
Improving Lookup Performance over a
Widely-Deployed DHT

Daniel Stutzbach, Reza Rejaie
Department of Computer & Information Science

University of Oregon
{agthorr,reza}@cs.uoregon.edu

Abstract— During recent years, Distributed Hash Tables (DHTs)
have been extensively studied through simulation and analysis.
However, due to their limited deployment, it has not been possible
to observe the behavior of a widely-deployed DHT in practice.
Recently, the popular eMule file-sharing software incorporated a
Kademlia-based DHT, called Kad, which currently has around
one million simultaneous users.

In this paper, we empirically study the performance of the
key DHT operation, lookup, over Kad. First, we analytically
derive the benefits of different ways to increase the richness of
routing tables in Kademlia-based DHTs. Second, we empirically
characterize two aspects of the accuracy of routing tables in Kad,
namely completeness and freshness, and characterize theirimpact
on Kad’s lookup performance. Finally, we investigate how the
efficiency and consistency of lookup in Kad can be improved
by performing parallel lookup and maintaining multiple rep licas,
respectively. Our results pinpoint the best operating point for the
degree of lookup parallelism and the degree of replication for
Kad.

I. I NTRODUCTION

Distributed Hash Tables (DHTs) present an elegant dis-
tributed solution for deterministically mapping items to loca-
tions. They provide astructuredapproach to Peer-to-Peer (P2P)
applications since their item-to-location mapping can be used
to (i) publish an item on a specific peer and(ii) efficiently
lookup an item by locating its corresponding peer. During
the past few years, the potential of DHTs has motivated a
wealth of research including the design of new DHTs [1]–
[5], performance evaluation and improvements [6], [7], and
the development of a wide range of DHT-based distributed
applications [8], [9]. Despite a great deal of attention from the
research community, DHTs have not become widely-deployed
until recently. In the absence of any large scale deployment, all
previous studies on DHTs rely only on simulation, theoretical
analysis, and limited-scale experiments. Therefore, the behavior
of DHTs in practice has not been examined and thus is not well
understood.

In practice, the dynamics of peer participation, orchurn,
can affect the accuracy of routing tables at each peer, and
thus the performance of lookup operations in a DHT. More
specifically, some entries in the routing table of individual peers
might be missing or stale. Therefore, each peer does not have
the expected connectivity to other peers. The inaccuracy of
routing tables in turn affects the efficiency and consistency of
lookup operations conducted by individual clients. For example,

a lookup may take more than the ideal number of hops or map
to the wrong peer.

There are two classes of solutions to cope with the effect
of churn on DHTs: (i) DHT-based: DHTs can incorporate
various techniques to actively improve their resiliency tochurn
by increasing the degree of redundancy or the frequency of
updates for the routing table at each peer.(ii) Client-based:
Alternatively, a client operating over an inaccurate DHT can
improve its lookup efficiency by conducting lookup in parallel
and cope with lookup inconsistencies by active replicationof
content.

Previous studies have examined both DHT-based [10], [11]
and client-based [4], [5] solutions as well as the interactions
and trade-offs between them [7]. All of the previous studies
have used either simulation, analysis, or small-scale experi-
ments to study these issues. However the dynamics of user
participation and their impact on routing table accuracy are
not well understood. Given the limited understanding of churn
characteristics, it is unclear how well simulation-based analysis
of DHTs represents real-world behavior. Section VII discusses
the related work in more detail.

This paper presents a measurement-based characterizationof
routing table inaccuracy and its impact on lookup performance
in a widely-deployed DHT, namelyKad. Kad is an open,
Kademlia-based [4] DHT with more than 1 million concurrent
users that has been recently deployed by the popular eMule1

file-sharing application to improve efficiency of search in the
face of a growing user population. Section II presents an
overview of Kademlia and Kad.

To study the inaccuracy of routing tables in a DHT, in
Section III, we first establish an analytical framework to quan-
tify the effect of routing table richness on the performanceof
lookup. To our knowledge, this is the first analysis to show
that Kademlia’sk-buckets improve lookup performance. In
Section IV, we turn our attention to the accuracy of Kad’s
routing tables. Towards this end, we characterize both the
freshness and completeness of routing tables in Kad through
detailed and representative measurements using a tool we
developed calledkFetch. To explain the observed behavior,
we carefully examined eMule’s source code and present the

1eMule began as an open-source alternative for the eDonkey unstructured
network.



underlying policies for routing table updates and redundancy
management. Next, we turn our attention to different client-
based techniques to improve lookup efficiency and consistency
over Kad despite the inaccuracy of routing tables. Since we are
dealing with a deployed DHT system, we are unable to explore
DHT-based solutions.

In Section V, we examine two classes of parallel lookup
techniques to improve lookup efficiency over Kad. Toward this
end we developed a new tool calledkLookup, which emulates
a lookup fromany source ID toany destination ID without
requiring local access to the designated peers for these IDs.
Furthermore, leveraging the iterative lookup scheme in Kad,
kLookup enables us to empirically examine different parallel
lookup techniques and identify major design trade-offs. Finally,
in Section VI we characterize the frequency of inconsistent
lookup results in Kad. We then explore how the degree of
replication improves lookup consistency.

Our main contributions can be summarized as follows:

• Analytical Framework : We develop an analytical frame-
work for computing the average performance of lookups
for prefix-matching DHTs. This lead to the surprising re-
sult that redundancy in routing tables, such as Kademlia’s
k-buckets, directly improves mean lookup performance by
reducing hop count

• New Tools: (i) kFetch, a tool for extracting the routing
table from Kad peers,(ii) kLookup, a parameterized tool
for performing lookups over Kad using a variety of lookup
algorithms

• Empirical Findings : (i) Validating the predictions of our
analytical framework,(ii) Locating the sweet spot for the
degree of lookup parallelism to improve lookup efficiency,
(iii) Locating the sweet spot for the degree of replication
to overcome routing table inconsistencies

While this study is centered around Kad, our analysis,
methodologies, tools and findings are mostly applicable to
other DHTs with proper adjustment. To address the wider
applicability of our work, we briefly discuss how some issues
can be pursued in the context of other DHTs. Our extensive
examination of eMule’s source code also revealed several bugs,
some of which were fixed in the next revision.

