
Fourth Annual Juilfs Contest

June 2, 2012

A. Phoning it in 7 points
You and another inhabitant of your cubicle are plotting to take a small slice off every transaction

of your employer’s software processes. To hatch your scheme, you need to communicate via

email, but you don’t want the IT guys to find out what you’re up to. Your partner in crime has

developed a special system to encode your messages in normal business chatter called Telephone

Steganography.

The messages are hidden in the spaces between words in otherwise normal emails. Unlike

normal steganography, which can have really large groups of spaces, you represent a character

with two groups of spaces. The length of the first space indicates which key on a telephone

keyboard contains the letter you want. The length of the second space indicates which letter

from that key you want to write.

1 2 3 4 5 6 7 8 9

[space] ABC DEF GHI JKL MNO PQRS TUV WXYZ

For example, the email (spaces have been replaced with ▯ for clarity)

send▯▯▯▯▯me▯a▯▯▯▯new▯▯▯stapler▯▯▯▯▯▯soon▯please”

would translate to the message “JIM”

The input will consist of-a number 0 < n < 1000 representing the number of test cases, followed

by n lines containing strings of text with messages encoded using telephone steganography. The

message is guaranteed to begin and end with a word (not a space), so you can safely strip

whitespace from the beginning and end of the line.

Your output should consist of n lines containing the encoded message in all capitals.

Sample Data

Input
3

F▯▯▯▯Y▯I:▯▯▯▯▯▯all▯▯▯pets▯are▯▯▯▯▯▯to▯▯be▯▯▯▯▯▯kept▯▯▯on▯▯▯▯▯▯▯▯▯a▯leash!

You▯▯▯▯▯▯▯can’t▯▯▯▯eat▯▯▯▯▯▯▯▯in▯the▯▯▯▯▯▯2nd▯▯▯floor▯▯▯▯▯▯▯men’s▯room.

Please▯▯▯▯▯▯have▯▯your▯▯▯▯▯▯code▯▯▯submitted▯▯▯▯▯▯by▯▯▯5pm▯▯▯▯▯▯or▯▯else!!!

Output
GO NOW

STOP

NOON

B. Are you smarter than a 5
th

 grader? 7 points
Mrs. Anderson was teaching her fifth grade class about binary numbers, when disaster struck:

she lost the solution manual. So, she wants you to write a program that will output correctly

formatted binary multiplication. Binary multiplication consists of only ones and zeroes and it’s

easy to multiply by a one or a zero. In the algorithm that she taught the students, the first number

is the multiplicand and the second number is the multiplier. Starting on the right, for each 1 in

the multiplier, the student writes the multiplicand on the next available line, right-justified to that

multiplier digit. For each 0 in the multiplier, the student writes 0 on the next available line,

right-justified to that multiplier digit. After all digits in the multiplier are processed, the student

sums the products from right to left. The steps are shown in the sequence from the textbook

shown below.

1 1010  multiplicand

× 101  multiplier

2 1010

× 101  one present in multiplier

 1010 multiplicand right-justified under 1 in multiplier

3 1010

× 101  zero present in multiplier

 1010

 0  0 under 0 in multiplier

4 1010

× 101  one present in multiplier

 1010

 0

1010  multiplicand right-justified under 1 in multiplier

5 1010
× 101
 1010

 0

1010

110010  sum of partial products, final answer

The input will begin with a line with a single number

1 < n < 1000, followed by n lines representing n

multiplication problems. Each problem line will consist of

a positive binary number less than 65 bits, the letter “x”

and a second binary number less than 65 bits. The first

binary number is the multiplicand and the second binary

number is the multiplier. Your output must be correctly

lined up and have all the required symbols. For the

multiplication symbol, use the lowercase letter x. For

underlining, use dashes on a line by themselves. The

output should line up exactly like the samples below. The

multiplication symbol should be left-most on the line with

the multiplier; then numbers should line up by digit

position, and the dashes should exactly match the width of

the problem. Place a blank line after each answer.

Sample Data

Input Output

4

0x0

100x100

10x11

1001x1

 0

X0

--

 0

--

 0

 100

X 100

 0

 0

100

10000

 10

X11

 10

10

110

1001

X 1

1001

1001

C. Why Can’t We All Just Get Along? 10 points
Ontotech has moved into a new building following the fire. Unfortunately, the building manager

didn't order enough cubicle parts, so programmers will need to share. To further make life more

difficult, most of the people in the company have several enemies. Since the company doesn't

have a list of dislikes, the manager, Mr. Sterling, has decided to test new cubicle arrangements

until nobody complains. He also wants to make sure that every cubicle has at least one

programmer in it.

Several programmers have warned him that this will take a very long time to resolve if they test

every distribution of the programmers into the cubicles, leaving none of them empty.

