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Abstract—Preventative anti-phishing approaches are not always
effective. As there seem to be always users who ignore warnings,
use old anti-phishing software, or rely on obsolete blacklists of
phishing sites, phishers continue to find new victims who surrender
their credentials to phishing sites. We thus take an aggressive anti-
phishing approach, a research direction rarely explored. We study
how we may disrupt phishing operations by injecting to phishing
sites many fake credentials—also called honey tokens—that are
indistinguishable from real credentials, allowing institutions under
attack to detect and track phishing activities when honey tokens
are used. We address the limitations from our early work,
Humboldt 1.0, which automatically submits fake credentials but
can fail if phishers take smart countermeasures. Based on a
new architecture, Humboldt 2.0, we study how we may leverage
human users to submit honey tokens successfully, while being
resilient to various malicious countermeasures to our system. We
further analyze its effectiveness and evaluate its cost using the
Amazon Mechanical Turk service, showing that Humboldt 2.0
can successfully complement Humboldt 1.0.
Keywords: anti-phishing, phishing disruption, honey token,

Humboldt

I. INTRODUCTION
In spite of significant research into anti-phishing methodolo-

gies, phishers continue to find new victims [1], [2], resulting
in 32,581 attacks per month on average, a 19 percent increase
over the previous year. [3]. Although current methods mitigate
these losses from climbing even further, they are not always
effective. For example, the takedown of phishing sites is seldom
immediate, blacklists of phishing sites are often obsolete, new
software tools are only useful if users install them, and browser
warnings are only effective if users heed them. Phishers also be-
come more sophisticated, such as by launching spear-phishing
or spreading phishing URLs through social networking sites.
But if phishers will collect victims anyway, can we still do
anything to protect web users?
In this work, we investigate an anti-phishing option that has

not received enough attention—aggressive phishing disruption.
We present a phishing disruption system called Humboldt
(named after the Pacific squid known to attack night-time
fishers). Different from attempting to take down new phish-
ing sites or prevent users from accessing them, Humboldt
is designed to inject large amounts of fake credentials into
the phishing sites. These fake credentials are indistinguish-
able from real ones, and each of them is a honey token
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that Humboldt shares with the institution under attack. The
institution can monitor site transactions. If a phisher attempts
to use a fake credential in a transaction with the institution,
the institution (or law enforcement agencies) can then identify
the transaction and even further track the transaction. The more
fake, indistinguishable honey tokens Humboldt can inject, the
more likely the phisher will use one of them. (Humboldt can
be particularly deadly when attacked institutions cooperate to
create “honeypot” accounts for submitted honey tokens. This
would allow an institution to monitor the account closely to see
how the phisher uses it, and could even lead to prosecution.)
A critical issue here is that phishers will make adaptations

if they suspect their data is being poisoned. For example, if
submissions are done from a small number of IP addresses,
it would be trivial for the phisher to monitor submission rates
and filter any IPs with high submission rates. In our previous
work, we proposed a prototype of Humboldt, i.e., Humboldt
1.0, which leveraged a distributed network of clients to submit
honey tokens [4]. Participating users simply installed “thin
client” software running in the background, and periodically
coordinated its actions with a central server.
But while Humboldt 1.0 makes fake submissions indistin-

guishable from those of genuine submissions, it depended on
an automated submission procedure. Once a phisher realizes
this, she could try to make it impossible for the fake credentials
to be submitted in the first place. While leaving the appearance
of her phishing site unaffected, the phisher can increase the
complexity of the phishing site’s underlying structure to foil the
automatic profiling of the site. Since modern web page design
provides considerable flexibility for doing this (e.g. Javascript,
CSS, Flash, HTML5 Canvas, etc.), it is of little trouble for
the phisher to do this. In fact, the phisher could just use a
CAPTCHA [5] to thwart any automatic submission mechanism.
However, the phisher has a fundamental weakness. No matter

what she can do to obfuscate the structure of the phishing
web page or change the submission dynamics, the page must
always remain usable by people and must always accept their
submissions. If not, then there is no point in phishing! We can
therefore systematically defeat all of the above countermeasures
by leveraging actual people to do the submissions.
In this paper, we evaluate the practicality of this idea. We en-

