
Scalable Peer-to-Peer 
Event Ordering

Existing Research only provides 
Partial Solutions

Peer-to-Peer structures, such as DHTs and other 
unstructured overlays, provide a mapping from the key 
space to the application space for efficient searching

Scalable in the number of nodes and searches are fast
However, this mapping does not directly help in event 
ordering

Application-Layer Multicast (ALM) provides fast and 
efficient one-to-many communication

Totally-ordered, reliable multicast solves the event 
ordering problem, in fact, but it's not scalable

Our Solution
What is an N-Tree?  

  Basis: a Leaf
  Inductive case: a Node with 2N children, 

each an N-Tree

  Example (a 2-tree):

The N-Tree maps to an N-dimensional space, 
where each dimension corresponds to an ordered 
set of values in the application. Peers locate 
themselves in the tree according to which values 
they are interested in. The 2-Tree above 
corresponds to this 2-dimensional cartesian grid.

Map the application state 
space to an N-dimensional 
Tree (called an N-Tree).

Organize peers based on 
their location, or area of 
interest, in the state space.

Is Scalable Event Ordering in Peer-to-Peer 
Systems Possible?

Event ordering is a fundamental operation required in 
many distributed systems, for example:

Interactive, multi-player games
Distributed simulations
Online stock-trading
Gibson'esque virtual reality (The Matrix)

The sheer scope of these distributed systems makes 
traditional event-ordering algorithms very hard

Paxos algorithm requires up to 5 rounds of 
communication
Naïve implementation would take O(n2) messages

Event Ordering with an N-Tree
Tree operations:

Systems reside at the leaves of the N-Tree and use traditional 
event ordering protocols with other members of the leaf. 
A leaf is subdivided whenever it has too many residents and 
branches are collapsed when the population is lower than a given 
threshold.

Event Ordering:
Events include a scope, which is a function that defines the subset 
of the application state space affected by the event.
Events are propagated through the tree to the correct branches.
The larger the scope of an event, the longer it takes to totally 
order in the system.
We can bound the event-ordering delay by the longest path 
between two nodes in the N-Tree that an event must reach. Chris GauthierDickey and Virginia Lo

Advantages of N-Trees

1) N-Trees have reasonable 
asymptotic messaging costs: 

p=number of peers, h=height of tree, 
n=number of nodes, d=2N, or 
dimension of tree.

2) Peers are organized in 
the tree so that they 
exchange event messages 
with only those close by, 
avoiding needless 
messaging by event 
ordering protocols.

3) Events exceeding the 
scope of a leaf are quickly 
propagated through the 
tree, reducing event 
ordering delays.

How Well Do N-Trees Really Work?
The performance of N-Trees is based on the distribution of the areas 
of interest in an application state space.

Uniform distribution results in the best performance because the N-Tree is 
balanced.

Simulation Results
In order to determine the performance, we need to measure how long any path 
in the N-Tree is between two nodes.

This path determines how long it takes for events to propagate from one 
node to another, and therefore be ordered.
N-Trees are not balanced, therefore pathologic cases can be bad. 

Summary and Conclusion
Scalable Peer-to-Peer Event Ordering is possible by using 
hierarchy and event scoping. 
N-Trees efficiently map systems to their scope of interest 
in the application state space, allowing events to be 
propagated quickly between peers.
N-Trees perform well theoretically, and optimally when 
systems are distributed in a uniform manner.
Our simulation results verify that N-Trees work well for 
event ordering. In particular, they show that N-Trees also 
perform well when systems are distributed by power-laws.

As future work, we plan to continue to study other metrics 
to measure the utility of N-Trees with event ordering. 

Operation Distribution of Peers
Uniform Pathalogical

New Member Join O(lg p) + O(h) O(lg p)
Move to New Node O(h) O(logdn)

Amortized Movement O(1) O(logdn)
Leave O(1) O(1)

Collapse Branch O(1) O(1)
Subdivide Leaf O(1) O(1)

Event Propagation O(h) O(logdn)

In our experiments, we test the performance of N-Trees 
used for mutiplayer, interactive games. A visualization 
of the simulation is shown on the right.

Red dots represent hot-spots, which are places 
players are more likely to be located.
Blue dots are players.
Green lines are the divisions of the N-Tree (2 
dimensional in this case).

Players choose locations based on a Zipf (power-law) 
distribution and move to their chosen location.
Over a period of time, the players wander around within 
the vicinity of their hot-spot and then choose a new hot-
spot to travel to.
 We calculate the resulting N-Tree to determine how 
well it performs for event ordering.

 Histograms show that the 
majority of path lengths are 
short, especially in 
comparison to the number of 
players. Even though some of 
the path lengths are several 
hops, we expect that most 
events will actually be local, 
and therefore totally ordered 
at the leaves without being 
propagated in the tree.

 Maximum average 
path lengths are also 
small, considering the 
number of players!


