CIS 624, Fall 2014, Final Examination

9 December 2014

Please do not turn the page until everyone is ready.

Rules:

- The exam is closed-book, notes are allowed.
- **Please stop promptly at 16:45.**
- You can rip apart the pages, but please write your name on each page.
- There are **165 points** total, distributed **unevenly** among **7** questions. A perfect score is **100** points, any extra points over 100 will be added to your midterm score (if it was less than 100).
- Most questions have multiple parts. You will receive points for any parts you complete.
 - **You are not expected to complete all questions.**

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. **Skip questions you are not confident about and if you have time, come back to them later. Remember you only need 100 points total.**
- If you have questions, ask.
- Relax. You are here to learn.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max points</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100 (+65)</td>
<td></td>
</tr>
</tbody>
</table>
Simply Typed Lambda Calculus with pairs

\[e \ ::= \ \lambda x. e \mid x \mid e \mid c \mid (e,e) \mid \text{e.1} \mid \text{e.2} \]
\[v \ ::= \ \lambda x. e \mid c \mid (v,v) \]
\[\tau \ ::= \ \text{int} \mid \tau \rightarrow \tau \mid \tau \star \tau \]

\[e \rightarrow e' \text{ and } \Gamma \vdash e : \tau \text{ and } \tau_1 \leq \tau_2 \]

\[(\lambda x. e) v \rightarrow e[v/x] \]
\[e_1 \rightarrow e'_1 \]
\[e_2 \rightarrow e'_2 \]
\[e \rightarrow e' \]
\[\tau_1 \leq \tau_2 \]
\[e_1 \rightarrow e'_1 \]
\[e_2 \rightarrow e'_2 \]
\[(\lambda x. e) \tau \rightarrow \tau \]
\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]
\[\Gamma \vdash e : \tau_1 \]
\[\Gamma \vdash e_1 e_2 : \tau_1 \]

Definitions:
- If \(\vdash e : \tau \text{ and } e \rightarrow e' \), then \(\vdash e' : \tau \).
- If \(\vdash e : \tau \text{, then } e \text{ is a value or there exists an } e' \text{ such that } e \rightarrow e' \).
- If \(\Gamma, x: \tau \vdash e : \tau \text{ and } \Gamma \vdash e' : \tau' \), then \(\Gamma \vdash e[e'/x] : \tau' \).
System F (syntax)

\[e ::= c \mid x \mid \lambda x: \tau. e \mid e \mid \Delta \alpha. e \mid e[\tau] \]

\[\tau ::= \text{int} \mid \tau \to \tau \mid \alpha \mid \forall \alpha. \tau \]

\[v ::= c \mid \lambda x: \tau. e \mid \Delta \alpha. e \]

\[\Gamma ::= \cdot \mid \Gamma, x: \tau \]

\[\Delta ::= \cdot \mid \Delta, \alpha \]

System F: \(e \to e' \) and \(\Delta; \Gamma \vdash e : \tau \)

\[
\frac{e \to e'}{e e_2 \to e' e_2}
\quad
\frac{e \to e'}{v e \to v e'}
\quad
\frac{\tau \to e'[\tau]}{e[\tau] \to e'[\tau]}
\quad
\frac{(\lambda x: \tau. e) v \to e[v/x]}{(\Lambda e)[\tau] \to e[\tau/\alpha]}
\]

\[
\frac{\Delta; \Gamma \vdash x : \Gamma(x)}{\Delta; \Gamma \vdash e : \text{int}}
\quad
\frac{\Delta; \Gamma \vdash e : \text{int}}{\Delta; \Gamma \vdash \lambda x : \tau_1. e : \tau_1 \to \tau_2}
\quad
\frac{\Delta; \Gamma \vdash \lambda \alpha. e : \forall \alpha. \tau_1}{\Delta; \Gamma \vdash e : \tau_1}
\quad
\frac{\Delta; \Gamma \vdash e : \tau_2}{\Delta; \Gamma \vdash e : \forall \alpha. \tau_1}
\]

Simple System F examples: Let \(\text{id} = \Lambda \alpha. \lambda x : \alpha. x \). Then \(\text{id} \) has type \(\forall \alpha. \lambda x : \alpha. x \); \(\text{id} \) has type \(\text{int} \to \text{int} \); and \(\text{id} \) has type \(\text{int} \to \text{int} \to \text{int} \).

