
Learning(Markov(Networks(with(Arithme4c(Circuits(
Daniel(Lowd,(University(of(Oregon(

<lowd@cs.uoregon.edu>(
Pedram(Rooshenas,(University(of(Oregon(

(<pedram@cs.uoregon.edu>(

We compared ACMN to four state-of-the-art algorithms.
 - MN baselines: GSSL [Van Haaren et al., 2012] and L1-regularized logistic regression [Ravikumar et al.,

2009] as MN baslines;
 - Tractable baselines: learning latent tree models (LTM) [Choi et al., 2011] and LearnAC algorithm

(ACBN) [Lowd et al., 2008] which searches through Bayesian network structures rather than MNs.
The objective function of GSSL and L1 is pseudo log-likelihood while ACMN, ACBN, and LTM optimize

log-likelihood.
We compared the exact conditional log-likelihood (CLL) of the query variables given the evidence
 (). For L1 and GSSL, we computed the conditional marginal log-likelihood (CMLL)

instead. CMLL is used when joint probabilities are hard to estimate:

Experiments

ACMN dominates GSSL and L1 on every
dataset with < 20% evidence, both in inference
speed and accuracy.
ACMN is usually more accurate than LTM,
especially on datasets with fewer variables.
ACMN is often more accurate than ACBN, and
seems to learn a significantly different
distribution even when the accuracy is similar.

A final direction is learning ACs with latent
variables. Ideally, this could give ACMN the
advantages of LTM on datasets where clustering
structure was present, while maintaining the
flexibility of the unrestricted conjunctive feature
representation.

Source code: http://libra.cs.uoregon.edu/

Results and Future Work

Dataset(Vars(ACMN(ACBN(LTM(

NLTCS(16(06.01(K6.02(K6.49(

MSNBC(17(06.04(06.04(K6.52(

KDDCup(2000(64(02.15(K2.16(((K2.18(

Plants(69(K12.89((012.85(K16.39(

Audio(100(040.32(K41.13(K41.90(

Jester(100(053.35(K54.43(((K55.17(

NeWlix((100(057.26((K57.75(K58.53(

MSWeb(294(09.77(K9.81((K10.21(

Book(500(K35.62(K36.02(034.22(

WebKB(839(K161.30(K159.85(0156.84(

20(Newsgroup(889(K159.56(K159.65(0156.77(

ReutersK52(910(K89.54(089.27(K91.23(

Dataset(Original(Generated(

NLTCS(0.01(0.08(

MSNBC(0.00(0.02(

KDDCup(2000(0.01(0.08(

Plants(0.04(1.43(

Audio(0.81(2.46(

Jester(1.08(3.14(

NeWlix((0.49(2.57(

MSWeb(0.04(0.56(

Book(0.49(0.73(

WebKB(1.45(14.57(

20(Newsgroup(0.09(10.13(

ReutersK52(0.27(6.98(

Av
g.

 c
on

di
tio

na
l (

m
ar

gi
na

l)
lo

g
lik

el
ih

oo
d

of
 q

ue
ry

 v
ar

ia
bl

es

−0.5

−0.4

−0.3

C
(M

)L
L

NLTCS

−0.3

−0.2

−0.1

C
(M

)L
L

Plants

−0.5

−0.4

−0.3
Audio

8

−0.55
−0.5

−0.45
−0.4

Jester

−0.034

−0.032

−0.03
MSWeb

−0.08

−0.075

−0.07

−0.065
Book

20 40 60 80

−0.2

−0.18

−0.16

% of Query Vars.

C
(M

)L
L

WebKB

20 40 60 80

−0.1

−0.05

0

% of Query Vars.

Reuters−52

20 40 60 80
−0.18

−0.17

−0.16

% of Query Vars.

20 Newsgroups−0.6
−0.58
−0.56
−0.54
−0.52
−0.5

C
(M

)L
L

Netflix

−0.035

−0.034

−0.033

−0.032

−0.031
KddCup 2000

−0.4

−0.35

−0.3
MSNBC

ACMN
GSSL
L1
LTM
ACBN

Inference(accuracy(vs.(frac4on(of(evidence(variables(

0 50 100
10−2

10−1

100

101

102

Ti
m

e

% of Query Vars.

MSWeb

0 50 100
10−4

10−2

100

102

Ti
m

e

% of Query Vars.

Audio

0 50 100
10−4

10−2

100

102

104

Ti
m

e

% of Query Vars.

20 Newsgroups

 ACMN
GSSL
L1
LTM
ACBN

Query(4me(vs.(frac4on(of(evidence(variables(

Manuscript under review by AISTATS 2013

Algorithm 2 Subroutine that updates an arithmetic circuit
C by adding two new features, g = f ^ v and g0 = f ^¬v.

function ACMN-Split(s,M,C)
Let ✓ = s.paramNode, V = s.varNodes
Let A be the mutual ancestors of the parameter node (✓)
and the variable nodes (�

v

, �¬v

).
Let G

✓

be the subcircuit between ✓ and A.
Let G

v,¬v

be the subcircuit between {�
v

,�¬v

} and A.
A mutual ancestors of ✓ and V
G

v

 Clone(G
v,¬v

)[0/�¬v

]

G¬v

 Clone(G
v,¬v

)[0/�
v

]

G
✓1 Clone(G

✓

)[Prod(✓1, ✓)/✓]
G

✓2 Clone(G
✓

)[Prod(✓2, ✓)/✓]
A0 Sum(Prod(�

v

, G
v

, G
✓1), Prod(�¬v

, G¬v

, G
✓2))

Let g = f ^ v, g0 = f ^ ¬v
return (M [{g, g0}, C[A0/A], g, ✓1, g

0, ✓2)

Before Split After Split

λv! λ¬v!