hance Humboldt 1.0 to build a honey token submission network
that enables actual people to inject fake data to phishers. We
call this new version Humboldt 2.0 (in the following we use
Humboldt 2.0 and Humboldt interchangeably). We particularly
consider the implications of relying on human submitters and



how Humboldt 2.0 can be resilient to various countermeasures
of phishers. In order to determine whether it is feasible, we
also study its effectiveness and its associated costs based on
experiments with real human submitters.
The rest of this paper is organized as follows. We first present

the architecture of Humboldt 2.0 in Section II, followed by
Section III that discusses its resilience to adversarial coun-
termeasures. We then analyze the effectiveness of Humboldt
2.0 in Section IV, and evaluate its cost of relying on human
submitters with experiments using the Amazon Mechanical
Turk service [6] in Section V. Finally, we discuss the related
work in Section VI, and conclude the paper in Section VII.

II. HUMBOLDT 2.0 ARCHITECTURE
A. Overview
Figure 1 shows the logical design of Humboldt 2.0. It has

four primary components:
• a central server which coordinates the assignment and
submission of honey tokens;

• a marketplace which distributes honey token submission
tasks to people;

• a set of servers called exit nodes which serve as the last
hop in each submission; and finally

• a set of external sources called phishing feeds which
discover new phishing sites.

In this design, Humboldt offers itself as a service to in-
stitutions under a phishing attack. Briefly, such an institution
provides Humboldt with detailed submission requirements (e.g.
how many honey tokens should be submitted each day), and
some tangible incentive for users to submit honey tokens.
The Humboldt central server then uses the incentive to create
submission tasks on the marketplace, targeting any sites posing
as the institution which are discovered through the phishing
feeds. It then facilitates submission of the honey tokens; once
a user submits a honey token, the token will first reach the
central server, which then routes the token to an appropriate
exit node, which then forwards it to the phishing site.

B. Description
We now provide further details on the purpose and operation

of each component of Humboldt 2.0.
1) Central server: The main component in this design is

the central Humboldt server, which is responsible for creating
submission tasks, making them available to would-be submit-
ters, and coordinating the actual submission through the exit
nodes (described below). The core of this server is a relational
database known as HumboldtDB. It is responsible for storing
information on attacked institutions, generated honey tokens
for submission, submission statistics to various phishing sites
(including which exit nodes are used), and information about
worker reliability. Logically, there are two distinct roles for the
Humboldt central server. The first is submission task creation,
i.e., listening to the phishing feeds, generating honey tokens,
and posting them to the market. The second is submission
handling; the server is responsible for routing honey token

submissions to appropriate exit nodes (discussed below), and
monitoring the submission traffic for accounting.
2) Honey token marketplace: The honey token marketplace

is responsible for mapping submission tasks to human users.
Humboldt tracks whether and by whom every submission task
is completed. As mentioned above, there must be incentive
for users to submit Humboldt’s honey tokens. This could be
coupons from the attacked institution, something tangible such
as music or books, actual money, or online benefits such as
virtual money for use in online games or “reputation points.”
3) Exit nodes: In order to evenly distribute the submission

tasks, we attempt to leverage a pool of exit nodes to serve as
the final hop before reaching the phishing site. The exit node’s
only job is to proxy the submission to the phishing site, so the
machine requirements are minimal and the proxy service does
not require human interaction. Exit nodes allow us to spread
submissions from individual users across multiple IP addresses.
This means we can take advantage of nonuniform distributions
of participation among submitters.
4) Phishing Feeds: Finally, we require a source to point

Humboldt to new phishing sites. In fact, this could be either an
internal (i.e. part of the central server) or external component. In
Figure 1, we show it as external since there are already excellent
services to identify new phishing sites (e.g. Phishtank [7]).
Alternatively, specific phishing URLs could be provided by the
targeted institution when they complete the service agreement.

