Assignment 5

due Wednesday, February 17, 2016

For the problems below, just give a description of the subproblem and a recurrence relation for the optimal solution value. There is no need to write any code (and none is desired).

1. chapter 6, exercise 10, pp 321-322

2. Consider the following version of the sequence alignment problem. In converting $X = X_1X_2 \ldots X_n$ to $Y = Y_1Y_2 \ldots Y_m$ there are various fixed costs:
 - d is the cost to delete a character from X
 - s is the cost to insert a character of Y
 - m is the cost to match two identical characters of X and Y
 - r is the cost to replace a character of X with a different one from Y

 (a) Give a subproblem and recurrence to find the least cost to convert X to Y
 (b) What values assigned to (d, s, m, r) describe the Edit Distance problem (from the Dasgupta et al text, section 6.3, p 174)?
 (c) What values assigned to (d, s, m, r) describe the Longest Common Subsequence problem - look online for problem definition? (Hint: use some negative numbers.)

3. (exercise 6.23, p 196, from DPV) A mission-critical production system has n stages that have to be performed sequentially; stage i is performed by machine M_i. Each machine M_i has a probability r_i of functioning reliably and a probability $1 - r_i$ of failing (and the failures are independent). Therefore, if we implement each stage with a single machine, the probability that the whole system works is $r_1 \cdot r_2 \cdots r_n$. To improve this probability we add redundancy by having m_i copies of the machine M_i that performs stage i. The probability that all m_i copies fail simultaneously is only $(1 - r_i)^{m_i}$, so the probability that stage i is completed correctly is $1 - (1 - r_i)^{m_i}$ and the probability that the whole system works is $\Pi_{i=1}^{n}[1 - (1 - r_i)^{m_i}]$. Each machine M_i has a cost c_i, and there is a total budget B to buy machines. (Assume that B and the c_i are positive integers.)

 Given the probabilities r_1, r_2, \ldots, r_n, the costs c_1, c_2, \ldots, c_n, and the budget B, find the maximum reliability that can be achieved within budget B.

4. The “Bone’s Battery” problem, linked to from class page. Remember - just subproblem, recurrence, no code.