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ABSTRACT

For an integer constant d > 0, let 'y denote the class of finite
groups all of whose nonabelian composition factors lie in Sg;
in particular, I'g includes all solvable groups. Motivated by
applications to graph-isomorphism testing, there has been
extensive study of the complexity of computation for per-
mutation groups in this class. In particular, set-stabilizers,
group intersections, and centralizers have all been shown
to be in polynomial-time computable. The most notable
gap in the theory has been the question of whether normal-
izers of subgroups can be found in polynomial time. We
resolve this question in the affirmative. Among other new
procedures, the algorithm requires instances of subspace-
stabilizers for certain linear representations and therefore
some polynomial-time computation in matrix groups.

1. INTRODUCTION

While algebraic methods are surely of core interest in com-
putational complexity, a particular attraction of group-theo-
retic computation is its central role in the graph-isomor-
phism problem. Though rarely difficult in practice, the
problem, ISO, of testing isomorphism of graphs is not known
to be in polynomial time. Arguably, the most productive
approaches to ISO have exploited its relation to a class of
permutation-group problems usually represented by the fol-
lowing.

A. Finding subset-stabilizers.
B. Finding group intersections.
C

. Finding centralizers of subgroups.

D. Finding normalizers of subgroups.
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Up to polynomial time, A, B, C are equivalent problems,
and each is reducible to D; ISO is reducible to any of them.
So it is not surprising that, despite continued improvements
in practical implementations, none of these problems is known
to be solvable in polynomial time. Nevertheless, as with ISO
[25], there is compelling evidence that the “decision” ver-
sions' of these problems are not NP-complete [4]. This has
motivated extensive investigation into polynomial-time com-
putability for permutation-group problems in general (see
[12] and [17] for surveys) but especially for problems A-D.

Now, aside from the overall reducibility between the above
problems, solutions geared to special group classes have fa-
cilitated polynomial-time algorithms for significant instances
of ISO. For example, the solution to A just for 2-groups
yielded the first (and still the only known) polynomial-time
approach to testing isomorphism of trivalent graphs [14],
and subsequently, a polynomial-time set-stabilizer algorithm
for groups with bounded nonabelian composition factors (I'y
groups, see below) yielded ISO in polynomial time for graphs
of bounded valence or bounded genus [14], [21].

The polynomial time solution of A in I'y groups led imme-
diately to similar success with B and C. However, the nor-
malizer question for I'g has remained open (see [17, Question
16]). The main result of this paper is its resolution.

Specifically, problem D may be stated

Normalizer (NORM).
Given: Permutation groups H < G < Sym(Q).
Find: The normalizer Normg(H) = {g € G | H? = H}.

As usual, we assume that permutation groups are input or
output via a generating set S of permutations (so that the
input length is considered to be |S||€]).

Of course, NORM is of both practical and theoretical in-
terest. In practice, most implementations include backtrack
search at some level and thereby have exponential worst
case running time (cf. [5], [7], and [13]). Although, “worst
case” is not necessarily observed in groups of interest to the

'For each, there is a polynomial-time equivalent “Yes/No”
version (see, e.g., [17]); for D, this could be the issue of
conjugacy of two given subgroups.



users, it can be brought out even on input for which there
are polynomial-time solutions to NORM, including nilpotent
groups (see [19] and [20]).

It was pointed out first in [12] that normalizers of nilpo-
tent groups could be computed in polynomial time. Subse-
quently, a redesigned method for nilpotent groups not only
retained and improved (to O(n*)) the polynomial timing
but was implemented [20] and shown, in many cases, to im-
prove substantially over the built-in library functions (at
that time) of software systems GAP [7] and MAGMA [5]. For
the solvable case, the first author described a critical step,
namely, finding stabilizers of subspaces in linear represen-
tations [16] (but details for the application to normalizers
were not included).

We consider the following class.

Definition. For an integer constant d > 0, let I'; denote
the class of finite groups all of whose nonabelian composition
factors lie in Sy.