Sum types, iso-recursive types

\[e ::= \ldots \mid A(e) \mid B(e) \mid (\text{match } e \text{ with } A x. e \mid B x. e) \mid \text{fold}_{\tau} e \mid \text{unfold } e \]

\[\tau ::= \ldots \mid \tau_1 + \tau_2 \mid \mu \alpha. \tau \]

\[v ::= \ldots \mid A(v) \mid B(v) \mid \text{fold}_{\tau} v \]

match \(A(v) \) with \(A x. e_1 \mid B y. e_2 \to e_1[v/x] \)

match \(B(v) \) with \(A x. e_1 \mid B y. e_2 \to e_2[v/y] \)

\[
\frac{e \to e'}{A(e) \to A(e')} \quad \frac{e \to e'}{B(e) \to B(e')} \quad \frac{e \to e'}{e \to e'}
\]

\[
\frac{\text{match } e \text{ with } A x. e_1 \mid B y. e_2 \to e \to e'}{\text{match } e \text{ with } A x. e_1 \mid B y. e_2 \to e \to e'}
\]

\[
\frac{\text{unfold } (\text{fold}_{\mu \alpha. \tau} v) \to v}{\text{fold}_{\mu \alpha. \tau} e \to \text{fold}_{\mu \alpha. \tau} e'}
\quad
\frac{\text{unfold } e \to \text{unfold } e'}{\text{unfold } e \to \text{unfold } e'}
\]

\[
\frac{\Delta; \Gamma \vdash e : \tau_1 + \tau_2}{\Delta; \Gamma \vdash e : \tau_1}
\quad
\frac{\Delta; \Gamma \vdash e : \tau_1}{\Delta; \Gamma \vdash \text{match } e \text{ with } A x. e_1 \mid B y. e_2 : \tau}
\quad
\frac{\Delta; \Gamma \vdash e : \tau_2}{\Delta; \Gamma \vdash e : \tau_2}
\quad
\frac{\Delta; \Gamma \vdash e : \tau[(\mu \alpha. \tau)/\alpha]}{\Delta; \Gamma \vdash e : \mu \alpha. \tau}
\]

\[
\frac{\Delta; \Gamma \vdash e : \tau_1}{\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2}
\quad
\frac{\Delta; \Gamma \vdash e : \tau_2}{\Delta; \Gamma \vdash B(e) : \tau_1 + \tau_2}
\quad
\frac{\Delta; \Gamma \vdash e : \tau[(\mu \alpha. \tau)/\alpha]}{\Delta; \Gamma \vdash \text{fold}_{\mu \alpha. \tau} e : \mu \alpha. \tau}
\quad
\frac{\Delta; \Gamma \vdash e : \tau[(\mu \alpha. \tau)/\alpha]}{\Delta; \Gamma \vdash \text{unfold } e : \tau[(\mu \alpha. \tau)/\alpha]}
\]
1. (12 points) For each of the following OCaml definitions, does it type-check in OCaml? If so, what type does it have? If not, why not?

(a) let a = 3 in (fun f -> (fun x y -> x) (f a) (f true))

(b) let b = (fun f -> (fun x y -> x) (f 1) (f (f (f 5))))

(c) let c = (fun x y z -> x y z) (fun p q -> p * q) 5 10

(d) let d = (fun f -> (fun x y -> y) (f 3) (f (-10)))

Solution:

(a) Does not type-check: The type-inferencer will conclude that g must be a function takes an int and a function that takes a bool, and these cannot both hold.

