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_ _ _ _ _ *An associative Markov network (AMN) is a Markov network where linked nodes are more likely to have the same label. : , :
Goal: Learn to robustly label a set of related objects in the presence of adversarial manipulation. o [Taskar et al., 2004] * Both the classifier and adversary’s inference problems are linear programs. 6
Applications: Learner's Goal: Select w to maximize the margin between true labeling and alternate labeling: * Equation (2) is the adversary’s linear program.
«Adversarial Manipulation: Collective classification problems in which the test data is manipulated by an , 1 w2t CE, st £ > max| ( - ( D+ Al )] ® « Classifier’s inference for predicting the joint labeling of nodes, is the same as in an AMN.
active adversary to maximize the misclassification error. Examples: web-spam, counter-terrorism, auction e oWk y Sh = R lscorelt, &, y) — scorelw, &, 9 ¥ Y
fraud, etc. Where A(y, 4) is the number of misclassified nodes. - :
*Concept Drift: Collective classification problems in which distribution of test data has diverged from the Good News: For score function being bilinear in w and y (i.e. score(w, x,y) = w” xy ), we can convert the non- %
distribution of data at train time. For example, when classifying blogs, tweets, or news articles, the topics convex bilevel mathematical program in @ , to a convex standard QP, by substituting the inner maximization linear a
being discussed will vary over time. program with it’s dueTl. o | _ N + Experimental Setup
. Efficient Inference: The label prediction problem is formulated by a linear program. y . )
Scenario: .. : s.t. y > 0; Ay < b; » Naive baseline methods: AMN [Taskar et al., 2004] and SVM
labeling *AMN’s performance reduces in presence of an active adversary that alters the features at test time! ' RN .
Relational training data . G » Parameter C for all methods and adversary’s train budget D, are tune with 0%, 10% , and 20% of

adversarial manipulation strength at the tuning data.

« Datasets
 Synthetic. 10 random graphs, each with 100 nodes (half positive and half negative labels) and 30
Boolean features. Nodes are more likely to link to the ones that have the same label, and half of the
nodes were only recognizable by their links

Ad lates the dat . . : : 1 hoi : : :
a}/(taég?rt)n/mrgags' 2 TeSPONSE 10 *Goal: Learn to jointly predict the labels of the nodes in an AMN, while being aware of possible existence of active » Political Blogs. collected by [Adamic et al 2005]. We extended this dataset by crawling the blogs at
classifier’s learned model adversary at test time. different times and cleaning dead pages manually. In this dataset, we observe some concept drift at
What can an adversary do? different times
*Adversary’s Weakness: _ _ _ _ « Reuters. ModApte split of the Reuters-21578 corpus. Four classes: crude, grain, trade, and money-fx are
» It has a budget D for the maximum number of features that it can change. For A(x, x) being the difference measure selected.

between the true features & and the features after adversarial manipulation &, we always have: A(z,z) < D
* Adversary’s Inference:

Classifier decides at test time Given the parameters w, the adversary can choose x such that the alternate labeling receives a high score, making it hard for
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the classifier to predict the correct joint labels, plus getting a reward when the alternate labeling is more different from the 70t | 3 Svhinv 70, L’.‘:%ﬁ.w
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true labeling. The adversary can achieve this by solving the following non-convex program: & 60 [—e—caco " kel & o0 [=—cace I g
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The final prediction of the joint ST OATT e SaveTSarial ° 2 © 29, ©
labeling of the nodes, is less affected maT,ﬁfou,g‘t?O?,. ?I'rh?s }’Se{,\s,ﬁgf‘the What can the learner do? o 1
by adversarial manipulation as it classifier will observe at test time «The | hould be robust aaainst rational ad ies: thi be achieved bv introduci d iall trained % 5 o 15 20 2 % 5 o 15 20 2 o 5 o 15 20 2
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Key Points: mtn - Zlfelm RO e @
 Relational Structure: Exploit both attributes and links. ) R ) e —T 80r e
: . : . : £ > maxy,, |[score(x,y,w)— score(x,y,w)+ A(y,y)] st. A(x,z) < D 70| v Svainv o) | = Svainy 7o | = vamy
* Adversary Awareness: Train a robust model against worst case adversarial manipulation of data at test ’ = eol| o ohee = 6ol | e om0 = 60l | ———OAGC
time. Can we solve them? g i ****? h : g *,{:*
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 With the score function being linear in each of the variables (i.e. score(w, z,y) = w? zy ), both of the programs (2) N ,**** g N ********* ¥,+»*“
and (3) are non-convex. g, e 7 R PP = S
«Associative Markov networks [Taskar et al., 2004] allow polynomial-time learning and inference, but are *Since the program (2) Is the same as the inner maximization in program  (3), we can use the same trick for solving 1 - rop3 32
o e - : . : : . 0 : : : ‘ : : : : ‘ 0 : : : : ‘
not robust to malicious adversaries. Current work on adversarial machine learning are robust to rational or both of the problems. The procedure Is as follows: © e oradveray o © P e oty oy © 2 © g oraeray oo ©
worst-case adversaries, but are limited to the case where labels of different objects were independent N _ _ N _ _ Political Blogs : 0% Political Blogs : 10% Political Blogs : 20%
(e.g.,[Teo et al., 2008]). 1. Convert the trilinear form in the score function that has both x and y to bilinear form, by introducing
*In this work, we develop Convex Adversarial Collective Classification (CACC), We have developed an a dummy matrix variable z=xy. T o pr— T
o c - - c o rac c c o c c 3 SVMINV 70+ VMINV 5 SVMINV
efficient weight learning method for collective classification that is robust to malicious adversaries. Our RRe el | gt W | *
S 601 | —*— CACC * e S 60t % 60l | —*— CACC *
i Mi7i i i : : How and why it works: £ ST & 00— oace AAXEX g oo *x
method works by maximizing the margin between the true labeling and any alternate labeling, assuming a : y : _ _ o _ o 5 oo T 5
worst case manipulation of the features (up to some fixed budget). By taking the dual of the inner Uijbeing the jth feature of the ith node and y;* being the indicator variable which is equal to 1 when § e s :
maximization, we can represent this as a single convex, quadratic program, which finds the optimal weights the label of the ith node Is k, otherwise zero, we introduce dummy variable =:; to replace g, ; s g " 2 ¢
in p0|ynomia| time. For blnary valued Tij we will have zk — min(a’;ij, yf) o 20 o 3
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2. Add necessary linear constraints on z: We can encode the =, = min(x;;,y,’) constraint by adding Strength of adversary (%) Strength of adversary (%) P 7 swenghofanvesay(e)
2 two linear inequalities to the program. Reuters : 0% Reuters : 10% Reuters : 20%
wi............. Notation ... 3. Given w, the resulting formula will be linear in z, x and y; therefore adversary’s problem is just a
In the next sections of the poster we will use the following notation: linear program over x,y and z. e Conclusion and future work .

4. By substituting the dual of the resulted linear program with the inner maximization in equation (2),

BOECITEGEy giﬂiiﬁffﬂta abel elated values @ ey ] the bilinearity will be removed and final program will become a convex standard quadratic program *Robustness combined with the ability to reason about interrelated objects

S adversary's budget for e o e onron o || . The dummyvariable | |vae ok e bl ot e ooy ot . _ thatcan be solved efficiently. *Representation of the adversarial learning task as a bilevel quadratic Stackelberg game

R nuymbfrffchanfesf% that are Introduced to represent. san(a o) || 5k represents satn( gk, ) e o fanction, anduwF for s chaue *Theorem: Equation (2), has an integral solution for binary valued x and y. Future work: Extend our method to learn adversarially regularized variants of non-associative

can make on ; to generate related weights.

e relational models, also scale to large size problems where many of which are semi-supervised.