Manifestly, I'y includes all solvable groups. As indicated,
the class arises naturally in significant instances of ISO. It
has also become a subject of investigation in its own right
asymptotic group theory (cf. [2] and [23]).

The principle result of this paper is

Theorem 1.1. Given permutation groups H < G < Sym(Q)
such that G € Tq, one can find the normalizer Normg (H)
in polynomsial time.

By standard reductions, or by a careful review of the normal-
izer algorithm itself, one also derives a polynomial solution
to the decision problem.

Theorem 1.2. Given G < Sym(Q2) such that G € T'q and
subgroups Hi,H, of G, one can test in polynomial time
whether Hy and Hs are conjugate in G.

The overall algorithm for Theorem 1.1 utilizes the chief se-
ries of G and, though reorganized here for clarity of our
concerns, is thereby in the spirit of methods in [20] and [§]
for example. Thus, we reduce to the case that H covers
(HL = HK) or avoids (HN L = HN K) each chief factor
L/K. We focus then on instances M > L > K in the chief
series where H covers M /L but avoids L/K and seek the
normalizer of (H N M)K/K in the action of G on M/K.
For the both these phases, we appeal, for polynomial time,
to special properties of I'y groups. We utilize algorithms for
each of the problems A, B, C, but extensions of these are
required as well.

We recall that the key property that resolved problems A, B,
C was the fact that if G < S, is primitive with G € 'y then
|G| = O(nf@). This enabled a divide-and-conquer method
that easily exploited orbits and, in the transitive case, used

the primitive action on a block system to break the group
into a ‘small’ number of cosets of the intransitive stabi-
lizer of the blocks. (With care, and some additional tricks,
the method can be shown to run in time O(n°%/ 1°84) [3]).
This method is routinely used in our normalizer algorithm
as well. But we further develop an analog of this divide-and-
conquer paradigm for matrix-group computation, since the
normalizer problem even for permutation groups naturally
leads to instances of finding subspace-stabilizers in certain
matrix groups. Whereas the permutation-group divide-and-
conquer utilized orbits and imprimitivity blocks, the matrix-
group analog, introduced in [16], makes use of invariant sub-
spaces and imprimitivity systems.

Finally, we emphasize that our goal is a clear resolution of
the polynomial-time issue. With this in mind, in several
places we have strived to simplify the exposition at the ex-
pense of both low-level complexity and practical efficiency.
We specifically reserve the latter concern for future inves-
tigation wherein it will be coupled with more general tech-
niques for implementing polynomial-time centralizers and
normalizers in classes of matrix groups [18], [22].

This paper is organized as follows. In section 2, we summa-
rize basic polynomial-time tools. The overall architecture of
the main algorithm for computing normalizers in the class
Ty is described in section 3. We leave for section 4, two
lemmas that deal with critical base cases; these describe ex-
tensions of the techniques for problems A and B. A key sub-
routine of our normalizer algorithm involves a polynomial-
time method for finding stabilizers of vectors and subspaces
in linear representations of permutation groups in the class
T'4; this method is described in Section 5.

2. PRELIMINARIES

We recall portions of the polynomial-time library for per-
mutation groups. For more details, we refer to the survey
article [17].

We begin with the following results (cf. [6], [10], [11], [15],
and [27]).

Theorem 2.1. Given G < Sym(Q), in polynomial time one
can solve the following problems.

(i) Given a € Q, find the orbit of a under G and test
transitivity of G.

(i) Test the primitivity of G and, if not, find a non-trivial
block system.

(i4i) Given x € Sym(Q), test whether or not x € G.
(iv) Find |G|.

(v) Find a Sylow p-subgroup of G and the normalizer in G
of any such subgroup as well as the normalizer of any
such subgroup.

(vi) Find the derived series of G and test the solvability of
G.

(vii) Find a composition series of G.



(viii) Find a chief series of G. O

As indicated in the introduction, for groups in I'y, there are
polynomial-time solutions for problems that resemble ISO
in permutation groups. We use the following forms of these
results.

