
The first provenance monitor for LPM is
a re-implementation of the Hi-Fi
system. Hi-Fi collects provenance over
all system activity (see Figure 5) while
imposing just 3% per formance
overhead. Hi-Fi’s provenance can be
used to offer a detailed history of any
system object. Figure 3 shows the
history of a seemingly innocuous file,
public.txt. Should a non-privileged user
be allowed to read this file? It turns out
the answer is no; public.txt actually
leaks data from the /etc/shadow file,
where Linux stores its passwords. By
checking the provenance, we may have
prevented a hacker from stealing our
passwords from this machine.!

The provenance of an object is a
detailed history describing the entities
and processes involved in producing,
delivering, and storing that object.
Provenance-aware systems gather and
report metadata that describes the
history of each object (e.g., files,
network messages) being processed.
As the world becomes increasingly
distributed and reliant on cloud
computing, there is a growing interest
in developing such systems, as they
allow users to track, and understand,
how a piece of data came to exist in its
c u r r e n t s t a t e o n t h e s y s t e m .
Unfortunately, the provenance-aware
systems that exist today are insecure,
operating under very different models
and assumptions, pointing to a
pressing need for a dedicated platform
for provenance development.!

Adam Bates, Kevin Butler!
Computer and Information Science Department, University of Oregon!

The security of provenance data is
critical, but actually requires different!

We present the Linux Provenance
Module Framework (LPM), enabling the
development of provenance monitors in
the Linux operating system. Figure 4!

Towards A Usable Provenance Reference Monitor!

Secure Provenance!

Linux Provenance Modules! High-Fidelity Provenance!

This research is supported by NSF Grant
CNS-1254198 and by Massachusetts Institute
of Technology Lincoln Laboratory.!

!

For further information, please contact !
Adam Bates < amb@cs.uoregon.edu >,!
Kevin Butler <butler@cs.uoregon.ed>!

What is Provenance?!

protections than
the data that it
d e s c r i b e s . A
data object may
be public, but its
provenance may
leak sensitive
info about the
process through
which i t was
derived (e.g.,
lab tests). It is!
equally important that provenance be
protected from attack, leading some to
call for provenance reference
monitors. A reference monitor is a
small mechanism that enforces
security for an entire system, such as
SELinux or Windows SRM. In the case
of provenance reference monitors, the
mechanism must be able to collect
provenance on all system events
(complete observation) in a manner
that cannot be avoided or subverted by
an attacker (tamperproofness). When
provenance security is assured, it can!
be used in many
a p p l i c a t i o n s .
Figure 1 shows
how provenance
c a n a s s e s s
integrity. Figure
2 shows how it
c a n p r o v i d e
evidence of an
u n a u t h o r i z e d
system access.!

Fig. 4. LPM exists alongside
Linux’s security framework.!

VFS

security and
provenance layer

userspace

system calls

kernelspace

kernel
objects

sshd vim

s h o w s t h a t
LPM forms a
p r o v e n a n c e
l a y e r t h a t
observes all
activity from
w i t h i n t h e
Linux kernel.
LPM does not
interfere with !
security; thus,
LPM can be!
protected by Linux’s existing security
mechanisms, which is both easier and
safer. We wrote an SELinux policy to
protect LPM’s trusted computing base.!
!
!
!
!
!
!
!
!
!
Past Proposals. LPM is designed to
be a general platform for provenance
collection, so we started by considering
the needs of past provenance-aware
systems. Figure 2 shows that these
systems vary in the events for which
they collect provenance, such as
application context, files, inter-process
communication (IPC), memory, network
events, and process executions.!
!

Provenance Hooks. LPM is able to
serve all of these needs, observing
system activity through a set of 170
provenance hooks that are placed
throughout the kernel. We have placed
a provenance hook directly after each
security hook in the kernel, facilitating
provenance collection for all activities
permitted by the active security policy.
LPM also lets applications annotate
provenance for events that cannot be
viewed from within the kernel, such as
workflows or database queries.!

Fig. 5. Past proposals for automatic provenance
collection vary by scope and operational layer.!

Proposal Layer A
pp

lic
at

io
n

Co
nt

ex
t?

Fi
le

Sy
st

em
?

IP
C?

M
em

or
y?

N
et

wo
rk

?

Pr
oc

es
se

s?

HI-FI Kernel (LSM) 3 3 3 3 3
Lineage Kernel 3 3 3 3
PASS Kernel (VFS) Optional 3 3 3 3
QUIRE Platform 3
REDUX Application 3
SNooPy Application 3
SProv Application 3
Trio Application 3

1

In practice, provenance monitors record
extraneous information, such as the
provenance for starting up the system,
creating excessive storage overhead.
We are developing a new module that
can selectively collect provenance based
on a user-specified policy. A key insight
is that our policy can leverage existing
context from a system’s security
framework. We will be using this module
to discover new attack surfaces that exist
in popular programs like Firefox and
Dropbox, improving application security.!

Policy-Reduced Provenance!

The LPM Framework will bring usable,
secure provenance monitors to the Linux
operating system. We will be releasing
our source code upon publication, and
intend to pursue incorporating LPM into
the mainline Linux kernel source tree.!

Conclusion!

Fig. 3. Provenance can be visualized in graph form. This graph shows the history of .!public.txt

public.txt

mv secret.txt public.txt

modified_by

root

modified_by

user

modified_by cp /etc/shadow secret.txt

written_by

ld.so.cache

read

libdl-2.12.so

read

libselinux.so.1

read

libc-2.12.so

read

libpthread-2.12.so

readcontrolled_by

locale-archive

read

librt-2.12.so

read

libacl.so.1.1.0

read

libattr.so.1.1.0

read controlled_byreadreadreadread readreadread readread

shadow

read

Fig. 1. Provenance can
assess data integrity. Here,
we see that results.txt
has been manually edited.!

RESULTS.TXT

E-SCIENCE
PROGRAM

written_by

TEXT
EDITOR

written_by

HONEST
SCIENTIST

controlled_by

DISHONEST
SCIENTIST

controlled_by

Fig. 2. Provenance can be
used to manage and track
the flow of data. Here, we
see that secrets.doc was
read by a suspicious user.!

SECRETS.DOC

WHISTLE
BLOWER

read_by

LEGIT
USER

read_by

