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1 Introduction

Over the last four billion years, life emerged on Earth and evolved into a menagerie of diverse forms
and functions (Fenchel, 2002; Knoll, 2004; Popa, 2004; Schopf, 2006). Evolutionary biologists in-
vestigate the underlying processes—rnutation, drift, and natural selection—that give rise to this
diversity (Ridley, 2004; Barton et al., 2007). It can be challenging to directly observe these pro-
cesses, especially for biological systems that evolved over millions (or billions) of years. Biclogists
have traditionally used “stones and bones” (e.g. fossils) to infer evolutionary history, but the fossil
record is incomplete and not easily searchable. It would be a frustrating state of affairs if all ad-
vancement in evolutionary biology relied on lucky shovels! Fortunately, gene sequencing technology
provides alternatives to fossil-based inference; we can gather genetic sequences from contemporary
species and then computationally infer their shared history. In the last decade, whole-genome
sequencing has provided a nearly limitless supply of genetic data.

The field of computational phylogenetics is concerned with algorithms and models for inferring
evolutionary history with confidence boundaries. Phylogenetic models make several simplifying
assumptions about underlying evolutionary processes, and a significant body of work addresses
these assumptions. In general, all proposed solutions to increase biological realism come at the
expense of increased computational complexity. Contemporary evolutionary models have become
sufficiently complex that software implementations require search heuristics and clever algorithm
design. This tension between scientific realism and computational tractability is the central crisis

of computational phylogenetics.



coloration. The dark moths were well-adapted to the sooty forest and were more likely to survive
predation. Over time, evolution selected for the dark phenotype; the light phenotype declined into
minority.

Phenotypes are encoded in genetic material (i.e. DNA), and emerge when genetic systems
interact with their environment. Within each living cell, so-called “coding regions” of DNA are
transcribed into RNA and then translated into proteins. Individual proteins and networks of
proteins are expressed in patterns which determine an individual’s phenotype; protein expression
patterns are often tailored to an organism’s environment in response to diet, stress, light periodicity,
and temperature.

A species population occasionally becomes separated due to spatio-temporal barriers, including
geographic separation and niche specialization. These now-divided subpopulations are then free to
accumulate unique mutations such that the two subpopulations become genetically incompatible,
and thus new species. A history of evolutionary lineage-splitting can be expressed as a type of tree
graph, called a cladogram. The terminal nodes of a cladogram correspond to observed taxa; the
internal branching pattern expresses the shared ancestry of the terminal nodes. Some cladograms
are rooted, in which case the root node corresponds to the most-recent-common-shared ancestor of
all taxa on the tree. Figure 1 illustrates a simple rooted cladogram for the history of the family
Hominidae.

A phylogram is a special type of cladogram in which the branch lengths correspond to a measure
of evolutionary distance, where distance is typically measured as the number of differences between
molecular sequences. The primary gosal of phylogenetic inference is to determine the correct phy-

logram for a given set of extant taxa.
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ample begins with an ancestral sequence NEDP, which stands for the amino acids asparagine (N},
glutamic acid (E), aspartic acid (D), and proline (P). Some evolutionary event—such as popula-
tion isolation, or perhaps & genome duplication—separates N EDP into two divergent lineages. In
one lineage, N evolves to D and then F, giving rise to the intermediate ancestral sequence EEDP.
In the other lineage, the character D evolves to V, giving rise to the intermediate ancestor NEV P.
Subsequent evolutionary events cause both intermediate ancestors to undergo further duplication.
In one descendant of EEDP, the second character E is deleted (as indicated by the state ‘—’).
In the other three lineages, different mutations occur: P to threonine (T), P to alanine (A), and
E twice mutates to glutamine (Q). This collection of mutation and duplication events yields four
extant descendant sequences: EDP, EEDT, NQV P, and NQV A. Figure 2 explicitly shows the
history as just described, but typically this lineage would be hidden from us if we collected the

descendant sequences from the wild.

ancestral amino acid sequence

DtoV

NioDtwoE

four descendent amino acid sequences

Figure 2: An ancestral amino acid sequence NEDP evolves into four descendant sequences.



