
Computational duality and the sequent calculus

Paul Downen
University of Oregon

pdownen@cs.uoregon.edu

Abstract
The correspondence between proving theorems and writing pro-
grams, known as the Curry-Howard isomorphism or the proofs-as-
programs paradigm, has spurred the development of new tools like
proof assistants, new fields like certified programming, and new ad-
vanced type features like dependent types. The isomorphism gives
us a correspondence between Gentzen’s natural deduction, a system
for formalizing common mathematical reasoning, and Church’s λ-
calculus, one of the first models of computation and the foundation
for functional programming languages. However, concepts found
in modern programming, such as the provision of computational
effects, combination of different programming paradigms and eval-
uation strategies, and definition of infinite objects still lack a strong
foundation.

In the hopes of gaining a better understanding of these issues,
we will look at an alternate form of logic, called the sequent calcu-
lus, through the Curry-Howard lens. Doing so leads us to a method
of computation that heavily emphasizes the concept of duality and
the interaction between opposites — production interacts with con-
sumption; construction interacts with deconstruction. The symme-
try of this framework naturally explains more complicated features
of programming languages through relatively familiar concepts —
binding a value to a variable is dual to manipulation over the flow of
control in a program; case analysis over data structures in the func-
tional paradigm is dual to dynamic dispatch in the object-oriented
paradigm.

In this report, we survey the background of the connections be-
tween proofs and programs along with more modern advances. We
begin by reviewing the traditional form of the Curry-Howard iso-
morphism that connect proof theory, category theory, and type the-
ory, and has roots in the beginnings of computer science. We intro-
duce the sequent calculus as an alternative form of logic, and show
how the Curry-Howard isomorphism still applies and presents a
different basis for expressing computation. We then show how the
fundamental dilemma in the sequent calculus gives rise to a dual-
ity between evaluation strategies: strict languages are dual to lazy
languages. Next, we discuss concepts that were developed in the
setting of proof search, polarization and focalization, which give
a foundation for data structures and pattern matching in program-
ming languages. Taking a step back, we give a retrospective look at
the history of these developments, and illustrate a generalized the-
ory that unifies the different systems for the sequent calculus and
more closely matches actual programming languages. Finally, we
consider the long road ahead for using the sequent calculus as a
basis for understanding programming, and discuss various future
directions remaining in this line of work.

1. Introduction
As Alcmaeon (510BC) once said, most things come in pairs: left
and right, even and odd, true and false, good and bad. Duality is a
guiding force that reveals the existence of a counter entity with a

totally different form, yet the two are still strongly related through
their mutual opposition. Duality appears in proof theory: “true”
and “false” are dual, “and” and “or” are dual. Duality appears in
category theory: the opposite of a category is found by reversing its
arrows, sums naturally arise as the dual of products. However, even
though the theory of programming languages is closely connected
to logic and categories, this kind of duality does not appear to
arise so readily in the practice of programming. For example, sum
types (disjoint unions) and pair types (structures) are related to
dual concepts in logic and category theory. But in the realm of
programming languages, the duality between these two concepts
is not readily apparent, and languages typically present the two as
unrelated features and often with different levels of expressiveness.

The situation is even worse for more complicated language fea-
tures, where we have two concepts connected by duality that are
both important in the theory and practice of programming, but
one is well understood while the other is enigmatic and under-
developed. In the case of recursion and looping, inductive data
types (like lists and trees of arbitrary, but finite, size) are known
to be dual to co-inductive1 infinite processes (like streams of input
or servers that are indefinitely available) [58]. However, whereas
the programming languages behind proof assistants like Coq [67]
have a sophisticated notion of induction, a lack of understanding
about the computational foundations of co-induction is problem-
atic. McBride [107] notes how the poor foundation for the compu-
tational interpretation of co-induction is a road block for the goal
of program verification and correctness:

We are obsessed with foundations partly because we are
aware of a number of significant foundational problems that
we’ve got to get right before we can do anything realis-
tic. The thing I would think of in particular in that respect
is co-induction and reasoning about co-recursive processes.
That’s currently, in all major implementations of type the-
ory, a disaster. And if we’re going to talk about real systems,
we’ve got to actually have something sensible to say about
that.

Not only is this mismatch between the foundations of the two
features aesthetically unpleasing, but it has real consequences on
the application of theory for solving practical problems. Perhaps
the reason for this disparity and disconnect between related features
is a symptom of the fact that they are not considered with the right
frame of mind.

Our main philosophy for approaching these questions is known
as the Curry-Howard isomorphism [25, 30, 65] or proofs-as-
programs paradigm. The Curry-Howard isomorphism reveals a
deep and profound connection between three different fields of
study — logic, category theory, and programming languages —
where quite literally mathematical proofs are algorithmic pro-

1 In general, adding the prefix “co-” to a term or concept means “the dual of
that thing.”

1 2014/1/23

grams. The canonical example of the isomorphism is the corre-
spondence between Gentzen’s natural deduction [47], a system
for formalizing common mathematical reasoning, and Church’s
λ-calculus [19], one of the first models of computation and the
foundation for functional programming languages. However, the
λ-calculus not an ideal setting for studying duality in computation.
Dualities that are simple in other settings, like the De Morgan du-
als in logic or products and sums in category theory, are far from
obvious in the λ-calculus. The problem is related to the lack of
symmetry in natural deduction: in natural deduction all the empha-
sis is on concluding true statements and in the λ-calculus all the
emphasis is on producing results.

In contrast, the sequent calculus, introduced by Gentzen [47]
simultaneously with natural deduction, is a system logic about du-
alities. In these formal systems of logic, equal attention is given to
falsity and truth, to assumptions and conclusions, such that there
is perfect symmetry. These symmetries are even more apparent in
the related system of linear logic by Girard [51]. When interpreted
as a programming language, the sequent calculus reveals hidden
dualities in programming — input and output, production and con-
sumption, construction and deconstruction, structure and pattern —
and makes them a prominent part of the computational model. Fun-
damentally, the sequent calculus expresses computation as an inter-
action between two opposed entities: a producer which is represen-
tative of a program that creates information, and a consumer which
is representative of an environment or context that observes infor-
mation. Computation then occurs as a protocol of communication
that allows a producer and consumer to speak to one another, and
as a negotiation for resolving conflicts between the two. This two-
party, protocol-based style of computation lends itself to naturally
describe a lower-level view of computation than expressed by the
λ-calculus. In particular, programs in the sequent calculus can also
be seen as configurations of an abstract machine, in which the eval-
uation context is reified as a syntactic object that may be directly
manipulated. The sequent calculus is also a natural language for ex-
pressing effects, as its low-level nature inherently gives a language
for manipulating control flow equivalent in power to callcc from
Scheme [74].

