
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.co
m

Load balancing irregular computations is a serious
challenge in scientific simulation, especially in light of
modern supercomputers having over 1 million processor
cores. It is becoming increasingly more difficult to
exploit available parallelism without succumbing to
processor starvation and the prohibitive overhead
inherent to dynamic load balancing. This work presents a
novel load balancing technique based on performance
modeling and static partitioning as applied to NWChem’s
coupled cluster (CC) module. Many chemical problems
related to combustion, energy conversion, and molecular
spectroscopy are untenable without CC methods on
supercomputers. Given the steep computational
requirements of CC, its scalability is crucial for
supporting innovative science. The “Inspector/Executor”
technique is shown to reduce the NWChem CC module's
execution time by as much as 50% at scale. While the
implementation is presented within the context of
NWChem, this method is applicable to any application
requiring load balance where reasonable estimations of
computational kernel execution times are available. .

Introduction

The NWChem toolkit supports a wide range of chemistry
simulation methods with controllable accuracy on many
of the latest supercomputer architectures. It is well-
known for its quantum mechanical modules which are
relatively scalable on large parallel systems. .

The CC module allows for detailed study of chemical
systems by iteratively solving the Schrödinger equation
with an accurate ansatz. In particular, we are looking at
the CC module produced by the Tensor Contraction
Engine (TCE) [1]. The TCE automates the derivation and
parallelization of the CC equations. In these TCE-CC
codes, computations primarily consist of tensor
permutations (TCE_SORT’s) and Basic Linear Algebra
Subroutine (BLAS) matrix multiplications (DGEMM’s).

NWChem is built on Global Arrays (GA) (Fig. 1), which
provides a shared memory style programming interface
for distributed memory systems [2]. GA supports large
scale development of one-sided messaging applications,
but its standard template for dynamic load balancing
(NXTVAL) is centralized in nature. NXTVAL, in essence, is
a dynamic counter that controls task assignment (Fig. 2).

Background

Inspector/Executor Motivation and Design

In NWChem’s TCE-CC module, the cost of each task (its execution time) is
estimated using performance models of the dominant computational routines:
DGEMM and TCE_SORT. The DGEMM model: .

is the canonical approximation of matrix multiplication of A (having dimensions
m by k) and B (dimensions k by n) where a, b, c, and d are system-dependent
coefficients. The model’s terms correspond to the m*n dot products of length k,
the m*n store operations, the m load operations of size k from A, and the n load
operations of size k from B. The leading coefficients are found by solving a
nonlinear least squares problem using standard methods [3]. .

The TCE_SORT routine arises in this application because external indices must
be in ascending order across two tensors to be contracted (see [1] for details).
The TCE_SORT performance model is based on empirical measurements
conducted offline (Fig. 8). Using these empirical data, a performance model is
constructed by performing a cubic fit of the data for each possible permutation:

Static partitioning is accomplished by performing the Longest Processing Time
(LPT) algorithm [4]. The LPT has been proven to be a 4/3 approximation
algorithm, meaning that it always produces a result which is 4/3 times the
optimal solution. While our implementation uses LPT, any partitioning method
can be applied when using the Inspector/Executor algorithm for load balancing.

Static Partitioning Based on Performance Models

Results
Fig. 9 shows the strong scaling performance of the
original NWChem TCE-CC code versus the simple version
of the Inspector/Executor for a highly accurate nitrogen
molecule simulation. Fig. 10 is a similar but less accurate
experiment for benzene. The benzene simulation also
shows the benefit of using a “hybrid” approach which
applies NXTVAL to contractions that are empirically shown
to be faster than the Inspector/Executor. .

For relatively dense problems such as a 14-molecule
water cluster, the more advanced Dynamic Buckets (DB)
technique is required to see performance improvements
(Fig. 11). DB improves performance by as much as 15% in
this case because it amortizes the effect of system noise
on task execution time estimations by assigning
collections of tasks to groups of processor cores. .

Conclusions
The Inspector/Executor algorithm reduces the overhead
from centralized dynamic load balancing in NWChem’s
TCE-CC module. This benefit is due to the effects shown
in Fig. 12: the overhead from NXTVAL (yellow) is reduced
to the overhead of performing the cost estimation and
static partitioning (red). After iterative refinement
converges, subsequent iterations have no load balancing
overhead (as in the final row of Fig. 12). Relatively worse
load balance is traded for a drastic reduction in overhead.

The Dynamic Buckets approach further reduces execution
time by improving load balance. For example, the load
imbalance in the lower two rows of Fig. 12 could be
improved by partitioning tasks across groups of
processors, rather than individual processors. Because
some task costs are over-estimated and some under-
estimated, better load balance is achieved when using
Dynamic Buckets. .

References
[1] So Hirata. Journal of Physical Chemistry A, 107:9887-9897, 2003.
[2] J. Nieplocha, R. Harrison, et. al. SC 94, pg. 340-349, 1994.
[3] D. Marquardt. Journal of the Society for Industrial and Applied

Mathematics, 11(2):431-441, 1963.
[4] R. L. Graham. SIAM Journal on Applied Mathematics, 17(2):416-

429, 1969.
 contact: ozog@cs.uoregon.edu

University of Oregon1 Argonne National Laboratory2

David Ozog1, Jeff Hammond2, Pavan Balaji2,
 James Dinan2, Sameer Shende1, Allen Malony1

Inspector/Executor Load Balancing Algorithms for Quantum Chemistry

Fig. 2 : NXTVAL Template

A TCE-CC simulation of a chemical system (such as a water molecule cluster)
consists of a large collection of computational tasks, each containing at least
one call to DGEMM and TCE_SORT. Fig. 3 shows that the number of floating
point operations drastically varies from task to task. Load balance is achieved
with a NXTVAL counter which dynamically assigns tasks to available processors.

Because NXTVAL is a central counter occupying a single memory location, its
load balancing overhead can be substantial. This is shown in Fig. 4 where the
TAU performance system was used to gather an inclusive-time profile of a 14
water molecule cluster simulation with approximately 900 MPI processes. The
NXTVAL routine consumes 37% of the application. Fig. 5 shows the time per call
to NXTVAL rises as the number of MPI processes increases. .

We propose a low-overhead alternative to NXTVAL load balancing which uses
task cost estimation and static partitioning. The design is presented in Fig. 6,
where an inspector component performs a preliminary collation of tasks, then
feeds them into a cost estimator (described in the next section). After
partitioning the tasks into groups consisting of equal cost loads, an executor
assigns and manages tasks. This straightforward approach is improved with the
“Dynamic Buckets” design, shown in Fig. 7. Here, tasks are split into buckets
which are then associated with groups of processors. This is done in an effort
to minimize the detrimental effect of variation in task execution times. .

Fig. 3 : FLOP Imbalance

Fig. 4 : Inclusive-time in seconds

Fig. 5 : Time per Call to NXTVAL

Fig. 6 : Inspector/Executor Design

Fig. 7 : Dynamic Buckets Design

Fig. 8 : TCE_SORT performance measurements

Fig. 9 : Nitrogen molecule (T) Fig. 10 : Benzene Monomer (D)

Fig. 11 : 14-H2O - Dynamic
Buckets

Fig. 12 : Load Balance and
Overhead

Fig. 1 : Global Arrays

Introduction photos from:
http://www.nwchem-sw.org

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

	Slide Number 1

