NCShield:

Securing Decentralized, Matrix Factorization-Based Network Coordinate Systems

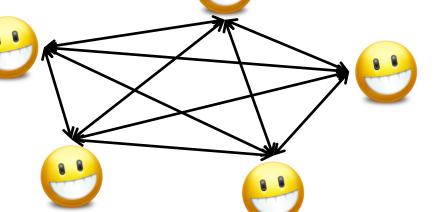
Shining Wu¹, Yang Chen², Xiaoming Fu¹, Jun Li³

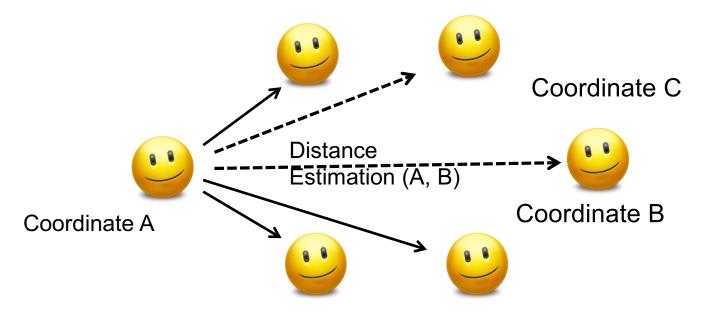
¹ University of Goettingen, Germany
² Duke University, USA
³ University of Oregon, USA

GEORG-AUGUST-UNIVERSITÄT Göttingen

- 1. Introduction (NC & MFNC)
- 2. Security Issues & Attack Modeling
- 3. NCShield & Evaluation
- 4. Summary & Future Work

1.1 Network Coordinate (NC) Systems


- Network distances (round-trip times) are important
 - p2p streaming
 - online/mobile gaming
 - p2p file sharing
 - cloud server selection
 - etc.
- HOW? Usually...



n-node network: O(n²) measurements ! 1.1 Network Coordinate (NC) Systems

 NC: scalable way of estimating Internet distances (RTTs) with O(n) measurements!

Each node has a **Fixed** number of reference nodes (neighbors)

Constant * n: Not O(n²) measurements any more!

Introduction — Security Issues — NCShield & Evaluation — Summary & Future Work

1.1 Network Coordinate (NC) Systems

- System Structure
 - Centralized (landmark based)
 - Decentralized (scalability)
- Based on different mathematical models
 - Euclidean-based NC systems (ENC systems)
 - GNP, Vivaldi, PIC
 - Low prediction accuracy
 - Matrix factorization-based NC systems (MFNC systems)
 - IDES, DMF, Phoenix

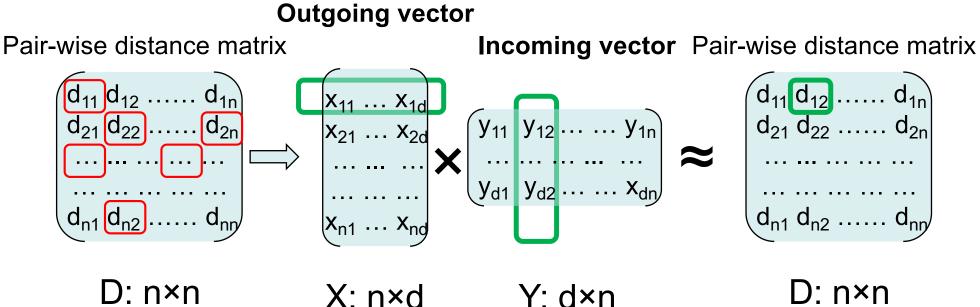
GNP: [T. S. E. Ng et al. INFOCOM'02]. PIC: [M. Costa et al. ICDCS'04]. Vivaldi: [F. Dabek et al. SIGCOMM'04]. IDES: [Y. Mao et al. JSAC'06]. DMF: Y. Liao et al. Networking'10]. Phoenix: [Y. Chen et al. TNSM'11].

