A- Fl'ogs 7 points

Last year, in the Philomath frog jumping contest, the poor orphan boy, little Timmy, lost by a
single frog width. That is, his frog jumped and landed just shy of the finish line, when Bluto's
frog hopped just beyond the finish line to win. Everyone felt so bad that they want something
done, but they don't know what.

Delores, the high school Biology teacher, discovered that individual frogs always jump the same
distance. The real trick to the frog jumping contest is making them jump faster, not further. So,
the people want a finish line that is an even multiple of the distance little Timmy's frog will
jump, so he won’t look at everyone with those sad eyes if his frog jumps just shy of the finish
line. However, Delores feels that although Bluto is big for his age and smells bad, he should not
be disadvantaged either. So, she wants a program that takes in the distance that every frog
jumps, and computes a length of course that is an even multiple of all of their jump lengths. In
particular, she wants the smallest, non-zero length that qualifies.

Delores dual majored in Math and Biology, so she reminds you of the Euclidean Algorithm for
finding GCD's because she is pretty sure you need it.

d(b)— a b=0
8L acd(h,amodb) b0
Input

The first line is a number 0 <z < 1000 which tells you how many problems follow. The line
containing each problem begins with a number 1 <m < 1000 which tells you how many frogs are
in the contest. This is followed by m integers that tell you how many centimeters each frog
jumps. A frog cannot jump more than 35 feet.

Output

For each problem, you should output the length, in centimeters, of the track that is the shortest,
non-zero length that is evenly divisible by all of the frogs' jumping length.

Sample Data

Input Output
3 72
41224364 105
3357 1320
8451012221268

B. Cannonballs 7 points

It's the zombie apocalypse! It's generally agreed that the best place to be in this event is a mall,
due to the presence of food and potential weaponry, as well as an abundance of doors that one
can close. Unfortunately, you and your friends instead find yourselves trapped in a Civil War
museum! You find that all the muskets have been filled with cement, and thus are useless as
weapons. The cannons, however, are perfectly functional, and your only hope against the
zombie horde.

Now, you need to know how many cannonballs you have, in order to best plan your next move,
and ensure that your rescue helicopter shows up at exactly the right time (it would be less
dramatic if it showed up while you still had ammunition). But the horde is approaching, and you
don't have time to count each ball! Luckily, these balls are already grouped into square
pyramids, as they did during the Civil War. Knowing the height of each pyramid, and the
number of pyramids, how many cannonballs can you fire until becoming completely overrun?

Input

The input will begin with a single integer 0<n<1000, indicating the number of problems to
follow. This will be followed by 7 lines. Each line will start with 0<m<50, the number of
pyramids, followed by m numbers 0</;<500 indicating the height of each pyramid. Each
pyramid starts with a base of A, with each layer having one fewer cannonball to each side than
the previous layer.

Output

For each line, output the total number of cannonballs that you can fire at the zombie horde.

Sample Data

Input Output
4 1
11 143
534543 5
12 50
102222222222

C1 m Cable 10 points

The Comcash Cable Co. has won the exclusive contract with the city of Eugene to provide cable
services. The satellite uplink stations are very expensive, so they want to provide a single
network of cable along each street. Also, the cable splitters are expensive, so CCC will only pay
for one splitter for each house. You can, however, split the cable as many times as needed at
each house. Obviously, they would like to use as little cable as possible, so they have hired you
to compute the amount of cable needed. Given these constraints, you can think of this problem
as the minimum length of cable needed to connect the houses into a single cable network.

In Eugene, the odd addresses are on the North or East side of the street. The even addresses are
on the South or West side of the street. Each address represents the distance in feet from the
center of the property to Willamette Street or the Willamette River, depending on whether the
street runs East-West or North-South. City regulations require that when you string cable across
the street, it must go straight across the street (i.e. perpendicular to the flow of traffic). Each
street is 30 feet across. Thus, the shortest direct path between addresses 1245 and 1350 is 135
feet: 105 feet down the street, plus 30 feet to go across the street.

Input
The first line of input is a number 0 < n < 1000 that tells you how many streets will follow. This

is followed by 7 lines of street data. The line of data corresponding to each street consists of a
number 0 < m < 100 followed by m space delineated addresses of cable subscribers.

