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Abstract—Due to operational malpractice or security attacks,
an IP prefix (i.e., a block of IP addresses) can undergo many
types of routing anomalies. Perhaps the most well-known of such
anomalies is prefix hijacking, where an attacker hijacks traffic
meant to reach the legitimate user of a prefix. Anomalies can
also easily occur through route leaks, which can disrupt traffic
for numerous prefixes at once. While various solutions have been
proposed to detect such anomalies, these solutions are limited and
susceptible to attacker countermeasures. In this paper we present
Buddyguard, a new approach to detecting prefix anomalies
including prefix hijacking and route leaks. Buddyguard compares
the behavior of a monitored prefix with the behavior of a set of
numerous buddy prefixes. The system detects anomalies when
the behavior of the monitored prefix significantly diverges from
that of its buddies. Our evaluation results show that Buddyguard
provides fast, accurate and lightweight monitoring of IP prefix
anomalies, and its introduction and use of buddy prefixes enables
it to be resilient against resourceful attackers.

I. I NTRODUCTION

A. Routing Anomalies with an IP Prefix

An IP prefix (i.e., a block of IP addresses) can be subjected
to many types of routing anomalies. A prefix may suddenly
become unreachable, reachable only through a path with poor
routing performance, or it may experience pathological routing
dynamics (e.g., oscillation between different paths). Whether
a prefix is used by major online businesses (such as Google or
YouTube) or ordinary end users (e.g., Alice and Bob), these
prefix anomalies can cause loss of revenue, identity theft, or
many other devastating consequences.

One of the most infamous of such anomalies isprefix
hijacking , in which an attacker hijacks traffic meant to reach
the legitimate user of a prefix. Real world cases of prefix
hijacking have occurred repeatedly ([1], [2]), including the
well-known Pakistan Telecom hijack of YouTube in 2008 [3].
These events have been reported as recently as January 2011,
when INDOSAT-INP-AP hijacked traffic to nearly 3000 pre-
fixes [4]. Furthermore, executing this kind of attack is not
difficult. Theoretical studies show that a prefix can be hijacked
by a tier 1 autonomous system (AS) with around a 50–80%
probability, a tier 2 AS with around a 30–70% probability, and
a tier 3 AS with around a 5–30% probability [5].
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Another common prefix anomaly areroute leaks, where a
misconfigured ISP advertises illegitimate routes for prefixes.
In past history, such incidents have caused anomalies on a
monumental scale [6], [7]. A well-publicized instance occurred
on April 8, 2010, when an AS operated by China Telecom
falsely originated nearly 37,000 prefixes, and mis-routed traffic
to those prefixes for about 15 minutes [8]. Route leaks also
continue to plague today’s Internet, with events occurringas
recently as February 2012 when Australia’s Telstra ISP caused
outages for nearly 1400 prefixes [9].

These anomalies are a real threat andeveryprefix on the
Internet, whether commercial or private, is vulnerable. Even
more disturbing, users or operators of a prefix cannot easily
detect such incidents. The legitimate user of a prefix may not
expect any incoming traffic at all while its traffic is being
mis-routed; or in a more complex form of IP prefix hijacking
called prefix interception, an attacker not only hijacks traffic,
but also forwards that traffic to the victim—leaving the victim
entirely unaware that its traffic is being hijacked.

Unfortunately, it is unlikely that these prefix anomalies will
be resolved in the near future. While there exist proposals such
as S-BGP [10] to secure Border Gateway Protocol (BGP), the
de facto inter-domain routing protocol, their high overhead
cost has prevented actual deployment. In fact, research has
found that even these proposals are deployed, they will still
fail in certain circumstances [11]. It is therefore critical to
monitor prefixes and detect prefix anomalies as they occur.

But in the domain of monitoring prefixes and detecting
anomalies, the outlook is still bleak. The current state-of-the-
art monitoring schemes ([12], [13], [14], [15]) are narrowly
focused on prefix hijacking alone, leaving other forms of
prefix anomalies undetected. Furthermore, as we will detailin
section II, a fundamental limitation with the current systems is
that none of them fully address the range of countermeasures
that an intelligent attacker could employ to avoid detection.
For example, a hijacker might bypass monitoring schemes by
performingsub-prefix hijacking, leaving the monitored prefix
unaffected but hijacking traffic to its subspace. Even refer-
ence point monitoring approaches ([13], [14]), which address
many deficiencies in earlier designs, are still vulnerable to
resourceful attackers. Given these issues, there continues to
be a pressing need for more flexible and resilient solutions
than what are currently available.978-1-4673-2447-2/12/$31.00c© 2012 IEEE



B. Buddyguard: A Buddy-Based Prefix Monitoring Solution

In this work, we present a new approach to prefix mon-
itoring that fills this missing gap. DubbedBuddyguard, it
surrounds a prefix with a buddy system composed of buddy
prefixes, orbuddies, and monitors the behavior of the prefix
against that of its buddies. Not only does Buddyguard quickly
and accurately detect various prefix anomalies including prefix
hijacking and route leaks, but it is also lightweight to deploy
and resilient against circumvention by attackers.

Key to monitoring an IP prefix is knowing what is normal
behavior and what is not, and a buddy system makes this task
feasible. When inspecting a prefix in isolation, it is difficult
to know what behaviors are abnormal. For example, when
the path to a prefix from a vantage point suddenly disappears
or changes, it can be either a normal routing change, or an
abnormal misconfiguration, or that an attacker has just misled
routers to adopt a new path under the control of the attacker.
In contrast, a buddy system provides a more reliable basis to
determine if anything is abnormal with a prefix. By ensuring
that there are enough buddies for the prefix, and under normal
conditions a prefix is similar to most of its buddies (in terms
of the behaviors being monitored) but no so if under abnormal
situations, we can use these buddies to determine whether or
not the prefix is experiencing anomalies.