II. BACKGROUND

We first present some background on Kademlia, since it
forms the basis for the Kad network that we use for our
empirical study. Like most DHTs, peers in Kademlia each have
an identifier that is assigned either uniformly at random or via
a cryptographic hash. To determine the distance between two
peers, Kademlia uses a unique “XOR metric”, the bitwise XOR
of their identifiers. For example, the distance between0100 and
0111 is 0011 (or 3).

Kademlia belongs to the general class of prefix-matching
DHTs, such as Pastry [3] and Tapestry [12]. At the high-level,
these DHTs work in the same way. Alookup consists of a
sequence oflookup steps(or hops). The first step consults the
client’s routing table for the target ID, which is guaranteed

to have a route where the high-orderb bits match. The route
points to another peer, which is consulted in the next step and
is guaranteed to have a route where the first2b bits match. The
process continues until no next route can be found, indicating
that the closest peer to the ID has been reached. We can view
the distance between two identifiers as the number of bits that
must be matched to reach from one to the other. For a network
of n peers, most peers will be aroundlog2 n bits apart, and
the expected number of steps to perform a lookup islog

2
n

b
. We

call b thesymbol size, and in basic Kademliab = 1. Section III
examines the impact of different choices forb on lookup latency
(in hops) and route table size.

As IP is also a prefix-matching protocol, we borrow some
terminology from IP to describe Kademlia routing tables. Each
route in a Kademlia routing table is labeled with asubnet
addressand mask. When performing a lookup for a key, the
most-specific routing table entry with a matching subnet is used,
just as in IP routing. In this paper, the familiar “slash-notation”
specifies the number of bits in the mask (i.e., “/3” means an ID
must match the highest-order 3 bits of the subnet address). In
Kademlia, the routing table is structured to contain one route
per address bit, with increasingly specific masks. The subnet
addresses are the same as the ID of the peer hosting the routing
table. The routing table structure can be viewed as a binary tree,
as shown in Figure 1(a). For example, consider a Kademlia
network using 4-bit identifiers2 and a particular peer with the
address 0000. There are route table entries for the following
address–mask pairs: 0000/0, 0000/1, 0000/2, 0000/3, 0000/4.
Because more-specific routes are preferred, the routing table
entries are effectively for the following address–mask pairs:
1000/1, 0100/2, 0010/3, 0001/4, 0000/4. In other words, the
0000/0 line will only contain 1000/1 addresses since any 0000/1
address would map to one of the more specific entries.

The routing tables in all the Kademlia peers collectively
form one large binary tree, with each peer containing a fraction
(O

(

log n
n

)

) of it. During a lookup, each routing step pivots to a
different peer which is one bit closer to the target, guaranteeing
that the lookup requires at mostO(log n) steps.

For redundancy purposes, each routing table entry (or node in
the binary tree) contains a list, called ak-bucket, ofk matching
contacts. Each contact includes the Kademlia ID, IP address,
and port of the remote peer. Thus, each lookup step has a choice
of k different contacts for the next step. Section III examines
some of the consequences for choosing different values ofk.
We note thatk-buckets could be adapted for use in other types
of DHT as well.

Kademlia makes use of parallel routing to speed up lookups,
as do EpiChord [13] and Accordion [5]. Issuingα lookup
requests at a time avoids long waits while departed peers time
out and also increase the probability of finding low-latency
peers. Section V examines using different values ofα in Kad.

Kademlia uses iterative routing, where the client is respon-
sible for the entire lookup process. At each step, the client

2In practice no DHT would use such a small identifier space, butit’s more
tractable for illustrative purposes.



sends alookup requestto the next-hop peer and waits for a
lookup reply. The reply lets the client know what the next
hop is. Iterative routing contrasts with recursive routing, where
the lookup request is forwarded automatically from one peer
to another. While it has been shown that recursive routing
typically has lower latency [14], iterative routing has several
useful practical properties:

Fate-Sharing: Lookup messages cannot be lost due to the
departure of an intermediate peer holding the lookup
request [15].

Debugging: Iterative routing is easier to debug since in-
formation at each step is reported back to the client
performing the lookup.

Compartmentalization: Iterative routing decouples route
table maintenance and lookup technique, allowing them
to be studied and improved independently in a deployed
network. Our tool, kLookup, uses this division to evaluate
a variety of lookup techniques directly over the existing
Kad network, as shown in Sections V and VI.

Route Table Extraction: Iterative routing allows us to
download the entire routing table of any peer. We make use
of this feature in our tool, kFetch, described in Section IV-
B.

In summary, the key properties of Kademlia (and thus Kad)
are as follows:(i) routing by prefix-matching,(ii) redundancy
in routing tables (k-buckets),(iii) parallel routing, and(iv)
iterative routing. Redundancy, parallel routing, and iterative
routing could be incorporated into most varieties of DHT. For
example, EpiChord is a variant of Chord with parallel routing.
Prefix-matching is an intrinsic property of Kademlia’s design,
which it shares with a number of other DHTs such as Pastry
and Tapestry.

Kad is a Kademlia-based DHT network for file-sharing,
composed of eMule clients. While Kad is based on Kademlia,
Kad uses a slightly different routing table structure, described
in detail in Section III. Kad has approximately 1 million
simultaneous users, plus many more firewalled peers who
utilize the Kad DHT for lookups but do not participate in the
DHT structure. For each file an eMule client shares, the client
computes the hash of each word in the filename, and publishes
information about itself and the file to the peers responsible
for the hashes. When an eMule user enters a keyword search,
eMule computes the hash of the first keyword and initiates a
lookup for the hash. The lookup returns a set of endpoints
to which the client submits the full keyword list. Those peers
process the query and return a set of matching results.