Theorem 2.2 (Luks). Given G < Sym(Q) such that G €
T'q, in polynomial time one can solve the following.

(i) For given A C Q, find Stabg(A) = {g € G| AY = A}.

(i3) For given H < Sym(Q), find HNG. (Note that the I'y
hypothesis is only needed on G.)

(iii) For given x € Sym(2), find Centg(z) = {g € G | gz =
xg}. (By repeated application one finds centralizers of
groups.) O

In [12], Kantor and Luks suggested, in a quotient-group the-
sis, that problems that are in polynomial time for permu-
tation group remain in polynomial time when applied to
quotients of permutation groups.”> The “proof” of this the-
sis was its demonstration for the known polynomial-time
library. We will freely make use of that thesis. In particu-
lar,

Theorem 2.3 (Kantor—Luks). Problems (i), (v), (vi),
(vii), and (viii) of Theorem 2.1 and problems (ii) and (iii)
of Theorem 2.2 remain in polynomial time if G = L/K for
K < L <Sym(Q). O

In the spirit of the quotient-group thesis, we observe that
our Theorems 1.1 and 1.2 hold for quotient groups with no
essential modification of the proofs.

Motivated by Theorem 2.2, Babai, Cameron, and Palfy sub-
sequently derived the following important related theorem

[2].

Theorem 2.4 (Babai—Cameron—Palfy). For an integer
d > 0, there is a function f(d) satisfying the following: if
G is a primitive permutation group of degree m such that
G €Ty, then |G| < nf@. O

In turn, Theorem 2.4 simplifies the divide-and-conquer tech-
niques originally used for Theorem 2.2 and we employ that
same simplication herein.

3. MAINALGORITHM

We outline the main steps of the normalizer algorithm for
groups in I'y.

For simplicity, it is convenient to focus on a procedure that
is aimed only at getting a step closer to the normalizer.

2 Assuming, of course, the problem makes sense when stated
for quotients, e.g. “subset-stabilizer” would have no such
extension.

Proposition 3.1. Given H < G < Sym(Q), where G € Ty,
such that G does not normalize H, in polynomial time one
can find a subgroup J such that Normg(H) < J < G.

Proof. Our algorithm consists of four steps.

1. Construct a chief series for G:
G=Gi1>G2>--->Gg=1
2. If there is a chief factor L/K not covered by H, then

a. If L/K is abelian, then use Theorem 5.1 (subspace-
stablizer) to find J := Normg((HNL)K/K). Re-
turn J and exit.

b. If L/K is nonabelian, then use Lemma 4.1 to find
suitable J. Return J and exit.

3. While there is a 3-term segment M > L > K of the chief
series, where H covers M/L but avoids L/K, and G
normalizes (HN M)K, replace L by (HNM)K. (This
moves covered factors toward the tail of the series when
possible.)

4. Let now M > L > K be a segment such that H cov-
ers M/L and avoids L/K. (By Step 3, G does not
normalize (H N M)K.)

a. If M/L is an abelian p-group, there are two cases
to comnsider.

i. p does not divide |[L/K|. Then (HNM)K/K is
a Sylow p-subgroup of M/K. Use the Sylow-
normalizer result of [12, P13] to find J :=
Normg((H N M)K) in polynomial time. Re-
turn J and exit.

ii. p divides |[L/K|. As L/K € Ty, use the cen-
tralizer result of [12, P7] to construct X =
Centr,x ((HN M)K/K) in polynomial time.
Then X # 1 since it intersects the center
of a Sylow p-subgroup of M/K containing
(HN M)K.

If L/ K is nonabelian, then we have X < L/K
(otherwise, (HN M)K/K = Centy x(L/K)
and would be normalized by G). Thus, use
Lemma 4.1 to find J := Normg(X). Return
J and exit.

