

Secure Function Evaluation in Mobile Environments
Benjamin Mood and Kevin Butler University of Oregon

Secure Function Evaluation

FairplayAN

Optimization

Results

Future Work

0

100

200

300

400

500

600

700

Circuit Distribution Choose &
Verification

Oblivious Transfer Circuit Evaluation

 T
im

e
in

 M
ill

is
ec

on
ds

Results from 100 tests of of Java, C, or NEON

Java
C
NEON

Cellphones are prevalent and smartphones are increasingly
common. Phones are increasingly being used for common tasks
such as browsing the web, email, and e-commerce. However,
privacy mechanisms for phones are still developing. Consider if
someone was conducting an auction on their phone. They want to
prevent the identity of the person who won the auction from being
known. The solution is secure function evaluation.

Secure function evaluation (SFE) is the cryptographic means to
compute a function with two or more people's input while
preserving privacy by not revealing data to any other party.

The most common implementation of SFE is garbled circuits.
Any program can be represented as a garbled circuit. Garbled
circuits are a way of hiding the output by masking the wires for
the gates for the virtual circuit. Instead of one or zero, the wires
are renamed by using the SHA-1 hash function to mask what they
contain. However, using the SHA-1 hash function is
computationally intensive. This is a particular problem for mobile
processors due to their computing and battery constraints.

We used an implementation of garbled circuits called Fairplay.
The Fairplay compiler provides a means for generating and
evaluating garbled circuits. Fairplay takes a text file in the Secure
Function Definition Language (SFDL) and compiles it into a
circuit which Fairplay can then run. The same program is run by
both parties involved.

We developed FairplayAN, an Android
application created from the original Java
code of Fairplay. We ported the code to
Android and modified the input and output
interfaces to assume operational usability
of the code.

We observed that generating and evaluating circuits was slow
compared to a PC. We profiled the code and saw there were parts
of the program which were computationally intense. Notably, one
of these areas was evaluating SHA-1. We deployed a SHA-1
function written in C in an attempt to circumvent inefficiencies
from the Java middleware.

Recent phone processors have vector coprocessors capable of
single instruction multiple data (SIMD) operations. We made the
app SIMD capable. The SIMD instruction set used by Android
phones is called NEON, which allows for up to four
precalculations done at the same time; this parallelism reduces the
time for SHA-1 calculations. The figure below shows one
example of differences in the code. Although the NEON code is
longer and more complex, the ability to run four calculations
concurrently outweighs increases length.

Both the verifying and evaluation parts of the program where
SHA-1 is used show improvement. The time required for circuit
verification decreased by 5.2% for the C version and 9.2% for the
NEON version. The circuit evaluation time decreased by 14.5%
for the C version and 17.8% for the NEON version. No
improvement was expected in the other areas of the program. The
times were highly variable in the total due to network latency. We
are exploring solutions to reduce this variability.

We are aiming to continue optimizing the app by targeting the
file reading section next. We believe that rewriting the input
functions as native code will increase performance.

One the main difficulties with taking a normal program to the
current mobile environment is the lack of dedicated memory to
given the program. We hope to optimize the compiler to be
memory friendly and work with complex programs on the phone.

For our evaluation we split the program times into four sections:
1. Circuit distribution, 2. Circuit choosing and verifying, 3.
Oblivious transfer, and 4. Circuit evaluation.

/*
 * Check which of two Billionaires is richer
 */
program Billionaires {
 type int = Int<32>; // 32-bit integer
 type AliceInput = int;
 type BobInput = int;
 type AliceOutput = Boolean;
 type BobOutput = Boolean;
 type Output = struct {AliceOutput alice, BobOutput bob};
 type Input = struct {AliceInput alice, BobInput bob};

 function Output output(Input input) {
 output.alice = (input.alice > input.bob);
 output.bob = (input.bob > input.alice);
 }
}

SFDL example: Billionaires program

G

0

1

0
Normal gate

G

A9…F

3F…7

2E…C
Garbled gate

0
400
800

1200
1600
2000
2400

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
in

 M
ill

is
ec

on
ds

Runs

Total Execution Time

Java
C
NEON

vld1.32 {d6-d7}, [r1]
vld1.32 {d2-d3}, [r4]
add r4, sp, #232 ; 0xe8
vld1.32 {d4-d5}, [r4]
veor q1, q1, q2
vld1.32 {d4-d5}, [r2]
veor q2, q2, q3
veor q1, q1, q2
vshl.s32 q2, q1, #2
vand q1, q1, q0
vshr.u32 q1, q1, #30
vorr q1, q2, q1
vmov.32 r1, d2[0]
str r1, [sp, #296]
vmov.32 r1, d2[1]
str r1, [sp, #300]
vmov.32 r1, d3[0]
str r1, [sp, #304]
vmov.32 r1, d3[1]
str r1, [sp, #308]

ldr r2, [sp, #8]
ldr r3, [sp, #52]
eor.w r2, r2, r3
ldr r3, [sp, #28]
eor.w r2, r2, r3
ldr r3, [sp, #20]
eor.w r3, r2, r3
str r3, [sp, #92]
ldr r3, [sp, #92]
mov.w r3, r3, ror #31
str r3, [sp, #20]

C NEON

Alice
AliceInput = 1000
Output.alice: 0

Bob
BobInput = 1001
Output.bob: 1

Alice
AliceInput = 1001
Output.alice: 1

Bob
BobInput = 1000
Output.bob: 0

Alice
AliceInput = 1000
Output.alice: 0

Bob
BobInput = 1000
Output.bob: 0

Sample runs
If these values were entered