of DNA are inserted and deleted. Consequently, a particular gene might be encoded with £ number
of amino acids in one species, but z + A or £ — A number of amino acids in another species.
The placement of indels can drastically affect the alignment outcome. To demonstrate this point,
consider several incorrect alignments for the sequences shown in Figure 2. First, consider an

alignment in which all the characters are inferred to be non-homologous:

Next, consider an alignment in which we correctly infer homology for characters one and four, but

fail to fully align characters two and three:

E-D~~~-P
EED----T
N----QVP
N----QVA

Finally, consider an alignment in which we incorrectly place the indel in character one:

-EDP
EEDT
NQVP
NQVA

In addition to these three examples, you can imagine many other alignments, each with a unique
indel placement solution. An obvious question is which alignment is the best? A large body of
bioinformatics research investigates algorithms for finding the best alignment. In the remainder of
this section, I describe two basic alignment algorithms upon which most contemporary alignment

methods are based.



include right, down, and diagonally down-right to other corners on F. All paths terminate in the
lower-right corner. Figure 3 illustrates four pairwise alignments of sequences EDP to EEDT,
and the corresponding paths across F'. It should be noted that there exist many more alignment
solutions than the four shown in Figure 3 . Here we consider the cost of these four alignment

individually.
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from the paths shown in Figure 3.

alignment 1: =54+5-+6+1=7

alignment 2: 5—5+6+1=7

alignment 3: 56— 5+6—-5—5=—4

alignment 4: —5 x 7= -35

You can see the Needleman-Wunsch algorithm returns a score of 7 for both the first and second
alignments. Indeed, we get the same score for placing an indel at either site 1 or 2 within the

sequence EDP. The problem of indel placement, in this example, is problematic and unresolvable.

2.2 The Smith-Waterman Algorithm

Alignments generated using the Needleman-Wunsch algorithm can be poor quality for sequences
with regions of great dissimilarity. For example, many protein sequences encode a multi-domain
protein, where each domain has a different structure and biological function. The sequence sites
between domains are often functionally unimportant and their sequences tend to evolutionarily drift.
In many cases it is more biologically appropriate to locally align the highly conserved domeins of
protein sequences, rather than globally align all sites.

The Smith-Waterman algorithm extends the Needleman-Wunsch algorithm to locally align two
sequences (Smith and Waterman, 1981). The Smith-Waterman algorithm changes all the negative
values in the F' matrix to 0. Consequently, alignments are not penalized for matching dissimilar

residues, but are still rewarded for matching similar residues.
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e COFFEE and its descendant T-COFFEE use a consistency-based function to incorporate
the results from CLUSTAL and L-ALIGN into a single result (Notredame et al., 1998;

Cedric Notredame, 2000).

¢ 3DCOFFEE extends T-COFFEE to incorporate three-dimensional protein structure infor-
mation. 3DCOFFEE uses a technique called “threading” to map homologous sequences onto

a single protein structure (O’Sullivan et al., 2004).

o Espresso is an extension of 3DCOFFEE, where the structural templates for sequence threading
are automatically identified and retrieved from a database of protein structures (Armougom

et al., 2006).

» MUSCLE uses the unweighted-pair-method-with-arithmetic-mean to build a progressive guide
tree. MUSCLE refines the guide tree based on the results of the progressive alignement, and

then repeats the alignment procedure. (Edgar, 2004)

s ProbCons implements progressive global alignment and uses a method called “probabilistic
consistency” to update the score for matching residues z and y based on the triangulated

score of matching = to some third residue z, and y to z (Do et al., 2005).

¢ DIALIGN provides an alternative to the Needleman-Wunsch and Waterman-Smith algo-
rithms; DIALIGN compares regions of sequences rather than individual resides (Subramanian

et al., 2008).

e PRANK implements global sequence alignment, and attempts to disambiguate between in-
sertions and deletions by incorporating phylogenetic information (Loytynoja and Goldman,

2005, 2008).
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where D¢ is the corrected distance and D, is the observed distance (the Hamming distance)
between two sequences. The use of the term (%) appears as & consequence of Jukes and Cantor
assuming that all nucleotide substitutions can occur with equal probability. Kimura extended this
idea to incorporate different substitution rates between different states. Specifically, Kimura’s cor-
rection method incorporates a different rate for transitions (A & G and C « T) and transversions
(A= C,A=T,C e G, T+~ G) (Kimura, 1980).