(b) Type-checks: (int -> int) -> int

(c) Type-checks: int

(d) Type-checks: (int -> 'a) -> 'a
2. (30 points) We want to extend IMP (defined on p. 2) with case conditional of the form

\[
\text{case } e \text{ of } \\
\quad c_1 : s_1; \\
\quad c_2 : s_2; \\
\quad \ldots; \\
\quad c_n : s_n \\
\text{endcase}
\]

where \text{case}, \text{of}, and \text{encase} are new keywords; \(e \) is an arithmetic expression, each \(c_i \) is an integer constant, and each \(s_i \) is a statement. This program is executed by first evaluating the expression \(e \) to obtain a constant \(c \); if the first occurrence of \(c \) in the list \(c_1, \ldots, c_n \) is \(c_i \) (duplicates are allowed in the list \(c_1, \ldots, c_n \)), then the statement \(s_i \) is executed. If \(c \) does not occur in the list \(c_1, \ldots, c_n \), then the program immediately terminates (i.e., is equivalent to \text{skip}).

(a) (10 points) Give a BNF definition of the syntax of case conditionals by extending the current IMP definition of statements, \(s \). It can be helpful to (optionally) use a separate metavariable \text{CaseList} for the list of cases between \text{of} and \text{endcase}.

\[
\text{CaseList} ::= c : s \mid c : s ; \text{CaseList} \\
\text{s} ::= \text{skip} \mid x := e \mid s ; s \mid \text{if } e \ s \ s \mid \text{while } e \ s
\]

(b) (10 points) Give small-step operational semantics for case statements (you should have at least two new rules).
(c) (10 points) What is the value of x at the end of the program below? Show a correct sequence of steps, specifying the small-step judgement rule(s) used in each step.

```plaintext
x := 3;
case 2 * x of
   3: x := -1;
   6: x := x + (-1);
   5: x := x + 1;
   6: x := 0
endcase
```

Solution:

(a)

```
CaseList ::= c : s | c : s; CaseList
s ::= skip | x := e | s; s | if e s s | while e s
    | case e of CaseList endcase
```

(b)

```
case1
H ; e ↘ c_i
H ; case e of c_1 : s_1; ...; c_i : s_i; ...; c_n : s_n endcase → H ; s_i
```

```
case2
H ; e ↘ c
c ∉ {c_1, ..., c_n}
H ; case e of c_1 : s_1; ...; c_i : s_i; ...; c_n : s_n endcase → H ; skip
```

(c)

```
H = {} ; x := 3; case 2 * x of 3 : x := -1; 6 : x := x - 1; 5 : x := x + 1; 6 : x := 0 endcase
→^2 H = x → 3; case 2 * x of 3 : x := -1; 6 : x := x - 1; 5 : x := x + 1; 6 : x := 0 endcase
[Seq2, Assign]
→ H = x → 3; x := x - 1 [Case1]
→ H = x → 3, x → 2; skip [Assign]
```
3. (20 points) Define a list encoding using the simply-typed lambda calculus with functions, and integers as considered in class. A non-empty list can be represented as $\lambda s. s \ h \ t$ where h and t are the head and tail of the list.

You can (optionally) use the definition of booleans and pairs from lecture, or other helper expressions.

- “true” $\lambda x. \lambda y. \ x$
- “false” $\lambda x. \lambda y. \ y$
- “mkpair” $\lambda x. \lambda y. \lambda z. \ z \ x \ y$
- “fst” $\lambda p. \ p \ \lambda x. \lambda y. \ x$
- “snd” $\lambda p. \ p \ \lambda x. \lambda y. \ y$

Define the lambda functions for each of the following operations. You can use previously defined shortcut names (e.g., “mkpair”, “true”, etc.).

(a) Create an empty list:

(b) Check if a list is empty:

(c) Create a non-empty list containing the integers 1, 2, and 3 (you can use numbers directly, no need for Church encoding).

(d) Get the last element (tail) of the list containing 1, 2, and 3 (you can use numbers directly, no need for Church encoding).

