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Abstract—Rapid and widespread dissemination of security
updates throughout the Internet will be invaluable for many
purposes, including sending early-warning signals, updating
certificate revocation lists, distributing new virus signatures, etc.
Notifying a large number of machines securely, quickly, and reli-
ably is challenging. Such a system must outpace the propagation
of threats, handle complexities in a large-scale environment, deal
with interruption attacks on dissemination, and also secure itself.

Revere addresses these problems by building a large-scale,
self-organizing, and resilient overlay network on top of the In-
ternet. We discuss how to secure the dissemination procedure and
the overlay network, considering possible attacks and counter-
measures. We present experimental measurements of a prototype
implementation of Revere gathered using a large-scale-oriented
approach. These measurements suggest that Revere can deliver
security updates at the required scale, speed and resiliency for a
reasonable cost.

Index Terms—Network security, overlay network, overloading-
based measurement, resiliency, security update.

I. INTRODUCTION

THERE is often an urgent need for sending early warning
signals, distributing firewall or intrusion detection system

updates, invoking extensive certificate revocation, dissemi-
nating new virus signatures, and delivering many other security
updates. Is it feasible to deliver security updates to most of the
connected nodes of an Internet-scale computer network very
rapidly, resiliently, and securely? Can it be done without huge,
powerful server systems? How rapidly can it be done? Within
seconds, for example?

A. Challenges

Any system that attempts to deliver rapid security updates at
high scale must overcome several difficult challenges.

1) Speed: Security updates must be delivered faster than at-
tacks. Recent studies show that attacks can spread in minutes
or even tens of seconds [1]. Early this year the slammer worm
infected more than 90% of vulnerable hosts worldwide in less
than 10 min [2]. If a node cannot receive the most recent secu-
rity updates, it becomes highly susceptible to potential threats.

2) Scalability: With potentially millions of participants, it is
daunting for a single machine, or even dozens of machines, to
store up-to-date global knowledge concerning all participants.
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Any centralized management is difficult, if not impossible. Fur-
ther, high scale ensures that significant numbers of nodes will
be disconnected at the moment a security update is being dis-
seminated, so any solution must handle node disconnection as a
norm, rather than an exception.

3) High Dissemination Assurance: Nodes assisting in dis-
semination may be compromised, resulting in dropped, misdi-
rected or damaged security updates. Encryption, authentication,
and digital signatures do not help ensure message delivery at all.
Authenticated acknowledgment help, but do not scale well, and
typically retransmitted messages are still subject to interruption.

4) Security: Last, but not least, the system itself must be
secure. A system handling millions of machines is a tempting
target. If the system is corrupted, not only will the machines
in the system be broken, but even larger numbers of machines.
Furthermore, a sound security solution must support large-scale
heterogeneous nodes, where each could enforce a very different
set of security schemes.

B. Possible Approaches

One approach is to require a user to pull information from
a dissemination center either manually or according to a spe-
cific schedule. However, this pulling-based approach results in
a dilemma: not pulling frequently will leave a user’s machine
not instantaneously updated, whereas attacks may come at any
moment [1], [2]; pulling frequently will incur high bandwidth
cost, both at each participant and throughout the network, and
it can create a flash crowd at the center, probably slowing down
the center or even making it inaccessible.

Viewed in the most general context, security update delivery
fits within the broad scope of information distribution. The sim-
plest approach is to unicast, but it is not scalable to unicast se-
curity updates to millions of nodes from a dissemination center,
one by one. Another approach is to broadcast, but broadcast is
primarily meant for a subnet or a small collection of subnets.
Still another approach is to use Internet protocol (IP) multicast,
but IP multicast still faces many problems for deployment at
a large scale and cannot distribute to all recipients unless they
are all connected simultaneously. Reliable multicast (probably
at the application layer for easy deployment) is better, but it
mainly handles packet loss caused by transmission errors, not
loss caused by attacks such as interruption threats; on a reliable
multicast tree, all the descendents of a compromised node are
cut off.

At a higher layer, protocols such as smtp, nntp, ftp and
http all provide certain distribution capabilities, but it is
difficult to tailor these capabilities to meet the challenges of
providing a successful security update dissemination service.
For example, none of these provide a resilient network to
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address man-in-the-middle delivery threats, none consider both
connected nodes and disconnected nodes for best large-scale
delivery coverage, and none fully address security. Event noti-
fication services, which usually adopt a centralized approach,
focus on different issues and often view the mapping between
event subscribers and event publishers as a key issue [3], [4].
Much research has also been done on content delivery net-
works (CDN), using distributed caching or overlay techniques.
Whereas security updates are usually of small size and low
frequency, CDN usually handles large blocks of data.

When considering special-purpose applications, virus signa-
ture distribution is probably most similar to security update de-
livery service. The pulling-based approach has been widely used
in this context; recognizing its drawbacks mentioned earlier,
some groups set up central servers to automatically broadcast
new virus signatures to every individual user, but difficulty in
managing user records at the central servers grew quickly as
more users participated in a dynamic way. Peer-to-peer tech-
nology has been used to address some of these problems, where
information can be forwarded along a chain of recipients [5];
however, the design technology to handle disconnected nodes,
strengthen security (including combating interruption threats),
and maintain the chains has not been reported.

C. Revere Overview

To address these challenges, Revere builds a large-scale, self-
organizing and resilient overlay network on top of the Internet at
the application level. This overlay approach provides flexibility,
while requiring no changes to existing network infrastructure
(Revere is currently implemented as a Java application on par-
ticipating nodes). Individual nodes can join and leave a Revere
overlay network; once joined, nodes on an overlay will receive
security updates and every nonleaf node will also forward up-
dates-nodes can also query and pull updates if needed.

While various overlay networks have been proposed in the
past [6]–[11], the special requirements and challenges of dis-
seminating security updates requires that Revere builds its own
overlay. Although Revere allows a node to join or leave a Re-
vere overlay network at its own discretion, as do many other
overlay networks, Revere’s overlay network is built and main-
tained differently.

To combat attempts to interrupt dissemination, Revere uses a
redundant overlay network for a more resilient delivery. Since
Revere is designed to handle a low volume of relatively small but
highly important messages, the redundancy makes great sense.
A Revere overlay also handles an Internet-scale number of par-
ticipants, and equally important, is self-organized. Furthermore,
Revere enforces stringent security for both the dissemination
process through a Revere overlay network and the overlay it-
self. An interesting tradeoff employed by Revere is to support
a relatively heavy overlay management (construction, manage-
ment, security, etc.) in order to support a simple, lightweight
dissemination process.

D. Paper Outline

Section II discusses the Revere overlay network, emphasizing
its self-organization, resiliency and scalability. The dissemina-
tion procedure is discussed in Section III. We identify security

issues and discuss our approaches in Section IV. Section V re-
ports on measurement results. Section VI summarizes related
work. Section VII is on future work and we conclude the paper
in Section VIII.

II. RBONE: A SELF-ORGANIZED RESILIENT

OVERLAY NETWORK

A Revere overlay network, also called an RBone, organizes it-
self. Using a straightforward user interface, Revere allows indi-
vidual nodes to join or leave an RBone with no further human in-
tervention. Through a simple but effective three-way-handshake
protocol, a node can attach itself as a child of other existing
Revere nodes to become part of an RBone. In particular, parent
selection allows a node to select multiple parents to achieve su-
perior resiliency, as well as efficiency. Revere can also detect
problematic nodes and handle broken links, causing nodes to
reattach themselves as required.

An RBone can contain millions of nodes, so scalability re-
quires that all RBone management operations be simple and rely
only on a small amount of partial knowledge at each node. In
Revere, each node only keeps information about its parents, its
children, and the dissemination center.

For convenience, we assume that a different RBone rooted at
a specific dissemination center will be built for every different
type of security update. Sharing a common RBone for different
types of security updates and/or different centers is possible, but
it leads to complexities not addressed in this paper.