When using distances—or some other metric—to cluster sequences into a tree, the order of the
clustering can strongly affect the phylogenetic outcome. To deal with this complication, several
phylogenetic algorithms use the distance-based tree as a starting point and then heuristically search
for the best tree according to some optimality criterion. A simple criterion is to select the tree
with the shortest sum of branch lengths because this tree implies the “minimum evolution” of
characters on the tree (Saitou and Nei, 1987). Another criterion—the “least squares” method—
seeks to minimize the squared difference between a tree’s branch lengths and the pairwise distances
in the distance matrix (Fitch and Margoliash, 1967).

A third criterion—called “maximum parsimony” (MP)—scores trees based on the number of
mutations implied by their branching pattern; the tree implying the fewest mutations is chosen
because it provides the simplest hypothesis for how the sequence data arose (Edwards and Cavalli-
Sforza, 1963; Camin and Sokal, 1965; Kluge and Farris, 1969; Farris, 1970; Fitch, 1971; Farris,
1977). Maximum parsimony reached widespread popularity among evolutionary biologists, but it
was shown to be statistically inconsistent under some conditions (Felsenstein, 1978). A method of
phylogenetic inference is said to be consistent if the method converges on the true phylogeny as the
length of the observed sequences increases. Inconsistent methods can pull us towards an incorrect

phylogeny. Although MP yields the correct tree in many cases, Felsenstein showed that MP can
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where p is our assumed rate of evolution. The probability that any number of mutations—from
zero to infinity—occur in time ¢ can be calculated by summing over all values k:

el k o=ty
PO<k<ooff) = 22 210 (3)

k=0 k!

Expression 3 is used to calculate the likelihood of a single phylogenetic branch for a single sequence
site as follows.

Suppose we observe an evolutionary character—a single nucleotide or an amino acid—currently
in some state z, where z is one of the letters in the nucleotide or amino acid alphabet. Also
suppose we have a matrix R expressing the relative substitution rates between states. R is an
n-by-n matrix, where n is the size of the alphabet. Finally, we have a vector 7 expressing the
expected frequencies of each state. Putting all these elements together, z will mutate to state y

over time t with probability calculated as follows:

> k t"et
Pz — y|t) = ’:Z;](WWWURW)? (4)
. . where R, is the relative rate of z transitioning to y, and (Rﬁy) the extrapolated rateof z — y

occurring over k steps. m; and m, are the frequencies of states = and y, otherwise known as the

stationary frequencies. Expression 4 is typically shown in a more compact form:

©0 k
P =y 2L cam (5)
k=0 :

. where the matrix @ equals IIR — I. II is the diagonal matrix, where II|a,a] equals the

equilibrium frequency =, for state a in our alphabet. I is the identity matrix. The value u is
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likelihoods are calculated by deeper recursion to the branches descending from nodes u; and wus.
Eventually, the recurrence arrives at a leaf node ur. The partial likelihood LT of state y at node
ug equals 1.0 if ur is state y in the sequence date; otherwise LyT equals 0. Figure 4 illustrates the

data structures involved in this recursion.
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Figure 4: The recursive data structure for the likelihood algorithm. We pick an arbitrary root node v, with descendant
branches ¢; and ¢2 leading to nodes u; and uz. We recursively calculate a vector of partial likelihoods for each node on the
tree. For example, the vector L%l contains the partial likelihood L2? of node u) existing as state z, the partial likelihood L3}

of u; existing as state y, ete.

3.2 Likelihood Methods Make Critical Simplifying Assumptions.

The basic phylogenetic Markov model makes three simplifying assumptions. First, the model
assumes site independence: every site in the sequence alighment is assumed to evolve independently
of other sites. This assumption allows for simplicity in calculating likelihoods (Expression 6), but
this assumption is known to be unrealistic for protein-coding sequences. The structural integrity of
a protein relies on covalent and electrostatic bonds between amino acids; these bonds often occur
between amino acids that are geographic neighbors in a three-dimensional protein structure, but are
far apart in a one-dimensional sequence. The assumption of site independence is inaccurate in this

case because some sites are evolutionarily constrained by their interactions in a three-dimensional
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the probability of sampling state y from the stationary distribution and transitioning to state z.
In other words: m; P(z — y|t) = my P(y — z|t). Time reversibility greatly simplifies the likelihood
calculation because the algorithm becomes independent of the tree’s root position; time reversibility
allows us to choose any arbitrary root when applying the likelihood recursion (Expression 8). A
proof for this simplification is found in Felsenstein’s so-called “pulley principle” (Felsenstein, 1981).