Introduction — Security Issues — NCShield & Evaluation — Summary & Future Work

1.2 MFNC Systems

In a network of n nodes

•

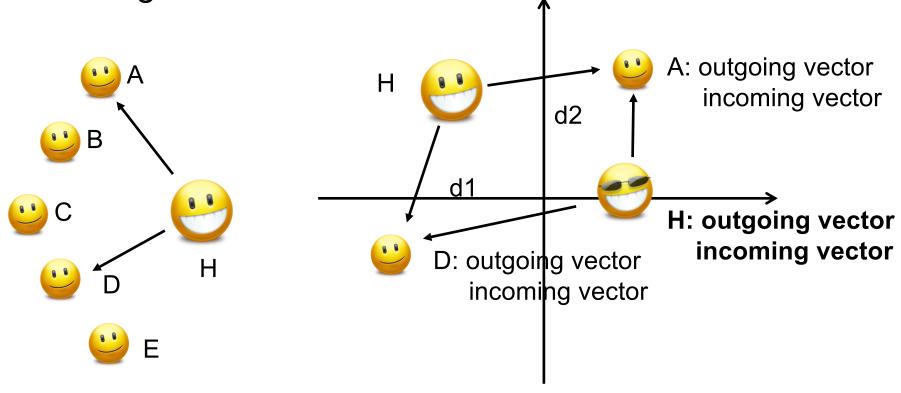

Goal: to obtain or approximate n-by-n distance matrix D, accurately

Matrix factorization-based NC systems

Pair-wise distance matrix Pair-wise distance matrix $d_{11} d_{12} \dots d_{1n}$ $d_{21} d_{22} \dots d_{2n}$ $\dots \dots \dots$ $d_{n1} d_{n2} \dots d_{nn}$ D: n×n

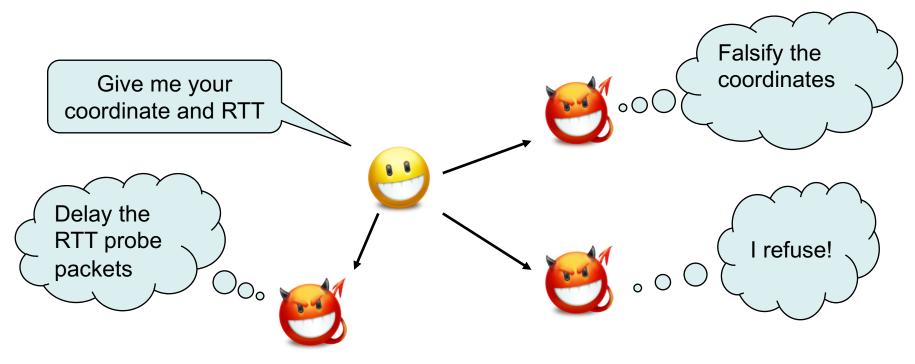
Introduction — Security Issues — NCShield & Evaluation — Summary & Future Work

- - Each node has an outgoing vector and an incoming vector, both d-dimensional, as the **coordinates**. (d<<n)
 - Estimated distance: **dot product** calculation.
- Based on matrix factorization model