In this section, we assume all Revere nodes are benign (not
corrupted). RBone security will be discussed in Section IV.

A. Three-Way-Handshake Protocol

To join an RBone, a new node needs to locate existing Revere
nodes first. Various methods can be employed, such as using
configured knowledge (for example, the address of the dissem-
ination center or a local designated Revere node), contacting
a directory service, applying a multicast-based expanding-ring,
or expanding-wheel search [12], etc. In fact, the discovery of
Revere nodes falls into a more generalized problem of scalable
resource discovery in a large-scale network and any approach
to resource discovery can be adopted by an individual Revere
node to locate other Revere nodes at its own discretion. A node
discovery mechanism is not hardwired into Revere and is not
a core component of Revere per se (note that a nonscalable re-
source discovery mechanism, if adopted, could affect Revere’s
scalability).

The new node then can negotiate with those existing nodes
to attach itself to some of them as a new child. The negotia-
tion between a potential child and a potential parent is a recip-
rocal selection procedure. An existing node needs to determine
whether it wants to add the new node as a child. The new node,
on the other hand, needs to determine whether it wants the ex-
isting node to be its parent.

The negotiation applies a three-way-handshake protocol
(Fig. 1). A potential child sends an attach request to a potential
parent. The potential parent decides whether to adopt the appli-
cant as a new child, and sends back an acknowledgment. The
child adoption decision is machine-specific: some machines
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Fig. 1. Three-way-handshake protocol.

may only check to see if they have reached the maximum
number of children that can be accommodated; some machines
may require more information. Revere supports pluggable
machine-specific child-adoption modules. For example, be-
cause a mobile node is often disconnected, it may choose to
be only a leaf node and not accept attaching requests. Or a
multicast-capable node may prefer nodes that can hear multi-
cast messages, allowing it to reach all children with a single
multicast message. If the potential parent accepts the new
child, it adds the applicant as a pending child and replies with
a positive acknowledgment to indicate approval (otherwise, it
will send back a negative acknowledgment).

Upon receipt of a positive acknowledgment, the new node de-
cides whether to accept this potential parent (the decision proce-
dure will be discussed in Section II-B). If yes, it will send back a
confirmation. The parent, upon the receipt of the confirmation,
will convert this pending child to a regular child.

A timer-based error recovery is also designed. After initi-
ating a request, a potential child will set up a timer to await
an acknowledgment from its potential parent. If the request or
the acknowledgment is lost, or the potential parent refuses to
respond, this timer will expire and the potential child will re-
transmit another request, this time possibly toward a different
potential parent. Similarly, after sending a positive acknowledg-
ment toward a pending child, a potential parent will also bind a
timer with that child when waiting for possible confirmation. In
case the acknowledgment or the confirmation is lost, or the po-
tential child does not confirm, this timer will also go off and the
pending child will be discarded. Note that after sending the con-
firmation, the child will enter the RBone maintenance procedure
(to be described in Section II-C) since the child has formally
added a new parent. More analysis on three-way-handshake ro-
bustness is presented in [13].

A new node typically needs multiple parents. Therefore, the
new node needs to continuously search for candidate parents
until it has attached itself to some predefined minimum number
of parents.

Fig. 2. Path vector at node n. Noden has two parents: p and p . According to
the definition in Section II-B-I,ppv(n; p ) includes all nodes onnpv(p ) andn
itself. Furthermore, because ppv(n; p ) represents the fastest delivery path for
n (in this particular example, ppv(n; p ) is assumed faster than ppv(n; p )),
npv(n) is ppv(n; p ).

During the join procedure, the transmission mechanism that
the new parent uses to forward security updates can also be
negotiated. The (positive) acknowledgment can contain an or-
dered list of transmission mechanisms preferred by the potential
parent and the confirmation message can carry the transmission
mechanism selected by the child.

B. Parent Selection

In this section, we discuss how to select parents to achieve the
best possible efficiency and resiliency. Every Revere node, at its
own discretion, can select more than one parent, typically with
one of the parents providing the fastest security update delivery
and the rest delivering copies along paths as disjoint as possible.
A node will only miss security updates if all its paths are broken.
(Because Revere works at the application level, the RBone built
by Revere achieves resiliency at the same level. Achieving hard-
ware-level disjoint paths is a topic of future research.)

1) Path Vector: We introduce path vector to describe a po-
tential path for delivering security updates from a dissemination
center to a node. While many properties may be defined, a path
vector has two important parameters: a latency value and an or-
dered list of nodes to cross. Note that a path vector includes both
the center and the destination node.

We further introduce two different types of path vectors.

• Parent path vector (PPV). A PPV is associated with a par-
ticular parent of a node. A node n’s PPV for parent , de-
noted as , corresponds to the fastest path along
which must be the previous hop before reaching .

• Node path vector (NPV). A node n’s NPV, denoted as
, is the fastest PPV among all node n’s parents.

Clearly, is the concatenation of and the link
connecting to , as shown in Fig. 2.

2) Parent Resiliency Comparison: When selecting parents,
a node will choose the fastest parent first, and then choose other
parents primarily based on their contributions to the node’s re-
siliency. For the former, the node can simply select a parent that
maps to the fastest PPV. For the latter, however, to compare the
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resiliency contribution that every parent provides is somewhat
tricky. We adopt the following approach.

Step 1) Using the fastest parent as the reference, a node
compares every other parent’s PPV with the fastest
parent’s PPV (which is also the node’s NPV) in
terms of the number of overlapping intermediate
nodes between the two paths. Here, a higher overlap-
ping degree is assumed to lead to a weaker resiliency.

Step 2) For parents that end up with the same resiliency level
in Step 1, further comparison is needed. Now, the
node uses the most resilient parent obtained in Step 1
as a new reference (if there are more than one eligible
to be the reference, choose the fastest), and compares
the PPV of each of those parents in question with
the PPV of this new reference parent, using the same
procedure as in Step 1.

Step 3) Repeat Step 2 until all parents are ordered according
to their resiliency contributions.

Strictly speaking, a higher overlapping degree does not al-
ways leads to a weaker resiliency. Other factors may also affect
the resiliency of a path, such as the number of hops, the stability
or connection quality of each node on the path, the probability
that a node is compromised, etc. But a “perfect” solution would
require a path vector to carry much more information in order
to consider every factor that might affect the resiliency, some of
which is hardly possible to obtain. On balance, we believe the
heuristics we adopt in the above steps are reasonable in terms of
their effect, and inexpensive to compute. Others can be substi-
tuted without altering the substance of the design or its results.

3) Parent Selection Procedure: A child selects a parent as
follows.

A potential parent includes its NPV in the positive
acknowledgment that it sends to node .

evaluates the latency from to itself. To do this, can con-
tact an existing service (such as [14]). Or, with the attaching
request and the positive acknowledgment timestamped, can
estimate the round-trip time between and itself, and use half
of that value as the approximate latency from to (which will
be further refined during RBone maintenance).

Combining and the latency from to , node derives
.

Given , node determines whether adding as a
parent improves its efficiency or resiliency, as depicted in Fig. 3.

C. Adaptive RBone Management

The changes to an RBone must be detected and quickly dealt
with. Changes happen when a new node joins, when an existing
node crashes or leaves, when a parent or a child wants to untie
the connection, when the characteristics of a parent-child con-
nection change, when a parent is detected as corrupted, when a
better path is detected, or for any similar reason.

Managing an RBone is a distributed task. While an RBone
can be comprised of a large number of nodes, a change may only
be detected by a few. Moreover, because of the large scale of
an RBone, every node only has partial knowledge of the whole
RBone, mostly about its neighbors. Each node has to respond to

Fig. 3. Parent selection based on path vector.

changes autonomously, thus usually asynchronously, based on
its limited knowledge.