III. A NALYSIS OF KADEMLIA ’ S k-BUCKETS

In this section, we first establish an analytical framework
to examine the effect on lookup performance of adding extra
contacts to routing tables. We derive a formula for computing
the typical number of hops needed to perform a lookup as a
function of the way the extra contacts are structured, and use
the formula to explore trade-offs between different methods for
increasing the richness of routing tables.

Every DHT has some structure that determines a peer’s
potential neighbors based on identifiers. For example, in basic
Kademlia a peer must have a neighbor with a different high-
order ID bit, a neighbor with a matching first bit and a different
second bit, a neighbor with the first two bits matching and
a different third bit, etc. We call each address–mask pair
a bucket (following the Kademlia terminology) where each
bucket contains address information, calledcontacts, for several
neighbors. A bucket withk contacts is called ak-bucket. In
the base case, a DHT only contains enough information to
perform the lookup inlog2 n steps. In prefix-matching DHTs
such Kademlia, this implies a symbol size ofb = 1 and one
contact per bucket. In general, the expected number of steps
required to perform a lookup is given as follows:

steps per lookup=
log2 n

bits improved per step
(1)

A DHT can enrich the routing table structure beyond this
base case by either 1)adding more bucketsor 2) adding more
contacts per bucket. By adding more buckets, a DHT can
guarantee that a larger number of bits will be improved at each
step, thereby decreasing the number of hops for a lookup. For
example, Pastry [3] uses a default symbol size ofb = 4 which
guarantees 4 bits will be improved at each step. Tables in Chord
can also be enriched in this way [7].

Adding more contacts per bucket is used to guard against
churn, an approach employed by DHTs such as Kademlia [4]
and Tapestry [12]. By having other contacts handy, a peer
can more quickly repair its routing table when a failure is
detected. Furthermore, as observed in [4], with heavy-tailed
session times, storing backups and only evicting unresponsive
peers implicitly leads to a set of peers with good uptime
characteristics. Finally, multiple contacts per route allow for
the use of parallel routing.

To examine the benefits and costs of the above two ap-
proaches for enriching routing tables, we analyze their impact
in the context of Kademlia. Our analysis also directly applies
to other prefix-matching systems such as Pastry and Tapestry,
where we can quantify the improvement at each step in terms
of the number of matching bits. For other DHTs that use
a different basic geometry, our analysis could be adapted
by modifying the formulas to reflect the appropriate distance
metric.

There are two different approaches for adding more buckets
to a routing table, both of which improve the number of lookup
hops fromlog2 n to log2b n:

• Discrete Symbols: With this approach, illustrated in Fig-
ure 1(b), each interior node points to2b−1 buckets and an
additional interior node. When searching a routing table, a
peer begins by checking the firstb bits. If all of them match
the peer’s ID, then it proceeds to the nextb bits (i.e., the
next interior node). Otherwise, it proceeds immediately to
the appropriate bucket. Using Discrete Symbols increases
the routing table size fromlog2 n rows of onek-bucket
each tolog2b n rows of2b − 1 k-buckets each. This is the
approach used in Kademlia and Pastry.
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Fig. 1. Routing Table Structures

• Split Symbols: With this approach, illustrated in Fig-
ure 1(c), each interior node points to2b−1 buckets and an
additional interior node. When searching a routing table,
a peer begins by checking the first single bit. If it matches
the peer’s ID, then it proceeds to the next bit (i.e., the next
interior node). Otherwise, it examines the nextb bits and
proceeds to the appropriate bucket. Using Split Symbols
increases the routing table size forlog2 n rows of onek-
bucket each tolog2 n rows of 2b−1 k-buckets each. This
is the approach used in Kad.

To compare and contrast these approaches for organizing
routing table contacts, we create a general framework for
analyzing their performance. We defineD(b, r, k) as a system
which usesb-bit symbols withr-bit resolution andk-buckets.
D(1, 1, k) is the basic Kademlia approach,D(b, b, k) is the
Discrete Symbol approach, andD(b, 1, k) is the Split Symbol
approach used in Kad. Each routing table haslog2r n rows of
2b − 2b−r k-buckets, for a total size ofk(2b − 2b−r) log2r n

contacts. Normalizing by a factor oflog2 n yields a normalized
size ofk 2b

−2b−r

r
.

Most prior work on most DHTs3 is concerned exclusively
with the worst-case scenario where the selected contact will not
match anyadditionalbits of the target identifier. For example,
consider searching for the key 111 in the routing table of peer
000 with the baseb = 1 system. The peer looks in the bucket
with the prefix 1, and returns a contact which we know matches
the first bit of the key. However, that contact could be any of the
peers 100, 101, 110, or 111. In other words, there’s a1

2 chance
of improving at least 1 extra bit, a14 chance of improving at
least 2 extra bits, and so on. More precisely, the probability of
improving at leastδ bits is:

Pr[X ≥ δ] =
1

2δ
(2)

3To our knowledge, the only work on DHTs which has considered the
average-case performance is Chord [1].