1.2 MFNC Systems

1.2 MFNC Systems

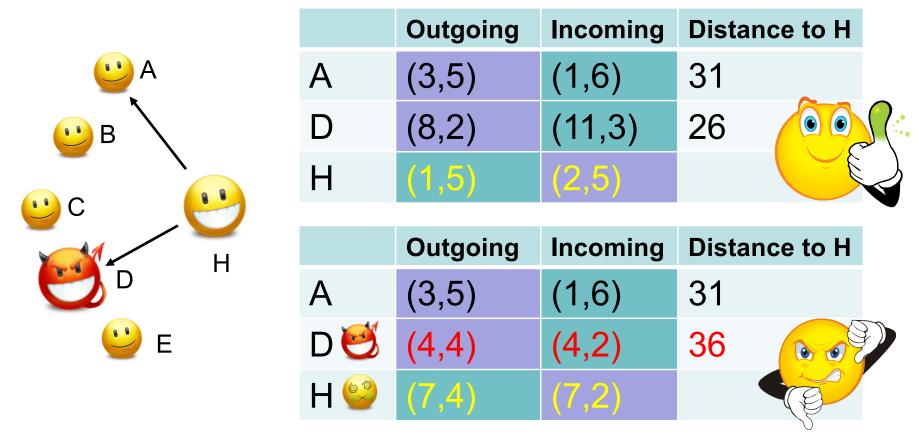
 How a newcomer node obtains its outgoing and incoming vectors?



Distance(A,B) ≈ A(outgoing vec) · B(incoming vec)

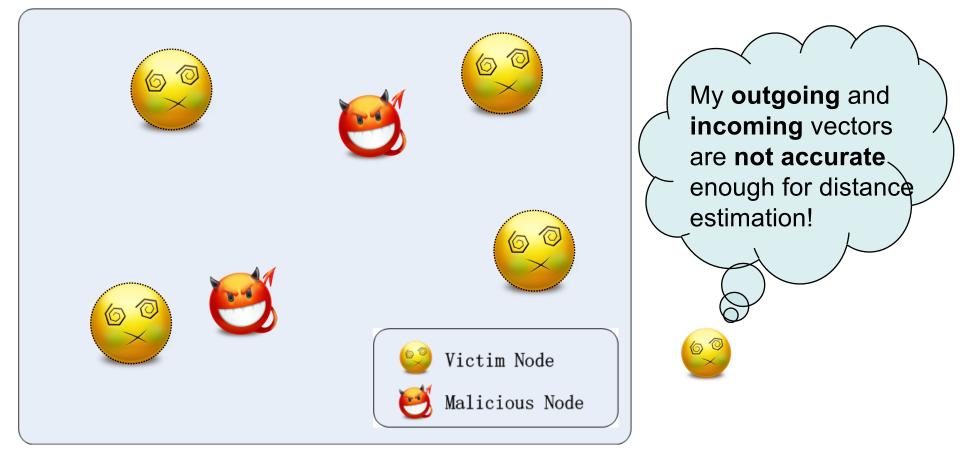
2.1 Security Issues

 Decentralized MFNC systems could suffer from insider attacks

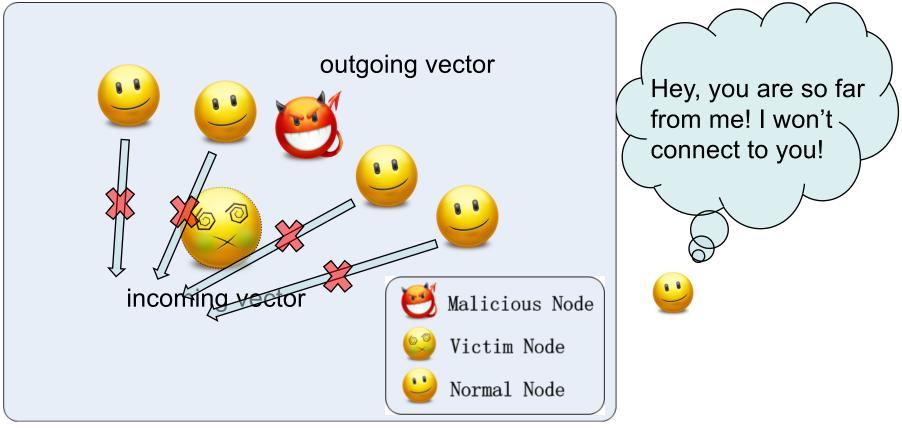

¹:[M. Kaafar et al. SIGCOMM Workshop on Large-Scale Attack Defense, 2006.].