Revere supports two different mechanisms for detecting
changes: explicit notification and implicit detection. With
explicit notification, a node can send a teardown message to a
parent (or a child), and remove that parent (or that child) from
its records. With implicit detection, a node relies on heartbeat
messages to detect if its parents and children are still alive.
Each parent periodically sends heartbeats to its children and
each child periodically sends heartbeats to its parents. Lack of
heartbeats from a parent (or a child) will eventually lead to the
removal of that parent (or that child).

Parent removal causes a node to adjust its data structures, par-
ticularly its path vectors. The PPV corresponding to a removed
parent will be discarded; if this PPV is the node’s NPV, a new
NPV must be determined.

The explicit teardown messages are not guaranteed reliable. If
a teardown message is lost, the heartbeat mechanism can help.
For example, if a teardown notification from a parent to a
child is lost, although will regard as its parent for some
period, lack of heartbeats from will cause to remove .

Heartbeat messages carry other useful information as well.
They carry timestamps to estimate the round-trip time between
a node and a parent. Once the NPV of a parent is changed, its
heartbeat toward the node will also carry the new NPV. In both
cases, the node will update the parent’s PPV and the node’s NPV
if this is the fastest parent. If the node’s NPV becomes slower
than one of its other PPV’s, this node replaces its current NPV
with its currently fastest PPV. Clearly, this NPV adjustment may
further propagate.

III. DISSEMINATION PROCEDURE

Revere implements a dual mechanism to disseminate security
updates. Pushing is the main method used to broadcast secu-
rity updates from a dissemination center across an RBone to all
nodes currently attached. Pulling, as a supplementary method,
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Fig. 4. UDP-based pushing operation. Here, node R has two parents: P and
P , and three children: C , C , and C .

allows an individual node to pull missed security updates from
one or more selected repositories.

Revere delegates the reliability provision to every individual
node instead of enforcing a strict global reliability. It is up to
individual nodes themselves to determine how many delivery
paths to obtain and maintain, to select proper transmission
mechanisms, to verify updates, and to retrieve missed ones.

A. Pushing Security Updates

To begin pushing a security update, a dissemination center
adds a timestamp and a sequence number, signs the message
with a digital signature, and forward it toward all its children.
Every node processes the update and forward it to its own chil-
dren. While of critical importance, security updates are usually
small and infrequent, and Revere can afford to deliver a copy
of an update from every parent to every child (assuming no
failures).

A simple store-and-forward mechanism at each node uses two
types of jobs (input jobs and output jobs) and one main data
structure (a security update window) to handle updates. An input
job is responsible for receiving incoming updates from parents,
processing them, and buffering them into the security update
window. An output job fetches updates from the window and
delivers them to local applications or its children. The transmis-
sion mechanism between a parent and a child can be negotiated
during the three-way-handshake to tailor to local conditions or
configurations. Fig. 4 shows those dissemination jobs and the
security update window when UDP is used for transmission.

One part of processing a security update is duplicate
checking. Because of the redundancy built into an RBone,
nodes typically receive duplicate copies of security updates.
Duplicate copies are identified by the sequence numbers
carried in security updates and will be dropped. In addition

to preventing local reuse and retransmission to children, this
mechanism avoids dissemination loops. Another important
part of the processing is authenticating the update (covered in
Section IV).

B. Pulling Security Updates

During a pushing session, some nodes may not be connected
or may be temporarily turned off. When they regain connec-
tivity, they will want to receive the missed security updates;
however, parents generally bear no responsibility for keeping
all missed updates, and the retransmission from the center does
not scale because every reconnected node can have a different
set of missed updates. Reliable transmission mechanisms [such
as transmission control protocol (TCP)] can help, but only for
a short disconnection. A more general solution is to have dis-
connected nodes inquire about security updates that occurred
during disconnections. In Revere, repository servers are used to
store old security updates and respond to inquiries.

1) Repository Selection: Revere employs a dynamic repos-
itory selection, maintenance and notification mechanism. First,
every node on an RBone can nominate itself as a repository to
be selected or rejected. Second, an existing repository may fail
(or decide to degrade itself into a normal Revere node), which
will be detected. Third, whenever there is a change to the set of
repositories, Revere nodes will be notified of the change.

In detail, when a node nominates itself as a repository can-
didate, it will add itself to the repository candidate list and pig-
gyback that in the heartbeat messages toward every parent. In
turn, when a parent receives repository candidate lists from its
children, it will aggregate those lists to generate a new candidate
list and piggyback the new list on its own heartbeat message to-
ward its own parent. This repeats until the dissemination center
receives a final list of all repository candidates.

If there are millions of nodes, each nominating itself to be a
repository, then the piggybacked lists will be huge, especially
when they get closer and closer to the dissemination center. To
address this scalability issue, every Revere node can filter the
piggybacked list if the list is longer than a threshold value. For
example, for the longest IP address prefix that contains mul-
tiple self-nominees, only select one of them randomly; this can
repeat recursively until the list length is below threshold (this
procedure can help uniformly distribute repositories within the
IP address space).

The center checks the repository candidate list and selects
some candidates to be the repositories (we omit the selection
details in this paper). The center then propagates the new results
through heartbeat messages toward its children. Every child will
record the list of new repositories and forward the list toward its
own children (again through heartbeat messages).

Revere handles repository failures. In addition to the repos-
itory candidate list, a heartbeat from a child can also carry the
identities of current repository servers. Similarly, a parent can
aggregate such information from all of its children and piggy-
back the aggregated result on its own heartbeat message toward
its own parent. Since no heartbeat will be reported from a failed
repository, the center will receive a final list of repositories still
alive. Changes, if any, will be notified similarly as above.

This approach is made scalable by piggybacking repository-
related information in heartbeats and ensuring that every node,
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including the center, only listens to its parents or children. The
drawback is that low-frequency heartbeats may result in a rela-
tively slow maintenance speed, but given that a node only needs
to pick a few repositories to query, the node can tolerate rela-
tively inaccurate knowledge of the whereabouts of all current
repositories.

2) Contacting Repository Servers: Since every node keeps
a local list of available repositories, it then can inquire about
missed security updates from one of those repositories.

Repositories bring other benefits as well. If a node has re-
ceived updates , but not update yet, it can always query a
repository. If a node has not received any security updates from
its parents in a suspiciously long time, it can also check with
repositories, offering protection against the possibility that all
of a node’s parents were corrupted.

An issue here is the security of a pulling operation, since a
repository might very well be subverted itself. We defer this
discussion to Section IV.

IV. SECURITY

Given that some Revere nodes can be compromised, Revere
must secure itself. After introducing possible threats to Revere,
in this section, we address Revere’s security from two aspects:
1) security of a dissemination procedure by adopting a public
key cryptography-based approach, as well as handling key cor-
ruption at a dissemination center and 2) security of an RBone
by enforcing trust management and discretionary authentica-
tion, where for the latter we focus on authentication scheme ne-
gotiation and pluggable security boxes.

A. Threats

In this paper, we consider the following threats.

• Security update interception threat at Revere nodes. This
includes dropping, misdirecting, delaying, damaging,
forging, or replaying security updates. For example, a
replayed security update, if not recognized, can cause
a node to incur extra CPU processing overhead; worse,
a replayed security update may be further propagated
to thousands of other nodes, sometimes circling around
indefinitely. Depending on what action is taken on receipt
of a security update (which is, strictly speaking, outside
of Revere’s scope), delivering a sufficiently stale replayed
update could have arbitrarily bad consequences, such
as undoing a more recent security update to a piece of
software. Designing systems to handle security updates
delivered by Revere will be much easier if they can be
built with a high assurance that the update Revere gives
them has not been replayed.

• Corruption of a repository. A compromised repository can
provide tampered or incomplete updates.

• Key theft at a dissemination center. If the key that a center
uses to sign security updates is stolen, an attacker can im-
personate the center.