The assumption of time reversibility has been shown to be biologically inaccurate in mitochon-
drial DNA because the heavy DNA strand spends more time in the single-strand state (in which
there is higher probability of mutation) during DNA replication (Faith and Pollock, 2003). A sim-
ilar violation occurs in nuclear DNA during replication, in which the nontemplate DNA strand
experiences an excess of C — T and G — A mutations (Polak and Arndt, 2008). In order to elimi-
nate the assumption of time reversibility, an extended Markov model has been proposed (Barry and
Hartigan, 1987) and implemented in Java (Jayaswal et al., 2005). However, this implementation
calculates likelihoods only on single given tree and does not provide facilities to search the space
of possible topologies. Indeed, ML optimization is more computationally-intensive without time
reversibility because Felsenstein’s pulley principle is no longer valid and multiple rootings must be

considered on every tree.

3.3 Nucleotide Models

The likelihood method requires a matrix of relative substitution rates between states: this is the
mairix R introduced in Expression 4. Nucleotide substitution rates are usually estimated as free

parameters from the sequence data. Several nucleotide matrices have been proposed:

s Jukes and Cantor’s model, JC69, assumes equal mutation probabilities between all nucleotides

(Jukes and Cantor, 1969).
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» Jones, Taylor, and Thornton calculated the JTT matrix using the same approach used for

Dayhoff matrices, but with a much larger database of proteins (Jones et al., 1991).

o Adachi and Hasegawa calculated the mtREV matrix specifically for vertebrate mitochon-
drial proteins. The authors used & maximum likelihood approach—rather than a counting
approach—to find the substitution matrix that optimized the likelihood of a phylogeny relat-

ing all the available vertebrate mitochondrial proteins (Adachi and Hasegawa, 1996).

e Whelan and Goldman used an ML method (as previously pioneered for the mtREV matrix)
to calculate the WAG matrix for 3095 globular protein sequences from 182 protein families

(Whelan and Goldman, 2001).

e Le and Gascuel improved Whelan and Goldman’s method by incorporating variable evolu-
tionary rates in the phylogeny of their curated proteins. Le and Gascuel used their method to

estimate the LG matrix from approximately 50000 protein sequences (Le and Gascuel, 2008).

3.5 Heterogeneity

The basic likelihood algorithm, as described in Section 3.1.2, assumes the evolutionary process
is homogenous across all sequence sites and lineages. This assumption is probably incorrect for
most datasets: it has been widely observed that evolutionary rates vary across sites (Fitch and
Margoliash, 1967; Uzzell and Corbin, 1971), and across lineages (Lopez et al., 2002; Philippe et al.,
2003). Several models have been proposed to incorporate various forms of evolutionary heterogene-
ity (Fitch and Markowitz, 1970; Galtier, 2001; Yang, 1994, 1996; Tuffley and Steel, 1997), but a
particularly popular approach is to partition a sequence alignment into subalignments, and then

apply a unique model to each partition (Yang, 1996; Ronquist and Huelsenbeck, 2003). This parti-
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L(t: b: my Ql; Q‘Z, cery QK: 'UJlD) = H Z P(Dzlti b: T, QJ)wJ (10)
i j

Another mixture model, the CAT model, incorporates heterogeneity about the stationary dis-

tribution by fitting a mixture of equilibrium state frequencies to data (Lartillot and Philippe, 2004).

The CAT model provides a mixture of w-vectors. Each sequence site i is fit to one of the w-vectors.

An additional parameter ¢ stores the 7 assignments, such that . is the m-vector to which site ¢

is assigned. The CAT model calculates the likelihood L(t, b, Q, 71,72, ..., 7k, ¢| D) of a tree ¢, with

branch lengths b, substitution process Q, and a mixture of K w-vectors (Expression 11).