In this report, we will survey the dualities in computation from
the perspective of the Curry-Howard isomorphism, with a particu-
lar focus on the connections between logic and programming. We
will begin with a review of the λ-calculus and its connection with
natural deduction and Cartesian closed categories (Section 2). Next,
we will introduce the sequent calculus as an alternate logic to nat-
ural deduction and an alternate language to the λ-calculus (Sec-
tion 4). We will discuss the duality between evaluation strategies,
showing the relationship between programs in strict (like ML) and
lazy (like Haskell) languages (Section 5). We will look at how the
concepts of polarization and focalization that arose in the area of
proof search have an impact on the meaning of programs and the
definition of programming languages (Section 6), particularly on
the notions of case analysis and pattern matching from functional
programming languages. Finally, we will give a retrospective look
at the current state of the art in the field and present some current
work on generalizing the various theories from a semantic perspec-
tive (Section 7), and then consider some open problems in the field
(Section 8).

2. Natural deduction: logic, programming, and
categories

The roots of the connection between the foundations of mathemat-
ics and computation go back to the early 1900s, when Hilbert posed
the decision problem by asking if there is an effectively calculable
procedure which can decide whether a logical statement is true or

false. This problem, and its negative answer, prompted for a rigor-
ous definition of “effectively computable” from Church [20], Tur-
ing [110], and Gödel [55]. Later on, a much deeper connection be-
tween models of computation and formalized logic was indepen-
dently discovered many times [25, 30, 65]. The most typical form
of this connection, now known as the Curry-Howard isomorphism,
gives a structural isomorphism between Church’s λ-calculus [19], a
system for computing with functions, and Gentzen’s natural deduc-
tion [47], a system for formalizing mathematical logic and reason-
ing. Additionally, this correspondence also includes an algebraic
structure known as cartesian closed categories [77]. To illustrate
the connection between logic, programming, and categories, we
will review the three systems and show how they reveal core con-
cepts in different ways. In particular, we will see how two princi-
ples important for characterizing the meaning of various structures,
which we will call β and η, arise independently in each field of
study.

2.1 Logic
In 1935, Gentzen [47] formalized an intuitive model of logical
reasoning called natural deduction, as it aimed to symbolically
model the “natural” way that mathematicians reason about proofs.
A proof in natural deduction is a tree-like structure made up of
several inferences:

....
H1

....
H2 . . .

....
Hn

J

where we conclude the deduction J from proofs of the premises
H1, H2, . . . , H3. The conclusion J and premises Hi are all judg-
ments that make statement about logical propositions, such as “0
is greater than 1.” For example, if we let A,B,C, . . . range over
the set of propositions, then we may make the basic judgment that
A is true. We may also make more complex judgments, such as a
hypothetical judgment:

A1, A2, . . . , An ` B
pronounced “A1, A2, . . . and An entail B,” which states that
assuming each ofA1, A2, . . . , An are true thenB must be true. The
local hypothesis, to the left of entailment, are collectively referred
to as Γ. With this form of hypothetical judgments, we may give
our first inference rule for forming proofs by concluding that the
proposition A must be true if was assumed to be true among our
hypothesis:

Γ, A ` A Axiom

Note that the order of hypothesis does not matter,2 so A may ap-
pear anywhere in the list of hypothesis to the left of entailment.
From here on, in a slight deviation from Gentzen’s original presen-
tation of natural deduction, we will favor working with hypothetical
judgments.

The system of natural deduction forms new propositions by
putting together other existing propositions with connectives,
which are the logical glue for putting together the basic build-
ing blocks. For example, the idea of logical conjunction can be
expressed formally as a connective, written A ∧ B and read “A
and B,” along with some associated rules of inference for building
proofs out of conjunction. On the one hand, in order to deduce that
A∧B is true (under some hypothesis Γ) we may use the introduc-
tion rule ∧I:

Γ ` A Γ ` B
Γ ` A ∧B ∧I

2 More specifically, the hypothesis form a multiset, so that their order is
irrelevant but the number of occurrences of the same proposition matters.

2 2014/1/23

A,B,C ∈ Proposition ::= X || A ∧B || A ⊃ B || >
Γ ∈ Hypothesis ::= A1, . . . , An

Judgment ::= Γ ` A

Γ, A ` A Ax

Γ ` A Γ ` B
Γ ` A ∧B ∧I Γ ` A ∧B

Γ ` A ∧E1
Γ ` A ∧B

Γ ` B ∧E2

Γ, A ` B
Γ ` A ⊃ B ⊃ I

Γ ` A ⊃ B Γ ` A
Γ ` B ⊃ E

Γ ` > >I no >E rule

Figure 1. Natural deduction with conjunction, implication, and truth.

That is to say, if we have a proof thatA is true and a proof thatB is
true (both under the hypothesis Γ), then we have a proof thatA∧B
is true (also under the hypothesis Γ). On the other hand, in order to
use the fact that A ∧ B is true we may use one of the elimination
rules ∧E1 or ∧E2:

Γ ` A ∧B
Γ ` A ∧E1

Γ ` A ∧B
Γ ` B ∧E2

That is to say, if we have a proof that A ∧ B is true (under the
hypothesis Γ), then it must be the case thatA is true (also under the
hypothesis Γ), and similarly for B.

As another example, we can also give an account of logical
implication as a connective in natural deduction, written A ⊃ B
and read “A implies B” or “if A then B,” in a similar fashion. In
order to deduce that A ⊃ B is true we may use the introduction
rule ⊃ I for implication:

Γ, A ` B
Γ ` A ⊃ B ⊃ I

Notice that the introduction rule for implication has a more interest-
ing interaction with the local hypothesis. If we can prove that B is
true using A as part of our local hypothesis, then we can conclude
that A ⊃ B is true under the hypothesis Γ alone. Once we have a
proof of A ⊃ B, we may make use of it with the elimination rule
⊃ E for implication:

Γ ` A ⊃ B Γ ` A
Γ ` B ⊃ E

This is a formulation of the traditional reasoning principle modus
ponens: from the fact that A implies B is true and we have a proof
that A is true as well, then B must be true.

Finally, we can give a connective that internalizes the notion of
truth or validity into the system, written > and pronounced “true.”
The rules for > are very basic compared to the other connectives.
We may always deduce that > is true, regardless of our local
hypothesis, using the introduction >I rule:

Γ ` > >I

On the other hand, there is nothing we can do with a proof that> is
true. In other words, “nothing in, nothing out.” The rules presented
so far are summarized in Figure 1. The propositions may be some
variable, X , which stands in for some unknown proposition, or the

propositions formed by the ∧, ⊃, and > connectives. Hypothesis
are an unordered list of propositions, and the judgments are hypo-
thetical.