If L/K is abelian, then X = Z(M/K)NL/K
and is normalized by G. Hence, we have X =
L/K, and M/K is an elementary abelian p-
group. Now use Theorem 5.1 (subspace sta-
bilizer) to find J := Normg((H N M)K/K).
Return J and exit.

b. Otherwise, M/L ~ (HN M)K/K = T; x --- X
Ty, where the T; are isomorphic nonabelian sim-
ple groups. Set A = |J, T;. Then Normg((H N
M)K/K) = Stabg(A). Now, consider a natural
isomorphism of M/L ~ (HN M)K/K and the
action of G on M/L, inducing a group R act-
ing on A. Namely, g € G induces ry € R if
(tL)? = t"9L for t € A. Furthermore, g stabi-
lizes A if and only if t"9 =t7 for all t € A. Thus,
use Lemma 4.2 to find J := Stabg(A)|A NR =
Normg((HNM)K/K). Return J and exit. O



Using Proposition 3.1, we now present the algorithm to es-
tablish Theorem 1.1:

M =G

While M does not normalize H,
find J with Ny (H) < J < M and reset M :=J. O

Remark. This is a typical instance of our sacrifice of practi-
cal efficiency for succinct demonstration of polynomial time.
We would certainly not advocate starting from scratch with
each new M, e.g., in the construction of a chief series, etc.

4. TWO STABILIZER LEMMAS

Given an action of a I'y group on a nonabelian semisimple
group with small factors, the next lemma guarantees that
we can find the normalizer of a subgroup. This was required
in steps 1 and 4 of our main procedure.

Lemma 4.1. Given G < Sym(Q) such that G € I'q, a min-
tmal G-group L = Ty X - - - X Ty, where the T; are isomorphic
nonabelian simple groups of polynomially bounded size, and
H < L, in polynomial time one can find a subgroup J such
that Normg(H) < J < G.

Proof. Since the action of G on L permutes these factors, G
acts naturally on the set A = J;,,Ti. For i =1,... ¢,
let H; denote the projection of H on 7;. We consider the
following three cases.

Case 1. For some i, we have H; = 1. Considering the
permutation action of G on the ¢ simple factors of L, set
J = Stabe({¢ | H; = 1}). Since G acts transitively on the
factors, we have J < G.

Case 2. For some i, we have 1 < H; < T;. Considering the
induced action of G on A, set J = Stabg(U;«;<, H:). Since
J stabilizes H1 X --- x Hy < L, we have J < G.

Case 3. We may assume H; = T; for all . Then there is a
partition of {Ti,...,T;} into s blocks of isomorphic factors
so that, after a suitable renumbering of the factors,

H = Diag(Ty x - -- x Tp;) X - - - x Diag(Tr, ;41 X --- x Ty,),

where the diagonals are formed with respect to suitable iso-
morphisms m;;: T; — T for T;,T; in the same block (see,
e.g., [26]). Form a graph X with vertex set A and edge set
E comprised of all (¢;,t; ) for t; € T; and T}, T} in the same
block. Since G € T'y4, one can compute the subgroup J induc-
ing automorphisms of X (i.e., J := Stabg(E)) in polynomial
time by Theorem 2.2 (i). Note that J = Stabg(H) < G. O

In step 4b of our main algorithm, it was necessary to find
the stabilizer in G of a subset A of G-group, which we will
call M. The algorithm for Theorem 2.2(i) does not apply
because the overall domain M (given only by group gener-
ators) is not of polynomial size. However, we also have a
little more information about the way elements that do sta-
bilize A have to act on A (in step 4b this followed from the

faithful representation of A in a G-homomorphic image of
M where the image of A is G-stable). So, in effect, we are
not looking merely for Stabg(A) but for StabG(A)|A N R,
where R < Sym(A) is a known I'g group. Thus, it is no
surprise that the algorithm for this problem resembles the
method for intersection with a I'q-group (see [14, §4]).

In the following lemma, we emphasize that A is just a set of
cosets, and so we assume that it is enumerated in the input.
Hence, by definition, it is of polynomial-size.