L(t,b,Q, 71,7, ..., mx, ¢|D) = [[ P(Dilt, b, Q, mc;) (11)
i

Strictly speaking, the CAT model is a dynamically partitioned model—not a mixture model—
because each site is assigned to one of the w-vector mixtures rather than calculating the likelihood
of each mixture for all sites.

A third mixture model—the branch length mixture model—incorporates a form of heterogeneity
called “heterotachy” in which sites evolve according to lineage-specific rates (Kolaczkowski and
Thornton, 2008; Meade and Pagel, 2008). A heterotachous model incorporates multiple branch
length sets, where each set contains a unique length for every branch in the tree. The branch
length mixture model calculates the likelihood L(t, @, 7, by, ba, ..., bk, w| D) of tree ¢, rates Q, state

frequencies 7, and K branch lengths sets by, bs, ..., bx (Expression 12).

3

L(t'r Q: ™, b17b2) ey bK,’lUID) = ]___[ ZP(‘D"-'t’ Q,'JT, B’bJ)wJ (12)
b
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methods to optimize continuous parameters sequentially. This approach, which I refer to as suc-
cessive line maximization (SLM), optimizes a collection of parameters 6 by assuming the likelihood
function is “partially separable” such that the function L(f;,82,...,0x|D) can be optimized as
smaller functions L(6:|D), L(82|D), etc.

My own work suggests that SLM is inappropriate for ML inference because the assumption of
partial separability is incorrect. If two or more parameters are dependent then they are not partial
separable, and SLM is not guaranteed to return ML values. My initial observations suggest that
mixture proportions ([w, we, ..., wk| in Expression 9) are extremely dependent with branch lengths
and sGHC seems to be especially inappropriate for optimizing mixture models.

PAUP and PhyML implement a non-SLM technique, called the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method. BFGS is a quasi-Newton method that can optimize multiple dimensions
simultaneously (Gill et al., 1982), assuming the muitidimensional function can be approximated
as 8 quadratic. Unfortunately, the BFGS implementations in PAUP and PhyML have serious
limitations. PAUP is commercial software and the source code is not freely available; PAUP’s
implementation cannot be directly analyzed. PhyML’s implementation of BFGS—available as
open source code—can fail due to memory limitations; in these cases, PhyML recognizes the fault
and switches to Brent’s method. My own investigation of BFGS in PhyML suggests that BFGS
reaches memory limits in almost all practical cases. This shortcoming of BFGS has been addressed
in an algorithm called L-BFGS, which optimizes BFGS to use limited memory (Nocedal, 1980);
surprisingly, this work has not yet been adopted by the phylogenetics community.

Quasi-Newton methods (including SLM and BFGS) assume the underlying function is unimodal.
When this assumption is true, any uphill move is guaranteed to lead closer to the maximum like-

lihood value. If the function is multimodal, however, then quasi-Newton methods can become
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. where T;+1 is the next temperature, T; is the current temperature, T is the final temperature
(typically 0.0), Tp is the initial temperature, and ¢ is the number of desired STA iterations.

STA (and stochastic approaches in general) are not widely used in a phylogenetic context
to optimize continuous parameters. The first phylogenetic application of STA was to optimize
continuous parameters for a heterotachous mixture model (Kolaczkowski and Thornton, 2008). My
software (in development) extends this implementation, and to the best of my knowledge, is the
only phylogenetic software that stochastically optimizes continuous parameters. My preliminary
analysis suggests that STA finds higher optima than quasi-Newton methods, at the cost of increased
computation time. STA is computationally expensive because it must calculate the likelihood
of every proposal. In a situation where sGHC reaches an ML conclusion after several hundred
propositions, STA can typically require millions of propositions. If it takes one second to compute
the likelihood of a phylogeny, then sGHC would finish in under one hour, while STA would finish

in 11 days.