Introduction — Security Issues — NCShield & Evaluation — Summary & Future Work

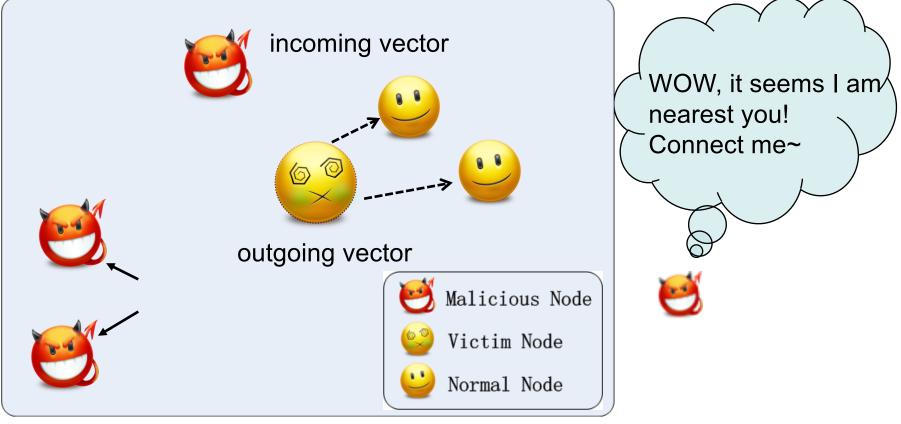
2.1 Security Issues


- E.g. Decentralized MFNC systems face insider attacks.
 - Newcomer H, neighbor A and D.

2.2 Attack Modeling


- Classifications of attacks (based on malicious purposes)
 - a. Disorder attack: To reduce the accuracy of entire system

2.2 Attack Modeling


- Classifications of attacks (based on malicious purposes)
 - b. Repulsion attack: To make victims look far away, thus reducing their attractiveness

2.2 Attack Modeling

- Classifications of attacks (based on malicious purposes)
 - c. Isolation attack: To make victims in a certain area, where many malicious nodes may be around

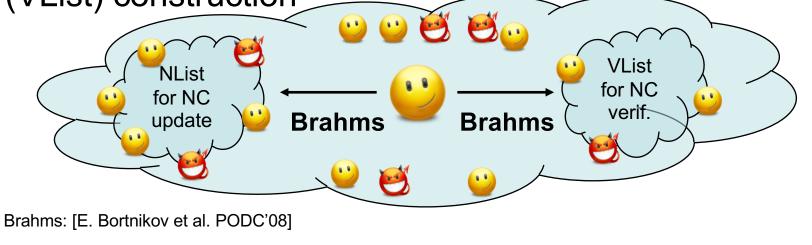
Considerations of such defense approach:	
Considerations of such defense approach:	

ltem	Choice 1	Choice 2	Reason
Structure	Centralized	Decentralized	Scalability
Mechanism	History info	Trust & reputation	Node churn
Infrastructure	DHT	Gossip algorithm	Overhead
TRS model	Agent-Survevor	Score and vote	Complexity

