
We tested our systems
against two commerical
MapReduce offerings,
Amazon’s Elastic Map
Reduce (EMR) and Hadoop
running on EC2. We see
that in general our numbers
are similar. We find that!
problems which require high data transfer we perform worse,
and problems with low data transfer we perform very well.
Intuitively, this makes sense as data storage and retrieval
adds full HTTP round trips to the system, and proportionally
these make up a large fraction of the processing time. By
removing these RTT’s, our performance improves
dramatically.!

This indicates that MapReduce might not be the best fit given
our constraints. On the other hand, it allows us to run jobs of
arbitrary size, and provides easy job sharding. Alternately, we
need to find faster persistent storage for browser instances.
This is left as future work.!

Increasingly mobile devices are making use of off-device
computation for performance improvements or savings in
battery life. For example, mobile browsers can make use of
off-device website rendering to achieve both these benefits.
However, in this model a malicious client could exploit these
remote resources for what is in effect free computation.
However, many of these services have no serious forms of
authentication and furthermore don’t even identify individual
clients. This combination makes it nearly impossible to filter
malicious clients.!

In this work, we reverse engineer a popular, cross platform
cloud-based web browser (Puffin), and implement our own
version, Lundi. Using Lundi we are able to implement
Google’s MapReduce algorithm on Puffin’s servers. Using
MapReduce we can compute arbitrary sized jobs on Puffin’s
servers, in some cases faster than commercial MapReduce
offerings. We call our system Browser Map Reduce (BMR).!

Joe Pletcher, Ryan Snyder, Dr Kevin Butler – Computer and Information Science Department, University of Oregon!

with Vasant Tendulkar, Ashwin Shashidharan, Will Enck (North Carolina State University)!

To implement
MapReduce in the
browser, we create
Javascript programs
which do the mapping
and reducing
respectively. These
are served off a script
host which we
control. We launch
browser instances!

Patching Libpuffin!
We found the SSL verification
function inside Puffin and
patched it to always verify the
presented certificate.!
This allowed us to man-in-the-middle all Puffin traffic, and get
the data in the clear. However, Puffin uses a binary protocol,
and it is not immediately clear which messages do what.!
Reversing Traffic!
After decompressing the traffic and staring at it for hours, we
were able to extract structure from the messages. Given
enough time, messages like this make sense!

While fully preventing such attacks is impossible there are a
few steps browser creators could take to mitigate the
potential for attack. First, clients need to be uniquely
identified, and second, the resources a single client can use
should be capped. With these two changes in place, such as
attack would likely not be worth pursuing.!

If each client went through a registration process and were
identified with a public-private keypair, then used this pair to
sign requests, this would go a long way in preventing this
attack. While this could still be spoofed, it would raise the
barrier to entry and make the attack less desirable.!

For further information contact Joe Pletcher (pletcher@cs.uoregon.edu)!

Using Cookies!
Finally, Puffin’s servers send down a video stream containing
the requested page. Rather than perform OCR on the stream,
we found that cookies are sent in plain text. Using a
combination of traffic in the clear and cookies, we can roll our
a functional Lundi.!

To reverse engineering Puffin, we needed the traffic between
the Puffin client and Puffin’s servers in the clear. Puffin uses
TLS for end-to-end encryption, and the limited debugging
capabilities of the Android platform made this a difficult task.
We started by decompiling the Dalvik bytecode, and quickly
realized it made all important calls through an included C
library. By disassembling this library (libpuffin) we were able to
begin to understand the workings of Puffin.!

which fetch the data a user wants to process from a remote
server. From there, the browser instances go to work,
pirating computation on someone else’s dime. When the
mapper has finished its dataset, it stores the intermediate
results in the parameters of a URL which we shorten, and
pass back to us. Next, we fire up a reducer which fetches
these intermediate values and reduces them using the same
process as the mapper, returning the final values to the user.!