Solution:

(a) “emptylst” = “mkpair” “false” “false” (each node represented by a pair whose first element is head of the list, and second element is the tail; “false” as the first element of a pair designates the empty list)
(b) “isempty” = “fst” = \(\lambda p. p(\lambda x. \lambda y. x) = \lambda z. \lambda p. p(\lambda x. \lambda y. x)(\lambda p. p(\lambda x. \lambda y. y)z) \)

(c) \(\lambda h. \lambda t. \text{“mkpair” “true” (“mkpair” h t)} \)

(d) “tail” = \(\lambda z. \text{“snd” (“snd” (“snd” z))} = \lambda z. \lambda p. p(\lambda x. \lambda y. y)(\lambda p. p(\lambda x. \lambda y. y)z) \)
4. (26 points) This problem uses System F with pairs and extended with integer pairs and a new operation, pair subtraction. For example, with pair subtraction \((3, 4) - (1, 3)\) should result in \((2, 1)\). Note that the answers to all parts should be brief.

(a) Define a *large-step operational rule* for subtraction of expressions of the form \(e_1 - e_2\) where \(e_1\) and \(e_2\) can be reduced to values that are pairs of integer constants.

\[
\text{E-SUB} \quad \frac{e_1 \downarrow \ \text{and} \ e_2 \downarrow}{e_1 - e_2 \downarrow}
\]

(b) Give the appropriate System F *typing* rule for subtraction of expressions of the form \(e_1 - e_2\) where the types of \(e_1\) and \(e_2\) are pairs of ints.

\[
\text{T-SUB} \quad \frac{}{\Delta; \Gamma \vdash e_1 - e_2 :}
\]

(c) Consider a typing context where:
- There are no type variables in scope.
- \(x\) is the only term variable in scope and it has type \(\forall \alpha. \alpha \rightarrow \alpha\). **Correction:** The type should have been \(\forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha\); answers satisfying either type will be accepted without any point deduction.

i. What does \(\tau\) need to be for the program fragment

\[
x \ [\tau] \ (\lambda y : \text{int} \ \ast \ \text{int}. \ \lambda z : \text{int} \ \ast \ \text{int}. \ y - z) \ (10, 2) \ (5, 2)
\]

to typecheck? (Recall application — of types or terms — associates to the left.)

\(\tau\) is

ii. Given your choice for \(\tau\) above, what is the type of

\[
x \ [\tau] \ (\lambda y : \text{int} \ \ast \ \text{int}. \ \lambda z : \text{int} \ \ast \ \text{int}. \ y - z) \ (10, 2) \ (5, 2)
\]
(d) If \(v \) is an arbitrary value such that

\[
v \ [\tau] \ (\lambda y : \text{int} \star \text{int}. \lambda z : \text{int} \star \text{int}. \ y - z) \ (10, 2) \ (5, 2)
\]

type-checks (notice \(v \) is a value and no longer polymorphic), then:

i. What type does \(v \) have? (Hint: it’s different from the answers to part c).

ii. What might the following expression evaluate to?

\[
v \ (\lambda y : \text{int} \star \text{int}. \lambda z : \text{int} \star \text{int}. \ y - z) \ (10, 2) \ (5, 2)
\]

Solution:

(a)

\[
e_1 \Downarrow (c_1, c_2) \quad e_2 \Downarrow (c_3, c_4) \\
e_1 - e_2 \Downarrow (c_1 - c_3, c_2 - c_4)
\]

(b)

\[
\Delta; \Gamma \vdash e_1 : \text{int} \star \text{int} \quad \Delta; \Gamma \vdash e_2 : \text{int} \star \text{int}
\]

\[
\Delta; \Gamma \vdash e_1 - e_2 : \text{int} \star \text{int}
\]

(c) i. \(\tau \) must be \(\text{int} \star \text{int} \rightarrow \text{int} \star \text{int} \rightarrow \text{int} \star \text{int} \)

ii. \(\text{int} \star \text{int} \)

(d) i. \((\text{int} \star \text{int} \rightarrow \text{int} \star \text{int} \rightarrow \text{int} \star \text{int}) \rightarrow (\text{int} \star \text{int} \rightarrow \tau_1) \) for any \(\tau_1 \).

ii. It could produce any value whatsoever.
5. (15 points)
Consider a typed λ-calculus with sum types, pair types, recursive types, unit, and int.