Therefore, the average-case is better than the worst-case
given in prior work. In particular, the key insight is that large
buckets (k > 1) improve the probability ofrandomlyfinding a
contact with more matching bits since there are more optionsto
choose from. As we will show, the average number of improved
bits increases logarithmically withk, making the performance
boost of increasingk comparable to the performance boost
of increasingb. Generally, for ak-bucket the probability of
improving by at leastδ extra symbols is:

F (δ, r, k) = Pr[X ≥ δ] = 1 −

(

1 −
1

2rδ

)k

(3)

and the probability of improvingexactlyδ symbols is:

f(δ, r, k) = Pr[X = δ] = F (δ, r, k) − F (δ + 1, r, k) (4)

The key question is:how many additional bits improve on
average due to randomness?Since we know the probability
of improving exactlyδ additional symbols (f(δ, r, k)), we can
compute average number of extra bits improved by finding the
average value ofδ and multiplying by the number of bits per
symbol (r) as follows:

extra bits improved per step:m(r, k) = r

∞
∑

δ=0

δ ·f(δ, r, k) (5)

total bits improved per step:t(b, r, k) = b + m(r, k) (6)

Note thatm(r, k) is actually decreasing inr due to ther

term in Formula 3. While we were unable to find a simple
closed form form(r, k), it can be computed numerically with-
out difficulty. For r = 1, m(1, k) asymptotically approaches
log2 k + 0.3327, somewhat exceeding this value for lowerk.
Significantly, for the base caseD(1, 1, 1) of no additional
routing table entries,m(1, 1) = 1 indicating one extra bit
improves per step. In other words, a basicD(1, 1, 1) system
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Fig. 2. Relative performance of different routing table structures

on average performs a lookup inhalf as many hopsas reported
by previous work.

For a Discrete Symbol configuration,D(b, b, k), the number
of bits improved on average isb + m(b, k). For a Split
Symbol configuration,D(b, 1, k), the number of bits improved
on average isb + m(1, k). While the Split Symbol approach
does use more routing table space, it has the advantage that it
can leverage a random improvement of a single extra bit.The
Discrete Symbol approach must randomly improve byb extra
bits at a time to make use of random improvements.

To compare the different approaches, first consider the
three extreme cases:D(1, 1, k) (pure Redundancy),D(b, b, 1)
(pure Discrete Symbols), andD(b, 1, 1) (pure Split Symbols).
Figure 2(a) presents the performance of each approach as a
function of the normalized routing table size. Split Symbols and
Redundancy have nearly identical performance, while Discrete
Symbols performs slightly better. For the case of Split Symbols
(D(b, 1, 1)), the b-bit symbols guarantee an improvement ofb

bits in the worst case, plus an additionalm(1, 1) = 1 bits
on average, for a total of exactlyb + 1 bits, dividing by the
normalized size yieldsb+1

2b−1 . This is the slope of the Split
Symbols (D(b, 1, 1)) line in Figure 2(a).

For the case of Discrete Symbols (D(b, b, 1)), the b-bit
symbols again guarantee an improvement ofb bits in the worst
case, plus an additionalm(r, 1) bits on average. However,
m(r, 1) asymptotically approaches0 for larger. As a point of
reference, for Pastry’s typical value ofb = r = 4, the average
improvement is 4.27 bits per step, roughly a 4% reduction in
the mean number of lookup hops4 compared to that reported
by the Pastry authors [3]. The average improvement divided by
the normalized size isb b+m(r,1)

2b
−1

.
For the case of large buckets and 1-bit symbols (D(1, 1, k)),

the 1-bit symbols guarantee an improvement of1 bit in the
worst case, plus an additionalm(1, k) bits on average, for a
total of 1 + m(1, k). Dividing by the normalized size results
in 1+m(1,k)

k
. As a point of reference, for the value ofk = 20

suggested in the Kademlia paper [4], the average improvement
is 5.7 bits per step rather than 1 bit per step, resulting in a 60%
reduction in the mean number of hops!

An important question is:Can performance be improved

4The expected number of hops is equal tologB n whereB is the average
number of bits of improvement.

by using a mixture of large buckets and large symbols?The
short answer is “No”. Figures 2(b) and 2(c) plot several other
permutations ofD(b, r, k). Figure 2(b) holdsk constant and
variesb, while Figure 2(c) holdsb constant and variesk. For
small values ofk (e.g.,2) with varyingb, both Discrete Symbols
and Split Symbols have performance in between their regular
performance andD(1, 1, k). For moderate values (e.g.,20) of
k, the performance of Split Symbols is virtually identical to
D(1, 1, k), while the performance of Discrete Symbols plum-
mets (as seen in Figure 2(b)). Because Discrete Symbols cannot
make good use of randomness, thek-redundancy imposes a cost
with little benefit on lookup performance.

In summary, increasing the symbol size offers a constant-
factor improvement to worst-case performance, while usingk-
buckets offers comparable average-case improvement. More-
over,k-buckets offer other advantages as follows:

• Reduced implementation complexity
• Lower maintenance bandwidth; fewer restrictions on ac-

ceptable contacts allows for more contacts to be acquired
passively

• Better resistance to churn by accumulating high-quality
contacts

While our framework is motivated by our study of Kad, it
applies to any prefix-matching DHT and could be extended to
other DHTs that can accommodate different symbol or bucket
sizes, such as Chord. In the following section, we use the
formulas we have developed to compute a lower bound on the
average lookup hops in Kad and empirically examine how close
our predicted model is to the actual performance.

IV. A CCURACY OFROUTING TABLES IN KAD

In this section, we empirically characterize the degree of
routing table accuracy in Kad and identify the underlying
reasons for inaccuracies. These characteristics help us explain
the observed lookup performance in Section V. Our goal is
to explore the structure and redundancy (i.e., b and k) of
routing tables in Kad by examining the eMule source code5,
and then empirically studying the impact of churn on routing
table accuracy.

5There is no written specification that describes the Kad protocol so our
explanations are based on our reading of the source code.