3.6.2 Optimizing the Topology

Topologies are discrete structures defined by their branching pattern. The space of topologies for a
given alignment is explored by swapping branches. The algorithm “nearest-neighbor interchange”
(NNI) swaps branches that are adjacent (Moore et al., 1973), while the algorithm “subtree pruning
and regrafting” (SPR) swaps branches from across the tree (Swofford, 2003). A discrete graph of

topologies, related by single swaps, forms a nested set of Petersen graphs (Holton and Sheehan,
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The goal of model selection is to find the evolutionary model that best-fits sequence data without
over-fitting the data with too many parameters. For nucleotide data, the likelihood ratio test is
typically used because nucleotide models are nested (Posada and Crandall, 1998). For amino acid
data, the Akaike Information Criterion is typically used to select among non-nested models (Akaike,
1973).

Two models are “nested” if both contain the same terms and one of the models has at least one
additional term. For example, the nucleotide model JC69 is nested inside the model K80. Whereas
K80 includes separate terms o and 3 for transitions and transversions, JC69 assumes all rates are
equal—essentially setting & = 8. The likelihood ratio test (LRT) compares the fit of a complex
model to a nested model. The LRT calculates a test statistic § = —2 x ln(%;), where L, is the
maximum likelihood of the simpler model and Lo is the maximum likelihood of the complex model.
The probability of the test statistic can be approximated by consulting a chi-square distribution
with degrees of freedom equal to the number of parameter terms not shared between the complex
and simple models. If the resulting probability is statistically significant (typically measured as
p < 0.05), then the complex model is indeed & better fit. The LRT for maximum likelihood
nucleotide models is implemented in the software ModelTest (Posada and Crandall, 1998).

The Akaike Information Criterion (AIC) calculates a single score that can be used to select
among non-nested models, which includes amino acid models {Akaike, 1973). The AIC score is
calculated as AIC = 2k — 2in(L), where k is the number parameters in the model and L is the
maximized likelihood of the model. When comparing AIC scores from two models, the lower
score indicates & better fit. The AIC can intuitively be understood as penalizing the model for
using multiple parameters, and rewarding the model for yielding a high likelihood score. AIC is

implemented to test among amino acid models in the software package ProtTest (Abascal et al.,
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times-prior is lower, the proposal is accepted with probability determined by the likelihood ratio
(%g% X i :'8’: ) between the proposal and the current state, where P(61) and P(f2) are the prior
probabilities of the current state #; and the proposed state 8;. Using this approach, the Markov
chain will spend a few iterations exploring low-likelihood parameter values, but will spend many
iterations exploring high-likelihood values. The posterior probability of a particular parameter
value can intuitively be understood as the amount of time the chain {or chains) spend dwelling on
that value.

Bayesian methods are controversial because they require a prior probability distribution, and
it is often unclear how the prior should be specified. Prior distributions for continuous parameters
can be virtually any shape: exponential, binomial, logarithmic, etc. Flat priors—uniform over
some distribution—are often used to reflect a lack of prior belief about & parameter. However, a
uniform prior implies that we believe all parameter values are equally-likely; this is not the same
as saying we know nothing about the parameter. The choice of prior has been shown to affect the
accuracy of Bayesian methods: Kolaczkowski and Thornton observed that an exponential prior on
branch lengths produced less accurate results than a uniform prior (Kolaczkowski and Thornton,
2007, 2009).

Regardless of priors, the Bayesian approach has been shown to be less accurate than ML in
some cases. For example, the maximum e posteriori topology can be incorrect when the true
evolutionary pattern contains particular signals of rate heterogeneity (Kolaczkowski and Thornton,
2007). Moreover, Bayesian branch lengths underestimate short branches; ML infers more branch
lengths more accurately (Schwartz and Mueller, 2010).

Ultimately, ML and Bayesian methods fundamentally disagree about how to find the “best”

phylogeny. The course of evolution occurred in exactly one way. ML seeks this single evolutionary
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habitation—evolved independently on at least eighteen different occasions (Yokoyama et al., 2008).
For more examples of historical ASR experiments, see {Thornton, 2004) and (Liberles, 2007).

