
Host-layer provenance produces records that detail every
event that occurs with respect to system objects inside an
individual machine. This provenance scheme tracks every
object from the time it comes into existence up until its
current state. Provenance data generation and verification
occurs within the kernel, preventing rogue applications
from tampering with the trusted computing base of the
provenance monitor.

Our approach is to utilize host-layer provenance collection
in order to explain network events. Figure 3 shows a
provenance graph that explains the network message m,
which was derived from a combination of network events
as well as internal events from two different hosts.

When an administrator, Alice, is running a data center and
observes suspicious behavior, she must investigate whether
the behavior is legitimate or malicious, as seen in the
network infiltration attempt in Figure 1. To do so, a network
forensic system is required in order to answer questions
about the possible system breach. Past work has formalized
this problem as a matter of data provenance, creating a
network provenance system that gives Alice explanations as
to the origins of network messages. We present a novel
design for a high-fidelity network provenance system by
merging network activity with host-layer context.

Tyler Nichols, Adam Bates, Dave Tian, and Kevin Butler

Computer and Information Science Department, University of Oregon

This research is supported by NSF Grant CNS-1254198.

For further information, contact
Tyler Nichols (tnichols@cs.uoregon.edu).

!!

In our architecture, provenance monitors communicate via a
cryptographic message commitment protocol. By
implementing this functionality in the kernel, we remove the
need to instrument individual applications, and ensure that
provenance is collected even when an adversary has taken
control of an application that is running in user space.

In heterogeneous networks, such as those that run both
Linux and Windows hosts, it is not currently possible to
install a host-level provenance monitor in every machine.
We propose that the network itself can be used as a point of
observation when this is the case. Using Software-Defined
Networking, a new paradigm in which network switches can
be programmatically controlled, we can deploy a system of
Provenance Verification Points (PVPs) to securely collect
provenance for network events. This even enables
provenance collection from hosts under attacker control.

High-Fidelity Secure Network Provenance

Network Provenance

Host-Layer Provenance

Conclusion

Fig. 5.The PVP can collect provenance data
and perform lightweight verification

By combining host- and network-layer provenance
mechanisms, we are able to generate records with extreme
levels of detail, providing administrators with an all-
encompassing view of their system. Furthermore, with the
aid of Software-Defined Networking, network-layer
provenance removes the need for individual machines to
comply with the host-layer provenance protocol, which
allows for greater coverage of heterogeneous systems.

Fig. 3. An example provenance history for network message m.

Web Browser Web
Server ml

Network

sent_by

controlled_by

read sent_by

File.docx

Bob

read

Microsoft
Word

written_by

read

Browser
Plug-in

Network provenance systems provide investigators with
detailed records explaining why network traffic was
generated at a given time to help identify faulty or malicious
nodes. Existing network provenance schemes treat
individual nodes in the network as black boxes by recording
network traffic and by assuming that a message is
generated as a direct result of other messages. This
approach omits significant context from the internal state of
the machine. Network traffic may be generated due to other
systems events, such as inter-process communication.

Fig. 2. Past network provenance systems have
ignored the internal state of machines.

ml

Network

sent_by read ? ? sent_by

Software-Defined Network Provenance

In future work, we
intend to reconcile this
n e t w o r k - l a y e r
provenance with the
host-based approach,
creating provenance of
e x q u i s i t e d e t a i l .

Without this
host context,
it is impossible
to fully explain
the cause of
these network
events.

Application

NIC
m, sign(m) m, verify(m)

Application

NIC

Host	 A	 Host	 B	

Fig. 4. Host A signs message m prior to exiting the system; Host B verifies
the presence of A’s signature prior to accepting message m

Kernel Kernel

User User

Fig. 1. An administrator spots suspicious activity in her
network.

Is my network
under attack?

Alice

Internet