C. Advantages
The first advantage of the Humboldt 2.0 architecture is its

reasonable assurance of submission work accomplished. The
fact that submissions are routed through the Humboldt central
server and onto exit nodes enables Humboldt to monitor the
submission of honey tokens. Users cannot simply claim that
they have submitted a honey token unless they do have done
so. However, there is a limit to what we can do here. Since we
do not control phishing sites, we cannot verify the credentials
toward a phishing site actually make it to the site. What we
seek is “reasonable assurance” of work done by the users.
Humboldt 2.0 is also advantageous in its adoption of exit

nodes. Exit nodes are cheap and require no user involvement.
Hence it can have a huge number of exit nodes in proportion
to the number of actual submitters. In effect, the exit nodes
magnify the power of the submitters, thereby solving the
problem of distributing submissions. Furthermore, although we
have implied each exit node corresponds to a single machine,
the only thing that matters is that there are a large source of IP
addresses to work with. A single machine which can intercept
traffic for unused IPs on a subnet could serve as a “super” exit
node. Or even better, we could use a cloud-based infrastructure
with virtual machines across many geographic locations as the
exit nodes; based on techniques in [8], phishers can hardly
detect and block the IP addresses of such virtual machines.
Furthermore, since all honey token submissions are for-

warded through the Humboldt server, the server can attempt to
learn the submission characteristics. The central server can ob-
serve several “correct” submissions, match their corresponding



Fig. 1: Humboldt 2.0 Architecture and Work flow: In step 1), an institution provides submission requirements and rewards for people who
submit honey tokens; in step 2), Humboldt listens to various phishing feeds to identify phishing sites attacking that institution; after such a
site is found, in step 3), honey tokens are generated and the submission task is posted to the market; in steps 4) and 5), the user accepts the
task and begins submission of the honey token through the central server; finally, in steps 6) and 7), Humboldt routes the submission to an
appropriate exit node, which then forwards it to the phishing site.

HTTP fields, and then directly validate subsequent submissions.
For example, after several submissions reveal the username
and password form fields, the central server can verify further
submissions whether they have included the username and
password of the assigned honey token in the right fields.

III. ADVERSARIAL RESILIENCE
Humboldt 2.0 is further designed to be resilient to adversarial

threats. In this section, we discuss the specific threats and show
how Humboldt handles them. We first introduce a threat model
which describes the capabilities we assume that phishers have
individually and collectively. We then systematically discuss
how to address countermeasures of phishers.

A. Threat Model
Our threat model defines what actions phishers can take and

what information they can use to defend their sites or mitigate
the threat of repercussions from attempting to use honey tokens.
First and foremost, we assume that phishers know about the
existence of Humboldt, including how it works and information
about its control structure (e.g. the IP address of the central
server), but we do not assume phishers can subvert and control
Humboldt itself. We assume that phishers are capable of making
changes to the sites they control at any time. The only real
limitation we place on the phisher is that they must maintain
the site’s usability. This is reasonable since a phishing site has
no point if people cannot use it. We also assume that certain
human workers or exit nodes can be malicious, and can collude
with phishers to counter Humboldt’s operation.
Moreover, we assume that phishers can collect statistics

about their visitors. They can easily determine, for example,
the IP address that each submission came from, and what the

characteristics of the submission are (e.g. the time between page
load and submission). They can also store cookies or use other
client-side method to try to track users who revisit the site.
Finally, we assume phishers can deploy potentially many

phishing sites and they can also collaborate with other phishers
in order to gain additional information about submitters. Or,
the phisher may simply collude with certain submitters.

B. Adversarial Tactics
Although we do not make any assumptions about the

phisher’s operating costs, it is clear that they will prefer
methods which are cheaper. Additionally, they will certainly
prefer methods which can provide guarantees of effectiveness.
While a comprehensive listing of tactics is impossible, we can
broadly characterize phisher tactics as either active or passive.
1) Active Tactics: Active tactics interfere with the ability

to submit honey tokens. The most obvious such attack is a
denial of service (DoS). Humboldt depends on a central server
which assigns submission tasks to a set of nodes which were
then responsible for the actual submissions. If this server is
taken offline, no submissions can take place and the phisher
is protected. Denial of service is covered extensively in the
literature, and can be dealt with, for example, by distributing
the task of assigning submissions to multiple servers.
The phisher could also target the honey token marketplace. In

a simpler form, the phisher may use bots to accept and conduct
submission tasks. We can prevent this attack by requiring every
submitter to first solve a CAPTCHA to ensure it is a human
user. The more complex form is when the phisher attempts to
enlist malicious users for submission tasks. Doing so will not
only cut into the phisher’s operating costs, but will also be
hardly effective as explained below:



After accepting a submission task posted by Humboldt, a
malicious user could choose to (1) not act on it; (2) submit
the assigned honey token incorrectly; or (3) submit the token
correctly but also collude with the phisher, including using an
out-of-band channel to notify the phisher of the token. However,
given a reasonably sophisticated marketplace, it is difficult for
such attacks to be successful. First, we can set an expiration
time for every submission task, and assign expired tasks to new
users. Second, we can refuse submissions from users who have
failed previously (recall Humboldt’s central server monitors
every submission). Third, all correctly submitted credentials—
including those submitted by malicious users or an accomplice
of the phisher, once used in transactions with the institution
under attack, can reveal the ongoing phishing activities. The
phisher can discard those honey tokens that she learned via
collusion, but not all tokens.
In fact, the marketplace itself could even make getting

new accounts difficult (e.g. by requiring multiple forms of
identification). For any market of reasonable size (such as
Amazon Mechanical Turk), the population of malicious users
will be small, and tokens correctly submitted by malicious users
will only be a small portion of those submitted by benign users.
The only advantage of malicious users are rewards that they
can receive for successfully submitted tokens. But given that
the number of malicious users is small, Humboldt can treat
such rewards as an acceptable overhead, and further reduce it
by being frugal in rewarding successful submissions.
Finally, the phisher may also target the exit nodes. For

example, the phisher can have its own machines become exit
nodes or compromise current exit nodes. These malicious exit
nodes can then notify the phisher of the honey tokens they
have seen. Or, they can fake responses from the phishing site,
perhaps even collaborating with malicious users, while actually
not forwarding honey tokens to the site. Here, Humboldt
cannot know for certain if an exit node actually forwards
the submissions to the phishing site since Humboldt does not
control that final hop.
For this threat, recall Humboldt does not need to guarantee

all honey tokens to be successfully submitted to the phishing
site. Humboldt is successful as long as enough honey tokens
successfully make to the phishing site. Humboldt also controls
which exit node to use for every submission, and can simply
randomly pick one every time. Therefore, unless the phisher
controls most exit nodes or Humboldt is stuck with using
malicious exit nodes, this tactic cannot stop Humboldt, either.
The above malicious tactics will be even more difficult if

Humboldt can identify trusted human workers and exit nodes,
and only rely on them. Trust management, however, is an active
research topic by itself, and thus out of the scope of this paper.
2) Passive Tactics: Since honey token are submitted by

actual people, attempts to hamper robots are useless. There
may, however, still be some ways for a phisher to detect
honey tokens without interrupting the Humboldt service. For
example, the phisher might attempt to detect them purely from
the submitted data. If the fake submission includes a password

which does not meet the length or entropy requirements of the
target site, then the submission can be rejected without further
thought. The phisher might also try statistical methods, such as
comparing the information content of each submission against
a set of known genuine credentials. However, these methods
are unlikely to be reliable given any reasonably sophisticated
method for generating usernames and passwords. Furthermore,
there will be some chance of generating false positives, which
will cut into the phisher’s potential for profit.
For geographically local targets, such as a small community

bank, phishers can attempt to filter any submissions coming
from outside the region where the bank is operating. One such
method is IP geo-location. We can also imagine a CAPTCHA
which is designed to be solved only by people from a particular
region (e.g. a classic CAPTCHA, but with Chinese characters).
This problem could be solved by adding a location constraint
to the submission task. We note again that this tactic will likely
also result in false positives for the phisher.
Yet another passive approach is to use an indirect method

to confirm which credentials are real. For example, many web
services provide an e-mail account with the same username
that is used to log in. The phisher could simply send e-mails
to these addresses and see which ones are bounced back. In
some cases, user information may even be publicly available
(e.g. a game service which posts user scores). The solution
to this threat is simple: Humboldt can ensure the username in
every honey token is real (i.e., matches the username of a real
user of the targeted institution), but the password and other
credential fields are not. Since those real users might not like
being used for this purpose, a better option might be associating
honey accounts with each honey token. This is, in fact, one of
the great opportunities which Humboldt offers, since it could
allow law enforcement agencies to observe the tactics used by
phishers to turn the account to money.
Perhaps the most troublesome passive method (from Hum-

boldt’s perspective) is for the phisher to track the IP addresses
of each submission and filter all submissions from IP addresses
which have high submission rates. We refer to this as the source
heuristic. The simplest idea is to ensure that every phishing
site receives honey tokens from different IP addresses. While
reasonable, this idea overlooks an important point: our threat
model allows the phisher to use several sites and collaborate
with other phishers, while we cannot know when the same
phisher may see submissions to separate sites. Since this is a
fundamental limitation of Humboldt, we next analyze its effect
in detail.