In the early days of ASR, maximum-parsimony (MP) was the method du jour for reconstructing
ancestral states: paleobiologists assigned states to ancestral nodes so as {o minimize the number
of state changes along the branches of the tree (Fitch, 1971; Hartigan, 1973) (See also (Swofford
and Maddison, 1987, 1992; Maddison and Maddison, 1992)). MP was used to reconstruct ancestral
lysozymes (Malcolm et al., 1990), the mouse L1 protein (Adey et al., 1994), the bovid ribonuclease
(Stackhouse et al., 1990), and the artiodactyl ribonuclease (Jermann et al., 1995).

In the context of ASR, MP poses several problems. First, MP can yield several equally-best
ancestral states at a given site, but provides no method for choosing the single-best state. This
is troublesome if we are interested in chemically synthesizing ancestral molecules: the cost of
manufacturing and investigating all the equally-best ancestral combinations can be prohibitively
expensive. Second, when there exists asymmetry in transformation probabilities among states, MP
can be systematically biased against changes from ancestral rare states to common extant states
(Collins et al., 1994). Third, MP can produce biased reconstructions when the rate of evolution is
not constant across the phylogeny (Cunningham et al., 1998). Finally, MP methods for ASR fail to
incorporate information about branch lengths, mutation rates, or substitution rates. This means
that a mutation from some state z to another state y is equally likely over branch lengths that are

very short and very long.

4.1 An Empirical Bayesian Approach

As an alternative to MP, Yang et al. proposed an empirical Bayesian (EB) ASR method (Yang

et al., 1995). Yang’s method is Bayesian because it calculates posterior probabilities for ancestral
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struction calculates the posterior probability of a state at a single ancestral node, and integrates
over all possible ancestral states at all other nodes. A joint reconstruction calculates the posterior
probability of states simultaneously for all ancestral nodes. Koshi and Goldstein introduced a dy-
namic algorithm for marginal ancestral reconstruction (Koshi and Goldstein, 1996), and Pupko et
al. introduced a dynamic algorithm for joint reconstruction (Pupko et al., 2000). These algorithms
perform with equivalent computational complexity, scaling linearly with the number of taxa. Yang
implemented both variants in the software package PAML (Yang, 1997, 2007).

Marginal and joint reconstructions can yield disagreeing ancestral reconstructions. The appro-
priate method depends on the specific phylogenetic question being asked. For example, if we want
to resurrect the maximum a posteriori ancestral sequence for only one ancestor, then a marginal
reconstruction is appropriate. On the other hand, if we want to reconstruct the maximum g poste-
riori mutational trajectory—chains of mutations traveling through several ancestral nodes—then

a joint reconstruction is appropriate.

4.2 Other Approaches

The empirical Bayesian (EB) approach (as described in section 4.1} assumes the alignment, tree,
model, and model parameters are known a priori to be correct. In practice, this assumption is often
not valid; for many real-world datasets, alternatives to the ML tree and parameter values cannot
be ruled out. Bayesian methods have been proposed to accommodate these sources of uncertainty.
Pagel et al. proposed a Bayesian method for integrating topological uncertainty into inference of
ancestral states for binary and other discrete characters (Pagel et al. 2004). Schultz and Churchill
proposed a Bayesian method to integrate uncertainty about the parameters of the evolutionary

model into discrete character reconstructions (Schultz and Churchill 1999). For inference of an-
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which an alignment algorithm returned an unbelievable result. Alignment algorithms are known
to struggle when pairwise identities are low (Rost, 1999), but little else is known about how often
and in what conditions alignment algorithms fail because there has been no systematic accounting
for alignment successes and failures across diverse molecular sequence domains. This problem is
compounded by the fact that virtually all alignment algorithms are scored for accuracy against the
benchmark BaliBase (Thompson et al., 2005), but otherwise there exists & paucity of standardized
alignment benchmarks. Alignment algorithms have evolved to be good at solving Balibase, but
what about other datasets?

Aside from sequence alignments, the accuracy of phylogenetic Markov models is limited by their
simplifying assumptions (as I described in section 3.2). For example, the assumption of equilibrium
homogeneity is violated when one or more species experience unique environmental constraints on
their nucleotide or amino acid composition. This situation can arise when a population colonizes
a colder environment, thus relaxing selective pressures for a high equilibrium proportions of nu-
cleotides guanine and cytosine (because G-C bonds are more thermostable than A-T bonds). As
another example, the assumption of substitution process homogeneity is violated by the fact that
some protein sites have specific amino acid states that are critical for structural integrity—and
thus these sites experience strong evolutionary conservation—while other sites experience relaxed
constraints on their state. Both of these simplifying assumptions—equilibrium homogeneity and
substitution process homogeneity—can be overcome with linage-specific and site-specific mixture
models (as discussed in section 3.5).

