
they used MapReduce [18] to analyze rules from forwarding
tables on a network in parallel. Due to the distributed model of
MapReduce, Libra analyzes the forwarding tables significantly
faster than Anteater. VeriFlow [19], proposed by Khurshid
et al., leverages software-defined networking to collect for-
warding rules and then slice the network into Equivalence
classes (ECs). Kazemian et al. introduced NetPlumber in [20],

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

628
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Results of Comparing 10 IPv4 FIB Tables Simultaneously

Number
of tables

Total number
of entries

Building
time(ms)

Verification
time (ms)

Number
of comparisons

Node
access times

Number
of errors Memory (MB)

2 1230512 962 82 586942 1133115 4000 84
3 1845768 1326 108 1175884 1137115 6000 94
4 2461024 1684 135 1766826 1141115 8000 104
5 3076280 2060 172 2359768 1145115 10000 114
6 3691536 2471 194 2954710 1149115 12000 124
7 4306792 2869 213 3551652 1153115 14000 134
8 4922048 3248 224 4150594 1157115 16000 145
9 5537304 3630 322 4751536 1161115 18000 155

10 6152560 4007 337 5354478 1165115 20000 165

TABLE IV: One-to-one Comparison of Individual
Forwarding Tables with the Merged Super Table

Table size Router IP ASN BGP
peers

Leaking
Routes

673083 203.189.128.233 23673 204 489
667062 202.73.40.45 18106 1201 507
658390 103.247.3.45 58511 1599 566
657232 198.129.33.85 292 153 495
655528 64.71.137.241 6939 6241 667
655166 140.192.8.16 20130 2 879
646912 85.114.0.217 8492 1504 796
646892 195.208.112.161 3277 4 772
641724 202.232.0.3 2497 294 1061
641414 216.221.157.162 3257 316 1239

a real-time network analyzer based on Header Space Analysis
protocol-agnostic framework, described in [21]. NetPlumber
is compatible with both SDN and conventional networks. It
incrementally verifies the network configuration upon every
policy change in a quick manner. Different from the network-
wide verification methods above, VeriTable aims to investigate
whether multiple static forwarding tables yield the same
forwarding behaviors-given any IP packet with a destination
address or they cover the same routing space.

VI. CONCLUSION

We designed and developed VeriTable, which can quickly
determine if multiple routing or forwarding tables yield the
same or different forwarding behaviors, and our evaluation
results using real forwarding tables significantly outperform
its counterparts. The novel algorithms and compact data struc-
tures can offer benefit not only in forwarding equivalence
verification scenarios, but also in many other scenarios where
we use Longest Prefix Matching rule for lookups, e.g., check-
ing if route updates in control plane are consistent with the
ones in forwarding plane. Moreover, the principles used in this
paper can be applied to network-wide abnormality diagnosis
of network problems, such as scalable and efficient forwarding
loop detection and avoidance in the data plane of a network.
In addition, VeriTable can be extended to handle incremental
updates applied to the forwarding tables in a network. Our
future work will explore these directions.

REFERENCES

[1] H. Chao and B. Liu, High Performance Switches and Routers,
ser. Wiley - IEEE. Wiley, 2007, pp. 5–9. [Online]. Available:
https://books.google.com/books?id=kzstoFdvZ2sC

[2] “Troubleshooting Prefix Inconsistencies with Cisco Express
Forwarding,” http://www.cisco.com/c/en/us/support/docs/ip/
express-forwarding-cef/14540-cefincon.html.

[3] “Configuring CEF Consistency Checkers,” http://www.cisco.
com/c/en/us/td/docs/ios-xml/ios/ipswitch cef/configuration/12-4/
isw-cef-12-4-book/isw-cef-checkers.html.

[4] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill, “Constructing
optimal IP routing tables,” vol. 1, pp. 88–97, 1999.

[5] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,
and P. Francis, “SMALTA: practical and near-optimal FIB aggregation,”
in Proceedings of the Seventh Conference on emerging Networking
EXperiments and Technologies. ACM, 2011, p. 29.

[6] Y. Liu, B. Zhang, and L. Wang, “FIFA: Fast incremental FIB aggrega-
tion,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 1–9.

[7] D. McPherson, S. Amante, and L. Zhang, “The Intra-domain BGP
Scaling Problem,” RIPE 58, Amsterdam, 2009.

[8] D. Saucez, L. Iannone, O. Bonaventure, and D. Farinacci, “Designing
a deployable internet: The locator/identifier separation protocol,” IEEE
Internet Computing, vol. 16, no. 6, pp. 14–21, 2012.

[9] CIDR, “The CIDR report.” [Online]. Available: http://www.cidr-report.
org/

[10] “AS131072 IPv6 BGP Table Data,” http://bgp.potaroo.net/v6/as2.0/
index.html.

[11] Geoff Huston, “BGP in 2016.” [Online]. Available: https://blog.apnic.
net/2017/01/27/bgp-in-2016/

[12] D. R. Morrison, “PATRICIA practical algorithm to retrieve information
coded in alphanumeric,” Journal of the ACM (JACM), vol. 15, no. 4,
pp. 514–534, 1968.

[13] A. Tariq, S. Jawad, and Z. A. Uzmi, “TaCo: Semantic Equivalence of IP
Prefix Tables,” in Computer Communications and Networks (ICCCN),
2011 Proceedings of 20th International Conference on. IEEE, 2011,
pp. 1–6.

[14] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Com-
pressing IP forwarding tables: towards entropy bounds and beyond,”
in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4.
ACM, 2013, pp. 111–122.

[15] Advanced Network Technology Center and University of Oregon, “The
RouteViews project.” [Online]. Available: http://www.routeviews.org/

[16] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4. ACM, 2011, pp.
290–301.

[17] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and Conquer to Verify Forwarding Tables
in Huge Networks,” in NSDI, vol. 14, 2014, pp. 87–99.

[18] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[19] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[20] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real Time Network Policy Checking Using Header Space
Analysis.” in NSDI, 2013, pp. 99–111.

[21] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analysis:
Static Checking for Networks.” in NSDI, vol. 12, 2012, pp. 113–126.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

629
Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on August 20,2020 at 00:15:03 UTC from IEEE Xplore. Restrictions apply.

