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Abstract—Online Social Networks (OSNs) have become a
rewarding target for attackers. One particularly popular attack
is the Sybil attack, in which the adversary creates many fake
accounts called Sybils in order to, for instance, distribute spam
or manipulate voting results. A first generation of defense systems
tried to detect these Sybils by analyzing changes in the structure
of the OSN graph—unfortunately with limited success. Based on
these efforts a second generation of solutions enriches the graph-
structural approaches with higher-level user features in order to
detect Sybil nodes more efficiently. In this work we provide an
in-depth analysis of these defenses. We describe their common
design and working principles, analyze their vulnerabilities, and
design simple yet effective attack strategies that an adversary
could launch to circumvent these systems. In our evaluation
we reveal that an miscreant can exploit the credulity of OSN
users and follow a targeted attack strategy to successfully avoid
detection by all existing approaches.

I. INTRODUCTION

Due to their unprecedented success Online Social Networks
(OSNs) have become a popular target for attackers, who seek
to, for instance, crawl user data, manipulate voting schemes, or
distribute spam, malware and fake news articles. For instance,
the Locky ransomware was distributed in a spam campaign
via the Facebook messenger application in late 2016 [1].
Regardless of their goal, adversaries often instrumentalize a
multitude of Sybil (or fake) nodes to enable interaction with
their targeted audience. These Sybils can easily be created or
acquired from specialized underground markets for as little as
$0.02 to $0.10 per node [2]. In this context, researchers have
recently revealed a 350,000 node strong Twitter botnet [3].

As a consequence, detecting Sybil nodes in OSNs is a
major challenge that has been addressed by a variety of
solutions. A first generation of approaches tried to exploit
solely the structure of the social graph at the core of each
OSN (e.g., [4]–[6]). These approaches, however, were built on
the over-simplified assumption that attackers can only create
few friendships with honest users (also called attack edges).
As soon as an attacker was able to establish a handful of such
friendships these approaches were found ineffective [7], [8].

Reseachers have thus subsequently moved away from purely
topological approaches in a second generation of Sybil de-
fense solutions. These solutions can be categorized as (i)
purely machine-learning (ML) based solutions [9]–[11] and

(ii) hybrid solutions [12]–[14]. Here, pure ML systems try
to distinguish Sybil accounts from honest users with a ML
classifier trained on, for instance, the profile data of users. Un-
fortunately, trying to detect Sybil nodes solely by employing
a ML classifier leads to an arms race between defenders and
attackers, as attackers will try to avoid detection by mimicking
honest user features [12], [14].

Hybrid approaches thus seem more promising. The key
difference with respect to pure ML systems is that hybrid
solutions employ feature-based classification in addition to
graph-based ideas similar to those of first generation systems.
Hence, the attacker needs to defy both the ML elements
and the topological algorithms. In particular, defying the
graph algorithms may be detected by a ML classifier, and
vice versa. For instance, even if an attacker might be able
to establish many attack edges, she may still experience a
suspiciously high amount of rejected friend requests—which
can be detected by the classifier. At the same time, trying to
please the classifier will result in a small amount of attack
edges, which results in a detection by the graph algorithms.

It is however unclear how well these hybrid solutions
perform if the adversary attacks more intelligently rather than
trying to randomly place attack edges. For instance, in the
example above, an attacker could execute a two-staged attack.
She could first sacrifice some of her attack power and identify
users with a high likelihood of accepting friend requests, and
then send friend requests to these users in a second stage with
fresh Sybil accounts. Doing so would lead to a high ratio of
request acceptance, thus evading the classifier.

In this work we take an attacker’s view on hybrid Sybil
defense solutions: we exploit observations on user behavior
when receiving friend requests in order to find entry points
into the OSN [15], [16]. Then, from these entry points, we let
the attacker further infiltrate the OSN to extend the reach of
the Sybil attack. Ultimately, our goal is to find whether or not
current defensive systems can reliably detect Sybil nodes in
different attack scenarios. Concretely, our contributions are:
• We thoroughly analyze three state-of-the-art hybrid detection

methods [12]–[14]. We dissect their working principles and
find that all systems use additional high-level features as
input for topological graph algorithms. These algorithms



resemble those of the first generation solutions. In particular,
all solutions try to distinguish between Sybils and honest
nodes in a similar fashion by propagating a notion of trust
through the network and then, based on that trust, apply a
ranking scheme that (ideally) should rank all honest nodes
higher than all Sybil nodes.