Example 1. As an example of how inference trees in natural deduc-
tion correspond to proofs of propositions, consider how we might
build a proof of ((A ∧B) ∧ C) ⊃ (B ∧A). To start searching for
a proof, we may begin with our goal ` ((A∧B)∧C) ⊃ (B ∧A)
at the bottom of the proof tree, and then try to simplify the goal by
applying the implication introduction rule “bottom up:”

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax
....

(A ∧B) ∧ C ` B ∧A
` ((A ∧B) ∧ C) ⊃ (B ∧A)

⊃ I

This move adds the assumption (A∧B)∧C to our local hypothesis
for the duration of the proof, which we may make use of to finish
off the proof at the top by the Ax rule. We are still obligated to
fill in the missing gap between Ax and ⊃ I , but our job is now
a bit easier, since we have gotten rid of the ⊃ connective from the
consequence in the goal. Next, we can try to simplify the goal again
by applying the conjunction introduction rule to get rid of the ∧ in
the goal:

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax

....
(A ∧B) ∧ C ` B

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax

....
(A ∧B) ∧ C ` A

(A ∧B) ∧ C ` B ∧A ∧I

` ((A ∧B) ∧ C) ⊃ (B ∧A)
⊃ I

We now have two sub-proofs to complete: a deduction of B and a
deduction ofA from our local hypothesis (A∧B)∧C. At this point,
the consequences of our goals are as simple as they can be — they
no longer contain any connectives for us to work with. Therefore,
we instead switch to work “top down” from our assumptions. We
are allowed to assume (A ∧ B) ∧ C, so let’s eliminate the unnec-
essary proposition C using a conjunction elimination rule in both

3 2014/1/23

sub-proofs:

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax

(A ∧B) ∧ C ` A ∧B
∧E1

....
(A ∧B) ∧ C ` B

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax

(A ∧B) ∧ C ` A ∧B
∧E1

....
(A ∧B) ∧ C ` A

(A ∧B) ∧ C ` B ∧A ∧I

` ((A ∧B) ∧ C) ⊃ (B ∧A)
⊃ I

We can now finish off the entire proof by using conjunction elim-
ination “top down” in both sub-proofs, closing the gap between
assumptions and conclusions:

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax

(A ∧B) ∧ C ` A ∧B
∧E1

(A ∧B) ∧ C ` B
∧E2

(A ∧B) ∧ C ` (A ∧B) ∧ C Ax

(A ∧B) ∧ C ` A ∧B
∧E1

(A ∧B) ∧ C ` A
∧E1

(A ∧B) ∧ C ` B ∧A ∧I

` ((A ∧B) ∧ C) ⊃ (B ∧A)
⊃ I

Since there are no unjustified branches at the top of the tree (every
leaf is closed off by the Ax rule) and there are no longer any
gaps in the proof, we have completed the deduction of our goal.

End example 1.
Remark 1. Some presentations of hypothetical natural deduction
prefer to be more explicit about the use of hypothesis in the struc-
ture of a proof. Most typically, they will replace theAx rule in Fig-
ure 1 with a simpler rule that concludes A only when we assumed
that A alone holds:

A ` A Ax

By restricting the use of our assumptions, we need to add a few
more structural rules that add back the additional structural prop-
erties of the hypothesis so that we may prove the same things. In
particular, we need to allow for the addition of unnecessary hypoth-
esis, called weakening:

Γ ` C
Γ, A ` C Weakening

which says that if we could deduce C from Γ, then surely we
can still deduce C when we add A to Γ. From these two rules,
the more general Ax rule of Figure 1 is derivable by applying
weakening as many times as necessary to delete Γ. We also need
the ability to merge multiple assumptions of the same proposition,
called contraction:

Γ, A,A ` C
Γ, A ` C Contraction

Finally, some presentations of formal logic are even more explicit,
and make Γ a list, so that the order of hypothesis matters. In this
case, we would also need a rule that swaps propositions in Γ so that
they occur in the correct place, called exchange:

Γ, B,A,Γ′ ` C
Γ, A,B,Γ′ ` C

Exchange

For our purposes, we will not be considering explicit use of the
exchange rule, and will assume that the order of a list of premises
in a hypothesis does not matter.

Note that in the definition of natural deduction given in Figure 1,
the weakening, contraction, and exchange rules are all derivable as
global properties of the system. For example, if we have a proof
tree D that deduces the judgment:

D....
Γ ` C

then the same proof, using the rules of Figure 1, deduces the
weakened judgment:

D....
Γ, A ` C

For our purposes, we will prefer the more implicit presentation of
hypothetical judgments. End remark 1.

Now that we have some connectives and their rules of inference
in our system of natural deduction, we would like to have some
assurance that what we have defined is sensible in some way. Dum-
mett [33] introduced a notion of logical harmony which guarantees
that the inference rules are meaningful. Just like Goldilocks, we
want rules that are neither too strong (leading to an inconsistent
logic) nor too weak (leading to gaps in our knowledge), but are in-
stead just right. The notion of logical harmony for a particular con-
nective can be broken down into two properties of that connective’s
inference rules: local soundness and local completeness [90].

For a single logical connective, we need to check that its infer-
ence rules are not too strong, meaning that they are locally sound,
so that the results of the elimination rules are always justified. In
other words, everything we deduce can be justified by some proof
so that we cannot get out more than what we put in. This notion is
expressed in terms of proof manipulations: a proof in which an in-
troduction is immediately followed by an elimination can be trans-
formed to a more direct proof. On the one hand, in the case of
conjunction, if we follow ∧I with ∧E1, then we can perform the
following reduction:

D1....
Γ ` A

D2....
Γ ` B

Γ ` A ∧B ∧I

Γ ` A ∧E1 ⇒

D1....
Γ ` A

where D1 and D2 stand for proofs that deduce Γ ` A and Γ ` B,
respectively. If we had forgotten to include the first premise Γ ` A
in the ∧I rule, then this soundness reduction would have no proof
to justify its conclusion. On the other hand, if we follow ∧I with
∧E2, then we have a similar reduction:

D1....
Γ ` A

D2....
Γ ` B

Γ ` A ∧B ∧I

Γ ` B ∧E2 ⇒

D2....
Γ ` B

Additionally, we should also ensure that the rules are not too
weak, so all the information that goes into a proof can still be ac-
cessed somehow. In this respect, we say that the inference rules for
a logical connective are locally complete if they are strong enough
to break an arbitrary proof ending with that connective into pieces
and then put it back together again. For the rules given for conjunc-
tion, this is expressed as the following proof transformation:

D....
Γ ` A ∧B ⇒

D....
Γ ` A ∧B

Γ ` A ∧E1

D....
Γ ` A ∧B

Γ ` B ∧E2

Γ ` A ∧B ∧I

If we had forgotten the elimination rule ∧E2, then local complete-
ness would fail because we would not have enough information
to satisfy the premise of the ∧I introduction rule. As a result, the
rules will still be sound but we would be unable to prove a basic
tautology like A ∧B ` B ∧A, which should hold by our intuitive
interpretation of A ∧B.