C. Source Heuristic
Suppose that a phisher can access the submission statistics to

s sites. We are interested in how effective the source heuristic
can be in filtering submissions with the extra knowledge
obtained from these sites. Below, we first analyze the worst case
for Humboldt when the phisher greedily filters all instances of
duplicate IP submissions, then discuss if the phisher can be
always greedy, and how Humboldt can mitigate the threat from
the source heuristic.



Suppose that fake submissions can be done from a set of N
distinct IP addresses, and that v ≤ N honey token submissions
are done to each of the s sites, so that no two submissions to
the same site come from the same IP address.
Suppose first that s = 2. Let I0 and I1 represent the two

sets of IP addresses collected from the two sites respectively.
The source heuristic allows the phisher to discard submissions
from IP addresses in the intersection of these sets. Let the
random variable D2 represent the size of this intersection (i.e.
D2 = |I0 ∩ I1|). Assuming that the submission IP addresses
are selected randomly for each site (without replacement), the
expected value of D2 is given by

E(D2) =
v

∑

i=1

i

(

N
i

)(

N−i
v−i

)(

N−v
v−i

)

(

N
v

)2
. (1)

With 100 distinct nodes at our disposal and 50 credentials
submitted to the two sites, the source heuristic allows the
phisher to discard 50% of the submissions (on average). Looked
at from another direction, this means that we would have to
submit 50 credentials in order to have 25 of them succeed.
Clearly this presents a problem.
For s > 2, the situation is more dire. Since an exact formula

becomes fairly complicated, we consider an approximation
which is based on the s = 2 case. Let the sets of IP addresses
be given by {Ii}si=1, and let Iij = Ii ∩ Ij for each of the
(

s
2

)

distinct pairs of sets. The number of IP addresses which
are eliminated by the source heuristic is given exactly by
|
⋃

i"=j Iij |. Now, there will possibly be some overlap between
each pair of the Iij’s, but we can get an upper bound by
assuming they are disjoint. In other words,

|
⋃

i"=j

Iij | ≤
∑

i"=j

|Iij | (2)

Let the random variable Ds be given by Ds = |
⋃

i"=j Iij |.
Using the previous formula for E(D2), the expected intersec-
tion size between two sets, we can write the approximation as
follows of E(Ds) as

E(Ds) ≤
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∑
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Figure 2(a) shows the effect of the source heuristic when 50
credentials are submitted to each of the sites controlled by the
phisher. In this plot, the x-axis is the number of distinct nodes;
the y-axis is the average number of credentials to each phishing
site which are not filtered by the phisher. If the phisher controls
25 sites, we require roughly 3000 distinct nodes in order to have
40 credentials pass through (on average). We could improve
on the approximation by subtracting the expected intersection
between sets of size 3, 4, and so on. But in fact, when the value
of v is small in proportion to N , this approximation is already
quite close to the true value.
The worst case for Humboldt is when the phisher greedily

filters all instances of duplicate IP submissions. However, the
phisher may be reluctant to take this action. In particular,
given the prevalence of Network Address Translation (NAT)

in modern networks, as well as the wide usage of the Dynamic
Host Configuration Protocol (DHCP), two users submitting
from the same IP address is not uncommon. If the phisher
greedily throws out all of these submissions, then there could
be a large number of false positives. On the other hand, if the
phisher throws out only submissions from IP addresses which
have been the source of some number of distinct submissions,
then they might reduce the false positive rate, but at the cost
of accepting more honey tokens. Figure 2(b) shows a more
conservative approach where the phisher filters IP addresses
only if they are the source of at least 3 submissions.
Although the source heuristic presents a significant problem,

we can take several actions to mitigate the threat. First, if we
have a large and dynamic pool of exit nodes to select from, this
tactic becomes useless to the phisher. This implies that the best
exit nodes might be mobile devices which change IP addresses
frequently. Second, when we know that an exit node conceals a
large number of NAT users, we can afford to have its IP address
exposed to the phisher through this heuristic. If the phisher’s
only response is to filter submissions from this IP address, then
we have effectively protected all of the NAT users.