The input will consist of a line containing an integer 0 < n < 50 that specifies the number of

problems, followed by n lines with numbers p k t l where 0 < k < 50 is the number of cubicles,

k ≤ p < 1000 is the number of programmers, 0 < t < 60 is the amount of time in minutes it takes

to rearrange all the programmers, and 0 < l < 52416000 is the maximum amount of time in

minutes the bosses are willing to let the programmers rearrange themselves.

The output will consist of n lines each containing "Too Long" if the rearrangements will take

more than the allotted time, or "Acceptable" otherwise.

Sample Data

Input Output
3

4 2 1 1000

20 16 2 1000

20 16 2 22500000

Acceptable

Too Long

Too Long

D. BART and other Calamities 12 points
You are planning to visit San Francisco with your significant other. Since you do not want to

look foolish, you do a bit of homework on how to use mass transit to move around the city. To

your amazement, you find that San Francisco is served by four independent mass transit

authorities: CalTrain, BART, city busses and streetcars. Not all of them go to each point, and

they all demand different fares. You want to plan your itinerary using the least amount of

money. So, given a list of sights, you want to figure out the least amount of money you can use

to visit all sights in order. You can transfer from one mode of transportation to another at will,

passing off the transfers as stopping to see some local attraction.

As input, you will receive four fare tables and a list of itineraries. Each fare table will begin with

a line containing a single integer 0 < n ≤ 1000, followed by n lines beginning with the starting

point and containing a space separated tuple of the destination point and the fare. All fare

amounts are in cents. Each point has at most four nearby points. The fare is always the same

going either way, so only one entry will be present for each set of points. After the four tables

are listed, there will be a line with a single number on it 0 < m ≤ 1000. This will be followed by

m lines showing sets of sites that you want to visit in order. For each itinerary, you should

output the total cost for the cheapest route using any or all of the mass transit authorities.

Sample Data

Input
4

Mission (GlenPark 125)(CivicCenter 125) (Castro 100)(ChinaTown 200)

CivicCenter (Embarcadero 130)

Embarcadero (WestOakland 150)

GlenPark (BalboaPark 75)

3

Castro (GlenPark 40)(GoldenGatePark 120)

ChinaTown (CivicCenter 30)(Mission 110)

GoldenGatePark(Embarcadero 120)

1

BalboaPark (Mission 30)

3

Castro (GoldenGatePark 260)

ChinaTown (Castro 300)

GoldenGatePark (ChinaTown 270)

3

GlenPark WestOakland Embarcadero

BalboaPark Castro ChinaTown GoldenGatePark

CivicCenter Mission Embarcadero

Output
580

595

380

Recall that the algorithm for computing total weight from starting vertex to destination vertex,

given the weight matrix is as follows:

input(starting vertex, destination vertex, weight)

 x, tw(x)  ∞

tw(starting vertex)  0

finished vertices  Ø

current vertex  starting vertex

while destination vertex  finished vertices
for each neighbor of current vertex

if tw(current vertex) + weight(current vertex, neighbor) < tw(neighbor)

then tw(neighbor)  tw(current vertex) + weight(current vertex, neighbor)

finished vertices  finished vertices  {current vertex}

current vertex  vertex with shortest tw value that is not in finished vertices
output tw(destination vertex)

E. Same Old Same Old 12 points
At the Juilfs contest planning meeting, Jim said, “I have put the minimum spanning tree problem

in the contest every year, and I will keep doing that until somebody solves it!” So, your job is to

make sure this problem doesn’t show up next year.

As input, you will receive a graph with weighted edges. You

are supposed to find a minimum spanning tree for the graph.

Recall that a spanning tree is a subgraph with no cycles that

allows you to get from any point to any other point. A

minimum spanning tree is a spanning tree with total edge

weights less than or equal to any other spanning tree for that

graph.

The general algorithm is to consider the edges one by one. If

the edge belongs in the MST, then keep it. If the edge does not

belong in the MST, then throw it out. The order that you

should consider the edges in, and the way you determine if it is

needed varies according to the three methods you learned in

Discrete Math.

For a complete graph (a graph with edges between every pair of vertices), it is only necessary

that you have the lower triangular distance matrix. First, we give the number of vertices,

followed by the lower triangular weight matrix. For example, the input on the left represents the

weight matrix on the right:

4

1

2 3

4 5 6

 A B C D

A 0 1 2 4

B 1 0 3 5

C 2 3 0 6

D 4 5 6 0

In this case, the MST connects vertices B, C and D

through vertex A, so the total distance is 7.

The input will consist of a single number 0 < n < 100

indicating the number of problems. Each problem

begins with a line containing a single number 0 < m <

1000, indicating the number of vertices. This is

followed by m–1 lines of data. For each problem, you

should output a single number on a line by itself

indicating the weight of the MST.

2

6

D

C

B

A
1

3

4
5

Sample Data

Input Output
3

4

2

1 3

3 1 2

5

2

2 2

2 1 2

2 2 1 1

6

10

1 5

5 1 4

2 5 1 4

5 2 4 1 3

4

5

7