• We find vulnerabilities in all systems and subsequently
design five different attack strategies against hybrid defenses.
These attack strategies could easily be implemented by an
adversary and exploit the curiosity of OSN users that leads
to high acceptance rates for friend requests sent by Sybils.

• We implement the detection methods and evaluate their
performance under attack. Our results show that even under
conservative attack success assumptions, all Sybil defenses
suffer from high false positive or false negative rates.
The remainder of this paper is structured as follows: In

Sec. II we briefly review related work. We then analyze hybrid
Sybil defenses for commonalities in Sec. III. Afterwards, we
work out vulnerabilities in Sec. IV and subsequently design
attack strategies exploiting these vulnerabilities in Sec. V. We
evaluate the performance of Sybil defenses under attack in
Sec. VI and finally conclude the paper in Sec. VII.

II. RELATED WORK AND SCOPE

Sybil Defenses: A plethora of approaches to defend an
OSN against the Sybil attack has been proposed in the past
ten years. A first generation of Sybil defenses approached the
problem from a graph-theoretical perspective (e.g., [4]–[6]) by
assuming that attackers can hardly befriend honest users and
could thus be detected by their isolated position in the social
graph. After several studies found this assumption to be over-
simplified [7], [8], the second generation of Sybil defenses was
built on more sophisticated grounds. These solutions typically
add higher-level components (e.g., via machine learning) to
the defense scheme [9]–[14]. In this work, we do not propose
another defense solution, but rather investigate the state of the
art for its success in Sybil defense.

Sybil Defense Surveys: Surveys on Sybil defenses [17]–
[19] are intended to give an overview of the state of Sybil de-
fense research and thus do not analyze Sybil defense solutions
with respect to their effectiveness. On the contrary, our goal
is to thoroughly analyze Sybil defenses in order to evaluate
their strength when faced with more sophisticated attackers.

Sybil Defense Analysis: Viswanath et al. were the first
to systematically analyze Sybil defenses for their working
principles [20]. In a previous work, we have built on their
discoveries and analyzed first-generation Sybil defense solu-
tions with regards to their efficiency [7]. In this paper, to the
best of our knowledge, we provide the first in-depth analysis
of Sybil defenses for second-generation approaches.

Scope of this paper: Second-generation approaches can be
divided into solutions (i) purely based on machine learning
classifiers and (ii) hybrid approaches, which combine clas-
sifiers with graph-theoretical elements. Unfortunately, purely
ML-based approaches can be tricked quite easily by the
attacker, if she is able to mimic honest user behavior (and

thereby features) [12], [14]. Thus, in this paper we focus on the
more promising direction of hybrid Sybil defense solutions.

III. HYBRID SYBIL-DEFENSES: OVERVIEW

In general, defense solutions approach the problem of
detecting Sybils in an OSN by investigating the friendships
among the OSN users, as represented in the social graph of
the OSN. First-generation approaches assumed that an attacker
would be unable to establish a significant amount of friend-
ships with honest users (attack edges). As a consequence,
starting a random walk in the region of the social graph
containing the Sybil accounts would only occasionally find
a path into the connected region of honest nodes, and vice
versa. In this way, the common abstraction of first-generation
defensive solutions was to rank a suspect in the OSN based on
some notion of the probability of a random walk (or variation
thereof) starting from a seed reaching the suspect. The suspect
was then deemed honest (in case of high probability) or Sybil
(in case of low probability) [7], [20].