(a) Define a type \(t_1 \) for a binary tree of integers where:
- Each interior node has one integer and two children.
- Each leaf node has no data.
- Your type definition should have the form \(\mu \alpha . \cdots \).

(b) Give a type \(t_2 \) for a binary tree of integers where:
- Each node has one integer and two \textit{optional} children (meaning each child may or may not be another binary tree).
- Your type definition should have the form \(\mu \alpha . \cdots \).

(c) Explain in English how there is exactly one value of type \(t_1 \) that cannot be translated to an equivalent value of type \(t_2 \).

Solution:

(a) \(\mu \alpha . \text{unit} + (\text{int} \times \alpha \times \alpha) \)
(b) \(\mu \alpha . \text{int} \times (\text{unit} + \alpha) \times (\text{unit} + \alpha) \)
(c) The empty tree can be represented with a value of type \(t_1 \) but not with \(t_2 \) because every \(t_2 \) has at least one int.
6. Continuation passing style in OCaml.

(a) (12 points) Assume that the `eqk`, `addk`, `timesk`, `divk` functions are defined as follows.

```ocaml
let eqk a b k = k (a = b);;
let addk a b k = k (a + b);;
let subk a b k = k (a - b);;
let times a b k = k (a * b);;
let divk a b k = k (a / b);;
```

Using only the above functions, implement a CPS function `abcdk` that takes four integer arguments `a, b, c, d`, a regular continuation `k`, and an exception continuation `xk`, to compute the following integer expression: \(a \times (b + c) / d \). If `d` is 0, call the exception continuation `xk` and pass the offending value to it.

```ocaml
# let abcdk a b c d k xk = ...;;
val abcdk : int -> int -> int -> int -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>
```
(b) (20 points) Consider the direct style function that given a list of integers, returns the sum of squares of all values.

```ml
let rec sumsquares l =
    match l with
    | [] -> 0
    | h::tl -> (h*h) + (sumsquares tl)
```

i. What is the type of `sumsquares` above?

ii. For a given call to `sumsquares` above, approximately how deep would the call-stack grow in terms of the function arguments?

iii. Write a version of `sumsquares` called `sumsquaresk` in continuation-passing style (i.e., it should take as arguments a list of integers and a continuation function):

```ml
let rec sumsquaresk l k = ...
```

You can assume that the following CPS functions are defined (you can assume only integer division is supported, e.g., `divk 5 2 (fun x->x) returns 2`).

```ml
open List;;
let eqk arg1 arg2 k = k (arg1 == arg2);;
let timesk arg1 arg2 k = k (arg1 * arg2);;
let divk arg1 arg2 k = k (arg1 / arg2);;
let hdk lst k = k (hd lst);;
let tlk lst k = k (tl lst);;
let plusk arg1 arg2 k = k (arg1 + arg2);;
```

(continues on next page)
iv. What is the type of the `sumsquaresk` function you wrote in part b.iii?