A. Predicting Kad Performance

Close examination of the eMule 0.46a source code reveals
that Kad is based on Kademlia with a bucket size of 10
contacts (k = 10) and3.25-bit Split Symbols, meaning Kad is
a D(3.25, 1, 10) system. The1

4 bit is due to the fact that Kad
uses unbalanced subtrees. Each interior node has branches with
labels 0, 1000, 1001, 101, 110, and 111. The 0 branch leads to
the next interior node; the other branches lead tok-buckets. The
average improvement per step is3.25 + m(1, k) bits. We also
validated our understanding of the source code with empirical
observations of its operation. Therefore, according to Formula 6
the mean number of improved bits per step is 6.98 in Kad.
As a special case, Kad’s root node has a full 16 branches, so
it improves at least the 4 most significant bits and 7.73 bits
on average on the first step. To account for this, we revise
Formula 1 as follows:

steps per lookup in Kad:1 +
log2 n − t(4, 1, 10)

t(3.25, 1, 10)
(7)

Thus, the expected number of hops in Kad is1 + log
2
(n)−7.73
6.98 .

Estimating Network Size: Toward this end, we need an
estimate of the size of the Kad network (n). An obvious
approach would be to crawl the Kad network to capture the
entire population of peers. However, crawling theentire Kad
network takes too long due to the large size of routing tablesat
each peer and the large number of peers in the network. Because
churn occurs while the crawler runs, a very long crawl would
result in an inflated population count as it would record a large
number of short-lived peers that are not simultaneously present.
However, crawling a subnet is much faster than crawling the
whole network. Since Kad identifiers are selected uniformlyat
random, any subset of the ID space (such as a subnet) is a
representative sample of the total population. Multiplying the
measured size of a subnet by the number of such subnets yields
an estimate of the population size. By taking the mean over
many such samples, we can get a good estimate forn.

In our previous work [16], we developed a parallel peer-
to-peer overlay crawler, calledCruiser. Given a Kad overlay
subnet as an input (e.g., 0x5cd/12), Cruiser walks the DHT
structure to capture a snapshot of all the active peers with IDs
in the specified subnet. For example, it can capture a /10 subnet
with roughly 1000 peers in around 3–4 minutes and a /12 subnet
with roughly 250 peers in around one minute. During June
of 2005, we captured the population size for several hundred
randomly selected subnets with Cruiser. Our measurements
reveal that the Kad network has a mean population size of
approximately 980,000 concurrent peers. Given this estimated
group size for the Kad network, a lookup over Kad requires
log2 980, 000 ≈ 19.9 bits of improvement, and a lookup in Kad
should take19.9−7.73

6.98 +1 = 2.7 hops (according to Formula 7),
assuming perfect routing tables. This is significantly better than
predicted by the formula of prior work [4] oflog2

(n)−4
3 + 1 =

6.30 hops. Correctly incorporating the effect of randomness
alters the predicted performance by more than a factor of two.

B. kFetch

To study the accuracy of routing tables, we developed a
new tool calledkFetch. kFetch chooses a Kad peer at random,
downloads its complete routing table, and identifies stale entries
in the routing table by actively probing (i.e., sending a lookup
request) to each contact in the routing table. To locate a
peer at random, kFetch generates a random Kad identifier,
then performs a Kad lookup to locate the peer closest to that
Kad identifier. The routing table of the target peer must be
downloaded quickly in order to minimize any error due to
ongoing churn (i.e., a contact that was actually present in the
network might depart before kFetch probes it). There are two
challenges to download a routing table efficiently:(i) the rate of
requests (which are UDP messages) must be properly paced to
rapidly download the table without causing excessive network
congestion, and(ii) lookup messages must request the right IDs
to extract a peer’s routing table with the minimum number of
messages. kFetch implements congestion control using a variant
of the SACK TCP algorithms to determine the proper rate for
issuing requests. kFetch computes the routing table structure of
the target peer according to Kad’s rules for populating themand
generates a query for eachk-bucket the peer may have. This
strategy could be used to extract the routing table in any DHT
that uses iterative routing. In addition, it examines the returned
data to determine when a branch of the tree is empty, and will
not issue queries for the empty subtree. Additionally, for each
discovered contact, kFetch queries the contact to verify whether
it is still present in the network, concurrently with continuing
to download the routing table.

C. Characteristics of Kad Tables

Using kFetch, we retrieved the routing tables of approxi-
mately 80,000 distinct Kad peers in June 2005 and examined
two properties of theirk-buckets: (i) completenessis the
whether the bucket contains the appropriate number of entries,
given the size of the Kad network; and(ii) freshnessis the
number of contacts in the routing table that are still active(i.e.,
do not point to departed peers). Figure 3(a) shows the mean
number of contacts (“Known”) in each routing table bucket
as a function of the bucket’s subnet mask. It also shows what
fraction of these contacts are fresh (i.e., the contact responded
to our ping). The “Ideal” line indicates the average number of
contacts we would expect to be in each bucket if the routing
tables were perfectly up to date,i.e., min

(

10, n
2x

)

wherex is
the number of bits in the address mask andn is the population
size. All three curves (Ideal, Known, and Fresh) decrease off
steeply as the mask length exceeds 16 bits, due to the limited
number of matching contacts in the system. For shorter masks,
on average each bucket has one or two empty slots and contains
one stale contact. The mean number of empty slots is slightly
higher as the mask length increases.

In Figures 3(b) and 3(c), we examine the number of fresh
contacts in each bucket normalized by the total number in
each bucket and by the expected (ideal) number, respectively.
Figure 3(b) shows the mean number of fresh contacts as a
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fraction of the number of contacts actually present. This shows
that around 90% of entries are fresh for masks up to length
around 16, then the fraction of fresh entries decreases,i.e., the
number of stale entries increases. This is because the current
implementation of eMule doesn’t ping peers in buckets which
are not at least 70% full. In fact, in Figure 3(c), where we
examine the number of contacts relative to the ideal number,
above /17 there are actually more stale contacts than active
peers anywhere in that subnet, causing the normalized value
to exceed 100%! Peers gradually accumulate stale contacts in
these buckets which are expunged too slowly. As a conse-
quence, virtually every lookup in Kad necessarily ends with
timeouts to stale peers even though the closest peer has already
been contacted! This is a direct result of eMule’s policy of not
expiring contacts in mostly-empty buckets. As this routingtable
maintenance problem can trivially be corrected in the eMule
code, in the remainder of this paper we emulate the correct
behavior as follows. After a lookup completes, we compute the
latency as the time from the start of the lookup until kLookup
receives a packet from the closestresponsivepeer.