Recently however, Sybils were found to be able to establish
a significant amount of friendships with honest users [8]. Thus,
starting a random walk at an honest node in fact traverses
Sybil nodes more often than tolerable by first-generation
Sybil defenses [7], [12]. In order to mitigate this problem
a second generation of hybrid Sybil defense solutions was
proposed recently [12]–[14]. Here, the common assumption
is that, while Sybils may be able to befriend honest users,
their behavior in doing so can be detected. Thus, the joint
principle among all hybrid solutions is to enrich the social
graph with higher-level behavioral features that can help to
differentiate between both classes of nodes. These features
are then used as additional information when traversing the
social graph. Here, the common goal is to lower the impact
of potential attack edges in the system (e.g., by assigning a
low traversal probability to them). Still, the final traversal of
the graph results in a ranking of nodes in each solution and,
similar to first-generation solutions, the ranking of a particular
node decides its label (i.e., Sybil or honest). In the following
we describe how each hybrid solution implements this process.

Integro [12]: Before traversing the social graph, Integro
applies a ML classifier in order to detect victims, i.e., honest
nodes that are likely to accept friend requests sent by Sybils.
Features contributing to this classification are, e.g., related to
the number of friends, or interaction frequency and volume
of each user. Integro then uses the result of this classifier as
additional information when traversing the social graph. In
particular, all weights of the edges adjacent to a victim are
reduced drastically in a first step. Then, starting from a seed
node and with respect to edge weights, trust is propagated
through the now modified social graph via power iterations
(similar to SybilRank, see [6]). The rationale is that Sybil
nodes will achieve lower trust values than honest nodes as
their attack edges are typically connected to victims and thus
propagate less trust due to their low weight. A nodes’s rank
is then determined by dividing its final amount of trust by its
weight-adjusted degree.



Votetrust [13]: Different in its strategy from Integro,
Votetrust tries to directly classify Sybils. Votetrust is based
on the assumption that an attacker can often create many
friendships with honest users but can be expected to gather
an unusual amount of rejections in the process. Thus, the
proportion of rejections is used as the main additional informa-
tion to later modify the social graph. Votetrust then proceeds
in two phases: First a limited amount of votes (a measure
similar to trust in Integro) is propagated from seed nodes
through the original network. Subsequently, each successful or
unsuccessful friendship request results in a positive or negative
vote to be cast onto the requester, weighted by the amount of
votes available at the target of the request. Here, the weighting
operation prevents colluding Sybils from up-voting each other
without limits. A node’s rank is then determined by the total
of each node’s weighted votes.

SybilFrame [14]: SybilFrame employs two ML classifiers
to obtain prior information before traversing the graph. Here,
one classifier is giving an estimate (the node prior) how likely
each node is to be Sybil based on features like the clustering
coefficient or the ratio of accepted incoming friend requests.
The other classifier yields an estimate (the edge prior) of how
likely each pair of adjacent nodes is equal (i.e., both nodes are
Sybil or both nodes are honest) based on similarity measures
like the Jaccard Index. This information is then used to modify
each node (Sybil likelihood) and edge (equality likelihood)
in the social graph. Afterwards, SybilFrame determines the
rank of a node as the probability of each node to be Sybil
by using Loopy Belief Propagation (LBP) [21] as message
passing algorithm. LBP works by collecting for each node
u its neighbors’ belief. That is, each node v adjacent to u
estimates whether u is honest or a Sybil. This knowledge
is then integrated with u’s node prior to reason on its label.
Similarly, u sends messages to each neighbor v by combining
the information of u’s label with the edge prior of the edge
(u, v). This process is repeated several times and results in a
ranking of nodes indicating their likelihood of being Sybil.

In summary, as indicated above, all three hybrid solutions
make use of additional information when trying to detect
Sybil nodes with graph traversal techniques. While Votetrust
and SybilFrame use this information to directly detect Sybils,
Integro follows a different path and rather tries to predict the
victims of a Sybil attack. After modifying the social graph
with additional information (e.g., changing edge weights), all
three solutions then propagate some notion of trust through
the network. Although they differ in the details on how this
trust is distributed (e.g., power iterations or vote propagation),
all three solutions finally produce a ranking that should ideally
rank all honest nodes higher than all Sybil nodes.