This methodology has the following advantages:

(i) It is flexible and extensible.No matter what anomalous
behavior of a prefix we want to monitor and detect, we
can always first determine the type of behavior and how
to measure it, and then select buddies in terms of that
behavior for monitoring.

(ii) It is resilient. We depart from existent approaches by
emphasizing the need to be resilient against attacker
countermeasures. A key feature of Buddyguard is that
a prefix is allowed to havehundredsor eventhousands
of buddies. As our results indicate, our system is capable
of finding buddies from multiple different ASes, making
it difficult to locate and simultaneously attack enough
buddy prefixes to circumvent Buddyguard. Even if the
attacker is successful in doing so, an attempt to attack
that many prefixes at once would itself appear suspicious.

(iii) It is scalable and easy to deploy.Buddyguard requires
only passive measurement using existing BGP collection
systems and its input are publicly available routing data.
Our results show that our system maintains very little
overhead, so little that it may scale to monitor hundreds
or even thousands of prefixes simultaneously.

We demonstrate the efficacy of Buddyguard by testing
our system on well-known prefix hijacks and route leaks.
For these anomalies, the behavior in question is the routing
paths to a given monitored prefix. With monitors being BGP
speakers that peer with RouteViews [16] collectors, we train
Buddyguard by observing routes from these monitors to the
prefix and select buddies that best match these routes. Our
evaluations show that monitoring prefixes with these buddies
provides fast, accurate, and reliable detection with low false

negatives and false positives.
In addition to the introduction and use of a buddy system

for prefix anomaly detection, the major contributions of this
work further include:

(i) A training algorithm for finding and selecting well-
matched buddies from multiple ASes for a given prefix;

(ii) A buddy-based monitoring algorithm that provides fast,
accurate, and reliable detection of prefix anomalies; and

(iii) A resilient and scalable system design that could easily
be deployed for today’s Internet.

The rest of the paper is organized as follows. In Section II
we highlight the background and related work for this research.
We then describe our design of Buddyguard in Section III and
its resiliency to attacker countermeasures in Section IV. In
Section V we detail how we evaluate Buddyguard through
monitoring prefix hijacks and route leaks. In Section VI
we discuss our results and future work, and present our
conclusions in Section VII.

II. RELATED WORK

A number of works have dealt with understanding BGP
dynamics [17], [18], [19], [20], [21], as well as detecting BGP
anomalies [22], [23], [24] and monitoring BGP in general [16],
[25], [26], [27]. In this section, we focus on the limitations
of current prefix monitoring systems, one of the primary
motivations of our work. Although various approaches have
been proposed to monitor routing behaviors of IP prefixes, the
best we have are some solutions for detecting prefix hijacking,
and even these solutions are very limited:

(i) They each can only detect certain prefix hijacking cases;
(ii) Intelligent attackers can circumvent them; and

(iii) These solutions are specific to prefix hijacking and can-
not be easily extended to address other prefix anomalies.

Such limitations are in large part due to the underestimation
or inadequate modeling of what prefix hijackers can do. Early
solutions monitored prefix origin changes to detect prefix
hijacking [22], [28], assuming that an attacker must claim
itself as the new origin of a victim prefix in order to hijack
it. But an attacker can hijack a prefix by merely stating it
is close to the real origin of the victim prefix, invalidating
this assumption. Later solutions recognized this fact, butthey
required the owner of a prefix to verify the paths to its prefix,
putting a heavy burden on human users [29], [12]. Recent
solutions set up monitors, probe them from a monitored prefix,
and watch and analyze responses to determine if the prefix is
hijacked [15]. However, in the case of prefix interception, the
prefix will simply receive responses as usual.

An alternative monitoring solution,reference point compar-
ison, addresses several of these deficiencies. This approach
is evidenced in [5] and [13], as well as the current leading
approach described in [14]. To detect whether a prefix is
hijacked, it uses monitors distributed throughout the Internet
to check whether each monitor’s route to the prefix deviates
significantly from its route to a topologically nearbyreference
point. This system has many advantages; it is both lightweight



and capable of detecting prefix interception, since the prefix’s
route will still deviate from the reference point’s route.

However, even these solutions fail to address a fundamental
issue: the ability of prefix hijackers to circumvent defenses.
An attacker can discover which IP prefix(es) likely contain
the IP address of the reference point, and hijack these prefixes
and the monitored prefix altogether, causing the hijack to go
undetected. In particular, if the reference point shares the same
origin AS as the monitored prefix, hijacking both in one fell
swoop is trivial. Indeed, following the reference point selection
process in [14], we found it very common for a monitor to use
such a reference point. More specifically, using traceroutedata
from the iPlane project [30] for about 91,019 prefix atoms,
where everyatom is a group of prefixes that are reachable
through the same routes from all locations [31], we found
54.6% of atoms share the same origin with their reference
point, while 31.8% of atoms do so fromall monitors and
45.5% of atoms do so from 90% or more of the monitors. Most
current solutions are also susceptible to sub-prefix hijacking,
where a hijacker advertises an invalid path to asubspace
of a prefix to hijack only that subspace. Even if routers
maintain a correct route to the prefix, due to the preference
for more specific routes, they will adopt this invalid route to
the subspace.

