
Who Do You Think I Am?
Detecting Sophisticated Computer Attacks via USB
Lara Letaw & Kevin Butler
University of Oregon OSIRIS Lab
{zephron,butler}@cs.uoregon.edu

Attempts at improving computer security are often software-based, such as
anti-virus and �rewall programs. Since these services assume integrity of the
operating system, some attacks are beyond the scope of the software’s protec-
tion mechanisms. Examples of these types of attacks include:

Virtual-machine-based rootkits (VMBRs): Rootkits that avoid detection by
isolating the host operating system (and all software) in a virtual machine.

Screen-spoo�ng: The computer interface is replaced with an interface that is
identical or nearly-identical in appearance and operation, but which is actually
under the adversary's control.

How can we detect that attacks of this type have occurred?

We hypothesize that analysis of USB tra�c can,
in some cases, reveal a compromised system.

Why is this hypothesis reasonable?
Each computer has a set of hardware,
�rmware, and software for communi-
cating with USB devices (the USB
stack). Each component is complex,
and the USB stack di�ers across com-
puter types. Therefore, if any of these
components are replaced, relocated,
or modi�ed, we would expect to see
di�erences in the nature and timing of
USB transactions.

Left: USB �ow diagram for a mass storage
device. We look at the time intervals between
high-level enumeration steps (shown in the dia-

gram), and also �ne-grained timing data within

each step (such as time between PING retries).

Below: Decision tree showing the classi�cation of 12 computer types and 6 representations of
compromised systems. Four USB timing attributes were identi�ed and used to distinguish be-
tween computers: duration of Suspend state (milliseconds), duration of Reset state (milliseconds),
time between IN transaction retries (microseconds), and variance in the time between retries
(microseconds).

Experiment
1. Using a USB analyzer and a collection of USB devices, we �rst determine the
expected USB tra�c between a computer and each device. We sample data
from 30 di�erent machines of 12 di�erent types. Machines are said to be of the
same type if they are running the same operating system and have the same
model identi�er. We also try multiple device types: human interface (USB 1.1
mouse), mass storage (USB 2.0 thumb drive), and video (USB 2.0 webcam). Our
�nal data set contains 1102 4-dimensional points of timing data. After observ-
ing that use of the thumb drive resulted in the largest and most stable set of
USB transactions, the thumb drive became our sole test device. Thus, our data
set total does not include the webcam or mouse.

The USB analyzer monitors the connection be-
tween the device and the test computer. The
observed transactions are sent to analysis
software on a second computer.

2. We then change a component of the computer (this is how we simulate an
adversary) and see if the USB tra�c changes. We use VMWare to launch virtual
Windows (within Windows) and Ubuntu (within Ubuntu) on some of the com-
puters, and again examine the USB tra�c. This corresponds to the VMBR
attack. We also examine the e�ects of launching the operating system from a
Live CD. This corresponds to the screen-spoo�ng attack.

Results
1. USB tra�c is consistent between computers of the same type. This means
we have an expected USB �ngerprint for each computer type we examined.

Above: Cross-validation of three classi�cation techniques: Naive Bayes, decision trees, and k-
nearest-neighbors (with k=7, 8, 9, and 10). High accuracy, information score (IS), and area
under ROC curve (AUC), and low Brier Score indicate that the technique is successful at classi-
fying our data.

2. USB tra�c di�ers between computers of di�erent types, and is also di�erent
for machines running a virtual machine or Live CD. This means we may be able
to detect that a sophisticated attack has taken place.

Future Work
Our work is just beginning. We want to look at many other computer types, and
simulate more attacks. For example, we want to know if we can detect a “cuck-
coo” attack, which happens when user commands are redirected to and pro-
cessed by a remote computer that is under the control of the adversary.

simulate more attacks. For example, we want to know if we can detect a “cuck-
coo” attack, which happens when user commands are redirected to and pro-
cessed by a remote computer that is under the control of the adversary.

simulate more attacks. For example, we want to know if we can detect a “cuck-


































































































 







 









 



 



 



 



 



 



 



 



























 



 

























2

OS X
Linux
Windows

Learner Accuracy IS Brier AUC
Naïve Bayes 0.902 3.097 0.140 0.989
Decision Tree 0.978 3.354 0.042 0.999
KNN(10) 0.955 3.310 0.070 0.998
KNN(9) 0.955 3.308 0.070 0.998
KNN(8) 0.961 3.304 0.071 0.998
KNN(7) 0.955 3.298 0.072 0.998

Host Device

Reset

HS Detection HandshakeHS Detection HandshakeHS Detection Handshak

Set Address (n)

ACK

Descriptors (Vendor IDDescriptors (Vendor IDDescriptors (V , Pr, Pr, oduct ID)

GetDescriptor (Interface)

Descriptors (mass storage, BBB), BBB),

READ10 (LUN, LBLUN, LBLUN, As)

Response (data, statusdata, statusdata,)

GetDescriptor (Device)

Background artwork courtesy of Sèanar Letaw.