Lemma 4.2. Given K,G < Sym(Q) such that G normal-
izes K, a set A C Normgy,(0)(K)/K, and R < Sym(A),
where both G and R are in Ty, in polynomial time one can
compute StabG(A)|A NR.

Proof. To accommodate a recursion, we consider the follow-
ing more general problem.

Given: t€ Rx G, X < Rx G, B C A, where X stabilizes
B (here, R x G acts on B wvia its first coordinate).

Find: Sxo(B) = {(r,g) € Xz | Vb€ B,b" = b9}

Observe that Sx,(B) is either empty or a subcoset of z.X.
Also, note that Srxa(A) = {(r,r) | r € Staba(A)|, N R}.

We perform a divide-and-conquer procedure according to
the following three cases.

Case 1. We divide the problem according to the orbits of X
in B. Without loss of generality, suppose that B = B1UBs»,
where X stabilizes both B; and By. Then

Sxa(B) = Ssy,(B1)(B2)-

Case 2. Suppose now that X acts transitively but not prim-
itively on B, where |B| > 1. First, find a primitive action on
a block system B = B1U---UB,,. Then find the kernel H
of the action of this system and decompose X = UL(:;IH 'y 2.
Here, Sx,(B) = LilHl Syz;2(B). Since G € Ty, it follows
from Theorem 2.4 that |G : H| = O(m®) for some constant
c>0.

Case 3. Suppose finally that B = {b}. Suppose that x =
(r0, 90), and X projects onto H < G. Then Sx(B) = {h €
H | (9°)" = b0}, which, since H € Ty, is computable in
polynomial time (see [12]). O

5. SUBSPACE STABILIZERS

Throughout this section, we assume that V' is an n-dimen-
sional vector space over a finite field k. We will outline the
proof of the following fundamental result. We rely for some
details on related results for the solvable case in [16, §10].

The main result of this section is

Theorem 5.1. Given G < Sym(2) such that G € T4, a
linear representation ~ : G — GL(V), where chark is poly-
nomially bounded in the input length, and a subspace W C



V, in polynomial time one can find the subspace stabilizer
Stabg(W) ={g € G| W7 =W}.

The method for Theorem 5.1 uses a divide-and-conquer par-
adigm resulting from the following.

Theorem 5.2. Given G < Sym(Q) such that G € Ty and a
linear representation : G — GL(V)), where chark s poly-
nomially bounded in the input length, in polynomial time one
can perform one of the following.

(i) Prove that G is nonabelian simple.

(i) Find a subgroup A of G, where A is abelian, such that
|G : Al < 24n.

(i3i) Find a proper subspace W C V.

(iv) Find a subgroup H of G and a set of H-subspaces
{Vi,...,Vin}, m > 2, such that

(a) V=V1® - D Vp,
(b) dimy V; =n/m fori=1,... ,m, and
(c) |G: H| = O(m) for a constant c1 > 0.

Remark. Note that Theorems 5.1 and 5.2 include an as-
sumption on chark. The polynomial bound on chark en-
ables a call to Rényai’s algorithm [24] for finding invariant
subspaces in deterministic polynomial time.

As indicated, Theorem 5.2 facilitates the extension to rep-
resentations of I'y groups of a divide-and-conquer paradigm
given in [16] for solvable matrix groups. The paradigm ap-
plies to problems that ask for construction of a recognizable®
subcoset (the input is a coset of G) for which

e Given a G-invariant subpace W C V, the problem can
be solved in polynomial time together with recursive
calls to induced problems on W and V/W.

e The problem is in polynomial time for abelian G.

We refer to [16] for the proof that the paradigm is applica-
ble to finding subspace-stabilizers. We note in particular,
that this is done in two stages. First the paradigm is ap-
plied to the problem of finding stabilizers of vectors. Then
the paradigm is applied to subspace stabilizers assuming the
polynomial-time solvability of finding vector stabilizers.

We proceed then to an outline the proof of Theorem 5.2.
First, we begin with four fundamental lemmas essential to
our algorithms.

By [12, P9], we can find kernels of linear representations of
permutation groups in polynomial time.