IV. VULNERABILITY ANALYSIS

In the following, we investigate each of the solutions for
possible entry points for an attacker. Here, we focus on
conceptual issues rather than implementation details.

Integro: While Integro’s low weighted victim edges address
the problem of large and dense sybil regions the system is still

susceptible to isolated Sybils with many attack edges, which
is the prevalent attack pattern observed in literature [8]. Since
each node’s degree is computed as the sum of its incident
edges’ weights the effect of low weight edges in terms of
their ability to conduct trust is counteracted when the nodes’
trust is divided by their degree to determine their rank.

Votetrust: Votetrust’s approach of reasoning on successful
and rejected requests can be assumed to reliably detect un-
prepared attackers even when Sybil nodes are isolated and
have many attack edges. However, we have identified two
potential vulnerabilities. First, colluding Sybils might be able
to acquire large amounts of votes by tricking a few honest
nodes into sending a request to a Sybil node, which can
easily be achieved [22]. These votes can then be used to
up-vote other Sybils. Second, by sending requests to friends
of already established victims, a Sybil node can improve the
probability of its requests to be successful increasing its chance
to a high rank. This attack option is based on the acceptance
probability of a friend request drastically improving with an
increasing number of mutual friends between the requester and
her target [15]. In particular, while a request is successful in
with probability p = 0.2 in cases without mutual friends, an
attacker can more than double this probability with two mutual
friends, and can overall increase the probability to p = 0.7.
The adversary can also further improve her friend request
acceptance ratio by first sacrificing some attack power (i.e.,
Sybil accounts) to identify accepting users, and then use the
majority of her attack power to infiltrate these users’ friends.

SybilFrame: Using its probability inference system Sybil-
Frame is able to counteract a classifier’s original assessment
of a node by weighing in the beliefs of a node’s neighbors
regarding the node’s label. However, its performance is fully
dependent on its two classifiers predicting the nodes’ and
edges’ labels based on features that are at least partially
controlled by the attacker. In particular, these classifiers have
already produced a 32% FN ratio (node label classifier) and
a 80% FN ratio (edge label classifier) in [14]. Taken together,
these misclassifications can result in a high FN ratio for Sybil
detection, as the beliefs exchanged via LBP become inaccurate
and the distinguishing ability of SybilFrame suffers. Consider
for instance an isolated Sybil u that has managed to establish
five attack edges. Then, this Sybil will trick the classifier
in certain features (e.g., clustering coefficient, as it is not
connected to a Sybil region) and thus has a good chance of
being misclassified. Also, on average, four of its five attack
edges could be classified as normal edges, again leading to a
network belief of u being honest.

V. ATTACK STRATEGIES

While OSN infiltration attacks can be arbitrarily complex, in
this work we focus on attacks that are easy to implement. We
define an attack strategy as the way an adversary (i) organizes
Sybil nodes and (ii) tries to establish attack edges.

A. Organization of Sybils

Links between Sybil nodes can be set freely by the adver-
sary. This is typically done one of two ways [7].



Community: An attacker can form a densely connected
Sybil region (e.g., a complete graph), where fake profiles
befriend each other to appear legitimate to honest users.

Peripheral: However, in typical real-world attacks, Sybils
rather form the majority of their links with honest users [8],
thereby evading the (community-)detection mechanisms of
first-generation Sybil defenses [7]. Here, only 25% of a Sybil’s
links are to another Sybil [8].

B. Attack Edges

The adversary cannot control the placement of attack edges,
as friend requests may be rejected. However, the attacker can
increase success rates by following a variety of strategies.

Random: The attacker can naively send out friend requests
to honest nodes at random.

