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We compared ACMN to four state-of-the-art algorithms. 
   - MN baselines: GSSL [Van Haaren et al., 2012] and L1-regularized logistic regression [Ravikumar et al., 

2009] as MN baslines;  
   - Tractable baselines: learning latent tree models (LTM) [Choi et al., 2011] and LearnAC algorithm 

(ACBN) [Lowd et al., 2008] which searches through Bayesian network structures rather than MNs. 
The objective function of GSSL and L1 is pseudo log-likelihood while ACMN, ACBN, and LTM optimize 

log-likelihood.  
We compared the exact conditional log-likelihood (CLL) of the query variables given the evidence  
 (                                  ). For L1 and GSSL, we computed the conditional marginal log-likelihood (CMLL) 

instead. CMLL is used when joint probabilities are hard to estimate:   

Experiments 

ACMN dominates GSSL and L1 on every 
dataset with < 20% evidence, both in inference 
speed and accuracy. 
ACMN is usually more accurate than LTM, 
especially on datasets with fewer variables. 
ACMN is often more accurate than ACBN, and 
seems to learn a significantly different 
distribution even when the accuracy is similar. 
 

 

A final direction is learning ACs with latent 
variables. Ideally, this could give ACMN the 
advantages of LTM on datasets where clustering 
structure was present, while maintaining the 
flexibility of the unrestricted conjunctive feature 
representation. 
 
Source code: http://libra.cs.uoregon.edu/ 

Results and Future Work 

Dataset( Vars( ACMN( ACBN( LTM(

NLTCS( 16( 06.01( K6.02( K6.49(

MSNBC( 17( 06.04( 06.04( K6.52(

KDDCup(2000( 64( 02.15( K2.16(( (K2.18(

Plants( 69( K12.89(( 012.85( K16.39(

Audio( 100( 040.32( K41.13( K41.90(

Jester( 100( 053.35( K54.43(( (K55.17(

NeWlix(( 100( 057.26( (K57.75( K58.53(

MSWeb( 294( 09.77( K9.81(( K10.21(

Book( 500( K35.62( K36.02( 034.22(

WebKB( 839( K161.30( K159.85( 0156.84(

20(Newsgroup( 889( K159.56( K159.65( 0156.77(

ReutersK52( 910( K89.54( 089.27( K91.23(

Dataset( Original( Generated(

NLTCS( 0.01( 0.08(

MSNBC( 0.00( 0.02(

KDDCup(2000( 0.01( 0.08(

Plants( 0.04( 1.43(

Audio( 0.81( 2.46(

Jester( 1.08( 3.14(

NeWlix(( 0.49( 2.57(

MSWeb( 0.04( 0.56(

Book( 0.49( 0.73(

WebKB( 1.45( 14.57(

20(Newsgroup( 0.09( 10.13(

ReutersK52( 0.27( 6.98(
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Algorithm 2 Subroutine that updates an arithmetic circuit
C by adding two new features, g = f ^ v and g0 = f ^¬v.

function ACMN-Split(s,M,C)
Let ✓ = s.paramNode, V = s.varNodes
Let A be the mutual ancestors of the parameter node (✓)
and the variable nodes (�

v

, �¬v

).
Let G

✓

be the subcircuit between ✓ and A.
Let G

v,¬v

be the subcircuit between {�
v

,�¬v

} and A.
A mutual ancestors of ✓ and V
G

v

 Clone(G
v,¬v

)[0/�¬v

]

G¬v

 Clone(G
v,¬v

)[0/�
v

]

G
✓1  Clone(G

✓

)[Prod(✓1, ✓)/✓]
G

✓2  Clone(G
✓

)[Prod(✓2, ✓)/✓]
A0  Sum(Prod(�

v

, G
v

, G
✓1), Prod(�¬v

, G¬v

, G
✓2))

Let g = f ^ v, g0 = f ^ ¬v
return (M [ {g, g0}, C[A0/A], g, ✓1, g

0, ✓2)

Before Split After Split
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Figure 2: Illustration of the operation of the ACMN-Split
subroutine, splitting a feature with parameter node ✓ on
variable V . Dashed lines indicate sections of the circuit
where details have been omitted.

have been used by several previous papers on MN struc-
ture learning [10, 17, 15]. Each dataset consists of three
parts: a training set, which we used as input to each learn-
ing algorithm; a validation set, which we used to select the
best tuning parameters; and a test set, which we used for
evaluation.