IV. EFFECTIVENESS OF HUMBOLDT 2.0

From a high level, the goal of Humboldt is to submit
“enough” honey tokens in an undetectable way to potentially
many phishing sites. In this section, we describe the require-
ments to be effective in this sense, and the metrics which we
will use to evaluate it. We also attempt to determine what
“enough” is. Note that our focus in this section is to analyze
how effective Humboldt can be; we will show how Humboldt
can enlist human users to disrupt a “phishing” site we controlled
in the next section.
In fact, given that in a phishing campaign every honey token

should be submitted through a different exit node, knowing
the number of honey tokens needed will also help gauge how
many exit nodes Humboldt needs to employ. Note, however,
once there are enough exit nodes to spread submissions from
users, Humboldt can leverage either one willing and capable
user for all honey token submissions, or more users to share
the submission load.
Since we do not control the phisher’s website, the only

direct way we can measure effectiveness is by cooperating with
the attacked institution to monitor the use of honey tokens.
However, we can estimate the number of submissions required
in order to be effective with a probabilistic model. Suppose a
phishing site receives totally n submissions, h of which are
from Humboldt (and n − h from genuine victims). Let P (X)
represent the probability that the phisher will attempt to use
some number X ≤ h of the credentials submitted by Humboldt.
Our first goal is simple detection: we only require that the

phisher use one of the submitted honey tokens. Suppose that
the phisher verifies a total of k submissions out of the total
n, then the probability that at least one of these submissions
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Fig. 2: The effect of the source heuristic on 50 submissions

comes from Humboldt is given by
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∑
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As an example, with n = 100 and a modest k = 10, we must
submit just 20 honey tokens in order to have P (X ≥ 1) ≥ 0.9.
Assuming the phisher has no method for detection, this suggests
that we will be effective even with relatively few submissions.
The second goal we might reasonably strive for is to detect

the use of honey tokens before actual victims have been
attacked. Such early detection may give us an opportunity
to protect the victims. Intuitively, for early detection to be
effective, compared to using credentials from actual victims, the
likelihood that the phisher will use fake credentials submitted
by Humboldt must be high. Assume for simplicity that we are
able to stop the phisher’s actions after we detect l transactions
with honey tokens from Humboldt (e.g. if l logins all come
from the same IP, the target institution can block that IP). The
question is what percentage of victims can be helped?
Let V be a random variable representing the number of

victims targeted by the phisher before the required l sub-
missions from Humboldt have been detected. Then P (V ) is
the probability that there will be exactly V such victims.
Our goal is to determine what h should be in order to have
the expected number of unprotected victims E(V ) as few as
possible. If we assume that the submissions from Humboldt
are distributed randomly among the total submissions, we can
consider this from the perspective of partitioning the set of
h Humboldt submissions around the pivotal lth submission.
From this perspective, it is clear that the probability that the
ith overall credential used by the phisher will also be the lth
credential submitted by Humboldt is given by

(

i−1

l−1

)(

n−i
h−l

)

/
(

n
h

)

.
The number of victims which occur before the lth Humboldt
submission then is simply given by i − l. By then letting
j = i − l, we can therefore derive an equation for E(V ) by
summing over each possible value for j.

E(V ) =
n−h
∑

j=1

j ·
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If we let am = m
(

m+l−1

l−1

)

and bm =
(

m+h−l
m

)

, then this
summation can readily be seen to be the (n− h)th term in the
convolution of the respective generating functions. From this,
we can derive the much simpler equation

E(V ) =
l(n− h)

h + 1
. (6)

Our goal is to minimize E(V ). Define r as (n − h), i.e., the
number of real submissions, Equation (6) can be written as

E(V ) =
l ∗ r

h + 1
. (7)

Though we will not generally know how many real submissions
occur (i.e., the value of r), we can estimate it by estimating the
size of the phisher’s advertising campaign and the response
rate. We then can further estimate how many submissions will
be needed in order to protect a given percentage of the victims.