From Figure 3(a), we see that on average there are 1.5 empty
slots plus 1 stale contact per bucket. We could plugk = 10 −
1.5 − 1 = 7.5 into our formula, but first we must validate that
most buckets are close to the average state. If the variance is
very high (e.g.,if 85% of buckets had 10 entries and the other
15% were completely empty), then using the average would
introduce considerable error. Towards this end, Figures 4(a)
and 4(b) present the CDF of the number of contacts and fresh
contacts across all observed buckets for masks /4, /8, and /12.

They show that for both completeness and freshness, nearly all
buckets are close to the average value. Therefore, we may use
the average value for the purposes of our computations without
introducing considerable error.

Using an average of 1.5 empty slots plus 1 stale contact per
bucket, we have an effective bucket size ofk = 10−1.5−1 =
7.5. This increases the expected hop count slightly from 2.7 to
log

2
(n)−7.33
6.58 + 1 = 2.91 hops, according to Formula 7. This is

still significantly better than the previously predicted value of
6.30 hops.

Note that we are unable to change the routing tables in
the entire Kad network. Therefore, we explore client-based
alternatives to improve lookup performance in Kad and evaluate
different techniques to improve the efficiency and consistency
of lookup in the following two sections.

V. I MPROVING LOOKUP EFFICIENCY

We turn our attention to client-based approaches to improve
the performance of iterative lookup over a DHT that has in-
accurate routing tables. While incomplete buckets will degrade
performance as described in the previous section, stale contacts
can dramatically increase latency by causing timeouts to occur.
Since the timeout interval is typically set to at least a few round-
trip times, it can easily exceed the desired time for the entire
lookup.

A. Parallel Lookup

To improve performance despite inaccurate routing tables,
clients (i.e., end-points) can perform parallel lookup. While



parallel lookup has traditionally been used exclusively with
iterative DHTs, Jinyang Liet al. [5] present a technique for
performing parallel lookup on a recursive DHT.

In a parallel lookup, a client simultaneously manages multi-
ple lookup requests to different peers and performs the lookup
process based on the information obtained from all requests,
reducing the problem of hitting stale contacts, and improving
lookup performance at the cost of greater network overhead
(i.e., a larger number of requests per lookup). Parallel lookup
has two other significant advantages. First, lookup requests
facilitate populating or passively updating the routing tables,
which in turn reduces the bandwidth requirement for explicit
updates, as shown in [7]. Second, during each step of the lookup
process, parallelism increases the number of contacts searched,
increasing the probability of finding a contact closer to the
target (i.e., with more matching bits) and thus decreasing the
number of hops needed to reach the target. We examine the
following two classes of parallel lookup techniques:(i) Strict
Parallel lookup and(ii) Loose Parallel lookup.

1) Strict Parallel Lookup : In this approach, a client begins
a lookup by sending lookup requests to theα best known
contacts. Similar to the window-based congestion control
in TCP, a client restricts the number of requests in-flight
to α. A new request is issued only when a pending
request times out or a response is received. The resulting
overhead is limited to a factor ofα. The downside of
the strict approach is that when a client sends a packet
to a departed contact, it must wait for a timeout to
occur before giving up. In the meantime, the degree
of parallelism is effectively reduced by one. However,
a timeout is typically set to at least a few round-trip
times which is on the order of the desired time for the
entire lookup. Thus, in the strict approach,α roughly
determines the number of timeout events a client can
experience without incurring a significant latency penalty.
Kademlia uses this approach.

2) Loose Parallel Lookup: Parallel lookup can be per-
formed in a looser fashion by allowing more thanα
requests in flight. In this approach, a client can issue
a lookup request to a contact that is among the topα

contacts as soon as such a contact is identified, even if this
lookup request increases the number of pending requests
beyondα. For example, ifα = 3, the lookup begins by
sending 3 lookup requests. If the first response contains
3 better contacts (which is likely), 3 more requests are
sent immediately. While this approach appears to be
significantly more expensive than strict parallel lookup,
it incurs only modest additional overhead since later
responses from the same step are less likely to contain
better contacts (i.e., each time a packet is sent, the bar
has been raised). The advantage of this looser approach
is the ability to quickly abandon lookups that are likely
to time out. This approach is used by eMule.

kLookup : To examine different lookup strategies, we devel-
oped a new tool, calledkLookup, which performs a lookup from

any source ID toany destination ID without requiring local
access to those peers. To emulate a lookup from a particular
source ID, kLookup takes the following steps. First, it usesa
local Kad routing table to locate the peer closest to the source
ID (i.e., the source peer), then it extracts the routing table of
the source peer using kFetch. Finally, it performs a lookup to
the destination ID using the routing table of the source peer.
kLookup implements an adjustable degree of parallelism (α)
with both strict and loose parallel lookup.

B. Evaluating Parallel Lookup

We evaluated the performance of both types of parallel
lookup techniques under varying degrees of parallelism. Using
kLookup, we captured several hundred lookups for differ-
ent values ofα for both strict and loose parallelism. Each
lookup used a unique, randomly-selected source and a unique,
randomly-selected destination. In our evaluation, we examine
three metrics:

• Hops: The number of hops from the source to the desti-
nation

• Latency: The duration from the start of the lookup to when
a response is received by the final destination, which is a
function of the number of hops and the time spent waiting
for responses and timeouts

• Messages Sent: The overhead used to perform the lookup

As we mentioned earlier, increasingα can reduce the number
of lookup hops by providing more opportunities to randomly
improve extra bits. Figure 5 shows that the mean number of
hops decreases slightly asα increases6, providing empirical
support. Furthermore, the hop count forα = 1 is around 3.2,
which is close to our predicted lower-bound of 2.9.