4 2014/1/23

We also have local soundness and completeness for the infer-
ence rules of logical implication, although they require a few prop-
erties about the system as a whole. For local soundness, we can
reduce⊃ I immediately followed by⊃ E by using the meaning of
the hypothetical judgment:

D....
Γ, A ` B

Γ ` A ⊃ B ⊃ I

E....
Γ ` A

Γ ` B ⊃ E ⇒

D{E/A}....
Γ ` B

where D {E/A} is the substitution of the proof E for any uses of
the local hypothesis A in D. The substitution gives us a modified
proof that no longer needs that particular local assumption of A,
since any time the Axiom rule was used to deduce A, we instead
use E as a proof of A. For local completeness, we can expand an
arbitrary proof of A ⊃ B as follows:

D....
Γ ` A ⊃ B ⇒

D....
Γ, A ` A ⊃ B Γ, A ` A Axiom

Γ, A ` B ⊃ E

Γ ` A ⊃ B ⊃ I

Notice that on the right hand side, we had to use the weakening
principle (see Remark 1) to add A as an additional, unused hypoth-
esis to the proof D.

Demonstrating local soundness and completeness for the infer-
ence rules of logical truth may be deceptively basic. Since there is
no >E rule, local soundness is trivially true: there is no possible
way to have a proof where >I is followed by >E, and so local
soundness is vacuous. On the other hand, we still have to demon-
strate local completeness by transforming an arbitrary proof of >
into one ending in the >I rule. However, because the >I rule is
always available, this transformation just throws away the original,
unnecessary proof:

D....
Γ ` > ⇒ Γ ` > >I

Therefore, we can be sure that the rules for logical truth are sensi-
ble.

2.2 Programming languages
The λ-calculus, defined by Church [19] in the 1930s, is a remark-
ably simple yet powerful model of computation. The original lan-
guage is defined by only three constructions: abstracting a program
with respect to a parameter (i.e., a function term: λx.M), reference
to a parameter (i.e., a variable term: x), and applying a program to
an argument (i.e., a function application term: M N). Despite this
simple list of features, the untyped λ-calculus is a complete model
of computation, equivalent to a Turing machine. It is often used as
a foundation for understanding the static and dynamic semantics of
programming languages as well as a platform to experiment with
new features. In particular, functional programming languages are
sometimes thought of as notational convenience that desugars to an
underlying core language based on the λ-calculus.

The dynamic behavior of the λ-calculus is defined by three
principles. The most basic principle is called α equivalence, and
it asserts that the particular choice of names for variables does not
matter; the defining characteristic for a variable is where it was
introduced, enforcing a notion of static scope. For instance, the
identity function that immediately returns its argument unchanged
may be written as either λx.x or λy.y, both of which are considered
α equivalent. The next principle is called β equivalence, and it

provides the primary computational force of the λ-calculus. Given
a λ-abstraction (i.e., a term of the form λx.M) that is applied to an
argument, we may calculate the result by substituting the argument
for every reference to the λ-abstraction’s parameter:

(λx.M) N =β M {N/x}

The term M {N/x} is notation for performing the usual notion of
capture-avoiding substitution of N for the variable x in M , such
that the static bindings of variables are preserved. The final princi-
ple is called η equivalence, and it gives a notion of extensionality
for functions. In essence, a λ-abstraction that does nothing but for-
ward its parameter to another function is the same as that original
function:

M =η (λx.M x)

Note that this rule is restricted so that M may not refer to the
variable x introduced by the abstraction, again to preserve static
binding.

Even though the λ-calculus with functions alone is sufficient
for modeling all computable functions, it is often useful to enrich
the language with other constructs. For instance, we may add pairs
to the λ-calculus by giving a way to build a pair out of two terms
other, (M,N), as well as projecting out the first and second com-
ponents from a pair, fstM and sndM . We may define the dynamic
behavior of pairs in the λ-calculus similar to the way we did for
functions. Since pairs do not introduce any parameters, they are a
bit simpler than functions. The main computational principle, by
analogy called β equivalence for pairs, extracts a component out of
a pair when it is demanded:

fst(M,N) =β M snd(M,N) =β N

The extensionality principle, called η equivalence for pairs, equates
a term M with the pair formed out of the first and second compo-
nents of M :

M =η (fstM, sndM)

We can also add a unit value to the λ-calculus, which is a nullary
form of pair that contains no elements, written (), that expresses
lack of any interesting information. On the one hand, since the unit
value contains no elements, there are no projections out of it, and
therefore there it has meaningful β equivalence. On the other hand,
the extensionality principle is quite strong, and the η equivalence
for the unit equates a term M with the canonical unit value:

M =η ()

This rule can be read as the nullary version of the η rule for pairs,
where M did not contain any interesting information, and so it is
irrelevant.

So far, we have only considered the dynamic meaning of the
λ-calculus without any mention of its static properties. In partic-
ular, now that we have both functions and pairs, we may want to
statically check and rule out programs that might “go wrong” dur-
ing calculation. For instance, if we apply a pair to an argument,
(M,M ′) N , then there is nothing we can do reduce this program
any further. Likewise, it is nonsensical to ask for the first compo-
nent of a function, fst(λx.M). We may rule out such ill-behaved
programs by using a type system that guarantees that such situations
never occur by assigning a type to programming constructs and en-
suring that programs are used in accordance to their types. For in-
stance, we may give a function type, A → B to λ-abstractions as
follows:

Γ, x : A `M : B

Γ ` λx.M : A→ B
→ I

where M : B means that M has type B, and the environment
Γ keeps track of the variables in scope along with their types.