5.2 Methods

To evaluate the accuracy of ACMN, we compared it to
four state-of-the-art algorithms, two for learning Markov
networks and two for learning other forms of tractable
graphical models. Our MN baselines are GSSL[15] and
L1-regularized logistic regression[24] (L1), which have
shown good performance on these datasets in previous
work. Our two tractable baselines are a recent method for
learning latent tree models (LTM) [8] and the LearnAC
algorithm [19]. We refer to LearnAC as ACBN since,
like ACMN, it learns an AC and graphical model through
greedy combinatorial search, but it searches through BN
structures rather than MNs. The objective function of
GSSL and L1 is pseudo log-likelihood while ACMN,

Table 1: Datasets characteristics
Dataset Train Valid. Test Num. Density

set set set vars.
NLTCS 16,181 2,157 3,236 16 0.332
MSNBC 291,326 38,843 58,265 17 0.166
KDDCup 2000 180,092 19,907 34,955 64 0.008
Plants 17,412 2,321 3,482 69 0.180
Audio 15,000 2,000 3,000 100 0.198
Jester 9,000 1,000 4,116 100 0.610
Netflix 15,000 2,000 3,000 100 0.541
MSWeb 29,441 3,270 5,000 294 0.010
Book 8,700 1,159 1,739 500 0.016
WebKB 2,803 558 838 843 0.063
20 Newsgroup 11,293 3,764 3.764 930 0.049
Reuters-52 6,532 1,028 1,540 941 0.037

ACBN, and LTM optimize log-likelihood.2

For all baseline methods, we used publicly available code
and replicated recommended tuning procedures as closely
as possible. For the tractable models (ACMN, ACBN,
LTM) all options and parameters were tuned to maximize
log-likelihood on the validation set; for GSSL and L1, the
pseudo-likelihood of the validation set was used instead.

For GSSL, we tried generated feature sizes of 0.5, 1, 2,
and 5 million; pruning thresholds of 1, 5, and 10; Gaussian
standard deviations of 0.1, 0.5, and 1; and L1 priors of 1,
5, and 10, for a total of 108 configurations. We used the
original authors’ implementation of GSSL 3 to select the
features and the Libra toolkit4 to learn weights, as done in
the original paper [15]. To learn MNs using L1, we used
the Libra toolkit to learn the logistic regression distribu-
tions and convert them to an MN with DN2MN [20]. We
used L1 prior values of 0.1, 0.5, 1, 2, 5, 10, 15, and 20. For
ACBN, we used aclearnstruct from the Libra toolkit with
split penalties of 1, 5, and 10 and 0.1, 0.5, 1, and 2 million
maximum edges, resulting in 12 different configurations.
We used the same set of configurations for ACMN as well.
For LTM, we ran the authors’ code5 with its default EM
configuration to create latent tree models using four differ-
ent methods that they provided: CLRG, CLNJ, regCLRG
and regCLNJ.

To evaluate the effectiveness of each method at answer-
ing queries, we used the test set to generate proba-
bilistic queries with varying amounts of evidence, rang-
ing from 90% to 10% of the variables in the domain.
The evidence variables were randomly selected separately
for each test query. All non-evidence variables were
query variables. For LTM, ACBN, and ACMN, we com-

2Other natural baselines would be LEM [14] and SPNs [23].
However, the LEM code is unavailable, due to a broken library
dependency, and previous SPN learning methods assume a two-
dimensional structure not present in these datasets.

3http://dtai.cs.kuleuven.be/ml/systems/gssl
4The open-source Libra toolkit is available online at

http://libra.cs.uoregon.edu.
5http://people.csail.mit.edu/myungjin/latentTree.html

 We approximated the KL divergence 
between the BN and MN ACs using 
sampling.  We found that the KL divergence 
between the two is often much larger than 
their difference in log-likelihood on the test 
data, suggesting that they do indeed learn 
significantly different distributions: 
 
 
 

KL(P ||Q) = EP[log(P(x) /Q(x)]

≈
1
m

log(P(x(i) ) /Q(x(i) ))
i=1

m

∑

 
 
 
 
A Markov network (MN) represents a probability distribution 

as a normalized product of factors: 
 
 
where                    represents the variables in the domain of 

factor c and Z is the normalization constant.  
If all probabilities are positive, the distribution can be 

represented as an equivalent log-linear model: 
 
 
The network polynomial for a Markov network is a 

polynomial with an exponential number of terms, one for 
each possible state of random variables. Each term is the 
product of indicator variables (     )  and the parameters 
(               ) of the satisfied features 

Example: Network polynomial of Markov network over 
Boolean variables     and     with features                    
and                :  
   

 
 
For this Markov network,                        and  
 
 
An arithmetic circuit (AC) is a rooted, directed acyclic 
 graph that can compactly represent network polynomial in 

some cases. 
   