Lastly, if we inspect how these hijack detection approaches
may translate to monitoring other prefix routing anomalies,
the situation is still not optimistic. On one hand, due to the
scale and complexity of Internet routing, the cause of routing
anomalies is often very complicated and their symptoms are
rarely predictable. Most of the time, network administrators
have to handle them on anad hoc, case by case basis—if an
anomaly is even noticed or reported. Rather than focusing on
specific cases of routing anomalies such as prefix hijacking
or interception, a prefix monitoring system must be exten-
sible enough to cover any prefix anomaly, both known and
unknown. Given that the above approaches fail to do so, there
still exists a significant gap between the state of the art anda
truly effective prefix monitoring solution.

III. D ESIGN OFBUDDYGUARD

In this section, we present our design of Buddyguard,
a control-plane prefix monitoring system that addresses the
shortcomings of existing systems described in the previous
section. We introduce the general architecture, cover our
strategy for finding and selecting buddies, define how Bud-
dyguard performs monitoring, and explain how the system is
maintained. While the introductory use of a buddy system
allows Buddyguard to handle any prefix anomaly, we use
prefix hijacking in particular as means of illustrating how the
system works.

A. System Overview

At its core, the Buddyguard architecture includes the mon-
itored prefix, a set ofmonitors, and thebuddies of every
monitored prefix (Figure 1). The monitored prefix is any
IP prefix whose owner requests the Buddyguard service for

Fig. 1. Buddyguard architecture.

specific types of anomalies affecting that prefix. Buddyguard is
able to monitor multiple prefixes in parallel (as we demonstrate
in our evaluations, up to hundreds or thousands of prefixes
at once). We define the remaining components, monitors and
buddies, as follows.

1) Monitors: A monitor is defined as a networked entity
that can observe a prefix and its buddies in conjunction. Under
normal conditions, the observed behavior of the monitored pre-
fix and its buddies should match. Monitors detect anomalous
conditions when the behavior of a prefix deviates significantly
from that of its buddies. We leave the details of the monitoring
algorithm for a later section.

What behaviors should monitors observe and compare?
Since every prefix anomaly we are concerned with is within
the domain of BGP, such behaviors should be the properties of
any BGP operation related to a monitored prefix. In the case
of prefix hijacking and route leaks, the related BGP operation
is the announcement of a new path to that prefix, and the main
property we inspect is the difference between this new path
and the paths to the prefix’s buddies. Different anomalies will
have different behaviors, and therefore require a different set
of buddies for the monitored prefix.

Since monitors must be able to measure these BGP opera-
tions, monitor placement is critical. Ideally, monitors must be
able to hear conversations between BGP routers as close to
real-time as possible. One solution involves peering monitors
with existing BGP data collection systems such as RouteViews
and RIPE [25] collectors or BGPMon [32], which collect real-
time BGP updates from routers around the globe. This deploy-
ment scheme has the advantage of costing low overhead, as
it does not require continuous data-plane queries like other
solutions. We return to the efficacy of this monitor placement
strategy in our discussion section.

2) Buddies: A buddy can be defined as IP prefix that
behaves similarly to the monitored prefix under normal condi-
tions, and diverges when anomalous conditions occur. Recall
that for prefix hijacking, the behaviors we are concerned with
are path updates associated with the prefix and its buddies.
To detect whether a prefix is hijacked, we compare paths to a
buddyb and a monitored prefixp such that:

(i) Under normal circumstances, the path from a monitor to
b is similar to the path from that monitor top;
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Fig. 2. Finding buddies using path similarity principle. n determines the number of shared AS hops between the two paths being compared.

(ii) If a legitimate routing change occurs so that the monitor
has a new path top, the monitor will also have a similar
new path tob; and

(iii) If p is hijacked, the monitor will switch to a “bad” new
path top, but will still use the old path tob, causing the
two paths to be dissimilar.

Clearly, if b perfectly meets these standards thenp will only
need that single buddy. However, in many situations buddies
can only partially meet the above conditions. Sometimes a
buddy may experience the same anomaly as the monitored
prefix; for example, a hijacker could co-hijack a prefix and its
buddy, leaving the anomaly undetected. Therefore, having one
buddy for a prefix is typically not sufficient.

To solve this, we must obtain many buddies for a monitored
prefix, where enough buddies are similar to the prefix when it
is behaving normally, and at most a small number of buddies
may experience the same anomaly together with the monitored
prefix. Therefore, if a prefix deviates from enough of its
buddies, we can determine that it is behaving abnormally.
When detecting if a prefix is hijacked, for example, we modify
the conditions (i)–(iii) above to:

(i) Each monitorm must have a setBm = {b} of buddies
such thatm will have similar paths to all of them,
including p;

(ii) If a legitimate routing change occurs so thatm has a
new path top, enoughof its buddies will also switch to
a similar new path fromm; and

(iii) If the p is hijacked,m will switch to a “bad” new path
to thep, but enoughof p’s buddies will not switch.

We leave the definition ofenoughfor a later section.
Due to the decentralized nature of BGP, it is likely (but

not necessary) that each monitor will have a distinct set of
buddies for the monitored prefix. The specific location of a
monitor will determine which BGP updates it is able to hear;
indeed, certain updates may never reach a given monitor at all.
The advantage of a per-monitor buddy system over a common
buddy system (where a prefix has the same buddies for all
monitors) is that each monitor need only be concerned with
the BGP updates to which it is privy.

