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Abstract

Many real-world domains, such as web spam, auction fraud, and counter- Features: Features are the number of true groundings of each of the - : : We define the Antagonistic Regularized MLE Cost
terrorism, are both relational and adversarial. Existing work on adversarial - L As an example, we can represent the important relationships L .
ISTh, Sares % - 4 2 first order formulas in the MLN. Let ¢x be the feature - - - , Optimization Problem as:
machine learning assumes that the features for each example can be manipulated , : in web spam using the following first order formulas:
independently. Collective classification violates this assumption, since object corresponding to the learner's kth formula. In vector format, let : _ T tr((z — o)T(E — @)
labels depend on the attributes or labels of related objects as well as their own $L = [¢L HL ]T A ! Linked(pi, p]) ° Spam(pi) => Spam(p]) ) = TEE SR = e Se ol 2
attributes. In this poster, we formulate adversarial collective classification as a 1>+ Pl . Analogously, let ¢“ be the adversary's feature LinkediBE ril MasHordiEt Tul = SaRien subject to & < 1
game between a learner and an adversary in which the learner selects a relational vector, constructed from the adversary's formulas. AT LR R e R =23 .
classifier and the adversary selects a transformation of the data. We present an . . . . . HasWord (pi, +w) => Spam(pi) =
algorithm to find a Nash equilibrium in the special case of an antagonistic (zero- PDF’s: The joint probability density function of estimated values of which the learner tries to maximize over w and the adversary

sum) game where the learner's reward 1s a regularized conditional log likelihood.
We compare our approach experimentally to non-adversarial Markov logic
networks and non-relational adversarial classifiers on simulated data.

X,y given the true values can be factorized as: tries to minimize over &L . Since the program is not convex

We can use these to construct an MLN, a log-linear model in with respect to the adversary’s action, the existence of a

which the features are the true counts of each formula.

unique Nash equilibrium is not guaranteed.
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e Many domains are both relational and adversarial: Nash EqU.lhbrlum
— Web spam According to the MLDN framework we’ll need to maximize the
_ S 0 cial network Spam lltlllty Of each player: Algorithm 1 Greedy Search to find Nash equilibrium Antagonistic Game The greedy algorithm needs the gradient of the cost function with respect
Require: 6(w, z), z, Aa. AL. : S
= Online aUCtion fraUd I w%wL Illlilialize:(i‘}" L zaw® e RE and k := 0.tz um =0 to the leamer s action:
T ¢ GL (wL) = Ed:,yrvPA,L |:U (33: ,ga X, y):| = AL 9 Iel:::teat X . 89(’10 SL‘)
S T ?)t: fgdtilzgliillé lmle s)earch and find step size gt ng(w, 93) — 6’11; o ¢5(i‘, y) = Eympw [qb(x’ y)] _ )\Lw
JAT ’UJA’LUA Set wk+! -= wk 4 G}E“;\‘i‘ I
T : : HA('(UA) = Ei’a?.JNPA,L [U (.’L’, Y, <, y)] = AA 2 untill| Bt — u'}"ng €L
* Statistical relational learning: s N Importance Sampling: For gradients and also for finding the
: . : fE = E Wacum = | - 5 .
— Markov Logic Networks (MLNs) In which U* and U4 are the learner and adversary’s utility functions Set W *= Wacum normalization parameter of the pdf, we need to compute expectations
. , < : . - - - - . and integrals over y. We approximate these expectations using
= AppllCﬂthﬂS: Llnk PredlCtlon [RlChardSOIl and Domlng089 reSpeCtlvely. These funCtIOHS = be arbltrary fllnCtlonS Of the e fmC‘?ha_n letg’-n-lﬁ:l:r?: iJ is the index of the coordinate, that decreases the antagonistic cost more ' 1 ' ' 1stri 1
1 1 1 1 x and and (?.C ) . )"“"P , OI Can be a weighted sum of utilit than Ell other Coordjin;’ﬂ[es.. (Slz£11 frzlm random itnil[ial tpc-ims as kv:ell (asttrgile r tand zil[so the RO acs Samplmg DAl samples ﬁ:OITl £ ML ‘dlStI'Ibl.ltIOIl
2006], Entity Resolution [Singla and Domingos, 2006], v/ Y)~FaL g y e e e over y. (When y has fewer than 2500 possible configurations, we
Information Extraction [Poon and Domingos, 2007], and features, which may also be defined by first-order formulas. end for perform exact inference instead.)
morec Set k:=k+1
e e s Regularization Parameters: In order to determine the regularization
— Markov logic decision networks (MLDNs) [Nath & Given the strategies and rewards of the learner and adversary, we can su ' . su
. R . parameter of the learner, A;, we use grid search and choose the value
Domingos, 2009] model their interaction as a game and search for a Nash or that gives the closest train and test costs.