Since the number of hops is as expected, the next question
is: how much latency is introduced to lookup by timing out due
to stale contacts?Figure 6(a) compares the latency of the two
approaches for several values ofα. The first observation is that
the latency forα = 1 is very high—close to 10 seconds. Using
a value ofα = 3 dramatically reduces the latency, with dimin-
ishing returns for largerα. Second, Figure 6(a) reveals that the
loose approach is just barely quicker than the strict approach for
constantα. The greatest advantage of loose parallelism is that

6This figure is noisy due to the narrowy-axis range. The general downward
trend is nevertheless visible.
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it is significantly less likely to get stuck waiting for timeouts to
occur. However, as we show in Section III, few contacts in Kad
are stale. This explains why loose parallelism does not show
much performance improvement for this network.

To examine the communication overhead of parallel lookup,
Figure 6(b) shows the number of packets sent as a function ofα

for the two approaches. In both cases, the overhead increases
roughly linearly with α, with the loose approach generating
roughly twice as many messages as the strict approach. Given
that for fixedα the performance of strict and loose parallelism
are quite similar, strict parallelism is the better choice for the
current Kad network. To directly compare the two, Figure 6(c)
factors outα by plotting the lookup hops as a function of
the overhead. This figure shows that asymptotically the perfor-
mance of strict and loose parallelism are surprisingly similar.
A large number of messages represents the lower bound on
lookup hops: no amount of increased parallelism of any kind
will significantly improve performance. At the low-end, thetwo
perform the same since the two approaches result in identical
behavior for the special caseα = 1. However, the sweet-spot
for strict parallelism (α = 3) is significantly better than the
sweet-spot for loose parallelism.

In summary, these observations show that strict parallelism
with α = 3 is a good choice for the current Kad network.
Higher values ofα and loose parallelism substantially increase
overhead without much change in performance. Also, Figure 5
provides strong evidence for the correctness of our analysis in
Section III.

Comparing with eMule: As part of creating kLookup, we
also attempted to exactly reimplement eMule 0.46a’s lookup
algorithm. We validated this mode of kLookup by extending
tcpdump to decode Kad packets and performing lookups for
the same key using kLookup and eMule itself to verify their
similarity. In the process of implementing eMule’s lookup algo-
rithm, we discovered a few bugs [17]–[19] which significantly
degrade its efficiency7.

As part of our study, we wanted to compare the performance
of eMule’s current lookup algorithm with and without the bugs,
in the hope that it will be of use to the eMule developers.
Again, we examine performance in terms of hops and latency,
and overhead in terms of the number of messages. These
experiments are based on more than one-thousand experiments
using kLookup from unique, randomly-selected sources and
destinations. With the bugs fixed, eMule’s lookup algorithm
is α = 3 with loose parallelism.

Figure 7(a) presents a CDF of the number of hops to perform
a lookup. The mean value is 3.59, somewhat worse than our
analytically predicted value of 2.91. Without bugs, the number
of hops drops to 3.08, which is closer to our predicted lower-
bound. Figure 7(b) shows the latency of the two versions. In
both cases, there is a significant tail (not shown) out to around
70 seconds. We see that the fixed version improves by around
1 second in most cases. The most striking difference however

7Our results are based on eMule version 0.46a, the most recentversion
available at the time of our study. We have been corresponding with the eMule
developer team regarding these discoveries, and at least some of the reported
bugs were corrected in 0.46b.
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is in the overhead, as shown in 7(c). The fixed version uses
roughly half as many messages on average.

VI. I MPROVING LOOKUP CONSISTENCY

Ideally, each peer in a DHT is responsible for a certain part of
the DHT identifier space and lookups for any identifier should
lead to the responsible peer. In practice, peer churn causestwo
types of inaccuracies in routing tables:

1) Peers may not yet have pointers to a recently arrived peer
2) Peers may have stale pointers to a recently departed peer

When routing tables are incorrect, it is possible for some
parts of the identifier space to be unreachable for some peers.
The extent of these problems is determined by how frequently
the DHT validates its pointers, known as route stabilization [1],
compared to the rate of churn in the system. One approach
to minimize these problems is to increase the frequency of
route stabilization. However, this significantly increases the
bandwidth required for route maintenance.

A. Content Replication

An alternative approach is to map each identifier to the set
of thec closest peers in the identifier space, rather than to only
the single closest peer. The publishing operation performsa
regular lookup, then searches the surrounding area to find the
closestc peers. The search operation does the same, and as long
as the two find any peer in common the search will succeed.
Kademlia [4] takes this approach as a basic principle; however,
it can be used in almost any DHT. For example, DHash [8]
implements this technique over Chord. The parameterc must
be chosen based on knowledge of the degree of routing table
inaccuracy, to guarantee with high likelihood that multiple
lookups will be able to find peers in common.

The key question is:what is the right value ofc to guarantee
a certain level of reliabilityp? In the following subsection, we
use empirical techniques to answer this question for Kad.

B. Evaluating Lookup Consistency

To explore lookup consistency, we extended kLookup to
locate thec closest points after its regular search has completed.
To get an empirical measure forp, we use kLookup to perform
50 lookups to the same key, each from a different and random
starting point in the Kad network. The first lookup emulates

a publish operation which returns a set of peers to publish
on. The following lookups to the same key emulate query
operations, returning a set of peers in response to the actual
query. Computing the fraction of queries that successfullyfind
one of the target peers yields an empirical measure of the
consistency,p, for that experiment. We perform the lookups as
concurrently as possible to limit the effects of peer departure
and arrival. For these experiments, we used strict parallelism
with α = 3. We conducted this experiment 20 times for each
value of c in the interval[1, 10] (i.e., 1000 lookups per value
of c: 20 experiments and 50 lookups per experiment).