5 2014/1/23

A,B,C ∈ Type ::= X || A ∗B || A→ B || 1
M,N ∈ Term ::= x || (M,N) || fstM || sndM || λx.M ||M N

Γ ∈ Environment ::= x1 : A1, . . . , xn : An

Judgment ::= Γ `M : A

Γ, x : A ` x : A
V ar

Γ `M : A Γ ` N : B
Γ ` (M,N) : A ∗B ∗I Γ `M : A ∗B

Γ ` fstM : A
∗E1

Γ `M : A ∗B
Γ ` sndM : B

∗E2

Γ, x : A `M : B

Γ ` λx.M : A→ B
→ I

Γ `M : A→ B Γ ` N : A
Γ `M N : B

→ E

Γ ` () : 1
1I

no 1E rule

(β∗)

{
fst(M,N) = M

snd(M,N) = N
(η∗) M = (fstM, sndM)

(β→) (λx.M) N = M {N/x} (η→) M = (λx.M x)

(β1) no β1 rule (η1) M = ()

Figure 2. The simply typed λ-calculus with pairs and units.

Notice that if λx.M is a function taking an argument A, then by
the premise of this rule, the body of the function M sees x in its
environment. Having given a rule for introducing a term of function
type, we can now restrict application to only occur for terms of the
correct type:

Γ `M : A→ B Γ ` N : A
Γ `M N : B

→ E

This rule ensures that if we apply a term M to an argument, then
M must be of function type. Likewise, we may give a pair type,
A ∗B, to the introduction of a pairs of terms:

Γ `M : A Γ ` N : B
Γ ` (M,N) : A ∗B ∗I

as well as restricting first and second project to only be used on
terms of a pair type:

Γ `M : A ∗B
Γ ` fstM : A

∗E1
Γ `M : A ∗B
Γ ` sndM : B

∗E2

The unit type, 1, is a degenerate form of the pair type with a single
canonical introduction:

Γ ` () : 1
1I

and no other typing rules. And finally, we need a rule that allows us
to refer to a variable in scope:

Γ, x : A ` x : A
V ar

With all these rules in place, nonsensical programs like fst(λx.M)
are now ruled out, since they cannot be given a type. The static
and semantics of this simply typed λ-calculus are summarized in
Figure 2.
Remark 2. We should note that some care needs to be taken during
a type derivation to make sure that the distinction between variables

in different scopes is clear. For example, consider the following
derivation of the identity function (λx.x) in an environment that
already introduces the variable x:

x : A, x : A ` x : A
V ar

x : A ` λx.x : A→ A
→ I

In the use of the V ar rule, it is not clear which variable in the
environment x : A, x : A is being referred to. In the setting of
programming, this distinction matters; whether the function returns
its argument or something else from the outside environment is an
important difference! Therefore, when we are dealing with variable
environments, we maintain the convention that all the variables in
the environment are distinct, so that it is unambiguous which one
we wish to refer to.

There are two solutions to avoid the problem of identically
named variables in the environment. The first is to forbid any in-
ference rule from adding a variable to an environment that already
contains a variable of the same name. To work around this restric-
tion, we may use α equivalence on the term in question so that the
locally bound variable is unique. By converting λx.x to λy.y, we
have:

x : A, y : A ` y : A
V ar

x : A ` λy.y : A→ A
→ I

which is no longer ambiguous. On the other hand, we may state
that the operation of adding a variable to an environment, Γ, x : A,
overrides any variable with the same name in Γ. This enforces a
notion of variable shadowing from programming languages, and
ensures that environments never contain duplicate variables without
the need for α equivalence. For example, the typing derivation

6 2014/1/23

using shadowing would proceed as follows:

x : A ` x : A
V ar

x : A ` λx.x : A→ A
→ I

where it is clear that the x referred to by the V ar is the one intro-
duced by the λ abstraction, since it must have overrode the x that
came in from the environment in the deduction. End remark 2.

Example 2. For an example of how to program in the λ-calculus,
consider the following function which takes a nested pair, of type
(A ∗B) ∗ C, and swaps the inner first and second components:

λx.(snd(fst(x)), fst(fst(x)))

We can check that this function is indeed well-typed, using the typ-
ing rules given in Figure 2, by completing the typing derivation
in Figure 3. Notice how the type derivation bears a structural re-
semblance to the proof of ((A ∧ B) ∧ C) ⊃ (B ∧ A) given in
Example 1. In addition, we can check that this function behaves the
way we intended by applying it to a nested pair, ((M1,M2),M3),
and evaluate it using the equations given in Figure 2:

(λx.(snd(fst(x)), fst(fst(x)))) ((M1,M2),M3)

=β→ (snd(fst((M1,M2),M3)), fst(fst((M1,M2),M3)))

=β× (snd(M1,M2), fst(M1,M2))

=β× (M2,M1)

which confirms that this is the correct function. End example 2.

2.3 Category theory
Category theory is an abstract field of study that formalizes math-
ematics, from set theory to topology to abstract algebra. The main
focus is on categories, which are made up of:

• some objects (“points”),
• some morphisms between those objects (“arrows”),
• a trivial morphism for every object (“identity”), and
• the ability to compose together any connected morphisms

(“composition”),

along with some laws about identity and composition. For example,
if we have a category with:

• objects A, B, and C,
• a morphism f from A to B (written f : A→ B), and
• a morphism g from B to C (written g : B → C),

then g◦f is a morphism fromA toC in that category. Of particular
interest for our purposes is a categorical structure known as a
cartesian closed category, but in order to talk about this concept
we must first introduce cartesian products and exponentials in a
categorical setting.

A binary product in category theory is an algebraic reformula-
tion of the usual notion of cartesian products from set theory. The
goal is to characterize the product of the objects A and B in a cate-
gory, writtenA×B. The product objectA×B must have projection
morphisms, π1 : A × B → A and π2 : A × B → B out of the
product. A×B and its projections form a product if, for any other
object Γ and morphisms f : Γ → A and g : Γ → B, then there
exists a unique morphism h : Γ → A× B such that the following

diagram commutes:3

Γ

A A×B B

f g

!h

π1 π2

By saying the diagram commutes, we mean that π1 ◦ h is the same
as f and π2 ◦ h is the same as g. Since h is uniquely determined
by f and g, it may be denoted by the notation (f, g). Therefore,
we may alternative express the commutation of the above diagram
with the following equations:

π1 ◦ (f, g) = f

π2 ◦ (f, g) = g

We can also capture the uniqueness condition as an equation which
expresses the fact that given an arbitrary arrow into A × B, this
morphism must coincide with the morphism we get from the defi-
nition of the product:

(π1 ◦ h, π2 ◦ h) = h

An exponential object in category theory is a bit more com-
plex, and relies on the existence of products in their definition. In-
tuitively, exponentials internalize morphisms in the category into
an object. If we instead write an arrow A → B as BA, then the
definition of an exponential object may be seen as capturing the
following algebraic property of exponents and products:

B(A1×A2) = (BA1)A2

The exponential object of A and B, written BA, along with an
evaluation morphism eval : BA × A → B is defined so that for
any object Γ and morphism f : Γ× A→ B, there exists a unique
morphism h : Γ→ BA such that the following diagram commutes:

Γ×A

BA ×A B

f
!h× id

eval

The notation h × id means to put h in parallel with the identity
morphism id,4 so that the left component of Γ × A is fed through
h and the right component is unchanged. As before, since h is
uniquely determined by f , we may denote this single morphism
by curry(f). Similarly as with products, we may boil down the
diagrammatic definition into a set of equations that express the
same meaning. The commutation of the diagram is captured by the
following equation:

eval ◦(curry(f)× id) = f

and the uniqueness condition on h may be expressed as:

curry(eval ◦(h× id)) = h

The last ingredient to a cartesian closed category is the existence
of a terminal object. The terminal object of a category has a unique
arrow coming from every other object in that category. All three of
these structures are summarized in Figure 4. Any category which
has a product and exponent for any pair of objectsA andB,A×B
and BA, along with a terminal object, is called cartesian closed.
Such a category is “closed” in the sense that every morphism

3 The dashed arrow means that the morphism h must exist, given the other
arrows in the diagram, and the exclamation mark means that there is only
one possible arrow h.
4 The parallel composition of morphisms can be defined in terms of the
primitive operations for products, giving us h1×h2 = (h1 ◦π1, h2 ◦π2).

7 2014/1/23

x : (A ∗B) ∗ C ` x : (A ∗B) ∗ C V ar

x : (A ∗B) ∗ C ` fst(x) : A ∗B
∗E1

x : (A ∗B) ∗ C ` snd(fst(x)) : B
∗E2

x : (A ∗B) ∗ C ` x : (A ∗B) ∗ C V ar

x : (A ∗B) ∗ C ` fst(x) : A ∗B
∗E1

x : (A ∗B) ∗ C ` fst(fst(x)) : A
∗E1

x : (A ∗B) ∗ C ` (snd(fst(x)), fst(fst(x))) : B ∗A ∗I

` λx.(snd(fst(x)), fst(fst(x))) : ((A ∗B) ∗ C)→ (B ∗A)
→ I

Figure 3. Type derivation of the λ-calculus term: λx.(snd(fst(x)), fst(fst(x))).

Γ

A A×B B

f g

!(f, g)

π1 π2

π1 ◦ (f, g) = f π2 ◦ (f, g) = g

h = (π1 ◦ h, π2 ◦ h)

π1 : A×B → A π2 : A×B → B

f : Γ→ A g : Γ→ B

(f, g) : Γ→ A×B

Γ×A

BA ×A B

f! curry(f)× id

eval

eval ◦(curry(f)× id) = f

h = curry(eval ◦(h× id))

eval : BA ×A→ B

f : Γ×A→ B

curry(f) : Γ→ BA

Γ

1

!()

h = ()

() : Γ→ 1

Figure 4. Definitions of categorical products (A×B), exponentials (BA), and the terminal object (1).

A → B in the category is represented by an exponential object
BA.

Example 3. As an example of how to work with product and
exponential objects, we can build a morphism that swaps the inner
components of a product, ((A× B)× C) → (B × A), similar to
the λ-calculus term in Example 2. First, observe that we have the
projection morphism π1 on the following objects:

π1 : ((A×B)× C)→ (A×B)

and additionally, we may construct a morphism that swaps a prod-
uct as follows:

π2 : (A×B)→ B π1 : (A×B)→ A

(π2, π1) : (A×B)→ (B ×A)

In order to push the swapping into the nested pair, we can compose
the two morphisms together, giving us the following:

π1 : ((A×B)× C)→ (A×B) (π2, π1) : (A×B)→ (B ×A)

(π2, π1) ◦ π1 : ((A×B)× C)→ (B ×A)

We also need one more equation about products that is derivable
from the definition given in Figure 4:

(f, g) ◦ h = (π1 ◦ (f, g) ◦ h, π2 ◦ (f, g) ◦ h)

= (f ◦ h, g ◦ h)

Notice that this equation guarantees that our original morphism,
that discards C and then swaps A and B, is the same as one that
builds a product by projecting twice into its input:

(π2, π1) ◦ π1 = (π2 ◦ π1, π1 ◦ π1)

In order to see how this morphism behaves when given input, we
can compose it with another morphism that will build a nested

product:
f : Γ→ A g : Γ→ B h : Γ→ C

((f, g), h) : Γ→ (A×B)× C
When put together, this morphism simplifies as follows:

(π2, π1) ◦ π1 ◦ ((f, g), h) = (π2, π1) ◦ (f, g)

= (π2 ◦ (f, g), π1 ◦ (f, g))

= (g, f)

Finally, if we want to represent this morphism in the exponential
object (B ×A)(A×B)×C , we are in a bit of trouble since the input
of our morphism is missing some extra Γ. Luckily, we can throw
a redundant 1 into the input, since 1 × A is isomorphic to A, as
follows:

(π2 ◦ π1, π1 ◦ π1) ◦ π2 : 1× ((A×B)× C)→ B ×A
which gives us a morphism of the right shape for building the
exponential object:

curry((π2 ◦ π1, π1 ◦ π1) ◦ π2) : 1→ (B ×A)(A×B)×C

Therefore, the presence of the terminal object 1 in the category
allows us to package any morphism A → B into a morphism that
builds the corresponding exponential 1→ BA. End example 3.

2.4 The Curry-Howard isomorphism
Amazingly, despite their different origins and presentations, each of
these systems are all isomorphic to one another. Examples 1, 2, and
3 all correspond to various ways of expressing the same idea. Each
of natural deduction, the λ-calculus, and cartesian closed categories
end up revealing the same underlying concepts in different ways.
The connection is perhaps most directly apparent between natural
deduction and the λ-calculus. The propositions of natural deduction
are isomorphic to the types of the λ-calculus, where conjunction is

8 2014/1/23

the same as pair types, implication is the same as function types,
and logical truth is the same as the unit type. Furthermore, the
proofs of natural deduction are isomorphic to the (typed) terms of
the λ-calculus. This structural similarity between the two systems
gives us the slogan, “proofs as programs and propositions as types.”
From this point of view, natural deduction may be seen as the
essence of the type system for the λ-calculus and the λ-calculus
may be seen as a more concise term language for expressing proofs
in natural deduction. For this reason, we may say that the λ-
calculus is a natural deduction language.

