
Automatic Performance Tuning is the problem of 
producing, from input code, output code which performs 
better on than the input on some metric, such as time to 
execute or energy consumption. Empirical Autotuning is 
an approach to this problem which involves searching a 
space of transformed code variants (see transformations, below).
By measuring the performance of code variants, autotuning 
produces variants optimized for particular execution 
environments or input parameters. An exact solution to this 
search problem involves mixed integer nonlinear 
programming, which is NP-hard, so approximate search is 
used. Here, we use decision tree learning to select starting 
configurations for search in order to generate runtime-
adaptive code and to speed autotuning by selecting good 
starting search configurations.
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Transformations

for(int i = 0; i < I; ++i) {
for(int j = 0; j < J; ++j) {

for(int k = 0; k < K; ++k) {
computation(i,j,k);

}
}

}

Permutation / Loop Interchange

for(int j = 0; j < J; ++j) {
for(int i = 0; i < I; ++i) {

for(int k = 0; k < K; ++k) {
computation(i,j,k);

}
}

}

for(int i = 0; i < I; ++i) {
for(int j = 0; j < J; ++j) {

for(int k = 0; k < K; ++k) {
computation(i,j,k);

}
}

}

Loop Unrolling
for(int i = 0; i < I; ++i) {

for(int j = 0; j < J; ++j) {
for(int k = 0; k < K; k+=2) {

computation(i,j,k);
computation(i,j,k+1);

}
}

}

for(int i = 0; i < I; ++i) {
 for(int j = 0; j < J; ++j) {
  for(int k = 0; k < K; ++k) {
   result[(i*I)+j] += 
    a[i*I + k] * b[k*K + j];  

Loop Tiling / Blocking
for(int ii = 0; ii < I; ii += B)
 for(int jj = 0; jj < J; jj += B)
  for(int kk = 0; kk < K; kk += B)
   for(int i = ii; i < MIN(ii+B,I); ++i)
    for(int j = jj; j < MIN(jj+B,J); ++j)
     for(int k = kk; k < MIN(kk+B,K); ++k)
      result[(i*I)+j] +=
       a[i*I + k] * b[k*K + j];  

for(int i = 0; i < I; ++i) {
computation_1(i);

}
for(int i = 0; i < I; ++i) {

computation_2(i);
}

Loop Fusion

for(int i = 0; i < I; ++i) {
computation_1(i);
computation_2(i);

}

for(int i = 0; i < I; ++i) {
computation_1(i);

}
for(int i = 0; i < I; ++i) {

computation_2(i);
}

Loop Splitting

for(int i = 0; i < I; ++i) {
computation_1(i);
computation_2(i);

}
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Design Evaluation
We have designed a system for empirical autotuning with an 
architecture shown in the figure below:

In our system, a baseline performance measurement of the 
unoptimized code is made using the TAU Performance 
System. A search engine (such as Active Harmony [1] or 
Orio [2]) proposes variants based on a parameterized 
transformation script. A code variant generator (such as Orio 
[2] or CHiLL [3]) generates the variants, which are 
substituted into the original program. The transformed 
programs are then run and their performance measured, and 
the process repeats until the search termination conditions are 
met. All of the performance profiles are tagged with 
metadata describing the transformations applied, the 
execution environment, and the input data, and are stored in 
a centralized performance database, TAUdb.

Autotuning is repeated across 
multiple computers and multiple 
input datasets, yielding annotated 
performance data which we can 
use to generate runtime-adaptive 
code or to improve the search 
process. In both cases, this is 
accomplished by performing 
decision tree learning over the 
performance data. To generate 
runtime-adaptive code, the decision 
tree is converted into executable 
code in the form of a wrapper 
function.

The decision tree can be generated using execution 
environment (such as CPU architecture, number of cores, 
cache size, etc.) and input parameters (such as input size) as 
features. For example, the above tree selects a variant of a 3D 
matrix multiplication routine based upon the size of the 
input matrix. 
For smal l matr ices, 
unrolling is the best 
optimization to perform, 
while for large matrices, 
loop tiling yields better 
p e r f o r m a n c e b y 
improving data reuse.

When the sizes of the input matrices are not known until 
runtime, using a generated wrapper function to select a 
variant produces better performance than either the 
unoptimized variant or variants optimized for small or large 
matrices.

The variant selected by a decision tree can also be used as the 
initial configuration for search, resulting in the search process 
converging earlier, as in the graph below, showing time to 
converge for default (red) and predicted (green) configurations.
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