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Experiments

We compared ACMN to four state-of-the-art algorithms.

- MN baselines: GSSL [Van Haaren et al., 2012] and L1-regularized logistic regression [Ravikumar et al.,
2009] as MN baslines;

- Tractable baselines: learning latent tree models (LTM) [Choi et al., 2011] and LearnAC algorithm

Introduction Algorithm: ACMN

* Markov networks (MNs) are a powerful and flexible
representation, but using them is difficult:
- Exact inference i1s typically intractable.

ACMN performs a greedy search through
structure space. The 1nitial structure is the set
of all single variable features. The search

- Weight learning is also hard, since the likelihood and operations are to take an existing feature, f, N . .

" gradien% - intrac%able to compatc. Nl oo Te e, o e Ge/» :: P e, (ACBN) [Lowd et al., 2008] which searches through Bayesian network structures rather than MNs.

_ Previous work has examined restricted classes of new features: fAv and fAy / Ao :“ \‘ The objective function of GSSL and L1 1s pseudo log-likelihood while ACMN, ACBN, and LTM optimize

MNs where learning and inference are easy. . . . L // \ .” “‘./: log-likelithood.

« We introduce the first general-purpose learning Splits are scored according to their effect on N o & We compared the exact conditional log-likelihood (CLL) of the query variables given the evidence
algorithm for tractable MNs, and compare it to 4 Eﬁe 10g-11kellh§0d chtbe MN and the size of @ (logP(X =x|E =e)). For L1 and GSSL, we computed the conditional marginal log-likelihood (CMLL)
baselines on 12 benchmark datasets. C cotresponding AL instead. CMLL 1s used when joint probabilities are hard to estimate: Elog P(X. =x,|1E=e¢)

* Our method uses arithmetic circuits, an inference . . _ l.
representation similar to sum-product networks, to learn Score(s)=A,(s)-YA,(s) ACMN AlgOI’lthIIl How to Spllt a circuit

Inference accuracy vs. fraction of evidence variables

D: Par.ameter nodes to bf: §p11t | NLTCS MSNBC KddCup 2000
V: Indicators for the splitting variable -

MNs with arbitrary conjunctive feature and high
treewidth.

Create 1nitial product of marginals circuit

; measures how much the split will increase Create initial split list

the log-likelihood.
Markov Networks and )

Arithmetic Circuits

A Markov network (MN) represents a probability distribution
as a normalized product of factors:

Pex)==[ .0

C
where DC C X represents the variables in the domain of
factor ¢ and Z is the normalization constant.

Until convergence: M: First mutual ancestors of D and V

Measuring the exact effect would require
jointly optimizing all model parameters
along with the parameter for the two new
features.

For each indicator A in V,
Copy all nodes between M and D or V,
conditioned on A.

For each split 1n list
Apply split to circuit

C(M)LL

Score result
Undo split
If no split has positive score:
Reduce per-edge penalty and continue

For each m in M,
Replace children of m that are ancestors of
D or V with a sum over copies of the
ancestors times the A each copy was
conditioned on.

* To make scoring more efficient, we
measure the log-likelihood gain from
modifying only the weights of the two new
features, keeping all others fixed Else:

Apply highest-scoring split to circuit

Add new child splits to list

Remove inconsistent splits from list

C(M)LL

If all probabilities are positive, the distribution can be
represented as an equivalent log-linear model.

log P(X)= Y w,f.(D,)~logz

The network polynomial for a Markov network 1s a
polynomial with an exponential number of terms, one for
each possible state of random variables. Each term is the
product of indicator variables ()in) and the parameters
( 0. = e’ ) of the satisfied features

Example: Network polynomial of Markov network over
Boolean variables x, and X, with features f, = x, A x,
and f,=Xx, :

ACMN computes the gain by solving a simple
two dimensional convex optimization problem,
which depends only on the empirical counts of
the new features in the data and their expected

counts in the model. Used also by Della Piera
et. al. (1997) and McCallum (2003).

We approximated the KL divergence

between the BN and MN ACs using 2
o 3 -

sampling. We found that the KL divergence S

between the two is often much larger than o

their difference in log-likelihood on the test

data, suggesting that they do indeed learn

significantly different distributions:

Avg. conditional (marginal) log likelihood of query variables

By conditioning the AC on feature f and NLTCS 16 -6.01 -6.02 -6.49

differentiating it with respect to indicator MSNBC 17 -6.04 -6.04 -652
variables, ACMN computes the expectations

E[fAx;]and E[f A-x,]for all variables in a
single pass over the AC which takes linear time
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dimensional datasets. group ‘ ‘ seems to learn a significantly different

[Darwiche, 2003]

LearnAC and able to learn better models.

distribution even when the accuracy is similar. Source code: http://libra.cs.uoregon.edu/

Reuters-52 0.27 6.98