 
 
 
 
 
Evaluating or differentiating the AC with or without  

 evidence can be done in linear time in the size of circuit. 
Therefore, we can perform efficient inference in any  
 MN if we have compact representation of it as an AC. 
[Darwiche, 2003] 
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Algorithm: ACMN 

ACMN Algorithm 
Create initial product of marginals circuit 
Create initial split list 
Until convergence: 
       For each split in list 
              Apply split to circuit 
              Score result 
              Undo split 
       If no split has positive score: 
               Reduce per-edge penalty and continue 
      Else: 
              Apply highest-scoring split to circuit 
              Add new child splits to list 
              Remove inconsistent splits from list 

D: Parameter nodes to be split 
V: Indicators for the splitting variable 
M: First mutual ancestors of D and V 
For each indicator λ in V, 

Copy all nodes between M and D or V, 
conditioned on λ. 

For each m in M, 
Replace children of m that are ancestors of 
D or V with a sum over copies of the 
ancestors times the λ each copy was 
conditioned on. 

 

How to split a circuit 

 
 
 

•  Markov networks (MNs) are a powerful and flexible 
representation, but using them is difficult: 

        - Exact inference is typically intractable. 
        - Weight learning is also hard, since the likelihood and 
its gradient are intractable to compute. 
        - Previous work has examined restricted classes of 
MNs where learning and inference are easy. 
•  We introduce the first general-purpose learning 

algorithm for tractable MNs, and compare it to 4 
baselines on 12 benchmark datasets. 

•  Our method uses arithmetic circuits, an inference 
representation similar to sum-product networks, to learn 
MNs with arbitrary conjunctive feature and high 
treewidth. 

Introduction 

We computed average log-likelihood of ACMN, 
ACBN and LTM which is intractable for L1 and 
GSSL. ACMN is the most accurate algorithm on 6 
of the 12 datasets.  
Due to imposed limits on running time, ACMN 
learns relatively simpler models on high-
dimensional datasets. 

f (λx1,λx2 ,λ¬x1,λ¬x2 ) = λx1λx2θ1θ2

+λx1λ¬x2 +λ¬x1λx2θ2 +λ¬x1λ¬x2
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ACMN performs a greedy search through 
structure space. The initial structure is the set 
of all single variable features. The search 
operations are to take an existing feature, f, 
and split it on another variable, v, creating two 
new features:              and 
             
Splits are scored according to their effect on 
the log-likelihood of the MN and the size of 
the corresponding AC: 
 

f ∧v f ∧¬v

Score(s) = Δll (s)−γΔe(s)

logP(X = x | E = e)
logP(Xi = xi | E = e)

i
∑

      measures how much the split will increase 
the log-likelihood. 
•  Measuring the exact effect would require 

jointly optimizing all model parameters 
along with the parameter for the two new 
features.  

•  To make scoring more efficient, we 
measure the log-likelihood gain from 
modifying only the weights of the two new 
features, keeping all others fixed 

 
ACMN computes the gain by solving a simple 
two dimensional convex optimization problem, 
which depends only on the empirical counts of 
the new features in the data and their expected 
counts in the model. Used also by Della Piera 
et. al. (1997) and McCallum (2003). 
 
By conditioning the AC on feature f and 
differentiating it with respect to indicator 
variables, ACMN computes the expectations 
                and                    for  all variables in a 
single pass over the AC which takes linear time 
in the size of the circuit.     

Δll

              denotes the number of edges that 
would be added to the AC if this split were 
included. 
Computing the            has similar time 
complexity to actually performing the split. 
 

Δe(s)

Δe(s)

E[ f ∧ xi ] E[ f ∧¬xi ]

  ACMN is similar to the LearnAC [Lowd et al., 2008]. 
•   LearnAC learns Bayesian networks (BNs) where 

each conditional probability distribution (CPD) is a 
tree. 

•  ACMN learns MNs where the distribution is a log-
linear model and each feature is conjunction of 
feature tests. 

 
Every BN with tree CPDs can easily be expressed as a 
set of conjunctive features, but the converse is not true. 
Therefore, ACMN should be more expressive than 
LearnAC and able to learn better models.   

ACMN and LearnAC (ACBN) 