Solution:

(a) \% a \times (b + c) / d

```ml
let abcdk a b c d k xk =
  eqk d 0
  (fun ex -> if ex then xk d
    else plusk b c
      (fun bc -> timesk a bc
        (fun abc -> divk abc d k))));;
```

(b) Sum the squares of values in list.

i. `int list -> int`

ii. Its depth will be proportional to the length of the list \(l \).

iii. `let rec sumsquaresk l k =
 eqk l []
 (fun empty -> if empty then k 0
 else hdsk l
 (fun h -> timesk h h
 (fun h2 -> tklk l
 (fun ltail -> sumsquaresk ltail
 (fun t -> plusk h2 t k))))));`;

(* To test: *)

```ml
let print_int i =
  print_string (string_of_int i); print_newline();;

sumsquaresk [1;2;3] print_int;;
```

iv. `sumsquaresk` has type `int list -> (int list -> 'a) -> 'a`
7. (30 points) In this problem, we consider a call-by-value lambda-calculus with very basic support for profiling: In addition to computing a value, it computes how many times an expression of the form `count e` is evaluated. Here is the syntax and operational semantics:

```
e ::= \lambda x. e | x | e e | count e
c
```

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>c; e \rightarrow c'; e'</code></td>
<td>Evaluation rule</td>
</tr>
<tr>
<td><code>c; (\lambda x. e) v \rightarrow c; e[v/x]</code></td>
<td>β-reduction</td>
</tr>
<tr>
<td><code>c; e_1 e_2 \rightarrow c'; e_1' e_2'</code></td>
<td>Application rule</td>
</tr>
<tr>
<td><code>c; count v \rightarrow c + 1; v</code></td>
<td>Increment count</td>
</tr>
</tbody>
</table>

Given a source program `e`, our initial state is 0; `e` (i.e., the global count starts at 0). A program state `c; e` type-checks if `e` type-checks (i.e., the count can be any number).

(a) (5 points) Give a typing rule for `count e` that is sound and not unnecessarily restrictive.

\[
\Gamma \vdash count e : \\
\]

(b) (10 points) State an appropriate Preservation Lemma for this language. Prove just the case(s) directly involving `count e` expressions.

(c) (10 points) State an appropriate Progress Lemma for this language. Prove just the case(s) directly involving `count e` expressions.

(d) (5 points) Give an example program that terminates in our language and would terminate if we changed function application to be call-by-name but under call-by-name it would produce a different resulting count\(^1\).

Solution:

(a)
\[
\Gamma \vdash e : \tau \implies \Gamma \vdash count e : \tau \\
\]

(b) If \(\cdot \vdash e : \tau \) and \(c; e \rightarrow c'; e' \), then \(\cdot \vdash e' : \tau \). We can prove this by induction on the derivation of \(\cdot \vdash e : \tau \). In the case we’re asked to prove, the bottom of the derivation looks like:

\[
\cdot \vdash e_0 : \tau \implies \cdot \vdash count e_0 : \tau
\]

There are two possible ways `c; count e_0` can step to some `e'`. If `e_0` is a value, then `e' = e_0` and the assumed derivation’s hypothesis `\cdot \vdash e_0 : \tau` suffices. If `e_0` is not a value, then `e' = count e'_0` where `c; e_0 \rightarrow c'; e'_0`. So using `\cdot \vdash e_0 : \tau` and induction, `\cdot \vdash e'_0 : \tau`, so we can derive `\cdot \vdash count e'_0 : \tau`.

\(^1\)Recall that in the call-by-value parameter passing mechanism the expression argument to a function is evaluated before the function is applied, while in call-by-name, the expression argument to a function is substituted for all the occurrences of the formal parameter and the resulting expression is then evaluated normally.
(c) If $\vdash e : \tau$, then e is a value or there exists an e' and c' such that $c; e \rightarrow c; e'$. In the case we're asked to prove the bottom of the derivation looks like:

$$
\vdash e_0 : \tau \\
\vdash \text{count } e_0 : \tau
$$

So using $\vdash e_0 : \tau$, by induction either e_0 is a value or $c; e_0 \rightarrow c'; e'_0$ for some c' and e'_0. If e_0 is a value, then $c; \text{count } e_0 \rightarrow c + 1; e_0$. If $c; e_0 \rightarrow c'; e'_0$, then we can derive $c; \text{count } e_0 \rightarrow c'; \text{count } e'_0$.

(d) One of an infinite number of examples is $(\lambda x. 0)(\text{count } 0)$.