
�e Evolution of Minimal Specificity
To answer this question, I simulated boolean logic circuits to model binding interactions between 
proteins and ligands.  I then applied a genetic algorithm to examine the evolutionary behavior of 
binding specificity.  My results are consistent with the hypothesis that minimal specifity is an 
emergent property of evolution, but I also observed that minimal specificity can be thwarted when 
promiscuous ligands appear in the environment.
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Evolutionary biologists often observe that 
living systems evolve “only as much as they need to” in 
response to environmental changes.  For example, some 
proteins bind ligands — i.e., small organic molecules — using 
ligand-binding surfaces with a minimal number of chemical 
bonds to disambiguate particular target ligands from other 
environmental ligands.  In other words, some proteins are 
minimally specific for their target ligands.  Is minimal 
specificity an emergent property of evolution?  If so, under 
what conditions do these minimal interactions evolve?

Do protein interactions evolve towards minimal specificity?  

Protein behavior is notoriously challenging to simulate because the number of biophysical interactions within a 
single protein often exceed the limits of computational tractability.  As an alternative, I modeled proteins as 
boolean logic circuits and I modeled ligands as binary strings.  If a “protein” returns the value true for a given 
“ligand,” then we say this protein positively binds this ligand.  Furthermore, each protein can be encoded in a 
binary genome, and a population of genomes can be evolved using a genetic algorithm to select those individuals 
with fitness for binding a particular target ligand.  �is model is inspired by previous work  from Uri Alon’s lab 
[refs 2,3,4,5].

�e Model

�e idea of specificity was introduced in the artificial intelligence community during research into fuzzy logic 
[refs 6,7].  Specificity measures the degree to which a fuzzy set points to only one element as its member.  
A fuzzy set is minimally specific [refs 8,9] if and only if: 
  (1) the set points to only one element
  (2) the set uses a minimum number of logic rules to positively identify the single element.

My key insight is that ligand-binding surfaces demonstrate fuzzy logic to discriminate between ligands.  A surface 
might partially-bind many different ligands, but fully-binds only a few particular ligands.  A ligand-binding 
surface is said to be specific if it binds only one target ligand.  Inversely, a ligand-binding surface is promiscuous 
if it positively binds several ligands.

In terms of our model, a simulated “protein” is minimally specific if (1) it returns true for the target ligand and 
false for all other ligands, and (2) the protein’s internal circuit architecture computes the true/false outcome using 
a minimum number of logic gates.

Minimal Specificity

[1] (image from...) Bolton, W., Perutz, M.F. (1970) �ree dimensional fourier synthesis of horse deoxyhaemoglobin at 2.8 Angstrom units resolution. 
Nature 228: 551-552 doi:10.2210/pdb2dhb/pdb
[2] “Spontaneous Evolution of Modularity and Network Motifs.” Kashtan and Alon., Proceedings of the National Academy of Science, 2005.
[3] “Varying Environments can Speed Up Evolution.” Kashtan et al., Proceedings of the National Academy of Science, 2007.
[4] “Facilitated Variation: How Evolution Learns from Past Environments to Generalize to New Envrionments.” Parter et al., 
 PLoS Computational Biology, 2008
[5] “Extinctions in Heterogenous Environments and the Evolution of Modularity.” Kashtan et al., Evolution, 2009.
[6] “A Mathematical �eory of Evidence.” Shafer, Princeton University Press, 1976.
[7] “Entropy and Specificity in a Mathemtical �eory of Evidence.” R.R. Yager, International Journal of General Systems, 1983, 9:249-260
[8] “�e Principle of Minimum Specificity as a Basis for Evidential Reasoning.” Dubois and Prade, 
 Uncertainty in Knowledge-Based Systems, Springer-Verlag, 1986.
[9] “A Set-�eoretic View of Belief Functions.” Dubois and Prade, Studies in Fuzziness and Soft-Computing.  Springer-Verlag, 1986.

References

 I observed that a population of simulated 
proteins can indeed evolve to find a minimally 
specific binding solution.  Here the population 
converged on one of several possible three-gate 
solutions; for this problem, three gates is the 
minimum required to disambiguate the target ligand 
from the other non-target ligands.

Ligand-binding, an example: I used a genetic algorithm to 
evolve a population of 1000 proteins to bind the 
target ligand `10110110’ against 19 other non-target 
ligands.  �e fitness of a single protein was meausred 
as the inverse proportion of non-target ligands 
bound.  I used a crossover recombination strategy and 
also randomly mutated 10% of genome sites at each 
generation.

false

= AND (00)
= OR (01)
= NAND (10)
= XNOR (11) 00 0000 0010 11 1010 1011

01 0010 0100 10 1001 1100
01 0100 0101 10 1000 1010
11 0101 0110 00 1010 1110
 1101

“An OR gate reads input from 
address 2 and address 4.”

Ligands are modeled 
as 8-bit binary strings.

Our model allows four 
types of gates, each with a 
unique binary encoding:

�is circuit is encoded as a binary 
genome.  Each gate is 10 bits: 
one 2-bit gate type and two 4-bit 
input addresses:

If the circuit returns true for a given 
ligand, then we say the ligand is bound by 
this particular protein.  In this example, 

the circuit returns false.

“�e final output comes 
from address 13.”

Some ligand addresses might 
not be read, depending on the 
circuit’s architecture.

Not all gates are necessarily 
involved in computing the 

final output; this circuit 
evolved a “dead end.”

Loops and other curious 
features can emerge from 
evolutionary stochasticity.

In this example, only three gates are 
functional.  However, the circuit archi-
tecture will change if the genome is 
mutated duing the genetic algorithm.

Proteins are modeled as
boolean logic circuits.
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I then introduced a novel ligand (`10100110’) that 
was promiscuously bound by the population at 
generation 200.  At this point, the population was no 
longer minimally specific because the evolved logic 
circuitry could not disambiguate between the novel 
ligand and the true target ligand.  Furthermore, the 
population was effectively trapped on a local fitness 
minima; to find a new minimally specific solution, the 
population must accumulate a series of extremely low 
probability neutral mutations.

�is scenario demonstrates why some living systems 
struggle to evolutionarily adapt to radical biochemical 
environmental changes, such as the introduction of 
man-made exogenous chemicals.
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mean number of ligands bound
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+`10100110’ �e population is binding both the true ligand and the novel ligand.

Heme is a ligand, circulating in your bloodstream. 
Hemoglobin is a protein that forms a covalent bond with

 heme ligands.  Hemoglobin uses the iron atom
in the heme to attract oxygen 

so we can breath.

heme (shown in dark pink) binds 
to hemoglobin in small binding pockets.

chemical structure of heme

[ref 1]
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