To build this architecture, we must employ three major
classes of algorithms: training algorithms for discovering

and selecting buddies for a monitored prefix, a buddy-based
monitoring algorithm for detecting prefix anomalies, and a
maintenance algorithm to ensure that a prefix always has good
buddies. Without losing generality, we describe each with
respect to prefix hijacking in the following sections.

B. Training: Finding and Selecting Good Buddies

The success of Buddyguard lies in having the best possible
set of buddies for a given monitored prefix. To meet this
objective, we define algorithms for finding buddy candidates
that match the behavior of the monitored prefix and selecting
the best matching candidates to be actual buddies. We call this
bootstrapping phase:training .

1) Finding Good Buddy Candidates:Where should Buddy-
guard look for buddy candidates for a given monitored prefix?
Ideally, we want buddies to be distributed across multiple
ASes, making it difficult for a hijacker to co-hijack enough
buddies to evade detection. Yet buddies must be well-matched
in order for subsequent monitoring to be accurate. Therefore,
our task becomes finding well-matching buddy candidates
from a diverse set of ASes.

We can achieve this by using a simple path similarity
principle. Consider the AS path updateup(ti) from a monitor
to a prefixp, which consists of an ordered list of autonomous
systems (ASes) from the monitor top. We can define an update
ui as similar toup (ui ∼ up) if both share the first|up| − n
AS hop. For definition purposes, we use|x| to designate the
length or size ofx both here and in the remainder of this work.
Figure 2 shows how0 ≤ n ≤ 2 may affect the distribution
of buddy candidates, or which ASes may be eligible to offer
buddies. Clearly, whenn is 0, buddies can only be from the
same AS (the origin AS) as the monitored prefix (Figure 2(a)).
But whenn is 1, buddies can be also from the so-called parent
and sibling ASes (Figure 2(b)), and so on.

Using this notion of path similarity, we can find well-
matching buddy candidates for a given prefixp through obser-
vation. Buddyguard observesp over a training period, during
which each monitor listens for AS path updates regardingp.
For a given monitorm and an AS path updateup(ti) to
p witnessed at timeti, m checks for similar path updates
uc(ti ± ∆) to any candidatec that occur at roughlyti. We



Fig. 3. Buddy selection through the skewer mechanism.A skewer
represents a path change for the monitored prefix at timeti. Each circle
represents a buddy candidatecj .

specify ti ±∆ to allow time for BGP convergence [33], and
use∆ = 3 minutes as a conservative measure for this work.
After this period, each monitorm will have setCm = {c} of
buddy candidates that matched paths fromm to p.

2) Buddy Selection:The most frequently matching candi-
dates found during this training period are clearly the best-
matching, but how can Buddyguard select buddies such that
(1) enough buddies always match the monitored prefix, and (2)
the buddies are distributed across multiple ASes, and therefore
resilient to co-hijacking? For this task, we employ askewering
mechanism. When monitorm hears a path updateup(ti),
Buddyguard creates askewer data structure for timeti. By
the end of training, we have a set of skewersSm = {sti} for
everyup(ti) that m witnessed (Figure 3). We then “skewer”
candidates by sorting them by frequency of matching (best
to worst), and place the best-matching candidatec on each
skewersti whereup(ti) ∼ uc(ti ±∆).

The skewering mechanism enables Buddyguard to select
buddies according to the above criteria. We continue to skewer
candidates until all of the skewers are full, or more formally:

∀sti ∈ Sm, |sti | ≥ ω

for some lower bound capacityω (we will wait to defineω
until section V-B). This ensures that buddies can account for
the full range of normal behavior for the monitored prefix.
We can also ensure that buddies are widely distributed by
skewering candidates until they cover multiple ASes. Once
these conditions are met, Buddyguard selects all skewered
candidates as buddies. The training methodology described
thus far can be summed up in Figure 4.

C. Monitoring: Detecting Prefix Anomalies

Buddyguard provides accurate and fast detection of pre-
fix anomalies using the buddies selected from training. The
detection procedure is straightforward—again, using prefix
hijacking as an example. If a monitor hears a new path to
a prefix p, it will check whether this is one of the “good”
paths that is has already seen. If not, the monitor will wait for
a short period, and then check if more thanα/|Bm| (for some
value ofα) of p’s buddies also switch to a similar new path. If
so, the monitor can record that path as a good path for future
reference. If not, the monitor raises a warning flag, indicating
that the prefix may be hijacked. In this way, buddies help
the system determine both normal behavior and anomalous
events. Warning flags can be lowered in two ways: (1) more

thanα/|Bm| of the buddies eventually switch over to the new
path, or (2)p later switches to a good path.

Defining this per-monitor warning thresholdα would seem
to be a difficult task. How can Buddyguard know how many
buddies will typically match the monitored prefix? The answer
lies in using data from training, and here again the skewering
mechanism becomes exceedingly useful. Consider a set of
skewersSm from training, which correspond to paths from
monitor m to p. If buddies are normally distributed across
these skewers, then we can defineα = µ − 3σ whereµ and
σ are the mean and standard deviation of buddies per skewer,
respectively. In other words, based onp’s behavior witnessed
by m, the probability of havingα/|Bm| or less buddies match
p is roughly0.1%. More plainly, the set ofp’s buddies for a
given monitor should match well enough for the majority of
p’s normal behavior. Of course, it may be the case that buddies
are not normally distributed acrossSm. For these instances,
we define a conservative base case threshold: at least a third
of the buddies must matchp or a warning is raised.