V. EVALUATING HUMAN USERS
In order to prove the viability of Humboldt, we must evaluate

the most unpredictable and potentially most costly piece: the
human users we depend on for submissions. The facility cost for
running Humboldt, such as storage, bandwidth and computation
cost, is easily manageable and thus less interesting in this study.
We are interested primarily in what it takes to enlist their
participation and how reliably they are able to complete each
submission task.
We designed and conducted several experiments using the

Amazon Mechanical Turk (AMT) marketplace in order to
validate the use of people in our architecture. Briefly, AMT
centers around units of work known as Human Intelligence
Tasks (HITs). HITs are posted by requesters for a given price
and workers choose them at their discretion. After the worker



Total HITs 4643
Submitted HITs 3829
Expired HITs 814
Total Worker Cost 181.42
Total Amazon Commission 18.14
Avg. Cost per HIT 0.052
Unique Workers 213
Avg. HITs per Worker 17.82
Fig. 3: AMT Experiment Summary

accepts a HIT and completes the task, the result is sent to the
requester who can either approve the work (in which case the
worker is payed) or reject it. Requesters are allowed to specify
the time allowed for the completion of a HIT.
In our experiments, a HIT corresponds to the submission of a

single honey token. Rather than submitting to an actual phishing
site, however, our HITs assigned workers to submit to a site
we controlled. This allowed us to verify whether a submission
was done correctly. Our submission site consisted of nothing
more than a standard login form with fields for username and
password, and a CAPTCHA so that submissions could only be
done by people. Briefly, the HIT description gave a specific
honey token for the user to submit. After a worker accepted
the task, they input the credentials and solved the CAPTCHA.
The site then presented the worker with a unique ID, which
was then submitted back through the AMT interface. Since the
honey token was visible to the public in this experiment, this
last step ensured it was the assigned user who submitted it.

A. Experiment Results
The experiments were conducted over the course of one week

and varied over prices per HIT and creation intervals. Figure 3
contains an aggregate summary of all the experiments.
In the first experiment, we were interested in understanding

how the HIT price affected response delays from users. Based
on a preliminary trial, we determined that we could get partic-
ipation for as little as 5 cents per HIT. We wrote a program to
create 50 HITs every hour for 10 hours. Initially, the price was
set at 10 cents per submission. It was lowered one cent every
subsequent hour. Figure 4(a) shows the effect of the price on
the delay between the time the HIT was created and the time
it was submitted. The X’s mark the submissions which were
done incorrectly (i.e. either the username or password did not
match what was assigned). As expected, higher priced HITs are
completed faster, though the difference is not as noticeable as
might have been expected. Also, there is no clear pattern in the
number of incorrect submissions. Indeed, there were just two
incorrect submissions for prices lower than 4 cents. From this,
there seems to be no compelling reason to pay any more than
1 cent per submission.
In our next experiment, we attempted to observe how worker

participation (percentage of HITs completed) scaled with sub-
mission requirements (number of HITs to be completed). We
set the time before expiration of each HIT at 15 minutes
and created an increasing number of HITs over four such
intervals. This experiment was fairly costly, so we only did

this for prices of 2, 4, and 6 cents. Figure 4(b) shows the
results. The y-axis shows the proportion of the HITs which
were completed according to whether the submission was done
correctly (black) or not (grey). As in the previous plot, there is
no clear relation between the price and the number of incorrect
submissions. However, offering higher prices clearly results in
a larger proportion of the HITs being completed. At 2 cents per
submission, only about 25% of the HITs are completed; at 6
cents per submission, almost all of them are. This tells us that
we can expect to have to increase the price in order to meet
submission requirements.
A reasonable question to ask is whether some workers should

be preferred over others. Let the reliability of each worker be
defined as the proportion of correctly submitted HITs to the
total number of HITs they accept. Figure 5 shows how the
reliability of each worker varied according to the number of
total HITs they accepted, and the average price of the HITs
they accepted. While there is a noticeable trend in reliability as
the worker accepts more HITs, it is not great enough to give
us a lot of confidence. The trend is even smaller when varied
against the average price of HITs which users accepted. In fact,
these results suggest that we will always have to account for
some proportion of faked submissions. The good news is that
the proportion is relatively small.

