CIS 429/529

Pipeline and Hazards

Prof. Michel A. Kinsky
An Ideal Pipeline

- All objects go through the same stages
- No sharing of resources between any two stages
- Propagation delay through all pipeline stages is equal
An Ideal Pipeline

- The scheduling of an object entering the pipeline is not affected by the objects in other stages.
- These conditions generally hold for industrial assembly lines.
 - But what about an instruction pipeline?
Clock period can be reduced by dividing the execution of an instruction into multiple cycles.
• However, CPI will increase unless instructions are pipelined
How to divide the datapath

• Suppose memory is significantly slower than other stages. In particular, suppose

\[
\begin{align*}
 t_{IM} &= 10 \text{ units} \\
 t_{DM} &= 10 \text{ units} \\
 t_{ALU} &= 5 \text{ units} \\
 t_{RF} &= 1 \text{ unit} \\
 t_{RW} &= 1 \text{ unit}
\end{align*}
\]

• Since the slowest stage determines the clock, it may be possible to combine some stages without any loss of performance.
Alternative Pipelining

\[t_C > \max \{ t_{IM}, t_{RF} + t_{ALU}, t_{DM} + t_{RW} \} = t_{DM} + t_{RW} \]

- Write-back stage takes much less time than other stages

Diagram showing the pipelining stages:
- Fetch phase
- Decode & Reg-fetch phase
- Execute phase
- Memory phase
- Write-back phase
5-Stage Pipelined

\[\begin{align*}
\text{time} & \quad t0 & \quad t1 & \quad t2 & \quad t3 & \quad t4 & \quad t5 & \quad t6 & \quad t7 & \ldots \\
\text{instruction1} & \quad \text{IF}_1 & \quad \text{ID}_1 & \quad \text{EX}_1 & \quad \text{MA}_1 & \quad \text{WB}_1 & \quad \text{IF}_2 & \quad \text{ID}_2 & \quad \text{EX}_2 & \quad \text{MA}_2 & \quad \text{WB}_2 & \quad \text{IF}_3 & \quad \text{ID}_3 & \quad \text{EX}_3 & \quad \text{MA}_3 & \quad \text{WB}_3 & \quad \text{IF}_4 & \quad \text{ID}_4 & \quad \text{EX}_4 & \quad \text{MA}_4 & \quad \text{WB}_4 & \quad \text{IF}_5 & \quad \text{ID}_5 & \quad \text{EX}_5 & \quad \text{MA}_5 & \quad \text{WB}_5 \\
\end{align*} \]
5-Stage Pipelined Execution

Resources

- **IF**
- **ID**
- **EX**
- **MA**
- **WB**

Time

<table>
<thead>
<tr>
<th></th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>t5</th>
<th>t6</th>
<th>t7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF</td>
<td>I₁</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>I₁</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>I₁</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
<td>I₄</td>
<td>I₅</td>
<td>I₄</td>
<td>I₅</td>
</tr>
<tr>
<td>MA</td>
<td>I₁</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
</tr>
<tr>
<td>WB</td>
<td>I₁</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
<td>I₂</td>
<td>I₃</td>
<td>I₄</td>
<td>I₅</td>
</tr>
</tbody>
</table>
• Not quite correct!
Pipelined MIPS Datapath

• What else is needed?
Instruction Interactions

- An instruction in the pipeline may need a resource being used by another instruction in the pipeline
 - structural hazard

- An instruction may depend on something produced by an earlier instruction
 - Dependence may be for a data calculation
 - data hazard
 - Dependence may be for calculating the next address
 - control hazard (branches, interrupts)
Data Hazards

r1 ← r0 + 10
r4 ← r1 + 17

...
Next Class

- Hazard Resolution