Likewise, cartesian closed categories are isomorphic to the other
two systems. The product and exponential objects correspond to
pair and function types in the λ-calculus, and to conjunction and
implication in natural deduction. Furthermore, the terminal ob-
ject corresponds to the unit type and to logical truth. Cartesian
closed categories may be seen as variable-free presentation of the
λ-calculus, where λ-abstractions are replaced by primitive func-
tions, and as the internalization of hypothetical natural deduction.
Intuitively, types and propositions correspond to objects in the cat-
egory, so that conjunction, A ∧ B, pair types, A ∗ B, are repre-
sented by products, A×B, and implication, A ⊃ B, and function
types, A→ B, are represented by exponentials, BA, and similarly
for truth, >, unit type, 1, and the terminal object. Furthermore,
the judgments Γ ` A and Γ ` M : A correspond to morphisms
f : Γ→ A in the cartesian closed category.

The correspondence between these three systems is not just an
isomorphism between their static structures, but also extends to the
dynamic properties as well. The notions of local soundness and
completeness in natural deduction are exactly the same as β and
η equivalence of terms in the λ-calculus, respectively, for each of
pair, function, and unit types. Furthermore, the β rules in the λ-
calculus correspond to the commutations of the respective diagrams
in the cartesian closed category, and the η rules correspond to
the uniqueness property for each construct. Therefore, it is no
coincidence that the original β and η rules for functions in the
λ-calculus appeared as they did, and in general this treatment of
connectives extends to other programming language constructs.

3. A critical look at the λ-calculus
The Curry-Howard isomorphism lead to striking discoveries and
developments that likely would not have arisen otherwise. The con-
nection between logic and programming languages led to the devel-
opment of mechanized proof assistants, notably the Coq [21] sys-
tem, which are used in both the security and verification commu-
nities for validating the correctness of programs. The connection
between category theory and programming languages suggested
a new compilation technique for ML [22]. However, let us now
look at λ-calculus with a more critical eye. There are some defin-
ing principles and computational phenomena that are important to
programming languages, but are not addressed by the λ-calculus.
For example, what about:

• Duality? The concept of duality is important in category where
it comes for free as a consequence of the presentation. Since
the morphisms in category theory have a direction, we may
just “flip all the arrows.” This action gives us a straightforward
method to find the dual of any category or diagram. For exam-
ple, consider the diagram for products, A×B, in Figure 4. For
free, we may obtain the dual structure of a sum object by just
turning this diagram around:

A A+B B

∆

ι1

f

![f, g]

ι2

g

Now, the two projections have become two injections, ι1 and
ι2, into the sum object, and definition guarantees a unique way
out of the sum for any two morphisms f and g from both of its
possible components into a common result.
Duality also appears in logic as well, for example in the tradi-
tional De Morgan laws ¬(A∧B) = (¬A)∨(¬B). Predictably,
the corresponding concept of a sum object (the dual of a prod-
uct) in logic is disjunction (the dual of a conjunction). If we
look at the common treatment of logical disjunction in natural
deduction, the introduction rules for A∨B bear a resemblance
the elimination rules for A ∧B:

Γ ` A
Γ ` A ∨B ∨I1

Γ ` B
Γ ` A ∨B ∨I2

However, the elimination rule for disjunction is quite different
from the introduction for conjunction:

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C ∨E

This dissimilarity comes from the asymmetry in natural deduc-
tion. We may have many hypothesis, but only a single conse-
quence. We have a rich set of tools for working with the logical
meaning of conclusions, but nothing for assumptions. It seems
like a more symmetrical system of logic would be easier to me-
thodically determine duality in the same way we can in category
theory.
Likewise, this form of duality is not readily apparent in the λ-
calculus. Since the λ-calculus is isomorphic to natural deduc-
tion, it shares the same biases and lack of symmetry. The em-
phasis of the language is entirely on the production of informa-
tion: a λ-abstraction produces a function, a function application
produces the result of the function, etc. For this reason, the re-
lationship between a pair, (M,N), and case analysis for sum
types in functional programming languages:

caseM of inl(x)⇒ N1| inr(y)⇒ N2

is not entirely obvious. Nor is it entirely obvious how the cat-
egorical definition of sums is meant to correspond with sum
types in functional languages. In particular, what is the corre-
sponding η rule for functional programming languages that cap-
tures the uniqueness condition of a sum object? For this reason,
we would like to study a language which expresses duality “for
free,” and which corresponds to a more symmetrical system of
logic.
• Other evaluation strategies? Reynolds [97] observed that while

functional or applicative languages may be based on the λ-
calculus, the true λ-calculus implies a lazy (call-by-name) eval-
uation order, whereas many languages are evaluated by a strict
(call-by-value) order that first reduces arguments before per-
forming a function call.
To resolve this mismatch between the λ-calculus and strict pro-
gramming languages, Plotkin [91] defined a call-by-value vari-
ant of the λ-calculus along with a continuation-passing style
(CPS) transformation that embeds evaluation order into the pro-
gram itself. Sabry and Felleisen [101] give a set of equations
for reasoning about the call-by-value λ-calculus based on Fis-
cher’s call-by-value CPS transformation [46], and which is re-
lated to Moggi’s computational λ-calculus [85]. The equations
are later refined into a theory for call-by-value reduction by
Sabry and Wadler [102]. More recently, there has been work on
a theory for reasoning about call-by-need evaluation of the λ-
calculus [6, 9, 81], which is the strategy commonly employed
by Haskell implementations, and the development of the call-

9 2014/1/23

by-push-value [79] framework which includes both call-by-
value and call-by-name evaluation but not call-by-need.
What we would ultimately want is not just another calculus, but
instead a framework in which these distinctions in evaluation
strategy come out as special cases, and where the relationships
between strategies is naturally expressed. Can we have a logical
foundation for programming languages that is naturally strict, in
the same way that the λ-calculus is naturally lazy? Is it possible
to have a better indication on which rules are affected by the
choice of an evaluation strategy?
• Object-oriented programming? The object-oriented paradigm

has become a prominent concept in the mainstream program-
ming landscape. Unfortunately, what is meant by an “object”
in the object-oriented sense is fuzzy, since the exact details of
“what is an object” depend on choices made by the program-
ming language under consideration. One concept of objects that
is universal across every programming language is the notion of
dynamic dispatch that is used to select the behavior of a method
call based on the value or type of an object, and is emphasized
by Kay [73] in the form of message passing in the design of
Smalltalk. Abadi and Cardelli [1] give a theoretical formulation
for the many features of object-oriented languages, wherein dy-
namic dispatch plays a central role. Can we give an account of
the essence of objects, and in particular messages and dispatch
that is connected to logic and category theory in the same way
as the λ-calculus? Even more, can this foundation for objects
refer back to basic principles discovered independently in the
field of logic?
• Computational effects? Most modern programming languages

contain some notion of computational effect, such as mutable
state, input and output to the file system, or exception han-
dling. These types of effects step outside the simple call-and-
return protocol for functions, and lie outside of the expressive
power of the λ-calculus [37]. One effect that has been recently
connected with logic is expressed by callcc-like control op-
erators from Scheme [74], which corresponds with classical
logic [7, 56]. However, the traditional study of these control
operators is to add new primitives to the λ-calculus. We would
rather understand these effects in a setting where they are nat-
urally expressed as a consequence of the language, rather than
added on as an afterthought.
Furthermore, what about other common computational effects
like mutable state and exceptions, or more advanced effects like
delimited control [27, 28, 36, 39] or algebraic effects [16, 18,
92, 94]? In the case of delimited control, there has been a pro-
liferation of different primitive operators, and the connection
between all of them is not fully developed. Rather, we need a
framework where delimited control comes out as a natural con-
sequence, instead of inventing different operators for different
needs. Can these other computational effects also be included
in the correspondence, in the same way that classical logic cor-
responds to programming with callcc?