Lemma 5.3 (Kantor-Luks). Given G < Sym(Q) and a
linear representation ¢ : G — GL(V), one can find the ker-
nel of ¢ in polynomial time. |

30ne can easily test membership.

We say that an abelian subgroup of GL(V) is uniform if, for
every integer m > 1, the subgroup A™ of A has no nonzero
fixed vectors in V (i.e., Centy(A™) = 0) unless A™ =1
(cf. [16, §2]).

The following result is given in [16, Lemma 4.6].

Lemma 5.4. Let A be a uniform abelian subgroup of GL(V).
If Vi,...,Vin are the distinct mazimal A-subspaces of V
such that the restrictions A|V; are cyclic, then V' decomposes
as a direct sumV =V1 @ --- @ Vn. g

The following result is implicit in [1, 27.14].

Lemma 5.5. Let G = NM be an irreducible subgroup of
GL(V), where N and M are normal subgroups of G central-
izing each other. Let W1 be a minimal N-subspace of V and
U = Homgn (W1,V). Then there is a finite extension K of
k, where K = Endyn (W1), such that the following hold.

(i) V is a KG-module, W1 is a KN-module, and U is a
K M -module.

(ii) V=W1 ®k U as K-spaces. O

The next result is closely related to [2, Theorem 3.2] and [14,
Proposition 3.9].

Lemma 5.6. Let G be an irreducible subgroup of GL(V)
such that G € T'q. Suppose G has a cyclic normal subgroup
A > 1, and G/A has a nonabelian minimal normal subgroup
N/A. Then Centg(N') is reducible, and there are positive
constants c1 and cy such that at least one of the following
holds.

(i) V=Vi&- -8 Vy such that V = {V1,...,Vn} forms
a system of imprimitivity for G, where the transitive
permutation representation of G on 'V is primitive and
has the kernel L such that N' < L and |G : L| < m*!.

(i1) |G : Cente(N')| = O(t°?), where t is the dimension of
a minimal N’ -subspace W1 of V' over the finite exten-
sion K1 = Endgn: (W1) of k such that t > 2 and t|n.
O

The algorithm for Theorem 5.2 involves a recursion that
steps up a series of normal subgroups of G. The follow-
ing proposition, adapted from [16, Theorem 6.1], provides a
subroutine to handle certain abelian chief factors of G dur-
ing this recursion. Note that the algorithm establishing this
proposition does not require any assumption on char k since
it does not rely on Rényai’s result [24].

Proposition 5.7. Given G < Sym(Q) such that G €'y, a
linear representation  : G — GL(V), and normal subgroups
N and A of G such that A is cyclic and uniform, N central-
izes A, and N/A is elementary abelian, in polynomial time
one can perform one of the following.



(i) Prove that |G : A| < 24n.

(ii) Find a normal subgroup B of A, where B is abelian,
such that A < B.

(iii) Find a normal subgroup M of G, where A < M, such
tﬁat_M/A 18 a nonabelian minimal normal subgroup of
G/A.

(iv) Find a normal subgroup H of G and a decomposi-
tion V = V1 & -+ @ Vp, forming a minimal system
of imprimitivity V = {Vi,...,Vm} for H such that
|G : H| < m°* for a constant c1 > 0, and find the
kernel L of the permutation representation of H on V
such that |H : L| < m® for a constant cx > 0.

Outline of proof. We describe a polynomial-time algorithm
in three steps. Throughout, we write Z = Z(N). First, use
Lemma 5.3 to find Z.

Step 1. Suppose that N/A is an elementary abelian p-group.
If N is abelian, return N as B for Case (ii). Suppose other-
wise; that is, NV is class-2 nilpotent. If A < Z, then return Z
as B for Case (ii). Otherw1se A =Z. Then, by [16, Lemma
4.7], we have |N : Z| < n® Here the conjugation action
of G on N/Z induces a llnear representatlon ¢ over a finite
field of order p. In fact, since |N : Z| < n?, we may assume
that ¢ is irreducible. Suppose that the rank of N /Z is 2
for £ > 1. Find H = Ker ¢. By [2, Corollary 3.3], there is a
constant ¢z > 0 such that |G : H| < p°3(*Y). Then we obtain
one of the following.