However, other violations are more difficult to overcome. The assumption of site independence
is violated by any pair of protein sequence sites that interact when a protein folds into its three-

dimensional tertiary structure. For example, two threonine resides in the penicillopepsin protein

41



processor unit (Charalambous et al., 2005), the IBM BlueGene/L (Ott et al., 2007), and the IBM
Cell processor (Stamatakis et al., 2007). In all cases they achieved significant speedup, but these
improvements remain off-limits for evolutionary biologists unwilling to purchasing exotic hardware
like GPUs and Cell processors; the maintenance and operation of non-traditional hardware is often
beyond the capabilities of most molecular biology labs. That said, many labs do support clus-
ters with mainstream architectures (such as multicore chips from Intel and AMD). Consequently,
I suspect that breakthroughs in high-performance phylogenetics will continue to come from fur-
ther development of multiprocessor algorithms that use existing libraries—MPI and OpenMP—to

operate in generic multiprocessor environments (Suchard and Rambaut, 2009).

5.3 Proposed Research

In light of the computational phylogenetics problems I outlined over the last 40+ pages, I propose

three research goals.

5.3.1 Finding the best optimization algorithm

Over the last year, I implemented a branch length mixture model (as described in section 3.5)
within PhyML’s C code. I observed that PhyML’s successive line maximization (SLM) method
(as described in section 3.6.1) struggled to optimize the parameters of our mixture model, espe-
cially when I used more than two mixture components. I subsequently implemented a simulated
annealing heuristic as an alternative to successive line maximization methods. My software is
called “PHYESTA” (pronounced “fiesta”) and stands for PhyML extended for simulated thermal
annealing. The source code for PHYESTA can be found online here:

[http://markov.uoregon.edu/software/phyesta).
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is the likelihood surface multimodel or unimodal? A small body of work has shown that the like-
lihood surface can be multimodal, even with simple models and small datasets (Steel, 1994; Chor
et al., 2000). In light of this work, it remains unclear if multimodality is the common case for most

phylogenetic datasets, or if multimodality is the minority conditiion.

5.3.2 Reducing the algorithmic complexity of the likelihood function

The second project I propose is to reduce the complexity of the recursive aigorithm for calculating
likelihoods (as described in expression 4 of secion 3.1.2). Current implementations of the likelihood
algorithm spend the majority of CPU clocktime calculating and retrieving partial likelihoods during
a post-order traversal of the phylogeny. The complexity of the traversal can be reduced by using
the tree structure to identify redundant calculations. Current software removes totally-redundant
columns as a pre-processing step, and I propose that we can use the tree to remove partially-

redundant columns. For example, consider this alignment:

seql ATTGTGA
seq2 TAAGTGA
seq3 CTGTGCA
seq4 CGGGCCT

Consider the tree ((seql,seq2),(seq3,seq4)). On the ancestral node (seql,seq2), the subcolumn “TA”
occurs twice, and the subcolumn “GG” occurs twice. The likelihood algorithm can be optimized
by memo-izing the first partial likelihood for “TA” and reusing it later. This optimization, which I
call “tree-based subalignment compression,” could significantly speedup likelihood calculations at

the cost of a small increase in memory consumption.
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diverse selective constraints.

6 Conclusion

Phylogenetic inference is a necessary precursor to understand evolutionary history, which is essen-
tial for ecological and biomedical progress (Barton et al., 2007). Early phylogenetic approaches
made many simplifying assumptions about biological processes, but new insights into molecu-
lar biclogy—combined with computational advances—allow for models of molecular evolution to
incorporate unprecedented scientific realism. Contemporary evolutionary models are becoming
sufficiently complex that software implementations require search heuristics and clever algorithm
design. This tension between scientific realism and computational tractability is the central cri-
sis of computational phylogenetics; collaborations between bioclogists and computer scientists are

necessary now more than ever before.
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