×!Gθ!

θ!

Gv,¬v!

θ!

+"
×" ×"

λv! λ¬v"

θ1! θ2!

Gθ1! Gθ2!Gv! G¬v!

Figure 2: Illustration of the operation of the ACMN-Split
subroutine, splitting a feature with parameter node ✓ on
variable V . Dashed lines indicate sections of the circuit
where details have been omitted.

have been used by several previous papers on MN struc-
ture learning [10, 17, 15]. Each dataset consists of three
parts: a training set, which we used as input to each learn-
ing algorithm; a validation set, which we used to select the
best tuning parameters; and a test set, which we used for
evaluation.

5.2 Methods

To evaluate the accuracy of ACMN, we compared it to
four state-of-the-art algorithms, two for learning Markov
networks and two for learning other forms of tractable
graphical models. Our MN baselines are GSSL[15] and
L1-regularized logistic regression[24] (L1), which have
shown good performance on these datasets in previous
work. Our two tractable baselines are a recent method for
learning latent tree models (LTM) [8] and the LearnAC
algorithm [19]. We refer to LearnAC as ACBN since,
like ACMN, it learns an AC and graphical model through
greedy combinatorial search, but it searches through BN
structures rather than MNs. The objective function of
GSSL and L1 is pseudo log-likelihood while ACMN,

Table 1: Datasets characteristics
Dataset Train Valid. Test Num. Density

set set set vars.
NLTCS 16,181 2,157 3,236 16 0.332
MSNBC 291,326 38,843 58,265 17 0.166
KDDCup 2000 180,092 19,907 34,955 64 0.008
Plants 17,412 2,321 3,482 69 0.180
Audio 15,000 2,000 3,000 100 0.198
Jester 9,000 1,000 4,116 100 0.610
Netflix 15,000 2,000 3,000 100 0.541
MSWeb 29,441 3,270 5,000 294 0.010
Book 8,700 1,159 1,739 500 0.016
WebKB 2,803 558 838 843 0.063
20 Newsgroup 11,293 3,764 3.764 930 0.049
Reuters-52 6,532 1,028 1,540 941 0.037

ACBN, and LTM optimize log-likelihood.2

For all baseline methods, we used publicly available code
and replicated recommended tuning procedures as closely
as possible. For the tractable models (ACMN, ACBN,
LTM) all options and parameters were tuned to maximize
log-likelihood on the validation set; for GSSL and L1, the
pseudo-likelihood of the validation set was used instead.

For GSSL, we tried generated feature sizes of 0.5, 1, 2,
and 5 million; pruning thresholds of 1, 5, and 10; Gaussian
standard deviations of 0.1, 0.5, and 1; and L1 priors of 1,
5, and 10, for a total of 108 configurations. We used the
original authors’ implementation of GSSL 3 to select the
features and the Libra toolkit4 to learn weights, as done in
the original paper [15]. To learn MNs using L1, we used
the Libra toolkit to learn the logistic regression distribu-
tions and convert them to an MN with DN2MN [20]. We
used L1 prior values of 0.1, 0.5, 1, 2, 5, 10, 15, and 20. For
ACBN, we used aclearnstruct from the Libra toolkit with
split penalties of 1, 5, and 10 and 0.1, 0.5, 1, and 2 million
maximum edges, resulting in 12 different configurations.
We used the same set of configurations for ACMN as well.
For LTM, we ran the authors’ code5 with its default EM
configuration to create latent tree models using four differ-
ent methods that they provided: CLRG, CLNJ, regCLRG
and regCLNJ.

To evaluate the effectiveness of each method at answer-
ing queries, we used the test set to generate proba-
bilistic queries with varying amounts of evidence, rang-
ing from 90% to 10% of the variables in the domain.
The evidence variables were randomly selected separately
for each test query. All non-evidence variables were
query variables. For LTM, ACBN, and ACMN, we com-

2Other natural baselines would be LEM [14] and SPNs [23].
However, the LEM code is unavailable, due to a broken library
dependency, and previous SPN learning methods assume a two-
dimensional structure not present in these datasets.