(1) A decomposition V = V1 @ --- @ V,, such that V =
{V1,...,Vin} forms a minimal system of imprimitivity
for H, Wherem plifp#2 m=2%2if p=2and
£>2, orm=2ifp=2and {=1.

(2) A subgroup @ of N, where Q is a quaternion group of
order 8, such that N’ <Q<N.

Step 2. Suppose that we obtain (1) in Step 1. Then there is
a constant ¢1 > 0 such that |G : H| < m®!; furthermore, the
permutation representation of H on V is primitive. Find its
kernel L. Then, by Theorem 2.4, there is a constant ¢z > 0
such that |H : L| < m°2. Therefore, we establish Case (iv).

Step 3. Suppose that we obtain (2) in Step 1. Let Q1 = Q.
Then @ < G and |G : Centg(N)| < 24n. Use Lemma 5.3
to find Centg (V). If A = Cents(N), then we have Case
(i). Suppose that A < Cents(N). Find a normal subgroup
M of G, where A < M < Centg(N), such that M/A is an
elementary abelian group or a nonabelian minimal normal
subgroup of G/A. If M /A is nonabelian, then return M for
Case (iii). Suppose that M /A is elementary abelian. Here,
M centralizes A. Regarding M as N, recursively perform
Step 1. If we obtain (1), then we have Case (iv).

Suppose now that we obtain (2), say, Q2 such that M <

Q2 < M. Since Q1 and Q- centralize each other, Q1 # Q2.
Then we can find di € @1\ Q2 and d» € Q2 \ Q1. Let
e = dids. Now, N' = (%), where % is the unique element
of order 2 in Z and centralized by G. Let E = (e, Z).

Then E is an elementary abelian 2-group of rank 2 such
that E < NM and E < H. The maximal subspaces Vi and
Vs such that the restrictions E|V; are cyclic form a minimal
system of imprimitivity V = {V1,V2} for H. If L is the
kernel of the H-action on V, then |H : L| = 2. Thus, we
have Case (iv). O

The next proposition provides a subroutine to handle certain
nonabelian chief factors of G during the recursion.

Proposition 5.8. Given G < Sym(Q) such that G € T'q, a
linear representation ~ : G — GL(V), where chark is poly-
nomially bounded in the input length, and normal subgroups
N and A of G such that A is cyclic, 1< A< N, and N/A
s a nonabelian minimal normal subgroup of G/A in poly-
nomial time one can perform one of the following.

(i) Find a proper G-subspace W C V.

(i) Find a decomposition V. = V1 @ --- @ Vpn, forming a
minimal system of imprimitivity V = {V1,...,Vn} for
G, and the kernel L of the permutation representation
of G on V such that |G : L| < m° for a constant
c1 > 0.

(ii3) Find Centg(N') such that |G : Centg(N')| = O(t°2),
where t > 2 and t|n, and ¢z is a constant > 0, and
minimal Centg (N')-subspaces My, ... , M, of V' of the
same dimension such thatV = M1 @ --- @ M., where
e>t.

Outline of proof. By the result of Rényai [24], we may as-
sume that G is irreducible (otherwise, we find a proper G-
subspace for Case (i) using Rényai’s method).

Step 1. First, we find N’ and a minimal N’-subspace W1 of
V. Using Clifford’s theorem (see, e.g., [1, 12.13]), we find
either a system of imprimitivity for G or a direct sum of
N'’-isomorphic minimal N'-subspaces (cf. [9, §2]).

Step 2. If we find a system of imprimitivity, say U, in Step
1, then we find a minimal system of imprimitivity V from
U using a standard procedure to find a minimal block sys-
tem in a permutation group. We also find the kernel L of
the primitive permutation representation of G on V. The
polynomial bound on |G : L| directly follows from the main
result of [2]. This concludes Case (ii).