• RBone attack. A malicious node may provide false RBone
information, replay previous control messages, or imper-
sonate another node. One typical attack is to form a mal-

functioning RBone, such as a Sybil attack, where a few
malicious nodes tries to become parents of a great deal of
benign nodes.

B. Dissemination Security

1) Security Update Protection: Revere protects security
updates by ensuring their integrity and authenticity, strength-
ening their availability, and preventing replays. (Note that in
light of Revere’s free subscription model, secrecy protection is
not needed.)

Revere adopts a public key cryptography-based approach. A
dissemination center has a public key and a private key, and
signs security updates with its private key. Every node uses the
public key of the dissemination center to verify that those secu-
rity updates have not been modified and are indeed distributed
by the center. (The public key of the center is assumed to be
well known.) This approach prevents those attacks that forge or
damage security updates.

Revere strengthens security update availability by ensuring
that an RBone is in a sound structure (whose protection is ad-
dressed in Section IV-C) and every node can choose to have
multiple resilient delivery paths (as described in Section II). At-
tacks such as dropping, misdirecting, or seriously delaying se-
curity updates have to compromise all delivery paths in order to
succeed.

The duplicate check at every node clearly prevents attacks
that replay security updates (Section III-A).

2) Subverted Repository: Although the security update au-
thentication mechanism in Section IV-B1 ensures that a sub-
verted repository cannot forge false updates (since an update
still carries the signature of the center), the repository could still
easily fail to deliver some of the updates it had received.

Revere again employs redundancy to achieve high certitude
that all missed security updates have been retrieved: a node
can contact more than one repository. As an optimization, in-
stead of literally pulling security update copies from each con-
tacted repository, a node can just pull security updates from only
one of them—a “master” repository, and contact other “slave”
repositories to check whether the master repository provided a
complete set of missed updates, typically done by comparing
the range of sequence numbers of recently disseminated up-
dates. For example, after retrieving missed updates with se-
quence numbers 10–15 from the first repository, if the second
repository reports that it has updates up to 17, the node can then
try to pull security updates 16 and 17 from the second reposi-
tory (and discover whether the first repository was incomplete
or the second one was cheating).

3) Key Corruption Management: The private key of a dis-
semination center must be carefully protected. If, despite such
care, the private key of the center is compromised, disastrous
attacks can be launched since attackers can now impersonate
the center. Four issues must be addressed: impersonation detec-
tion (how can Revere detect that an attacker is impersonating a
center and sending forged updates?), key invalidation (how can
the current broken public key be revoked?), key switch (how
can nodes switch to the next public key of the center?), and re-
delivery (should old security updates be redelivered?).
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a) Impersonation Detection: Whereas out-of-band knowl-
edge can be used for this difficult problem, we are also
investigating a reverse traversal mechanism. If a node is
still suspicious after verifying an update, the node can
report this update to all its parents. Every parent will
verify the reported update and further forward to its own
parent (only one copy of an update will be reported).
This repeats until the reported update reaches the center,
which then can diagnose the authenticity of the update.

b) Key Invalidation: The dissemination center itself cannot
distribute a new public key to replace the old one, since
an attacker could then easily impersonate the center. In-
stead, the center sends out a key invalidation message to
declare that its current public key should be invalidated.
The invalidation message is signed using the broken pri-
vate key and disseminated in the same way as a normal
security update.

Here, the key invalidation message is really simple—it
does not contain any extra information. The reason is that
any extra information cannot be trusted by a node at all,
since the attacker who has the private key can easily fabri-
cate or change those fields. The key invalidation message
is designed to only pass a single fact to Revere nodes—a
public key must be invalidated, but nothing more than
that.

If an attacker who has compromised the private key
creates its own invalidation message, it would destroy any
benefit the attacker received from cracking the key. The
attacker may try to suppress the invalidation message, but
an RBone is already a resilient network with a built-in
redundancy.

A repository keeps all key invalidation messages. Upon
receipt of a pulling request for missed updates from a
reconnected node, the repository will determine whether a
key invalidation message should also be returned, as well
as missed updates.

c) Key Switch: After key invalidation, a new pair of center
public and private keys must now be made current. In our
existing implementation, every node preinstalls a series of
center public keys and can now switch to the next version
public key in the series. This switching mechanism is also
useful if every public/private key pair has a lifetime.

d) Redelivery: During the period between key compromise
and key invalidation, the security updates received at a
node or repository, even though verified as authentic, can
be either forgeries or valid updates. The forgeries should
be purged and the valid updates should be replaced with
new versions that are signed by the new private key. To
deal with this, the center will conservatively estimate the
key corruption time and resend those updates that were
sent during estimated key corruption time and key inval-
idation, signed using the new private key.

C. RBone Security

The goal of securing an RBone is to ensure a sound RBone
structure so that security updates can be delivered to a large
percentage of nodes, if not all. Attackers, as described in

Section IV-A, can try to compromise an RBone through false
or replayed RBone control messages, probably impersonating
another node. To address this problem, we believe the following
requirements must be met: 1) a node can choose to only rely on
those it trusts; 2) a node can authenticate whether another node
is a trusted node as claimed; and 3) a node can verify messages
incurred during RBone operations. (Note that even if a node
can authenticate the identity of another node, it does not mean
that the former trusts the latter.) In this section, we discuss trust
management in Section IV-C-I, and node authentication and
RBone message authentication in Section IV-C-II.

1) Trust Management: The following trust relationships
need to be considered:

a) whether a node trusts another node to be its parent;
b) whether a node trusts another node to be its child;
c) whether a node trusts another node to be its ancestor;
d) whether a node trusts an entity involved in key manage-

ment (such as a certificate authority).
Revere adopts a decentralized node-to-node trust manage-

ment to handle these trust relationships. This allows each indi-
vidual node to set up its own rules for trust judgment, avoiding
the performance bottleneck and a single point of failure in cen-
tralized control.

This approach can also support richer trust functionalities
than can a centralized trust management. A node’s trust of an-
other node can vary from complete trust, selective trust, and no
trust. (In the selective trust relationship, a node is only trusted
by another at certain level and/or when performing certain oper-
ations.) Second, a node can determine its trust of another node
based on certain rules. With a direct-trust rule, a node only trusts
another if it is specifically configured to do so. With an indi-
rect trust rule, a node can either deduce its trust of another node
based on its trust of third parties (for example, a chain-of-trust
rule dictates that if A trusts B and B trusts C, then A will trust
C), or contact a trust authority regarding whether or not a partic-
ular node should be trusted. The trust authority is analogous to
certificate authority and can also be organized in a hierarchy, but
the former certifies the trustworthiness of nodes and helps trust
management, and the latter certifies the authenticity of nodes
and helps node identity authentication.

A Revere node must only select a trusted node to be its parent
or its child. Furthermore, nodes on the parent’s node path vector
also must be trusted. If this node applies direct trust or decides
its trust by querying a trust authority, it checks every node on the
path vector. If a node applies the chain-of-trust rule, it checks the
parent node only (since the parent trusts its own parent, and this
repeats recursively).

Good trust management makes attacks harder. By only al-
lowing trusted nodes to be parents (or ancestors), it will be hard
for a few malicious nodes to become parents of numerous be-
nign nodes (as in Sybil attacks). By only allowing trusted nodes
to be children, it is also hard for an attacker to launch an attack
through infinite joins, in which malicious nodes try to occupy
all the children slots of every existing node, thus leaving new
nodes no choice except attaching to those malicious nodes.

Trust management toward key management entities is also
necessary since they participate in the node authentication
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Fig. 5. Parent selection negotiation.

process (see Section IV-C-II). Similar trust management can
be applied. Using certificate authorities as an example, a node
can only accept certificates from a trusted certificate authority.