3http://dtai.cs.kuleuven.be/ml/systems/gssl
4The open-source Libra toolkit is available online at

http://libra.cs.uoregon.edu.
5http://people.csail.mit.edu/myungjin/latentTree.html

 We approximated the KL divergence
between the BN and MN ACs using
sampling. We found that the KL divergence
between the two is often much larger than
their difference in log-likelihood on the test
data, suggesting that they do indeed learn
significantly different distributions:

KL(P ||Q) = EP[log(P(x) /Q(x)]

≈
1
m

log(P(x(i)) /Q(x(i)))
i=1

m

∑

A Markov network (MN) represents a probability distribution

as a normalized product of factors:

where represents the variables in the domain of

factor c and Z is the normalization constant.
If all probabilities are positive, the distribution can be

represented as an equivalent log-linear model:

The network polynomial for a Markov network is a

polynomial with an exponential number of terms, one for
each possible state of random variables. Each term is the
product of indicator variables () and the parameters
() of the satisfied features

Example: Network polynomial of Markov network over
Boolean variables and with features
and :

For this Markov network, and

An arithmetic circuit (AC) is a rooted, directed acyclic
 graph that can compactly represent network polynomial in

some cases.

Evaluating or differentiating the AC with or without

 evidence can be done in linear time in the size of circuit.
Therefore, we can perform efficient inference in any
 MN if we have compact representation of it as an AC.
[Darwiche, 2003]

Markov(Networks(and((
Arithme4c(Circuits(

Algorithm: ACMN

ACMN Algorithm
Create initial product of marginals circuit
Create initial split list
Until convergence:
 For each split in list
 Apply split to circuit
 Score result
 Undo split
 If no split has positive score:
 Reduce per-edge penalty and continue
 Else:
 Apply highest-scoring split to circuit
 Add new child splits to list
 Remove inconsistent splits from list

D: Parameter nodes to be split
V: Indicators for the splitting variable
M: First mutual ancestors of D and V
For each indicator λ in V,

Copy all nodes between M and D or V,
conditioned on λ.

For each m in M,
Replace children of m that are ancestors of
D or V with a sum over copies of the
ancestors times the λ each copy was
conditioned on.

How to split a circuit

•  Markov networks (MNs) are a powerful and flexible
representation, but using them is difficult:

 - Exact inference is typically intractable.
 - Weight learning is also hard, since the likelihood and
its gradient are intractable to compute.
 - Previous work has examined restricted classes of
MNs where learning and inference are easy.
•  We introduce the first general-purpose learning

algorithm for tractable MNs, and compare it to 4
baselines on 12 benchmark datasets.

•  Our method uses arithmetic circuits, an inference
representation similar to sum-product networks, to learn
MNs with arbitrary conjunctive feature and high
treewidth.

Introduction

We computed average log-likelihood of ACMN,
ACBN and LTM which is intractable for L1 and
GSSL. ACMN is the most accurate algorithm on 6
of the 12 datasets.
Due to imposed limits on running time, ACMN
learns relatively simpler models on high-
dimensional datasets.

f (λx1,λx2 ,λ¬x1,λ¬x2) = λx1λx2θ1θ2

+λx1λ¬x2 +λ¬x1λx2θ2 +λ¬x1λ¬x2

P(Χ) = 1
z

φc (Dc)
c
∏

Dc ⊂ Χ

logP(Χ) = wi fi (Di)
i
∑ − log z

λxi
θ j = e

wj

x1 x2 f1 = x1∧ x2f2 = x2

z = f (1,1,1,1)
P(x1 =1, x2 = 0) = f (1, 0, 0,1)

+(
λx2!θ2!

×(

λ¬x2!

×(

+(

λ¬x1!λx1!θ1!

×(

+(

ACMN performs a greedy search through
structure space. The initial structure is the set
of all single variable features. The search
operations are to take an existing feature, f,
and split it on another variable, v, creating two
new features: and

Splits are scored according to their effect on
the log-likelihood of the MN and the size of
the corresponding AC:

f ∧v f ∧¬v

Score(s) = Δll (s)−γΔe(s)

logP(X = x | E = e)
logP(Xi = xi | E = e)

i
∑

 measures how much the split will increase
the log-likelihood.
•  Measuring the exact effect would require

jointly optimizing all model parameters
along with the parameter for the two new
features.

•  To make scoring more efficient, we
measure the log-likelihood gain from
modifying only the weights of the two new
features, keeping all others fixed

ACMN computes the gain by solving a simple
two dimensional convex optimization problem,
which depends only on the empirical counts of
the new features in the data and their expected
counts in the model. Used also by Della Piera
et. al. (1997) and McCallum (2003).

By conditioning the AC on feature f and
differentiating it with respect to indicator
variables, ACMN computes the expectations
 and for all variables in a
single pass over the AC which takes linear time
in the size of the circuit.

Δll

 denotes the number of edges that
would be added to the AC if this split were
included.
Computing the has similar time
complexity to actually performing the split.

Δe(s)

Δe(s)

E[f ∧ xi] E[f ∧¬xi]

 ACMN is similar to the LearnAC [Lowd et al., 2008].
•  LearnAC learns Bayesian networks (BNs) where

each conditional probability distribution (CPD) is a
tree.

•  ACMN learns MNs where the distribution is a log-
linear model and each feature is conjunction of
feature tests.

Every BN with tree CPDs can easily be expressed as a
set of conjunctive features, but the converse is not true.
Therefore, ACMN should be more expressive than
LearnAC and able to learn better models.

ACMN and LearnAC (ACBN)