However, it is not enough to say that the prefix was hijacked
if only one monitor raises a warning. The entire Buddyguard
system must correlate warning flags from all monitors to
decide whether the prefix was hijacked. If more thanX%
of the monitors have a warning flag raised at any given time,
the system issues a hijacking alert. The alert state can onlybe
dropped if the percent of monitors with warning flags raised
drops below thresholdX. Given a set of well-matched and
widely distributed buddies, this system-wide alert threshold
now becomes the deciding factor in determining prefix anoma-
lies. The precision of this threshold is critical—too high values
will result in false negatives, where Buddyguard fails to detect
an anomaly; and too low values will result in false positives, or
false alarms. We discuss the proper calibration of this threshold
in our evaluation section.

Finally, the accuracy of a buddy-based monitoring scheme
is dependent upon the ability to acquire the right set of buddies
during our training period. A careful reader might ask, whatif
an anomaly occurs during this training period? Clearly thiswill
reduce the well-matching quality of the selected buddies. We
must therefore ensure that our training period is “clean”—no
anomalies can occur for the monitored prefix during this time
window. While this seems like a difficult task, we can exploit a
simple principle to make it manageable. If Buddyguard finds
buddies for the monitored prefix on the basis of anomalous
behavior during training, then subsequent monitoring with
those buddies will trigger false alarms for clearly valid path
updates. When this occurs, we simply re-train the prefix until
we obtain a clean training period. In this manner, we can
ensure that our system uses buddies that best match thenormal
behavior of a monitored prefix.

D. Buddy Maintenance

After a monitor selects a set of buddies for a prefix, it is
not guaranteed every buddy will always stay a good buddy.
How can we maintain a good buddy system after the initial
selection? Yet again, the information that Buddyguard collects



Algorithm III.1: TRAININGALGORITHM(p,m)

local Cm candidates, Bm buddies, Sm skewers
for each up(ti) seen by m

do























find candidates c where
uc(ti ±∆) ∼ up(ti)

append c to Cm

create skewer sti
append sti to Sm

sort Cm by frequency of matching
while |sti | < ω ∀sti ∈ Sm

and Bm is not diverse

do







place top matching c on every sti ∈ Sm

where uc(ti ±∆) ∼ up(ti)
append c to Bm

return (Bm)

Fig. 4. Training algorithm. p is the monitored prefix andm is a monitor.

during training is invaluable for this task. Consider a given
monitor m with buddiesb ∈ Bm who matchedSm skewers
for the monitored prefixp during training. We can define the
minimum qualitymin(Bm) to be the minimum number ofp’s
path updates matched during training by any buddyb ∈ Bm,
and|Sm| to be the number of skewers. During monitoring, we
can re-evaluateBm after|Sm| path updates, and if anyb ∈ Bm

matched less paths thanmin(Bm), we dropb. Similarly, at
any point during monitoring we can re-trainp, replacing poorer
quality buddies with better buddies found during re-training.
In this way, we can maintain and improve the quality ofBm

to ensure that Buddyguard can effectively monitorp.
Another concern that one might raise is the occurrence of

policy changes that cause the monitored prefix to legitimately
deviate from its buddies. For example, a prefix may become
multihomed or enter a new peering agreement with another
AS, while its buddies do not. However, even though these
changes may occur at arbitrary times, such changes do not
pose a serious problem for Buddyguard. Given that our system
would be run as a service, we can simply require prefix owners
to report such events when they occur. At that time, we can
re-train the prefix according to its newly defined behavior, and
continue monitoring with a new set of buddies.

IV. RESILIENCY OF BUDDYGUARD

As we alluded to previously, one of the primary advan-
tages of the buddy system is that it allows Buddyguard to
withstand intelligent attacks. With respect to prefix hijacking,
there are several measures that a hijacker could employ to
avoid detection by monitoring schemes. We now discuss some
countermeasures that remain unaddressed in current systems,
and explain how our system handles them.

A. Prefix Interception

When a prefix is intercepted, the hijacked traffic is for-
warded on to the victim prefix. Since traffic is still routed

to the victim, such an attack can easily go undetected. But
from the perspective of a Buddyguard monitor, the path to the
victim prefix still changes, and the path comparison with the
victim’s buddies will reveal the hijack and enable our system
to detect the attack.

B. Sub-prefix Hijack

Buddyguard is particularly good at handling sub-prefix
hijacking, a case that thwarts most existing solutions. If a
monitor has never heard a sub-prefix of a monitored prefix,
this monitor will use exactly the same path to reach the sub-
prefix and the prefix all the time. Therefore, Buddyguard can
view the buddies of the monitored prefix as the buddies of
the sub-prefix, and use these buddies and the same detection
procedure to determine whether the sub-prefix is hijacked.

C. Targeted attacks

What would happen if an attacker was aware of Buddy-
guard, and specifically attempted to thwart our monitoring
scheme? For example, an attacker could try to co-hijack all or
most of a prefix’s buddies to eliminate the effectiveness of path
comparison. However, each prefix we monitor has numerous
buddies distributed across multiple ASes, and discovering
enough buddies to co-hijack would be an enormous under-
taking. An attacker might try to guess enough surrounding
ASes and hijack all prefixes within those ASes, but a hijack
on that scale would itself be blatantly suspicious. Furthermore,
if Buddyguard is monitoring numerous prefixes each with
their own buddies, then it is possible that some buddies of
a target prefix are also being monitored. An attacker would
have to hijack that prefix’s buddies plus their own buddies, and
possibly their buddies’ buddies, resulting in a tedious recursive
process. In effect, our buddy-based monitoring scheme is
resilient against attackers who know how Buddyguard works.