How can we deal with the attacks above? ullet

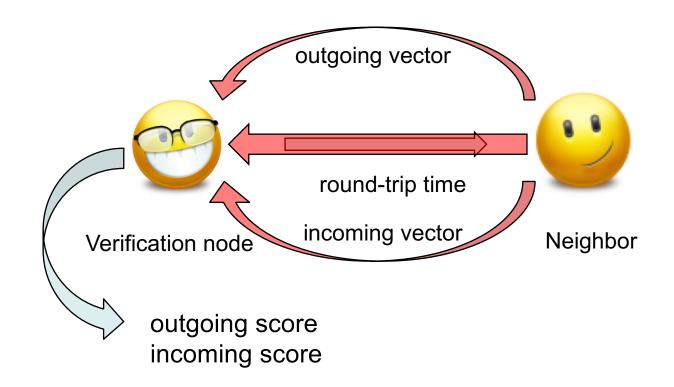
A Defense approach is desired! •

3.1 NCShield

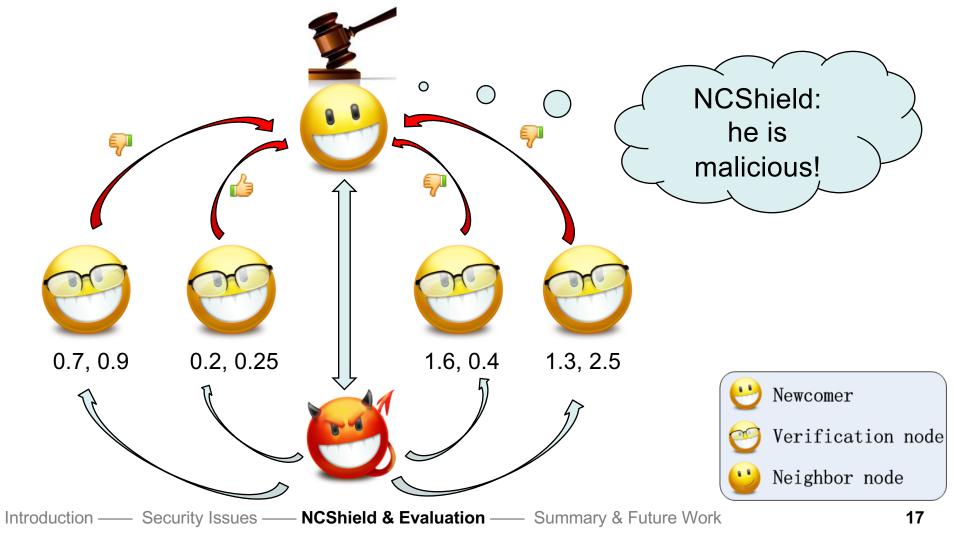

3.1 NCShield

• NCShield: A score and vote based approach

Work flow control					
a. node sampling algorithm	b. extra information model	c. coordinate verification model			


 Part a. Secure gossip algorithm (Brahms) for unbiased node sampling -- neighbor list (NList) and verification list (VList) construction

Introduction —— Security Issues —— NCShield & Evaluation —— Summary & Future Work


 Part b. extra information model: dual-RE (relative error) model for score calculation

3.1 NCShield

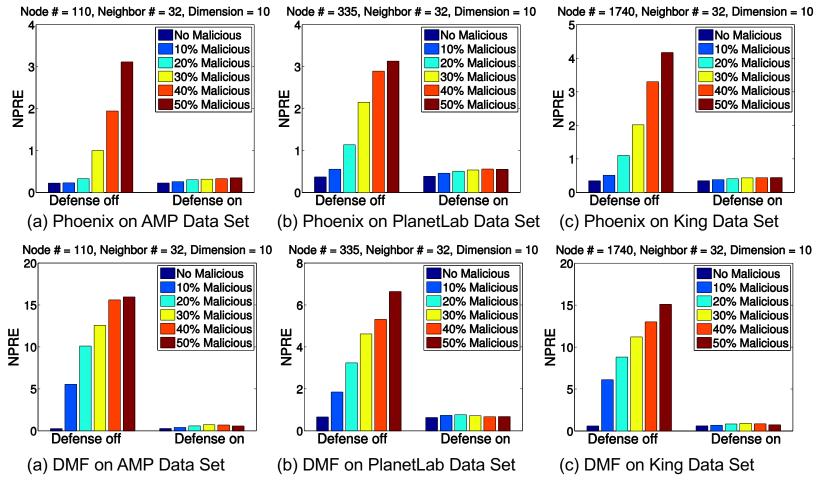
• Part c. coordinate verification process: score, vote, judge

3.2 Evaluation Set-up

- NC system simulators:
 - DMF simulation environment
 - Phoenix simulation environment
- Data sets: real Internet traces
 - Aggregate data sets:
 - AMP: 110 nodes
 - PlanetLab: 335 nodes
 - King: 1740 nodes
 - "k200-allpairs-1h" dynamic data set: 200 nodes, 99 snapshots
- Typical parameters as in Phoenix and DMF systems.