2) Discretionary Authentication: While a node can deter-
mine whether it trusts another node , node still must be able
to: 1) authenticate ’s identity and 2) verify messages claimed
to be from . Both node authentication and message authentica-
tion are key to RBone security. However, due to the large scale
of an RBone, we do not assume that there is a ubiquitous au-
thentication scheme for all nodes. Every node may implement
a different set of authentication schemes, perhaps with different
orders of preference. In this section, we describe how Revere
achieves discretionary authentication at each individual node
with two key techniques: node-to-node authentication scheme
negotiation and pluggable security boxes.

a) Node-to-node authentication scheme negotiation: A
node must select a supported authentication scheme for ex-
changing messages with another node. If necessary, different
schemes can be used for sending to and receiving from a given
node. Choosing the appropriate schemes requires a secure
negotiation. If the negotiation succeeds, proper authentication
schemes can be imposed on messages exchanged between the
nodes.

Authentication scheme negotiation is triggered when a node
wants to send another node a message, but finds that no authen-
tication scheme has been chosen to protect this message. Fig. 5
illustrates a negotiation procedure between nodes A and B, ini-
tiated by node A. The following is a stepwise explanation of the
negotiation.

Step 1) Node A first sends a negotiation_start message to
B in plaintext, indicating an ordered list of A’s pre-
ferred authentication schemes for messages from B.
Note that this can only be plaintext since A does not
know what scheme B requires.

Step 2) Node B selects a scheme from A’s list that B sup-
ports. Node B creates an authenticator for itself using

this scheme and sends it to A. Using the signing algo-
rithm of the selected scheme, B also sends to A a sig-
nature of A’s negotiation_start and a signed negoti-
ation_response message. The negotiation_response
message contains the scheme that B selected and an
ordered list of B’s preferred authentication schemes
for messages from A.

Step 3) Node A authenticates B, verifies the signature
of its initial negotiation_start message to ensure
it has not been tampered with and verifies the
negotiation_response message. If all are verified,
A chooses a scheme from B’s list to protect its
messages toward B. Node A sends an authenticator
toward B, using the scheme that was just selected.
To assure B that its response was not tampered with,
A sends back a signature of the message. Node A
also sends a signed negotiation_done message to B,
indicating the scheme that A selected and ending
the negotiation.

If any of these steps fail, the negotiation will fail, and no
authentication scheme will be selected for communication be-
tween the two nodes. For example, if B cannot select a scheme
successfully, B will not respond to A’s negotiation request and A
will finally time out and give up. If all steps succeed, the nego-
tiation succeeds, and messages can begin to be forwarded from
A to B (such as message in Fig. 5), or vice versa, protected
by using the selected authentication schemes.

During authentication scheme negotiation, a compromised
node may try to trick a benign node into using a weaker scheme
to verify the messages from the compromised node. This cannot
succeed because the compromised node, whether the initiator or
not, must use one of the schemes already specified by the benign
node to authenticate itself and sign its response.

b) Pluggable security boxes: Revere implements an ex-
tensible architecture to support various authentication schemes.
As in [15], each authentication scheme can be added by plug-
ging in a corresponding security box.

A security box can be viewed as a security monitor that is re-
sponsible for node authentication and protection of RBone ac-
tivities such as the join procedure, repository selection or RBone
maintenance. A security box allows a node to authenticate other
nodes or authenticate itself to another node, and ensures that
only authentic messages will be used.

All control messages must pass through the security box.
Incoming messages are accepted or rejected based on trust and
authenticity. Outgoing ones are inspected and stamped with
authentication information. Every control message, including
heartbeats and those used in three-way-handshakes, is signed
by its sender’s security box and verified by its receiver’s
security box. (Security updates do not pass through the security
boxes, since they are authenticated by a uniform method for all
nodes.)

Many security box implementations are possible, each pro-
viding a different level of node authentication, message veri-
fication, replay prevention, and possibly secrecy. The level of
protection provided depends entirely on the particular security
box implementation.
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c) A security box example: One example of a security box
is based on a hierarchical infrastructure of public key certifi-
cate authorities (CA), where recursively the CA at one level (the
parent) produces certificates for the next level down (the child).
The public key for the CA at the root of the hierarchy is univer-
sally known.

Here, the verification of a node’s public key is straightfor-
ward. Further, other nodes can authenticate the messages from
this node using its public key if the messages are signed using
this node’s private key.

Message replay can be prevented as well. The signed portion
of a message can include a random number chosen by the recip-
ient, a standard solution to such problems.

V. MEASUREMENT

The goal of Revere is to provide a service for disseminating
security updates. Dissemination speed describes the basic be-
havior of Revere, but we must also determine dissemination
quality in the face of broken nodes to understand Revere’s re-
siliency. In addition, understanding RBone formation and main-
tenance is important. As discussed in Section II, an RBone is
gradually formed by a series of join procedures, which are also
employed when a node needs to adjust its position during RBone
maintenance. As a result, performance data on the join proce-
dure is also key to the assessment of Revere.

A. Metrics

The following metrics are important to evaluating Revere.

• Join latency. The time that a new node spends becoming
a participant in Revere (finding all parents).

• Join bandwidth. The bandwidth spent to join Revere.
• Dissemination latency. The latency for a security update to

reach an individual Revere node. Also relevant is the time
needed to reach a certain percentage of all Revere nodes.

• RBone resiliency. The percentage of Revere nodes that
still receive security updates, given that every node has a
particular probability of failure.

• Dissemination bandwidth. The bandwidth spent to dis-
seminate security updates.

• Maintenance bandwidth. The bandwidth spent to maintain
an RBone.

The last two metrics are easy to evaluate. In a single round of
dissemination, the inbound dissemination bandwidth per Revere
node is the size of the security update multiplied by the number
of parents (under normal conditions). The RBone maintenance
bandwidth per Revere node is mainly the size of heartbeat mes-
sages during each period. Both are of acceptable size.

B. Overloading Methodology

Revere is designed for large scale. Given that it is prohibitive
to run empirical measurements with more than a few hundred
machines, we adopted an overloading technique to measure
Revere, by which a physical machine can be overloaded with
multiple logical nodes, each still running the real Revere code.
Using multiple machines can help achieve even larger scale
measurement.

Fig. 6. A virtual topology with revere nodes.

However, this approach raises two key questions: 1) topology
construction—since logical Revere nodes are overloaded on
physical machines, they will have a different topology than they
would in the real world and (2) resource contention—logical
nodes on the same physical node must share both processor
and memory, thus affecting (lengthening) the processing time
of individual nodes performing particular tasks.

1) Topology Construction: A virtual topology can be em-
ployed to solve the topology problem. Each node can be viewed
as attached to a particular location in a virtual topology, commu-
nicating through this virtual topology with another node in the
same virtual topology. Fig. 6 is an example of 20 logical nodes
(assigned to three physical machines) communicating across
multiple routers in a virtual topology.

Using a virtual topology, a distributed Revere system can be
created. After generating a virtual topology, each logical node
in this topology is treated as an individual Revere node. For
each logical node, a Revere instance is run on top of a physical
machine, where multiple instances of Revere software may be
invoked on the same machine.

Many results obtained in a virtual topology will not differ
from those obtained by running on top of a real topology
with the same structure. For example, whether the underlying
topology is real or virtual, the storage cost or bandwidth cost
incurred at an individual Revere node will typically be the
same.

The characteristics of the communication paths between any
two Revere nodes can be determined based on the specification
of a virtual topology. For instance, if the length of every link
in a virtual topology is known, the shortest path between any
two nodes on the virtual topology can be calculated using the
Dijkstra algorithm [16], instead of being measured.

2) Resource Contention: Three approaches can be taken to
handling resource contention. The first approach is to remove
the resource contention. If only a single node is allowed to pro-
ceed with full use of resources at a given time, the time spent by
this node on a task should incur approximately the same amount
of time as it would in the real world. A Revere node may have to
wait for access to the resources to perform a particular task. The
second approach uses a divide-and-conquer method, dividing
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the task to be measured into several disjoint subtasks that are
easier to measure. Here, 1) subtasks must be independent; 2)
subtasks must not overlap in terms of processing latency; and
3) the sum of all subtasks must be the total processing latency.
The third approach is to calculate a slow-down factor and apply
that to the measured processing latency. This approach is not
used in measuring Revere.