Step 3. It remains to consider Case (iii). Based on Lemmas
5.3, 5.5, and 5.6, we will find Cents(N') and decompose V'
into a direct sum of minimal Cent g (N')-subspaces to meet
the condition of Case (iii).

Suppose that, in Step 1, we find a direct sum V =W1®H--- P
W,, where the W; are isomorphic minimal N’-subspaces.
By Clifford’s theorem, the action of N’ on each W; is ir-
reducible and faithful. Using Lemma 5.3, find Centg(N')
and D = Centg(N')N’. Then find a minimal D-subspace
Vo of V such that W1 C V;. Let " : D — GL(Vo) denote the
restriction of D on V,. Then D is an irreducible subgroup
of GL(Vp).



Now, let gy =1, and find g3, ... ,gs € Centg(N') such that
Vo = Wi & W92 @ --- @ W19, Form kN’-isomorphisms

b; : Wi = W19 such that b; = §1|W1 fori=1,...,s.

Observe that K; = End, 5, (W1) is the centralizer of the
linear span of the restriction N’|W; over k in Endy(W).
Thus, one can find a k-basis of K1. Now, find a k-basis of
an extension K C End,y,(Vo), K = K, consisting of all
the elements of the form, with respect to Vo = W1 @ W192
B Wl!fs7

ai 0
9_2_1(119_2
0 gs targs
for a; € K.
Here, by Lemma 5.5, we know that the set {b1, ... ,bs} forms

a K-basis of Up = Hom,,y, (W1, Vp). Now, choose 0 # v1 €
Wi and form a K-subspace Mo spanned by {v1%,... v1%}.
Next, find a minimal Centg(N')-subspace M1 in Mo. By
Clifford’s theorem, we can then find minimal Centg(N')-
subspaces Mo, ... , M. of the same dimension dimg M; such
that V=M1 - & Me..

Let t = dimx, M1. By Lemma 5.6, we know that |G :
Centg (N')| = O(t°2) for some constant c2 > 0. By Lemma
5.5, we know that Vo =2 W1 ®x Uy as K-spaces; therefore,
we have e > t. O

We are now ready to complete our outline of the proof of
Theorem 5.2 using Propositions 5.7 and 5.8.

Outline of the proof of Theorem 5.2. We describe our algo-
rithm in three steps.

Step 1. If G is nonabelian simple, then we have Case (i).
If G is abelian, then we have Case (ii). Otherwise, find
a normal subgroup N of G such that N is a nonabelian
minimal normal subgroup of G or a normal subgroup A of
G such that A is an abelian normal subgroup of G. If we
have N, then we appeal to Proposition 5.8 to establish Case
(iii) or (iv).

Step 2. Suppose that Step 1 gives an abelian normal sub-
group A of G. If A is noncyclic or nonuniform, we establish
Case (iii) or (iv) based on Lemma 5.4.

Step 3. Suppose that A is cyclic and uniform. Using Lemma,
5.3, find Centg(A). If A = Centg(A), then it follows that
|G : A| < n; thus, we return A for Case (ii). If A <
Cents(A), then find a normal subgroup N of G, where
A < N < Centg(A), such that N/A is a nonabelian minimal
normal subgroup of G/A or an elementary abelian normal
subgroup of G/A. If N/A is nonabelian, then we again ap-
peal to Proposition 5.8 to establish Case (iii) or (iv). If, on
the other hand, N/A is abelian, we use Proposition 5.7 to
establish Case (ii) or (iv) or find one of the following.

(1) A normal subgroup B of G, where B is abelian, such

that A < B.

(2) A nonabelian normal subgroup M of G such that M /A
is a nonabelian minimal normal subgroup of G/A.

If we have (1), then we regard B as A and recursively per-
form Step 2, and if necessary, Step 3. If we have (2), then we
regard M as N and appeal to Proposition 5.8 to establish
Case (iii) or (iv). O
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