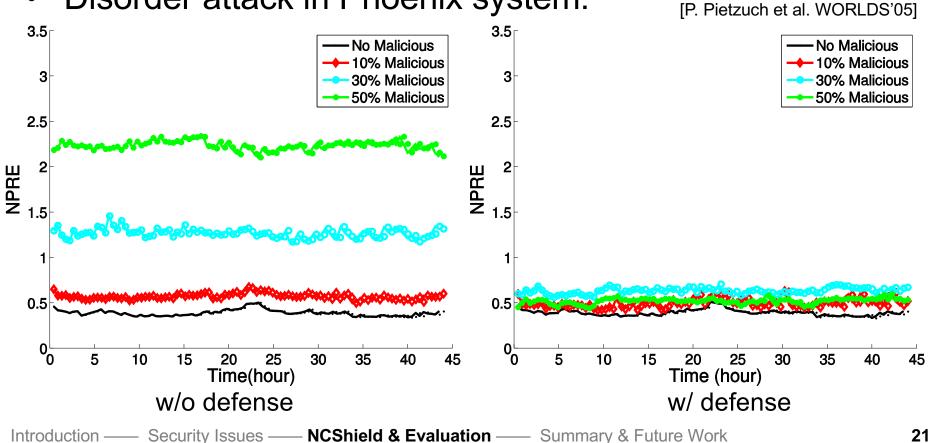
3.2 Evaluation Set-up

- Metrics:
 - Relative error (RE): for node i, j


$$RE = \frac{|D^E(i,j) - D(i,j)|}{\min(D^E(i,j), D(i,j))}$$

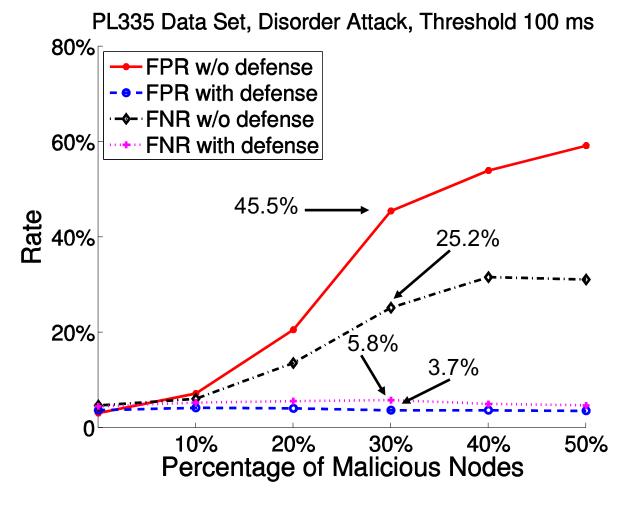
- Ninetieth percentage relative error (NPRE): guarantees 90% of the links have lower RE values than it
 - NPRE = 0.4 means the RE of 90% of all evaluated links are smaller than 0.4
 - A global metric for performance evaluation of whole system
- All **3** attacks are evaluated in Phoenix and DMF systems, with aggregate data sets and dynamic data set.

3.3 Evaluations on Aggregate Data Sets



3.4 Evaluations on Dynamic Data Set

- Internet distances are time varying
- NCShield is adaptive to such variation
- Disorder attack in Phoenix system:


- Identify links.RTT < predefined threshold (e.g. 100ms for first-person perspective games)
- NC estimation for such link selection
- "Good" ("bad") link: a link whose measured RTT is below (above) the predefined threshold
- Application-specified metrics: false positive (negative) rate -- FPR and FNR

	Actual	Predicted	
<u>T</u> rue <u>P</u> ositive	good	"good"	FPR = $FP/(FP+TN)$
<u>F</u> alse <u>P</u> ositive	bad	"good"	FNR = $FN/(TP+FN)$
<u>T</u> rue <u>N</u> egative	bad	"bad"	
<u>F</u> alse <u>N</u> egative	good	"bad"	The lower, the better!