An attacker could also try to exploit BGP routing policies
to limit the visibility of the hijack. For example, if a hijacker
knew which ASes contained Buddyguard monitors, it might
insert those ASes into illegitimate path announcements. Since
BGP routers discard path updates that contain their AS to
avoid routing cycles, these attacks would not be noticed by
our monitors. But to do so, a hijacker would have to insert the
ASes of many or all of our monitors into an illegitimate path,
which would greatly increase its length. Since BGP routers
also prefer shorter routes, it is statistically improbablethat
this path would ever be adopted.

V. EVALUATION

We evaluate Buddyguard in terms of the effectiveness of
training (how well it can find and select good buddies), and
the accuracy and performance of monitoring. For the latter we
look specifically for cases of false negatives (where the system
fails to detect an event) and false positives (false alarms). Our
results demonstrate that using a system-wide alert threshold
X = 20%—recall that this means if20% or more monitors
have a warning raised, issue an alert—gives a proper balance
for minimizing both false positives and false negatives. Again,



without losing generality, we use prefix hijacking and route
leaks as a means of demonstrating our system.

A. Setup

To test Buddyguard, we developed an initial testbed of
monitors, prefixes, and all routing path updates concerning
those prefixes during various time periods of interest. We
built this testbed by processing real world BGP updates and
RIB table dumps from the RouteViews collection [16], which
allowed us to generate a set of over 600,000 prefixes and their
associated BGP routing paths. For monitors, we used BGP
speakers peered with RouteViews collectors, as these entities
would have the same view of BGP routing data as seen in
our test data (the coverage of this monitor placement strategy
is discussed in section VI). This generated set of prefixes,
monitors, and BGP updates enables us to evaluate Buddyguard
on today’s Internet topology and routing infrastructure.

B. Defining Thresholds

Our next step was to define threshold values for our training
algorithms. To recap, these key thresholds are:

(i) Path similarity n. The number of AS hops to compare
(|up(ti)| − n) when checking ifup(ti) ∼ uc(ti ±∆).

(ii) Skewer lower bound capacityω. The number of buddy
candidates required to fill a skewer.

(iii) Resiliency factors. The number of buddies needed for
a monitored prefix and the minimum number of ASes
covered by these buddies.

To demonstrate the efficacy of our system, we take a
conservative approach toward defining the training thresholds.
For path similarity, we usen = 1 such that Buddyguard may
only find buddy candidates from the so-called origin, parent,
and sibling ASes. We use the termsorigin, parent, and
sibling buddies to reference buddies from these respective
ASes. Restricting our search algorithm in this way forces
Buddyguard to rely on a minimal search space when looking
for well-matched candidates (n = 0 excludes all but the origin
AS, and therefore is too strict for our purposes). For the
remaining two thresholds, we setω = 30 and require at least
90 buddies for a given monitor. By intuition, this stipulates
that at least a third of the buddies should match the behavior
of the monitored prefix during training, and that each monitor
has a reasonably large set of buddies. Lastly, we require at
least 30 of the buddies for a given monitor to be from sibling
ASes, which ensures that the buddies are widely distributed—
again, a key contribution to the resiliency of our system. We
evaluate these conservative benchmarks in the next section,
and discuss in section VI how they might be better calibrated.

Given these values, we proceeded with our tests accordingly.
First we selected prefixes randomly from diverse locations of
the network topology, including tier 1, tier 2, and tier 3+ ASes.
For testing a specific event, we used the prefix(es) involved
in that event. Each prefix we monitored was trained over a
period of one week, during which we tried to find origin,
parent, and sibling buddy candidates for each legitimate path
update to the prefix. We define a legitimate update as an

announced path that is not part of a routing path oscillation
(for an explanation of this phenomenon, see [21]). We then
used the skewering mechanism to select the best buddies from
these candidates, and after verifying that the training period
was clean, we monitored the prefix with the selected buddies.
In order to prove the efficacy of using buddies from outside of
the prefix’s origin ASes, we show the results of monitoring a
prefix with origin, parent, and sibling buddies separately.The
following sections summarize our test results.

C. Evaluating Training

An important criteria for the effectiveness of training is
whether Buddyguard can find numerous well-matched buddies
across multiple ASes. Figure 5 depicts our training results
across all the prefixes that we tested. With respect to buddies
selected per monitor for a given prefix, we see that in most
cases Buddyguard is able to find hundreds or thousands of
eligible buddies (Figure 5(a)). However, we note that a very
small portion of our samples (about5%) have insufficient
buddies. Fortunately, these edge cases can be attributed toour
conservative definition ofn = 1 for path similarity. Most of
them come from very small ASes (tier 3+), where there is a
deficiency of potential origin, parent, and sibling candidates.
Increasingn adaptively would enable Buddyguard to search
for candidates beyond those small ASes, allowing our system
to find sufficient buddies for all cases. We discuss in sectionVI
why we did not use this strategy, and for now are satisfied that
n = 1 gives us enough buddies in the majority of cases.

Our results are very similar when we look at the mean
number of buddy or candidate ASes per monitor, as shown
in Figure 5(b). Though we restrict candidate searching to
origin, parent, and sibling ASes, this is still a large number
of eligible ASes. In many cases Buddyguard had hundreds or
thousands of ASes to choose from, and again, we can fix the
few exceptions by relaxingn for path similarity. Therefore,
our initial evaluations show that even under conservative
restrictions, Buddyguard is able to find numerous and widely
distributed buddies for monitoring prefixes.

