What is WaveGrid?

A hybrid of desktop grid systems and peer-to-peer networks, taking the best from both worlds

- A lightweight Internet-wide cycle sharing system
- Self-organized using P2P principles
- Allows anyone to submit tasks
- Allows anyone to donate cycles
- Non-intrusive so people are willing to use it

What are the Challenges?

- Scalable discovery of idle hosts without central server as in SETI@Home; without institutional infrastructure as in Condor.
 - Large number of hosts
 - Unknown network topology
- Scheduling for Fast turnaround time when faced with volatile resources and imprecise resource information
 - Peers join and leave dynamically
 - Hosts withdraw cycles at any time

Fast Turnaround Scheduling in WaveGrid

- Organize host according to geographic information
- Timezone-aware resource discovery
- Migration from busy host to idle host

Job failure rate for single scheduling attempt (no retry)

30

Percentage of Host Available Time during Daytime(%)

http://ccof.cs.uoregon.edu/

WaveGrid : A Self-organized Desktop Grid System for Fast Turnaround

WaveGrid Preliminary Simulation Study

- Evaluate the performance of WaveGrid
- Compare the performance of migration schemes to nomigration scheme
- Evaluate the performances of different migration strategies

Where to migrate			(Or ii
Random Host	Migration- immediate	Migration- linger	Mig
Night-time Host	Wave- immediate	Wave- Linger	Way
Adaptive (Only use a random hosts when no available night-			Way
Night- Adapti andoi no ava ime h	time Host ive (Only use a n hosts when ilable night- osts)	immediatetime HostWave- immediateive (Only use a m hosts when ilable night- osts)	immediatelingertime HostWave- immediateWave- Lingerive (Only use a m hosts when ilable night- osts)

Metrics

- % of jobs that fail to complete (job failure rate): # of jobs failed with first scheduling attempts over the total # of jobs submitted to the system.
- Average slowdown factor: turnaround time of the job over the job runtime (time to complete execution on a dedicated machine)
- Average number of migrations per job: # of times a job migrates during its lifetime in the system, averaged over all job that successfully complete execution

Conclusion

WaveGrid outperforms the others with low slowdown and minimal number of migrations.