3.5 Online Game Scenario Evaluation

Disorder attack in Phoenix system.

Introduction — Security Issues — NCShield & Evaluation — Summary & Future Work

- We modeled the attacks on decentralized MFNC systems, and showed the severity of such attacks.
- A score and vote based approach with an effective and scalable node sampling mechanism.
- NCShield is practical and effective according to evaluations on aggregate data sets, dynamic data set and online game scenario.
- Future work:
 - New emerging frog-boiling attacks¹
 - Evaluations with Phoenix and DMF on a real network

¹Frogboiling attack: [E. Chan-Tin et al. TISSEC 2011].

Introduction — Security Issues — NCShield & Evaluation — Summary & Future Work

Thank you very much! Q&A!

Gänseliesel (Goose girl)

The most kissed girl in the world.

GEORG-AUGUST-UNIVERSITÄT Göttingen

$$RE = \frac{|D^E(i,j) - D(i,j)|}{\min(D^E(i,j), D(i,j))}$$

Mostly used in NC research work!

$$RE = \frac{|D^{E}(i, j) - D(i, j)|}{D(i, j)}$$

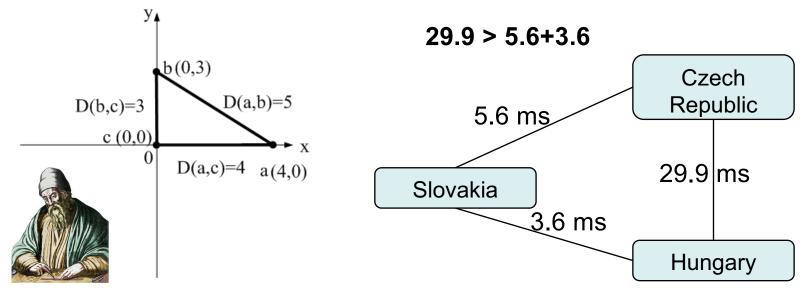
Smaller prediction will not generate high RE!

NPRE OF REPULSION ATTACK AND DEFENSE

NC	Data	Defense	Percentage of Malicious Nodes			
INC		Defense	0%	10%	30%	50%
	AMP	OFF	0.144	0.161	0.628	2.628
		ON	0.181	0.182	0.219	0.244
Phoenix	PL	OFF	0.346	0.391	0.636	2.861
Пюстих	I L	ON	0.343	0.402	0.491	0.538
	King	OFF	0.394	0.512	1.418	4.750
		ON	0.341	0.355	0.380	0.401
	AMP	OFF	0.234	3.644	6.331	8.482
		ON	0.220	0.212	0.224	0.237
DMF	PL	OFF	0.668	4.603	14.354	22.191
	IL	ON	0.657	0.780	0.644	0.641
	King	OFF	0.611	13.585	35.903	50.113
		ON	0.614	0.613	0.614	0.610

NPRE OF ISOLATION ATTACK AND DEFENSE

NC Data		Defense	Percentage of Malicious Nodes			
INC	Data	Detense	0%	10%	30%	50%
	AMP	OFF	0.167	0.225	0.923	2.249
		ON	0.159	0.214	0.197	0.200
Phoenix	PL	OFF	0.315	0.475	0.715	4.679
Пюстих	ΓL	ON	0.320	0.382	0.499	0.447
	King	OFF	0.386	0.587	1.326	4.124
		ON	0.394	0.412	0.418	0.413
	AMP	OFF	0.284	2.097	5.461	7.890
		ON	0.269	0.278	0.262	0.261
DMF	PL	OFF	0.676	1.371	2.716	3.296
	I L	ON	0.656	0.781	0.664	0.654
	King -	OFF	0.657	3.970	8.430	15.431
		ON	0.513	0.516	0.523	0.524