C. Measurement Procedure

Our measurements used a testbed that consisted of ten
machines, overloaded with up to 3000 Revere nodes. Every
machine was equipped with an AMD Thunderbird 1.333 GHz
CPU, 1.5GB SDRAM, and a 100 Mb/s Ethernet interface.

Every virtual topology was created as follows. We used
GT-ITM [17] to generate a router-level topology, then assigned
certain numbers of Revere nodes (hosts) to each stub-domain
router on that topology. Finally, a topology server assigned the
same number of Revere nodes to every testbed machine.

The following configurations are used: 1) every Revere node
must have 2 parents and no more than 10 children; 2) UDP is
used for security update forwarding from parent to child; and 3)
both security updates and RBone messages are protected using
RSA-based public key cryptography with a three-level certifi-
cate authority hierarchy. Note that such a configuration is purely
for providing insights on Revere performance and may not be
applicable in all real situations.

We artificially divided the lifetime of Revere into three
phases: the join phase, the dissemination phase, and the
resiliency test phase. In real use, these three phases would
overlap, but measuring them separately captures most costs
appropriately. During the join phase, nodes sequentially join
Revere and gradually form an RBone. The system then ad-
vances into the dissemination phase, during which the center
disseminates security updates through the RBone to individual
nodes for ten rounds. Finally, in the resiliency test phase,
dissemination is tested in the face of broken nodes.

During the join phase, when every physical machine is over-
loaded with several Revere nodes, join bandwidth should be un-
affected, but join latency will be artificially increased. Using
the first approach from Section V-B2), we applied a token-con-
trolled mechanism to ensure that at any time during the joining
phase only one node will be in the join procedure, thus eval-
uating a particular scenario where all nodes join sequentially.
Other nodes may be temporarily activated when requested to
interact with the joining node. The results should be approxi-
mately the same as the real cost of a single-node joining.

During the dissemination phase, each node behaves in a
store-and-forward manner. However, because many Revere
nodes are running on a physical machine, simply measuring
the interval between sending an update and receiving it cannot
reflect the true dissemination latency. Given the artificially
heavy load on the physical machine, both the processing delay
and the kernel-space-crossing delay1 will be lengthened.

1The time from invocation of sending a message from Revere at application
level to the departure of the message from the node and the time from the receipt
of the same message at a recipient node to the delivery of the message to Revere
at application level.

Fig. 7. Outbound bandwidth per node in joining phase (confidence level:
95%).

Fig. 8. Join latency per node in joining phase (confidence level: 95%).

We solved this problem using the divide-and-conquer
method. The latency of disseminating an update is divided
into three parts: the processing delay at each hop, the trans-
mission delay of crossing the virtual topology, and the
kernel-space-crossing delay. Each part is evaluated separately.
The processing delay per hop can be measured in a sepa-
rate experiment without overloading a physical node. The
kernel-space-crossing delay per hop can be measured in the
same way. The communication latency can be calculated using
the Dijkstra algorithm over the virtual topology graph. Note
that with a given RBone structure, the hops that an update
travels to reach a node are invariant, no matter how many nodes
are simultaneously running on the same physical node. By mul-
tiplying the processing delay per hop and kernel-space-crossing
delay per hop and adding the communication latency, we can
obtain a good approximation of the dissemination latency in
large-scale scenarios.

During the resiliency test phase, each node on the overlay was
assigned a uniform probability of failure to test how many nodes
are still reachable during dissemination. The divide-and-con-
quer method was again used to evaluate the latency of dissemi-
nating updates toward the remaining nodes.

D. Results and Analysis

1) Join Latency and Bandwidth: Fig. 7 shows the outbound
join bandwidth incurred by a node for various sizes of RBones.
This bandwidth cost includes the messages that a node sends
when joining an RBone and the messages sent in response to
the join requests of others. Fig. 8 shows the latency experienced
by a node joining RBones of various sizes. Each node completes
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Fig. 9. Average and maximum hop count of security update dissemination
(confidence level for average hop count: 99.9%).

Fig. 10. Average and maximum latency of security update dissemination
(confidence level for average latency: 99.9%).

the join procedure after successfully attaching itself to two ac-
ceptable Revere nodes.

The costs of both join bandwidth and join latency are accept-
able, and basically follow logarithmic trends as the numbers of
nodes grow. This is due to the worst-case method we adopted for
searching new parents in our experiments-a top-down recursive
search after a new node fails to find a local potential parent. The
new node will run the three-way-handshake with the dissemi-
nation center first; if the center has no space, the new node will
then negotiate with one of the children of the center; if that child
is also full, it then repeats the negotiation procedure recursively.

2) Dissemination Speed: Fig. 9 shows the average and max-
imum hop count for disseminating security updates, Fig. 10
shows the average and maximum latency to reach a node in the
various sizes of RBones, and Fig. 11 shows the latency needed
to reach a certain percentage of nodes in an RBone.

Those results are based on the dissemination latency of every
individual node in an RBone. Since no failure or security attacks
occurred during the dissemination phase, every node used the
fastest delivery path to receive the first authentic copy and this
path is the one that was measured. The fastest paths for all nodes
in an RBone form a tree, rooted at the dissemination center. This

Fig. 11. The latency to reach 99%, 90%, and 2/3 of nodes in an RBone,
compared with the maximum and average latency to reach a node (confidence
level: 95%).

Fig. 12. Security update dissemination coverage for a 3000-node
dissemination (confidence level of coverage: 99%).

explains why all trendlines in Figs. 9–11 closely follow loga-
rithmic trends when the total number of RBone nodes varies.

If one assumes that the trendlines in Figs. 9–11 continue at
larger scale, in a 100-million-node RBone, it will take approx-
imately 12 hops on average to reach a node (with a maximum
of 30 hops), 1.10 s on average to reach a node, 1.34 s to reach
67% of nodes, 1.88 s to reach 90%, 2.25 s to reach 99%, and
3.83 s to reach all. In the real world, because Revere nodes are
heterogeneous and every node may be configured differently,
extending those trendlines smoothly would be unrealistic. Nev-
ertheless, these results suggest a Revere-like approach has the
potential to be fast and scale well.

Fig. 11 also shows that after most nodes have been reached, it
still takes a relatively long time to reach all RBone nodes. This
is better illustrated in Fig. 12, which depicts the dissemination
coverage over time of a 3000-node RBone. Here, the “tail” of
the graph corresponds to a relatively long delay for reaching all
nodes after a high-percentage coverage. In practice, that pattern
would be true in any case because a small percentage of nodes
would be far away, turned off, or physically inaccessible.
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Fig. 13. RBone resiliency test with different node broken probability on a
3000-node RBone, where each figure shows the percentage of three different
kinds of nodes.

3) Dissemination Resiliency: During the resiliency test
phase, an RBone’s resiliency was tested by assigning each
node a uniform probability of being broken. Whether or not
a particular node is broken is discovered at run time when
an update is delivered. Upon the receipt of an update, a node
queries a common random boolean server to see whether it is
emulating a broken node: the server responds yes if a newly
generated random number is less than the given
broken probability. If, and only if, a node is not broken will it
forward the update. Some nodes thus may not be reachable.

Therefore, we have three types of nodes: (reached) broken
nodes, reached working nodes, and unreached nodes. (The ratio
of broken nodes over the total number of reached nodes should
be approximately the same as the assigned broken probability.)