We observed that forc = 1, the consistency is only 89%,
meaning that 11% of the time queries fail to find the same
“closest” peer as a publisher. To explore how many replicas
are needed, Figure 8(a) plotsp as a function ofc. For the
value c = 3, the consistency is over 99.9% across the twenty
50-lookup trials. Forc = 2, the consistency is in between, at
around 96%.

The above values are for findingany of the replicas. How-
ever, another issue regarding consistency is how effectively all
of the replicas can be found. If one replica can always be
located, but the others cannot be, then lookups will fail if the
one easy-to-locate replica becomes unavailable. Therefore, for
each replica we compute the number of lookups that found it,
and plot it as a CDF in Figure 8(b). An ideal curve would be
a vertical line atx = 100%, indicating that every query found
every replica. The Figure shows that the performance for the
nearby-replication method is indeed good, with roughly 50%
of queries able to find every replica, and 80–90% of queries
able to find 80% of the replicas.

In summary, our results show that locating the three closest
nodes after finding the closest peer is an effective way to cope
with routing table inconsistencies. More importantly, we show
that even routing table inconsistencies can be a considerable
problem in practice with more than 11% of lookups failing
when no replication is used.
Comparing with eMule: Currently, eMule uses a fuzzy al-
gorithm which selects several peers as part of the endpoint
set that are not necessarily the closest. In addition to our
experiments for different values ofc, we also conducted more
than 60 experiments using eMule’s algorithms for publishing
and lookup. We found that eMule’s approach produces 19



replicas on average and queries succeeds 99.9% of the time.
While robust, this is 6.3 times more replicas than simply
using c = 3. Furthermore, Figure 8(b) shows the CDF of the
percentage of all replicas each lookup found. The performance
is substantially worse than the nearest-c approach, with many
replicas being found by only a few queries. For example, 50%
of replicas could be found less than one-third of the time,
compared to just 3% forc = 3. Additionally, some replicas
were not found byany queries.

VII. R ELATED WORK

Early work on DHTs focused on introducing new DHTs [1]–
[4] that each achievedO(log n) lookup hops usingO (log n)
state per peer. Initially, it was difficult to directly compare the
performance of these DHTs, as each DHT has several tunable
parameters, which might cause them to perform better or worse
under different loads. For example, under low churn a DHT
with a large routing table will perform better since it can
achieve faster lookups and route maintenance is inexpensive.
The same DHT will perform poorly under heavy churn.

Several studies [7], [10], [20]–[23] have attempted to address
the issue of DHT performance under churn, in most cases using
a simple Poisson model for session length. However, several
measurement studies of peer-to-peer systems [24]–[28] show
that session times are dramatically different from Poisson. In
this study, we conduct experiments using the real Kad network,
i.e., under real churn.

Gummadiet al. [6] showed that DHTs can be broken into
two components: geometry (or structure) and lookup strategy.
Some DHT geometries provide greater routing flexibility than
others in terms of neighbor selection or route selection. For
example, in CAN a peer’s neighbors are precisely defined
by the geometry, while in Chord there are2i−1 options for
the ith neighbor, providing Chord substantially more flexibility
in selecting neighbors. Their results show that more flexible
systems, such as Chord and Kademlia, can achieve better
performance. We utilize their division between geometry and
lookup to study the lookup behavior in light of the geometry
of the deployed Kad network.

Jinyang Li et al. [7] developed a performance-versus-cost
framework (PVC) for comparing different DHTs. Their key
observation is that for a given bandwidth usage, there is a min-
imum lookup latency that can be achieved over the entire space
of DHT parameters, and vice versa. In PVC, they simulate
each DHT using a wide variety of parameters and plot the best
lookup latency each DHT can achieve within a given bandwidth
constraint. This allows them to compare how different DHTs
make the performance-versus-cost trade-off under a given load.
They show that using large routing tables with infrequent
stabilizations and parallel lookup achieves a better balance than
other approaches, culminating in their later development of the
Accordion DHT [5]. However, PVC can only draw conclusions
about how well the DHTs respond to the simulated workload.
While their work is useful for drawing inferences about design
trade-offs, our work is aimed at optimizing tunable parameters
in a DHT that is already deployed.

In summary, prior work on DHTs has been driven by
analysis, simulation, and limited experiments. In each case, a
model is used to approximate or estimate real-world behavior.
This paper presents experiments on a deployed DHT that has
approximately one million real users, and develops tools and
techniques for improving its performance.

VIII. C ONCLUSIONS ANDFUTURE WORK

This paper examines lookup performance over the Kad DHT
network. We analytically derive new formulas for the expected
hop count, taking into account random improvements, and
demonstrate that Kademlia’s use ofk-buckets leads to signifi-
cantly better performance than previously reported. We present
new tools, kFetch and kLookup, to characterize the accuracy
of routing tables in Kad, examine the impact of routing table
accuracy on efficiency and consistency of the lookup opera-
tion, and experimentally verify our analysis. Furthermore, we
explore two types of parallel lookup techniques and their impact
on lookup efficiency and also examine the degree of replication
needed to cope with routing inconsistency. While some of our
empirical results are specific to Kad, our analysis applies to
other prefix-matching DHTs such as Pastry and Tapestry and
could be modified to handle other DHT geometries.

In our future work, we plan to measure the bandwidth eMule
uses for route maintenance and study ways to maintain higher
quality routing information at lower cost. We also plan to
use our recent measurement-based characterization of churn in
peer-to-peer systems [29] to determine the number of replicas
needed to guarantee the availability of a piece of data within the
network. This will include a mathematical analysis of the trade-
off between republishing the data more frequently to a few
peers versus publishing infrequently to many peers, followed
by empirical experiments to validate our findings.
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