Targeted: Our core strategy is to initially perform the
random strategy until an attack edge to a particular user
is established. Afterwards, the attacker sends requests to
that user’s friends. Here, we exploit the good will of OSN
users that results in a higher request acceptance likelihood
in the presence of mutual friends [15]. This strategy is then
recursively applied in a breadth-first manner, further increasing
the chance of acceptance for the attacker. The attack can be
effective against both Votetrust and SybilFrame. In the former,
it will increase the success ratio for friend requests, and in the
latter it will reduce the classifier accuracy. Figure 1 shows
a visualization of this attack. Here, the sybil (S) randomly
sends out friend requests (the order in which requests are
sent is indicated by the numbering of nodes). After she is not
successful at node 1, node 2 accepts her request. The attacker
thus sends requests to nodes 5 to 7 next, as she expects a
higher probability of being accepted there. After recursively
traversing the friend list of node 5 (node 4 accepts the request),
the attacker continues to randomly send requests (node 3).

Boosted: Third, to undermine Votetrust, the attacker can
trick a few honest nodes into sending requests to a small
boosting circle consisting of three Sybil nodes. Vote capacity
flowing from these honest nodes into the circle will accumulate
there. The attacker then—from different nodes—sends friend
requests to the boosting circle, all of which are accepted. Based
on the voting scheme of Votetrust this results in a fixed amount
of positive votes for each attacking node that can be used as a
starting capital. The attacker then follows the targeted strategy.

C. Attack Combinations

An attacker can arbitrarily combine the two Sybil organi-
zation strategies with the three attack edge strategies. In this
paper, we will use the combination of community and random
as a base benchmark. Afterwards, we will increase the attacker
strength by using the combination of peripheral with each of
the three attack edge strategies.

VI. EVALUATION

In order to properly evaluate the effectiveness of our attack
strategies, we have implemented all three hybrid Sybil de-
fenses. In this section, we describe our evaluation methodology
and present our key results.
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A. Methodology

We evaluate Integro, Votetrust and SybilFrame through re-
peated simulations using two real-world OSN graphs of differ-
ent sizes from Facebook (4,039 nodes with 88,234 edges, [23])
and Slashdot (77,360 nodes with 905,468 edges [24]). In both
graphs, we first add all Sybil nodes and their connections
among each other (i.e., Sybil region or peripheral organiza-
tion). Then, each Sybil node issues friend requests according
to the respective attack edge strategy.

The success of establishing an attack edge is influenced by
the friend request acceptance probability. While research has
shown success probabilities of up to 0.9 for carefully crafted
Sybils [16], we take a conservative approach as shown in
Figure 2. We follow the model presented in [15] with an initial
success probability of 0.2 that increases to up to 0.7 depending
on the number of mutual friends between a Sybil and its target.
We also evaluate a model in which the initial probability is
set to 0.1, and only increases to 0.5.

Finally, as far as possible we have set the system parameters
to the values used in [12]–[14]. Here, Integro and SybilFrame
depend on ML classifiers based on ground truth data, to which
we did not have access. We thus applied the same classification
results (in terms of false positives and false negatives) as
obtained with the original classifiers for our experiments.

To quantify our results, we use false positives (FP), false
negatives, and the Area Under the ROC (AUC) as our main
metrics. The FP rate describes the ratio of honest users falsely
accused of being Sybil. A high FP rate is undesirable as
it can suspend a large number of honest accounts. The FN
rate is a direct indicator of a system’s capability to reliably
detect Sybil nodes as it describes the ratio of Sybils remaining
undetected by the defensive solution. The AUC, on a higher
level, describes the overall capability of a system to accurately
label nodes with low false positives and false negatives.

B. Results

Figure 3 shows our key results.1 Here, we evaluate the AUC
for all systems as Sybils are sending out an increasing amount

1For the sake of clarity we only show the results obtained from the
Facebook graph. The Slashdot graph yields very similar results.
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of friend requests while employing different attack strategies.2

The attack strength increases from left to right.
Votetrust works consistently well when faced with random

friend requests originating from a Sybil region, and Integro
works well as long as the number of requests issued per Sybil
is below 20. SybilFrame exhibits an interesting behavior in
this scenario, deteriorating quickly after performing perfectly
for the first 40 requests. Here, the Sybil region acts as
a catalyst that amplifies the current classification tendency.
Before information flows into the Sybil region from outside the
intra-Sybil edges reinforce the belief that all Sybil nodes are
in fact Sybil. After enough attack edges have been established
and enough messages claiming that the Sybil nodes are honest
flow into the region, this belief is overturned. Then, the intra-
Sybil edges reinforce the new tendency, resulting in a strong
belief that the Sybil nodes take an honest label.