This algorithm 1is inspired by [Briickner and Scheffer,

Stackelberg equilibrium. This representation of adversarial — D
2009], who use a similar approach to find Nash equilibria

relational learning 1s very general, but also very difficult to solve.

* Adversarial machine learning;: ) , ) : . : : : : = e . .
2 , Thus, in the rest of this poster we address the simpler case where LML relational domains. Wlﬂ_l our cost function and The adversary's regularization weight is an attribute of the domain,
— Construct a game: Learner selects a classifier and adversary the adversary selects a single % instead of a distribution, and the relational features, convergence is no longer guaranteed and not something the learner can control. However, the game is
selects a transformation. utilities are an antagonistic (zero-sum) function that incz)rp orates since the adversary’s optimization is non-convex. We uninteresting when A, is very large, since the adversary cannot
— Solve it: Minimax [Globerson and Roweis, 2007], the label log-likelihood, the learner's weights, and the adversary's address this by averaging the leamer’s weights over all (f:hinge an&,featilris’dor V?rf Smagf imcelthe aszerfﬁrflczntcmnge =
Nash equilibrium [Briickner and Scheffer, 2009] dificati ¢ — iterations so far, which damps oscillations. SSRGS ORI B S VSRS B AL U et
2 i modifications (x — x) . interesting behavior on our domain.

Stackelberg equilibrium [Briickner and Scheffer, 2011]

Experiments Future Work and Conclusion

Training Data: Comparison of Log-Likelihood and Convergence in different situations

We conducted preliminary experiments in a simulated web spam domain. Lo g-leehhood 1n Different Settings 0 e e

Model features were the same ones described above. We compared our Training Network N etwork i s ek we Inteelase aevereal e e

method to baselines that were either non-adversarial, non-relational, or

both w/o adv. w/ adv. w/o adv. w/ adv. learning and presented an algorithm to solve the
oth. . : o
-0.60068 94,1661 _4.15538 .27 6895 | _ antangnlstlc regu!arlzed |Og-|lk€|lh0(?d case.

Method cc B P B — B — 8 Experiments on simulated data confirmed that
C ¢ C(l) S'.f — . e ' ' ' ' % i enu el both links and adversarial modeling are necessary to
C 6 é‘sﬁ e ( ogistlgf{egrel\s/[sicill) .. T, s ~10.1524 =18 R I obtain good results. We also found that there were

— 0 ectw? assIHet ( ) . T et Lo =00l e -4.39254 AC: Indep. Nodes. significant oscillations, even when we used weight
AC — Adversarial Classifier (Our method, ignoring links) 54 ACC: Linked Nodes I . . I .

. . . o averaging, suggesting that equilibria may exist that are
ACC — Adversarial Collective Classifier (Our method) ACC does much better than ‘poth AC and CC on both the tral_mng and ,_ | better than the best weights we found.
= | _ | test networks, demonstrating that both link information and 25| - - - - ~ |

We evaluate models by log-likelihood in 8 different settings: adversarial modeling are necessary in order to obtain good results on # erations
) Tralnlng and e graphs thlS pIOblenL Test Data: Comparison of Log-Likelihood and Convergence in different situations .
* With and without adversarial manipulation of the data 0 ———— . . . . Ongoing/Future Work:
For each of these settings we report the final log-likelihoods. The existence of oscillations in our learning graphs suggests that we * Mixed strategies for learner and adversary

are not yet converging to an equilibrium, and may need to explore _ * Non-antagonistic MLDN utility functions

mixed strategies or other solution techniques in future work. 10l ] * Scaling up
Data Sets g q -§ C: MLE, Indep. Nodes w/o adv. S Real-world datasets
AN AN AN A g s ——— CCMLE. Linked Nodes wio ad:. | 4  Irrational or improperly modeled adversaries
vg #links: | Avg #links: | Avg #links: | Avg #links: ® Coad
Spam-Spam | Spam-Non | Non-Spam | Non-Non 20 e e Todes 1 Goal: Robust method for making any MLN

adversarial, given MLDNs or other utilities for
learner and adversary.
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