B. Cost Estimates
The cost per submission (i.e the exact price we payed the

worker) is in some sense an inadequate metric. It does not
tell us anything about whether the submission succeeded. The
success of the submission depends on the worker submitting
the correct credentials and the phisher not being able to filter
it. We therefore define the effective cost as the net price payed
per successful submission.
Suppose that the user fails in the submission with probability

β. Based on the above experiments, we have found that we can
expect β ≈ 0.07. In other words, there is about a 7% chance
that each submission will fail. If the phisher had no way to
detect the submissions, our effective cost is clearly given by
C/(1 − β), where C is the price payed for each submission.
We also consider the effect of the source heuristic. Its impact

is similar to that of β from above: it increases the effective cost
of each submission. In Figure 6, we show how the effective cost
increases as the number of submissions to a site increases. In
Figure 6(a), we show the greedy filtering approach in which the
phisher filters all submissions from IP addresses which have
submitted at least twice. In Figure 6(b), we show the more
conservative approach in which the phisher filters submissions
only after an IP address has been observed three times or more.
Clearly, when the phisher owns a large number of sites, the
effective cost can become quite large.

VI. RELATED WORK

Anti-phishing defenses in the literature can be categorized
as either preventative or aggressive. We discuss them below:
Preventative approaches aim to disallow users from access-

ing phishing sites. Solutions are typically integrated in the
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web browser or email client as plug-ins. The most popular
method today uses blacklists or whitelists to distinguish be-
tween phishing and legitimate sites [9], [10]. There are also
many heuristic-based or machine-learning-based approaches to
detecting phishing web sites [11], [12], [13], [14], [15], [16],
[17]. The critical weakness of these solutions is that they
depend on new or updated software components, thus slow
adopters are unprotected.
Aggressive anti-phishing approaches such as Humboldt have

been studied in previous literature. Phishing site take-down is
one example. If a victim web site finds a phishing site for
its own brand, the victim site can issue a take-down notice
to the company hosting the phishing site [18]. However, there
must necessarily be some delay before a takedown can take
effect, during which users are unprotected. There are also
ethical dilemmas in take-down [19]. Additionally, fast-fluxing
techniques [20] make takedown virtually impossible since the
hosting site is continually changing.
Methods for disrupting the ability of the phisher to steal

credentials as Humboldt have also been studied. The earliest
work describes this as “phish feeding” [21] and presents a
preliminary framework for doing submissions. PHONEY [22]
and BogusBiter [23] are more developed systems for fake
credential submission. PHONEY intercepts the users email
traffic and discovers phishing sites by studying the structure and
content of the messages, while BogusBiter is activated when a
user visits a phishing site. When a phishing site is found, they
automatically generate and submit faked credentials to it. But
like all systems depending on automatic classification, they are
susceptible to false positives and false negatives. Furthermore,
phishers can craft email messages specifically to avoid detection
by PHONEY. Also, a phisher can easily filter out the faked
submissions from BogusBiter by simply watching for batch
submission from a particular address.

VII. CONCLUSION
In spite of significant research into anti-phishing method-

ologies, phishing remains a huge security threat to Internet
users and phishers continue to find new victims. Although
continued refinement of current methods helps to mitigate this
threat, they are not always effective: the takedown of phishing
sites is seldom immediate, blacklists of phishing sites are often
obsolete, new tools are only useful if users install them, and
browser warnings are only effective if users heed them.
As phishers are unstoppable in obtaining new victims, we

proposed to disrupt their operations by injecting to phishing
sites honey tokens that are indistinguishable from real creden-
tials, allowing an institution under attack to monitor and track
phishing activities. In order to address smart countermeasures
that phishers may take to thwart automatic submissions, we
focused on how human users may be leveraged for honey token
submissions and designed an architecture called Humboldt 2.0.
Not only have we made Humboldt 2.0 resilient against both

active and passive countermeasures from phishers, our analysis
regarding its effectiveness is also promising. Our experiments
using Amazon Mechanical Turk further shows the feasibility

of using humans for honey token submission when automatic
submission option is not available. Further work may include
addressing certain legal issues and more interactions with
potential victim institutions and law enforcement agencies when
running Humboldt 2.0 in the real world.
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