We measured a 3000-node RBone. Based on multiple rounds
of dissemination for a given broken probability, measurement
shows that the RBone is resilient to small node broken probabil-
ities (with node broken probability lower than 2%, 100% of the
rest of the nodes can still be reached). Fig. 13 shows resiliency
test results for four higher failure probabilities. A comparison of
the percentage of reached working nodes and the percentage of
unreached nodes in Fig. 13 showcases a very resilient RBone.

Recall that in the measurement, every node has two parents.
We could test a different number of parents, such as one or three.
However, in the single-parent case, an RBone will be exactly a
tree, whose resiliency can simply be analyzed. The three-parent
case will certainly be more resilient than the two-parent case;
but would be more relevant to a study of how many parents
are optimal, which is not a topic this paper addresses. Here, we
simply show the value of multiple parents.

4) Evaluation of Larger Scale: How would Revere perform
at a scale larger than 3000 nodes? We address this question
in three viewpoints. First, Revere is specifically designed

for an Internet-scale environment. Revere’s design should
scale to a much larger network than the one we actually
measured. Second, measuring the performance of any systems
in an Internet-scale environment with millions of nodes is
unfortunately still a very daunting task for everyone. We could
try a larger-scale network, but unless we can try the largest
scale, which is unlikely, we will always face the question:
“What about an even larger scale?” We have to stop at some
point, and 3000 was the level we could achieve. Third, we
considered using simulation to evaluate Revere for an arbitrary
scale, but there are a number of difficulties or disadvantages:
1) simulation would employ different software from the
real code, raising questions about accuracy of the rendition;
2) simulation might not expose hidden costs and subtle timing
effects; 3) simulation is expensive to develop; and 4) simulation
is only worthwhile if it is validated against a real system and
validating a Revere simulation (especially at high scale) would
be difficult. We ourselves are not completely satisfied with the
degree to which Revere scaling has been demonstrated, but we
believe we have provided sufficient evidence to make a good
case for Revere’s scalability.

VI. RELATED WORK

Revere’s RBone overlay network is comparable to various
self-organizing overlay networks that are also composed of In-
ternet end hosts, including those used for application-layer mul-
ticast. Yoid, for example, tries to build a general architecture
for information distribution, including a tree topology for con-
tent distribution and a mesh topology for control information
distribution [8]. Revere instead relies on a single topology for
both purposes, enables multipath delivery and enforces secu-
rity with a different presumption of open membership. ALMI
builds a small-scale minimum spanning tree among end hosts
and relies on a central controller for tree management [10]. End
system multicast also targets small-scale tree-structured overlay
networks, but it first builds a mesh of nodes and then constructs a
shortest-path tree out of the mesh [7]. Scattercast adopts a sim-
ilar approach to end system multicast, while it emphasizes in-
frastructural support and proxy-based multicast [6]. Bayeux [11]
uses Tapestry [18], an application-level routing protocol, to or-
ganize receivers into a distribution tree. Overcast focuses on op-
timizing network bandwidth when building its overlay distribu-
tion tree [9]. A fundamental difference between RBone and
these overlay networks is that RBone is not a tree-like struc-
ture. Instead, every Revere node can choose to have multiple
as-disjoint-as-possible paths to receive security updates. Also,
in addition to the pushing mechanism, Revere allows each node
to pull missed security updates from repositories.

In terms of building resiliency into an overlay network, Re-
vere shares some commonalities with RON [19]. Instead of tar-
geting another distribution service, RON inserts a new layer of
resilient overlay network between the routing substrate below
and network applications above, thus providing faster routing
failure recovery and application-specific routing. One useful
discovery from RON is that a failed router or physical link can
be avoided if a message is routed through a different node on
the RON overlay.
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Multipath routing is similar to Revere’s multipath message
delivery [20]–[22]. However, these systems are primarily meant
for load balancing or congestion avoidance and do not fully con-
sider the disjointedness between different paths. It is also hard
for these systems to address security issues (such as key distri-
bution, replay prevention, etc.) at router level. They also face
deployment problems.

Peer-to-peer computing is developing rapidly and gaining
prominence as an important service [23], [24]. In some respects,
the relationship between Revere nodes is also peer-to-peer and
results from peer-to-peer research can be leveraged to improve
the Revere overlay network.

VII. FUTURE WORK

Certainly more work is required to refine Revere’s technical
approach and demonstrate its feasibility. A delivery system of
such scale and speed raises a number of interesting questions:

• Adaptive redundancy. How should a node adjust its redun-
dancy degree for receiving security updates? Would two
delivery paths be enough, for example?

• Delivery path quality at physical level. This question war-
rants study if we cannot assume that routers are fully trust-
worthy. In particular, there is no guarantee that if two de-
livery paths are disjoint at the application level, they will
also be disjoint at the physical level. If not, how much
overlap will there be, how can that effect be recognized
and perhaps minimized?

• Repository server selection. Among many repositories,
which ones should a node choose to query for missing se-
curity updates?

• Security update integrity protection other than using dig-
ital signature. While digital signature based on public key
cryptography has been widely used and is also employed
in Revere, could other integrity protection techniques
under study benefit Revere better?

• Secure dissemination process monitoring. How should
Revere securely monitor the dissemination process in
real time? How should every individual node provide
feedback?

• Performance understanding at larger scale. It is difficult
but desirable to understand a system at very large scale.
How can one deduce or extrapolate performance of this
system from smaller-scale results, taking into account
pragmatic deployment issues?

• Revere in wireless environment. With some or all nodes
wireless, how does the appropriate solution change? For
instance, when nodes become mobile, delivery paths will
become volatile. Meanwhile, are there any elements of the
wireless environment that are helpful? For instance, will
node location information as reported from GPS be helpful
(and critical) in determining multiple physically disjoint
delivery paths?

• What will be done with the updates once delivered? In
some cases, the answer is simple and obvious, such as in-
stalling new virus signatures into a virus detection data-
base. In other cases, there are greater challenges. For ex-

ample, system administrators today often lack confidence
in automated patch installation. Reference [25] reports
that with at least four vaguely defined patch installation
mechanisms, Microsoft’s Windows Update caused the au-
tomated scanning service to mismanage patches. In one
extreme case, a patch for a customer actually removed a
previous hot fix, causing that machine to be vulnerable to
the Nimda virus.

• Can an RBone be theoretically analyzed? Singh [26] pro-
poses a way to evaluate the global reliability of a com-
munication network. Unfortunately, his method requires
knowledge of the global topology of the network. Is there
a distributed version of the algorithm where every node
only has partial knowledge of the whole system?

VIII. CONCLUSION

Using secure, resilient, and self-organizing overlay networks,
this research offers a sound solution to rapid security update de-
livery at Internet scale. Without relying on huge, powerful server
farms, nodes in such a network not only can quickly receive
pushed updates once they become available, but also can query
and pull updates at any time.

Different from other overlay designs, a Revere overlay
network allows a node to select multiple least-overlapping
delivery paths and achieve best resiliency using a path vector
concept. Also, instead of enforcing a closed membership, a
Revere overlay supports open subscription. Facing challenges
brought by such differences, Revere employs a self-organizing
capability to cope with complexities in a dynamic large-scale
environment.

Revere protects both the delivery procedure and the delivery
structure. For the former, digital signature in security updates,
redundancy in both push and pull, and the key invalidation
mechanism allow a node to receive authentic updates once
they are available. For the latter, discretionary authentication
mechanisms (node-to-node authentication scheme negotiation
and pluggable security box) and trust management together
ensure the whole delivery structure is robust.

As a service that delivers information at application level, Re-
vere demonstrates that an application-level Revere-like service
is feasible and can be made effective without changing under-
lying hardware, operating systems, or network infrastructures.
Further, Revere shows an interesting phenomenon in its incre-
mental deployment: not only can Revere be easily deployed
(every node can simply run Revere software to become a Revere
node), but Revere also offers more attractive benefits to poten-
tial participants as more nodes exist in the system and form a
larger information pool.

