
Automatic Performance Tuning is the problem of
producing, from input code, output code which performs
better on than the input on some metric, such as time to
execute or energy consumption. Empirical Autotuning is
an approach to this problem which involves searching a
space of transformed code variants (see transformations, below).
By measuring the performance of code variants, autotuning
produces variants optimized for particular execution
environments or input parameters. An exact solution to this
search problem involves mixed integer nonlinear
programming, which is NP-hard, so approximate search is
used. Here, we use decision tree learning to select starting
configurations for search in order to generate runtime-
adaptive code and to speed autotuning by selecting good
starting search configurations.

Machine Learning for Automatic Performance Tuning
Nicholas Chaimov <nchaimov@cs.uoregon.edu>

Advisor: Allen D. Malony
Computer & Information Science — University of Oregon

Transformations

for(int i = 0; i < I; ++i) {
for(int j = 0; j < J; ++j) {

for(int k = 0; k < K; ++k) {
computation(i,j,k);

}
}

}

Permutation / Loop Interchange

for(int j = 0; j < J; ++j) {
for(int i = 0; i < I; ++i) {

for(int k = 0; k < K; ++k) {
computation(i,j,k);

}
}

}

for(int i = 0; i < I; ++i) {
for(int j = 0; j < J; ++j) {

for(int k = 0; k < K; ++k) {
computation(i,j,k);

}
}

}

Loop Unrolling
for(int i = 0; i < I; ++i) {

for(int j = 0; j < J; ++j) {
for(int k = 0; k < K; k+=2) {

computation(i,j,k);
computation(i,j,k+1);

}
}

}

for(int i = 0; i < I; ++i) {
 for(int j = 0; j < J; ++j) {
 for(int k = 0; k < K; ++k) {
 result[(i*I)+j] +=
 a[i*I + k] * b[k*K + j];

Loop Tiling / Blocking
for(int ii = 0; ii < I; ii += B)
 for(int jj = 0; jj < J; jj += B)
 for(int kk = 0; kk < K; kk += B)
 for(int i = ii; i < MIN(ii+B,I); ++i)
 for(int j = jj; j < MIN(jj+B,J); ++j)
 for(int k = kk; k < MIN(kk+B,K); ++k)
 result[(i*I)+j] +=
 a[i*I + k] * b[k*K + j];

for(int i = 0; i < I; ++i) {
computation_1(i);

}
for(int i = 0; i < I; ++i) {

computation_2(i);
}

Loop Fusion

for(int i = 0; i < I; ++i) {
computation_1(i);
computation_2(i);

}

for(int i = 0; i < I; ++i) {
computation_1(i);

}
for(int i = 0; i < I; ++i) {

computation_2(i);
}

Loop Splitting

for(int i = 0; i < I; ++i) {
computation_1(i);
computation_2(i);

}

Introduction

Performance-
Critical Code

Original Code

Code Extractor

Description of
Performance-
Critical Code

Proposed
ImplementationsProposed

ImplementationsProposed
ImplementationsProposed

ImplementationsProposed
ImplementationsProposed
Implementations

Representative
Input Data

Performance
Measurement

System
Proposed

ImplementationsProposed
ImplementationsProposed

ImplementationsProposed
ImplementationsProposed

ImplementationsProposed
Implementations

Performance Data
Performance Data

Performance Data
Performance Data

Performance Data
Performance Data

Transformation
Descriptions

Transformation
Parameters

Code Variant
Generator

Performance-
Critical CodePerformance-

Critical CodePerformance-
Critical Code

Search Engine

profile data
and metadata

Machine
Learning
Library

decision tree
induction
algorithm

Code
Generation

Tool

Code
VariantsCode

VariantsCode
VariantsCode
Variants

Wrapper
Function

PerfDMF
TauDB

Performance
Database

PARAM_k

=10

PARAM_m

=10

PARAM_n

=10

MM_v1

PARAM_n

MM_v2

=100?

MM_v0

?

MM_v0

=2

PARAM_m

=2

=2

MM_v3 MM_v0 MM_v4

=8
?

=10

PARAM_m

=10

MM_v5 MM_v0 MM_v6

=100
?

MM_v6

?

MM_v7

0"

0.5"

1"

1.5"

2"

2.5"

3"

Original" Best"TILE" Best"UNROLL" Wrapper"

Pe
rf
or
m
an

ce
*(N

or
m
al
iz
ed

)*

Variant*

Small"Matrices"Only"

Large"Matrices"Only"

Mixed"Workload"

1000 10 20 30 40 50 60 70 80 90

5

0

1

2

3

4

Evaluations

T
im

e
(s

)

Design Evaluation
We have designed a system for empirical autotuning with an
architecture shown in the figure below:

In our system, a baseline performance measurement of the
unoptimized code is made using the TAU Performance
System. A search engine (such as Active Harmony [1] or
Orio [2]) proposes variants based on a parameterized
transformation script. A code variant generator (such as Orio
[2] or CHiLL [3]) generates the variants, which are
substituted into the original program. The transformed
programs are then run and their performance measured, and
the process repeats until the search termination conditions are
met. All of the performance profiles are tagged with
metadata describing the transformations applied, the
execution environment, and the input data, and are stored in
a centralized performance database, TAUdb.

Autotuning is repeated across
multiple computers and multiple
input datasets, yielding annotated
performance data which we can
use to generate runtime-adaptive
code or to improve the search
process. In both cases, this is
accomplished by performing
decision tree learning over the
performance data. To generate
runtime-adaptive code, the decision
tree is converted into executable
code in the form of a wrapper
function.

The decision tree can be generated using execution
environment (such as CPU architecture, number of cores,
cache size, etc.) and input parameters (such as input size) as
features. For example, the above tree selects a variant of a 3D
matrix multiplication routine based upon the size of the
input matrix.
For smal l matr ices,
unrolling is the best
optimization to perform,
while for large matrices,
loop tiling yields better
p e r f o r m a n c e b y
improving data reuse.

When the sizes of the input matrices are not known until
runtime, using a generated wrapper function to select a
variant produces better performance than either the
unoptimized variant or variants optimized for small or large
matrices.

The variant selected by a decision tree can also be used as the
initial configuration for search, resulting in the search process
converging earlier, as in the graph below, showing time to
converge for default (red) and predicted (green) configurations.

References
[1] Hollingsworth, J. and A. Tiwari (2010, June). End-to-End Auto-Tuning with Active Harmony, Chapter 10,
pp. 217–238. CRC Press.
[2]Hartono, A., B. Norris, and P. Sadayappan (2009). Annotation-based empirical per- formance tuning using
Orio. In Proceedings of the 23rd IEEE International Par-
[3]Tiwari, A., J. K. Hollingsworth, C. Chen, M. Hall, C. Liao, D. J. Quinlan, and J. Chame (2011, August).
Auto-tuning full applications: A case study. Int. J. High Perform. Comput. Appl. 25(3), 286–294.