Output

Your program should output a line for each street in the input. Your output should be how many
feet of cable are required to connect the addresses on that street.

Sample Data

Input Output

3 240 feet
5 100 101 250 195 280 175 feet
5 1031 1055 1085 1175 1176 173 feet
5 21134 21196 21155 21135 21075

--

: Notice that in the following picture, the cable stretches between houses C and E and another
i cable runs between houses D and E. You cannot split the cable halfway between C and E

. because then you would have more splitters than allotted, even though this would decrease the
i amount of cable.

CZ. Sate"ites 10 points

As in the previous problem, the Comcash Cable Co. wants you to figure out the least amount of
cable that will feed each street. However, they have added a price structure that allows certain
subscribers to be preferred subscribers. A preferred subscriber has priority on the cable. That is,
when the preferred subscriber's packets are en route, all other subscribers' packets must wait.
Obviously, there can be only one preferred subscriber on each cable run. So, although satellite
uplink stations are expensive, CCC must pay for one at each preferred subscriber's house.

The output for this problem is the same as before, but the input is slightly different. You don not
need to worry about the case where there are no preferred subscribers, because they will use your
algorithm from the previous question to figure out that street. You do not need to worry about a
street with all preferred providers, because they will all have uplink stations.

Input

The first line of input is a number 0 <z < 1000 that tells you how many streets will follow. This
is followed by 2# lines of street data, with each street requiring 2 lines of data. The first line of
data corresponding to each street consists of a number 0 <7 < 100 followed by i space delineated
addresses of regular cable subscribers. The second line of data corresponding to each street
consists of a number 0 <; < 100 followed by ; space delineated addresses of preferred cable
subscribers.

Output

Your program should output a line for each street in the input. Your output should be how many
feet of cable are required to connect the addresses on that street.

Sample Data

Input Output
146 feet
101 250 195 31 feet
100 280 184 feet

1031 1055 1085 1175
1134 1196 1155 1135 1075
1197

3
3
2
1 1176
4
5
1

--

: The following picture shows a possible configuration if houses C and D are preferred
i subscribers. Notice that the uplink stations are located at C and D, and no cable connects them.

D- RObOtS 10 points

The Company has designed a self-replicating robot. After some allotted period of time, the robot
creates two exact duplicates of itself. Each robot randomly selects a name for each of it’s
children from a list of names. The problem is that there is the possibility of duplicate names and
The Company has contracted you to implement and automated solution.

The Company wants each robot to have a last name consisting of the first letter of its parent’s
first name, followed by the first letter of his grandparent’s first names, etc. until you get to the
root or original robot. The original robot will not have a last name. You can assume that each
name will consist only of letters.

Input

The input will begin with a line consisting of an integer 0<n<1000 followed by # lines
representing n problems. Each problem will begin with an integer 0<k<512 followed by k£ names
of each robot representing the binary family tree in a level order fashion. You can assume k= 2"
for 0<m=9.

Output

For each problem, you should output k& lines with the name of each robot, first and last name, in
the order they were given to you. The first letter of each first and last name should be
capitalized.

Sample Data

Input Output

2 Peter

3 Peter Paul Mary Paul P

7 Happy Sneezy Bashful Grumpy Dopey Sleepy Doc Mary P
Happy
Sneezy H
Bashful H
Grumpy Sh
Dopey Sh
Sleepy Bh
Doc Bh

Level Order for a Complete Binary Tree

The level order for a binary tree is a list of nodes at each level from left to right. For example,
the level order list of nodes A, B, C, D, E, F, G, H, I, J, K, L, M, N, O corresponds to the
following tree.

E- Ge“es 12 points

Bioinformatics is the branch of life science that deals with the study of application of
information technology to the field of molecular biology. Common activities in bioinformatics
include mapping and analyzing DNA and protein sequences, aligning different DNA and protein
sequences to compare them and creating and viewing 3-D models of protein structures.

The primary goal of bioinformatics is to increase our understanding of biological processes.
What sets it apart from other approaches, however, is its focus on developing and applying
computationally intensive techniques (e.g., data mining, and machine learning algorithms) to
achieve this goal. Major research efforts in the field include sequence alignment, gene finding,
genome assembly, protein structure alignment, protein structure prediction, prediction of gene
expression and protein-protein interactions, genome-wide association studies and the modeling
of evolution.