ACKNOWLEDGMENT

The authors would like to thank their colleagues at the UCLA
Laboratory for Advanced Systems Research, and the reviewers
and editor for many valuable comments. The authors also thank
Kluwer Academic Publishers who published our earlier work
on this topic.



202 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

REFERENCES

[1] S. Staniford, V. paxson, and N. Weaver, “How to own the Internet in
your spare time,” presented at the 11th USENIX Security Symp., San
Francisco, CA, Aug. 2002.

[2] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N.
Weaver, “Inside the slammer worm,” IEEE Security and Privacy, vol.
1, no. 4, pp. 33–39, July–Aug. 2003.

[3] R. Gruber, B. Krishnamurthy, and E. Panagos, “The architecture of the
READY event notification service,” in Proc. 19th IEEE Int. Conf. Dis-
tributed Computing Systems, Austin, TX, May 1999, pp. 108–113.

[4] B. Krishnamurthy and D. Rosenblum, “Yeast: A general purpose
event-action system,” IEEE Trans. Software Engineering, vol. 21, pp.
845–857, Oct. 1995.

[5] McAfee ASaP’s Rumor technology. [Online]. Available: http://www.
mcafeeasap.com/content/virusscan_asap/rumor.asp

[6] Y. Chawathe, “Scattercast: An architecture for Internet broadcast
distribution as an infrastructure service,” Ph.D. dissertation, Elec. Eng.
Comput. Sci. Dept., Univ. California, Berkeley, CA, Dec. 2000.

[7] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in
Proc. ACM Sigmetrics, June 2000, pp. 1–12.

[8] P. Francis. (2000) Yoid: Your Own Internet Distribution. [Online]. Avail-
able: http://www.aciri.org/yoid

[9] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole Jr,
“Overcast: Reliable multicasting with an overlay network,” in OSDI,
2000, pp. 197–212.

[10] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An appli-
cation level multicast infrastructure,” in Proc. 3rd Usenix Symp. Internet
Technologies & Systems (USITS), Mar. 2001.

[11] S. Zhuang, B. Zhao, A. Joseph, R. Kata, and J. Kubiatowicz, “Bayeux:
An architecture for scalable and fault-tolerant wide-area data dissemi-
nation,” in Proc. NOSSDAV, 2001.

[12] A. Rosenstein, J. Li, and S. Tong, “MASH: The multicasting archie
server hierarchy,” Computer Communication Review, vol. 27, no. 3, pp.
5–13, July 1997.

[13] J. Li, P. Reiher, and G. Popek, Disseminating Security Updates at In-
ternet Scale. Norwell, MA: Kluwer, 2002.

[14] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L.
Zhang, “IDMaps: A global internet host distance estimation service,”
IEEE/ACM Trans. Networking, vol. 9, pp. 525–540, Oct. 2001.

[15] J. Li, M. Yarvis, and P. Reiher, “Securing distributed adaptation,”
Comput. Networks, Special Issue on Programmable Networks, vol. 38,
no. 3, pp. 347–371, 2002.

[16] E. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[17] K. Calvert, M. Doar, and E. Zegura, “Modeling Internet topology,” IEEE
Comm. Magazine, vol. 35, pp. 160–163, June 1997.

[18] Tapestry: Fault-resilient wide-area location and routing. [Online]. Avail-
able: http://www.cs.berkeley.edu~ravenben/tapestry

[19] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, “Resilient
overlay networks,” in SOSP, 2001.

[20] J. Chen, P. Druschel, and D. Subramanian, “An efficient multipath for-
warding method,” in Proc. INFOCOM, San Francisco, CA, Mar.–Apr.
1998, pp. 1418–1425.

[21] S. Murthy and J. J. Garcia-Luna-Aceves, “Congestion-oriented shortest
multipath routing,” in Proc. INFOCOM, San Francisco, CA, Mar. 1996,
pp. 1028–1036.

[22] W. T. Zaumen and J. J. Garcia-Luna-Aceves, “Loop-free multipath
routing using generalized diffusing computations,” in Proc. IEEE
INFOCOM, San Francisco, CA, Mar.–Apr. 1998, pp. 1408–1417.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in ACM SIGCOMM 2001, Aug.
2001, pp. 161–172.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” in SIGCOMM 2001, Aug. 2001, pp. 149–160.

[25] D. Fisher, “Security tool leaves holes,” Eweek-the Enterprise
Newsweekly, vol. 19, no. 16, April 2002.

[26] B. Singh, “A global reliability evaluation: Cutset approach,” IETE Tech.
Rev., vol. 12, no. 4, pp. 275–278, July–Aug. 1995.

Jun Li (S’02–M’04) was born in Changzhi, Shanxi,
China, in 1970. He received the B.S. degree in com-
puter science from Peking University, Beijing, China,
in 1992, the M.E. degree in computer software from
the Institute of Software, Chinese Academy of Sci-
ences, Beijing, China, in 1995, and the Ph.D. degree
in computer science from the University of California
(UCLA), Los Angeles, in 2002.

He is now an Assistant Professor in the Department
of Computer and Information Science, University of
Oregon, Eugene. He coauthored Disseminating Secu-

rity Updates at Internet Scale (Norwell, MA: Kluwer, 2002), and several pub-
lished papers, including “Securing Distributed Adaptation” in Computer Net-
works (Special Issue on Programmable Networks, 2002), and “SAVE: Source
Address Validity Enforcement Protocol” (IEEE INFOCOM 2002). His research
interests include network security, Internet protocols and applications, network
performance analysis, and distributed systems.

Dr. Li received the Outstanding Doctor of Philosophy in Computer Science
Award from UCLA in 2002. He has served on several committees and panels,
including the program committee for the New Security Paradigm Workshop in
2000 and 2001, and the National Science Foundation (NSF) information tech-
nology research program in 2003.

Peter L. Reiher (M’02) was born at Ft. Ord, CA,
in 1957. He received the B.S. degree in electrical
engineering from the University of Notre Dame,
South Bend, IN, and the M.S. and Ph.D. degrees
in computer science from the University of Cali-
fornia (UCLA), Los Angeles, in 1984 and 1987,
respectively.

He is currently an Adjunct Associate Professor
in the Computer Science Department, UCLA. Prior
to that, he was Chief Designer for the Time Warp
Operating System at the Jet Propulsion Laboratory,

Pasadena, CA. He is the coauthor of two books on computer security and
distributed systems, and has authored or coauthored over 70 papers. His
research interests include network security, distributed systems, advanced
operating systems, and parallel discrete event simulation.

Dr. Reiher has been the principal investigator on several National Science
Foundation (NSF) and Defense Advanced Research Projects Agency (DARPA)
projects involving computer network security, and has participated in many rel-
evant conferences and programs, such as the 13th Wireless Network Security
Cluster Group, the DARPA SUMOWIN program, and the FAA secure baggage
handling and tracking program.

Gerald J. Popek was born in Passaic, NJ, in 1946.
He received the B.S. degree in nuclear engineering
from New York University, New York, in 1968, and
the M.S. and Ph.D. degrees in applied mathematics
from Harvard University, Cambridge, MA, in 1970
and 1973, respectively.

He is currently an Adjunct Professor in the Com-
puter Science Department, University of California
(UCLA), Los Angeles, and also Chief Technology
Officer for United Online, a major Internet service
provider. Prior positions included CTO of Platinum

Technology, Inc., and founder and Chairman of Locus Computing Corporation.
He is the coauthor of several books, including The LOCUS Distributed System
Architecture (Cambridge, MA: MIT Press, 1985) and over 100 professional ar-
ticles. His research interests are in the areas of computer security, system soft-
ware, and computer architectures. He is responsible for the creation of the Locus
Operating System—the core system software for Hewlett Packard’s telecom-
munications product line and used by several telephone companies to manage
large-scale operations. He has been a member of the board of directors of a
number of technology companies and a consultant to several major technical
organizations.