When we do not employ a Sybil region to send random
requests but execute a peripheral attack, Votetrust continues
to reliably detect Sybils. This is an improvement over first-
generation solutions, where two attack edges per node were
enough to degrade defense performance [7]. In this scenario,
SybilFrame suffers from 20 friend requests onwards as attack
edges are more often misclassified as honest. However, in the
absence of a Sybil region, this misclassification can not act as
a catalyst, leading to a better performance in this case.

However, as we move to the more advanced peripheral
attack strategies that target friends of already infiltrated honest
users, we observe that all systems consistently fail to reliably
detect Sybil nodes. Either FP or FN increase, resulting in
a smaller AUC. Note that Votetrust is closest to performing
reasonably well (AUC > 0.8 in all cases), but still admits a
significant amount of Sybils. Here, when the Sybils are looking
for their entry point to the OSN, they also accumulate rejected
requests, thereby reducing their rank. Once they find that
entry point and are more successful in establishing friendships,
Votetrust loses some of its predictive power. The boosting
strategy only improves the attack effectiveness by nuances.

In Figure 4, we show the CDFs of normalized ranks

2Note that we use friend requests, and not attack edges as parameter, as
distinguishing between both is important in, e.g., Votetrust’s success ratio
feature. The actual number of attack edges is probabilistically determined.
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targeted peripheral attack.

assigned to Sybils and honest nodes, respectively. In an ideal
system, the two CDF curves representing both node classes
would be separated significantly, indicating a high capabil-
ity of the systems to distinguish Sybils from honest users.
However, in the left column of Figure 4 we observe that the
two CDF curves largely overlap for Integro and SybilFrame,
which means that both systems rank Sybils and honest nodes
similarly. Votetrust performs better, but, if all Sybils should be
detected, would also incur a ≈ 30% FP rate.

In the right column of Figure 4 we show the influence of
lower acceptance ratio probabilities for friend requests sent
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out by Sybils (cf. Figure 2). Even with our very conserva-
tive probability model, both Integro and SybilFrame do not
perform well. Votetrust significantly improves in performance
(the curves for Sybil and honest users overlap less), but will
still incur a FP rate of approximately 10% if all Sybils would
be excluded. On the scale of OSNs with hundreds of millions
of users, this would result in a prohibitive manual overhead in
verifying and re-establishing the accounts of falsely accused
honest users—or worse, a loss of honest users to the OSN.

Finally, in our vulnerability analysis we noted that Sybil-
Frame is dependent on the quality of its classifiers. As
we performed our experiments with the same parameters
as in [14], we also employed the edge-classifier with 20%
sensitivity, i.e., missing out on 80% of the attack edges in the
system (FN=0.8). Therefore, in a final step we evaluate the
performance of SybilFrame in case a better classifier would be
available. Figure 5 shows that the better the classifier, the better
the performance of SybilFrame. A sensitivity of 70% for the
edge prior classifier (FN=0.3) would indeed help SybilFrame
in appropriately detecting Sybil nodes, while any sensitivity
below still results in a degraded performance.

VII. CONCLUSION

In this work we have taken an attacker’s view on state-
of-the-art hybrid Sybil defense solutions. These solutions
make use of higher level features as input for graph-traversal
algorithms, which in turn calculate a ranking of nodes in
the OSN. We have discussed the vulnerabilities of current
approaches and designed a set of rather simple attack strategies
that exploit these vulnerabilities and the credulity of OSN
users. Evaluating the impact of these attack strategies in our
evaluation based on two real-world OSN graphs shows that

while hybrid systems are an improvement over first-generation
Sybil defenses, they are still not able to reliably detect Sybil
nodes. In fact, all approaches induce prohibitive false positive
or false negative rates when faced with our attack strategies.
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