It is also worth noting the general quality of the buddies
selected. Figure 5(c) shows the CDF of buddy quality with
respect to the percentage of prefix paths matched during
training. The results are not exceptional—less than half of
the samples match their respective prefix with any degree of
regularity. While this may seem problematic, we demonstrate
in the following sections that Buddyguard is able to accurately
detect anomalies even when some buddies are mediocre.

D. Accuracy

1) Detecting Prefix Hijacking:We evaluated Buddyguard’s
ability to detect prefix hijacking by testing our prototype on
a wide manner of known hijacks. For brevity, we only show
the results for three well-known hijacking events:

• Cogent’s hijack of one of Google’s prefixes [2].
• Con Edison’s hijack of 30+ prefixes, including some

belonging to their customers [1].
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(b) Mean value of buddy and candidate ASes
during training (shown in log scale).
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monitored prefix paths matched during training.

Fig. 5. CDFs for finding buddies and selecting candidates across allprefixes sampled.
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(a) Warnings for when Cogent hijacked a Google
prefix. Time 0 is 5/6/05 at 09:00:00 UTC. The
hijack began 5/7/05 at 14:37:56 UTC [2].
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(b) Warnings for Martha Stewart Living. (Note
there are no results for origin buddies— the hi-
jacked prefix was the only prefix in its origin AS.)
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(c) Warnings for when Pakistan Telecom hijacked
YouTube. Time 0 is 2/24/08 at 16:00:00 UTC. The
hijack began at 18:47:57 UTC [3].

Fig. 6. Percentage of monitors raising warning signals for Google, Martha Stewart Living, and YouTube hijacking events.

• Pakistan Telecom’s hijack of a sub-prefix of YouTube’s
prefix [3].

Our results from these three hijacking events (Figure 6)
show that Buddyguard is well-suited to detecting prefix hi-
jacks. For all tested events, a system-wide alert threshold
X = 20% monitors with warnings raised (represented in our
figures by the dashed horizontal line) suffices for detecting
these hijacks. While in many casesX could be a smaller
percentage, we point out that this conservative measure works
for all tested events. We will also show that this observed
threshold is effective for route leaksand maintains low false
positives when monitoring normal prefix behavior.

When we inspect results from individual events, the efficacy
of our monitoring system is clearly demonstrated. Looking at
the Cogent event (Figure 6(a)), we see that the percentage
of monitors with raised warnings dramatically increases for
the duration of the event, and each monitor detects the hijack
within 5 seconds of the event. The Con Edison event, which
involved more than 30 hijacked prefixes, was also easily
detected. One particularly interesting case here is the hijack of
Martha Stewart Living’s prefix (Figure 6(b)), the sole prefix
within its origin AS. Even without the aid of origin buddies,
Buddyguard was able to raise an alert for this hijack. This
demonstrates that our system can successfully detect prefix
hijacks even when using buddies outside of the origin AS.

Our monitoring scheme is also proven to be effective on
sub-prefix hijacks. Using the YouTube hijacking as a case
study (Figure 6(c)), we see that when the attacking AS
announced an invalid path to a sub-prefix of YouTube’s prefix,

our system was able to detect the hijack withinone second
of seeing the first invalid path announcement. Taken together,
the results show our system’s accurate and resilient monitoring
across a variety of prefix hijacking scenarios.

2) Detecting Route Leaks:We also tested Buddyguard on
another well-known recent event: the April 4, 2010 China
Telecom route leaks. We randomly selected 100 prefixes from
those affected by the route leaks, and monitored them from
15:30 UTC to 16:30 UTC (the route leaks began at roughly
15:54 UTC and lasted until about 16:10 UTC). Figure 7
illustrates the percentage of monitor warnings raised across the
aggregated sample. Once again, an alert thresholdX = 20%
monitors proves to be effective, detecting90% of the (100)
route leaks within seconds of the event onset. False negatives
were largely due to not having enough buddies for monitoring,
and as stated before such cases can be fixed by relaxing our
training thresholds. As such, we see that a well-calibrated
Buddyguard is adept at handling a variety of prefix anomalies,
including prefix hijacking and route leaks.

It is also worth mentioning that for this event, many of
the route leaks co-hijacked multiple origin buddies for several
of the prefixes in our sample set. These co-hijacked origin
buddies do not trigger warnings, as their (hijacked) routes
match that of the monitored prefix. Here we see that such
events cannot be detected by origin buddies or reference points
alone; a topologically diverse set of buddies outside the origin
AS was needed to detect the event. By maintaining enough
valid points of comparison to the monitored prefix, Buddy-
guard remains resilient to such large scale route leaks. This
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Fig. 7. Aggregated warnings for 100 randomly
selected affected prefixes during China Telecom
route leaks. Time 0 is 4/8/10 at 15:30:00 UTC.
Route leaks began at approx. 15:54:00 UTC.
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sion windows across all monitors and prefixes.
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Fig. 9. False warnings raised for all prefixes in
our false positive tests.

underscores the importance of topologically diverse buddy
selection, a critical component of our system.

3) Monitoring Normal Prefix Behavior:While it is im-
portant that Buddyguard can quickly and accurately detect
prefix anomalies, we also must ensure that our system raises
minimal false alerts for normally behaving prefixes. To test
false positives, we randomly selected 10 prefixes each from
tier 1, tier 2, and tier 3 ASes. Each prefix was trained over
the week of March 29-April 5, 2010, after which we verified
that training was clean and training thresholds were met. For
cases where Buddyguard was able to find enough buddies, we
then monitored prefixes during a clean two-day period from
April 5-7, 2010. We can reasonably ensure that this time period
was clean from an absence of known hijacking events and path
mismatches from origin buddies that matched perfectly during
training. Our reasoning for the latter is that attackers do not
yet know about Buddyguard, thus the probability that an event
occurred which co-hijacked all origin buddies is minimal.