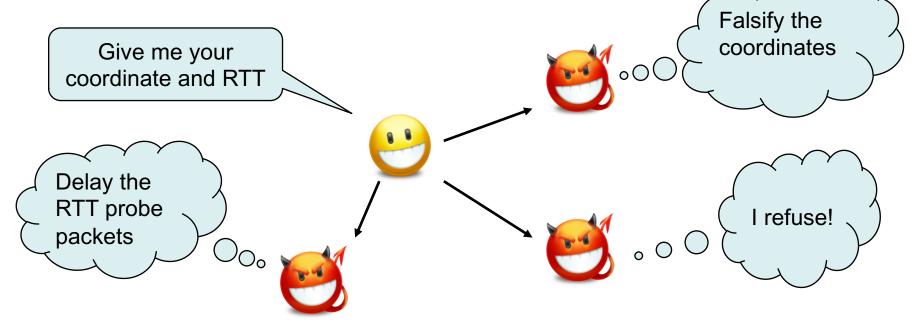


AVERAGE NPRE OF SIMULATION ON "K200-ALLPAIRS-1H" DATA SET

NC	NC Type Defense		Percentage of Malicious Nodes			
INC.	Type	Detense	0%	10%	30%	50%
	Dis.	OFF	0.389	0.574	1.270	2.237
	D15.	ON	0.393	0.499	0.636	0.523
Phoenix	Ren	OFF	0.389	0.526	1.691	2.450
ГПОСША	Rep.	ON	0.393	0.424	0.540	0.454
	Iso.	OFF	0.389	0.505	1.509	3.553
		ON	0.393	0.417	0.511	0.442
	Dis.	OFF	0.924	1.684	3.218	4.012
		ON	0.858	0.938	1.344	1.613
DMF	Ren	OFF	0.924	11.031	18.116	22.660
	Rep.	ON	0.858	1.990	0.798	0.899
	ISO	OFF	0.924	11.471	20.191	25.920
		ON	0.858	1.643	0.855	0.984

- Euclidean-based NC systems (ENC systems)
 - Each node has a d-dimensional coordinate
 - Estimated distance: Euclidean distance calculation
 - Triangle inequality violations (TIVs) widely exist in Internet!

Triangle Inequality should hold!


A TIV example in GEANT network¹

¹:[H Zheng et al. PAM'05]

BAK: Attacks on Decentralized ENC systems

 Early research¹ showed that decentralized ENC systems are vulnerable to insider attacks

¹:[M. Kaafar et al. SIGCOMM Workshop on Large-Scale Attack Defense, 2006.].

BAK: Defense Approaches for ENC Systems

- Common idea: using extra information to determine whether a neighbor is trustworthy or not.
- Existing approaches for securing decentralized ENC systems:

Approach	Extra Info	Infrastructure	Drawback
Kalman Filter	Surveyors observation	Centralized	Scalability
Outlier Detection	History analysis	Decentralized	Node churns
RVivaldi	Trust and reputation sys.	Centralized	Scalability
Veracity	Information for vote	Decentralized	Overhead

Karman Filter: [M. A. Kaafar et al. SIGCOMM'07]. Outlier Detection: [D. Zage et al. CCS'07]. RVivaldi: [D. Saucez et al. DANS'07]. Veracity: [M. Sherr et al. ATC'09].

- Overhead analysis
 - Typical DHT in an overlay network has O(log₂N) route length.
 - N: # of total participants.
 - Veracity using DHT and NCShield using gossip-based algorithm
 - 1024 nodes, 32 neighbors and 7 VList members, a update round of all nodes, for verification.
 - For detail analysis, please refer to the paper.

Mechanism	Veracity using DHT	NCShield using Gossip
# of messages needed	2674688	997376

62.7% overhead saved!