Your task is to examine two strings of DNA, the base string and the desired mutation. By adding
bases and changing bases, you will return the minimum number of changes (not including
additions) to the base string.

Input

The first line is a number 0 < » < 1000 which tells you how many problems follow. Each
problem consists of two lines. Each line of the problem consists of a number 1 <m < 1000
followed by m characters of A, C, T or G with no spaces or other characters between them. The
first line is a base sequence of genetic data. The second line is the target mutation. The base
sequence will never be longer than the target mutation.

Output

For each problem, you should output the minimum number of changes required to turn the base
sequence into the desired mutation. Turning the base sequence into the desired mutation may
also involve adding letters to the base, but you do not count those additions in your result count.

Sample Data

Input Output
4 5

6 GATAGT 0
6 GCATAA 1
6 GGTTAA 2
10 GGTTAATTTA
3 CAT

5 GATAC

6 GATACA

10 GTTCAAGGGA

A related problem is the Longest Common Subsequence problem in which we want to know the
number of characters that two strings have in common in the same order. To solve the LCS
problem, we just consider deleting a letter from the first sequence or the second sequence, and
report whichever choice yields the maximum length of undeleted letters. Here is the pseudo-
code for that problem:
LCS (A, B):
if len(A) ==
return len (B)
else if len(B) ==
return len (A)
else if A[0] == [0]
return 1 + LCS(A[l..end],B[1l..end])
else
return max{LCS(A[l..end],B), LCS(A,B[l..end])}
This might compute the same codes more than once because in looking at two strings, we will
consider the sequence LCS (A[1..end],B), LCS(A[l..end],B[1l..end])and we also
consider the sequence LCS (A,B[1..end]), LCS(A[l..end],B[1l..end]). This
means the algorithm has exponential timing. To fix this, we simply add a few lines that cause us
not to recompute:
LCS (A, B):
if known (len(A), len(B))
return known (len (A),len(B))
else if len(A) ==

result = len (B)
else if len(B) == 0
result = len (A)
else if A[Q] == B[O0]
result = 1 + LCS(A[l..end],B[l..end])

else
result = max{LCS(A[l..end],B), LCS(A,B[l..end])}
known (len(A),len(B)) = result
return result
This algorithm will have much quicker running time.

F- Races 12 points

There was a race held yesterday. All of the times for the participants were recorded digitally
when the participant crossed the finish line. Before the race started, some times were recorded
separately to make sure the time recorder was working. Unfortunately, some carelessness with
the digital data resulted in the two lists of times being combined. They were combined such that
the real race times are still in the same relative order, with the text times randomly placed in the
input. You don’t know whether the race times were in increasing or decreasing order originally.

Your job is to try to recover the real list of race times. You can assume the real list is the longest
increasing or decreasing sequence of numbers in the input. All the other numbers are just test
times. For example, if you saw “15 19926 7 14 32 18 47 51 177, you would conclude that the
race times were 15 19 26 32 47 and 51, because it is the longest increasing or decreasing
sequence embedded in the list. The sequence “9 14 18 47 51” is also increasing, but not as long.
The sequence “15 9 7” is decreasing, but also not as long. Some of the runners may have
finished at the same time, so consecutive numbers that are equal may also be part of the race
timings.

Input

The first line is a number 0 <z < 1000 which tells you how many problems follow. The line
containing each problem begins with a number 1 <m < 100 followed by m positive integers less
than 10,000 representing either seconds each runner took to finish, or superfluous test data.

Output

For each problem, you should output the largest sequence of numbers that either don’t increase
or don’t decrease in order in the input data.

Sample Data

Input Output

4 57 43 43 42 37 32 17
11 1 2 57 43 3 43 42 37 4 32 17 17 32 37 42 43 43 57
11 17 32 60 59 37 42 58 57 43 43 57 57 43 43 42 37 32 17
11 1 2 3 4 57 43 43 42 37 32 17 57 43 43 42 37 32 17
7 57 43 43 42 37 32 17