Our metric for false positives is the number of warnings
raised by a given monitor divided by the number of decision
windows, or distinct times when that monitor decided whether
to raise a warning. Figure 8 shows the distribution of false
positives across all samples. We see immediately that with
sufficient buddies, our system can monitor IP prefixes with
very low false warnings. In fact, nearly90% of our monitors
raise no warnings at all.

Furthermore, a warning raised by a single monitor does not
translate directly to a false alert. Figure 9 shows the percent
of monitors with warnings raised over the two day monitoring
period across all samples. If we use the previously observed
system-wide alert thresholdX = 20%, only about6% of
the decision windows actually peak above this threshold.
Moreover, all of these instances occurredfor a single prefix—
in other words, only one prefix would have raised false
alerts. While we discuss later how this observed threshold
might be better calibrated, for now it is enough to say that
X = 20% works to minimize both false negatives and false
positives. Therefore, our monitoring tests on prefix hijacking,
route leaks, and normal prefix behavior show that our system
provides accurate and resilient monitoring of IP prefixes.

E. Performance: Latency and Overhead

Finally, we evaluate Buddyguard with respect to its overall
performance—namely, the latency and overhead involved.
Since Buddyguard analyzes BGP updates in close to real time,
detecting anomalies can be achieved with little latency. Inthe
hijack and misconfiguration cases described above, detection
occurs within minutes (and often seconds) of the event. This
is a crucial point; prefix anomalies must be detected and
addressed immediately. Our system provides fast detection
of anomalous events, giving prefix owners the chance to
minimize the damage done.

Our system design also maintains low storage cost, an
important measure when considering how Buddyguard might
scale to monitor numerous IP prefixes. During the monitoring
process, the storage cost for every monitored prefix is mainly
(1) the current AS path from the monitor to the prefix and
(2) a set of buddy prefixes. One bit of auxiliary data that the
monitor may also store for the monitored prefix is (3) its set of
good AS paths to that prefix. Assuming the average length of
an AS path is 4, a prefix has 1,000 buddies on average, and a
prefix has on average 10 AS paths known to be legitimate, the
total storage cost per monitored prefix will be approximately
4.2 KB. Therefore, monitoring 100 prefixes would only cost
about 400 KB, and 1,000 prefixes only about 4 MB. Thus, it is
very feasible for Buddyguard to monitor even every prefix on
the Internet. When coupled with pre-existing BGP monitoring
systems like RouteViews, Buddyguard is lightweight, scalable,
and easily deployable for today’s Internet.

VI. D ISCUSSION ANDFUTURE WORK

Using our conservative approach toward defining the path
similarity thresholdn = 1, we were not able to find enough
buddies for a small number of prefixes. However, these edge
cases can be addressed by definingn adaptively: if n = 1
is not sufficient, continue incrementingn and searching for
candidates. Proceeding in this manner, we can easily find
enough buddy candidates for all prefixes. However,n has
a direct effect on how well buddy candidates match the
monitored prefix. For a given prefixp and two buddiesb0
andb5 that are 0 and 5 AS hops away fromp respectively, the
path comparison betweenp and b0 is much more strict; the
paths top andb0 will need to share 5 more AS hops than the



paths top and b5. Furthermore, if an attacker is close top,
what is the chance that the path tob5 will even change ifp is
hijacked? Investigating the intricacies of searching for buddy
candidates adaptively is beyond the scope of this work and
is a topic for future study.

In addition, many of the other metrics that we use for
this work could also be further optimized. The thresholds
used for training are by no means absolute; we use them
to demonstrate Buddyguard’s effectiveness under constrained
conditions. Moreover, while the observed system-wide alert
thresholdX = 20% works to minimize false negatives and
false positives during monitoring, it is certainly not the only
or best threshold for this purpose. A better design might
involve using a “gradient” alert scale, where we determine
system-wide alert status using ranges for inert, suspicious,
and anomalous monitor warning levels. An entire study
could be dedicated to optimizing this threshold, making such
calibrations beyond the scope of this work.

Another important question rising out of this work is the
extent of coverage provided by RouteViews collectors. A pre-
vious work by Zhang et al. [34] examined this issue, though
not with respect to a buddy-based monitoring system. A follow
up study to our work would be to compare coverage of other
monitoring systems such as RIPE [25] and BGPMon [32], or
investigating other monitor placement options such as peering
with BGP speakers directly.

VII. C ONCLUSIONS

The current state of prefix-level monitoring leaves much
to be desired; today’s systems are limited in scope and
underestimate the capacity of intelligent attackers. Whilethe
eventual deployment of S-BGP could address many of these
problems, widespread adoption is years away and we will still
need tools for understanding and diagnosing prefix routing
behavior and routing anomalies.

In this work we introduce Buddyguard, a lightweight prefix
monitoring system that provides fast and accurate detec-
tion of various prefix anomalies and is resilient to targeted
countermeasures. Using our buddy-based monitoring scheme,
Buddyguard is able to detect all manner of prefix hijacks and
route leaks, and remains highly extensible to new anomalies
as they emerge. We rigorously evaluated Buddyguard against
known hijacking events and route leaks, and demonstrate the
accuracy and efficacy of our buddy system design. This work
represents a major step forward in the accurate and resilient
monitoring of IP prefixes and prefix-level anomalies.
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