With the aim of answering each of these reasons, we will put the
λ-calculus aside and we look to another logical framework instead
of natural deduction. Most surprisingly, we do not have to look very
far, since Genzten [47] introduced the sequent calculus along side
natural deduction as an alternative system of formal logic. Gentzen
developed sequent calculus in order to better understand the prop-
erties of natural deduction. Therefore, to answers these questions
about programming, we will look for the computational interpre-
tation of the sequent calculus and its corresponding programming
language.

4. The sequent calculus
Gentzen [47] developed the sequent calculus as a tool to reason
about the properties of natural deduction. As such, the sequent cal-
culus is still a system for formalizing symbolic logic, but one that
turns the structure of natural deduction on its head. The first change
when moving to the sequent calculus is that we may generalize the
form of judgments from their hypothetical form in natural deduc-
tion. In the sequent calculus, in addition to carrying multiple local
hypotheses, we may also have multiple consequences:

A1, A2, . . . , An ` B1, B2, . . . , Bm

pronounced “A1, A2, . . ., and An entail B1, B2, . . ., or Bm,”
which states that assuming each of A1, A2, . . . , An are true then
at least one of B1, B2, . . . , Bm must be true. By convention, the
consequences to the right of entailment are collectively referred to
as ∆, and a judgment of the form Γ ` ∆ is called a sequent. Note
that, opposite from the fact that an empty collection of assumptions
in ` B means that B is unconditionally true, an empty collection
of conclusions in A ` means that A is contradictory.

The next difference in the sequent calculus is the style of the
inference rules compared to the rules of natural deduction so that
the connective under consideration always appears on the bottom of
the rule. The introduction rules of natural deduction are represented
similarly in the sequent calculus, where they are called right rules
since they work on a proposition on the right of entailment. For
example, the right rule for conjunction in the sequent calculus is
given as follows:

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆ ∧R

where the only difference between ∧R and ∧I is that ∧R allows
for additional conclusions ∆. In contrast, the elimination rules of
natural deduction appear quite different in the sequent calculus,
where they are called left rules since they work on a proposition
to the left of entailment. Continuing the example, the left rules for
conjunction in the sequent calculus may be given as:

Γ, A ` ∆

Γ, A ∧B ` ∆
∧L1

Γ, B ` ∆

Γ, A ∧B ` ∆
∧L2

which say that if we can prove ∆ from the assumption A and
Γ, then we can just as well prove ∆ from the more informative
assumption A ∧ B and Γ (and similarly for B). This style of
inference rules, where the connective under consideration always
occurs at the bottom of the rule, gives the sequent calculus an
entirely “bottom up” style of building proofs.
Example 4. To illustrate the “bottom up” style of the sequent
calculus, let us reconsider the proof of the proposition ((A ∧B) ∧
C) ⊃ (B ∧ A) from Example 1. As before, we may begin the
proof similarly with the right implication rule, corresponding with
implication introduction from natural deduction:

....
(A ∧B) ∧ C ` B ∧A
` (A ∧B) ∧ C ⊃ B ∧A ⊃ R

Next, we may continue as we did before with the right conjunction
rule, splitting the proof into two parts:

....
(A ∧B) ∧ C ` B

....
(A ∧B) ∧ C ` A

(A ∧B) ∧ C ` B ∧A ∧R

` (A ∧B) ∧ C ⊃ B ∧A ⊃ R

However, at this point in the proof, we diverge from Example 1.
This is because in natural deduction we would now switch from a

10 2014/1/23

A,B,C ∈ Proposition ::= X || A ∧B || A ∨B || A ⊃ B || ¬A
Γ ∈ Hypothesis ::= A1, . . . , An

∆ ∈ Consequence ::= A1, . . . , An

Judgment ::= Γ ` ∆

Axiom and cut:

Γ, A ` A,∆ Ax
Γ, A ` ∆ Γ ` A,∆

Γ ` ∆
Cut

Logical rules:

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆ ∧R

Γ, A ` ∆

Γ, A ∧B ` ∆
∧L1

Γ, B ` ∆

Γ, A ∧B ` ∆
∧L2

Γ ` A,∆
Γ ` A ∨B,∆ ∨R1

Γ ` B,∆
Γ ` A ∨B,∆ ∨R2

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
∨L

Γ, A ` B,∆
Γ ` A ⊃ B,∆ ⊃ R

Γ ` A,∆ Γ, B ` ∆

Γ, A ⊃ B ` ∆
⊃ L

Γ, A ` ∆

Γ ` ¬A,∆ ¬R
Γ ` A,∆

Γ,¬A ` ∆
¬L

Figure 5. The sequent calculus with conjunction (∧), disjunction (∨), implication (⊃), and negation (¬).

“bottom up” to a “top down” use of the rules. Instead in the sequent
calculus, we will continue with the “bottom up” application of the
rules, and use a left conjunction rule in both sub-proofs to discard
C from our assumption:

....
A ∧B ` B

(A ∧B) ∧ C ` B
∧L1

....
A ∧B ` A

(A ∧B) ∧ C ` A
∧L1

(A ∧B) ∧ C ` B ∧A ∧R

` (A ∧B) ∧ C ⊃ B ∧A ⊃ R

We may use another application of a left conjunction rule to select
the correct proposition for both sub-proofs:

....
B ` B

A ∧B ` B ∧L2

(A ∧B) ∧ C ` B
∧L1

....
A ` A

A ∧B ` A ∧L1

(A ∧B) ∧ C ` A
∧L1

(A ∧B) ∧ C ` B ∧A ∧R

` (A ∧B) ∧ C ⊃ B ∧A ⊃ R

And finally, we are now able to close off the both sub-proofs by
using the Ax rule, which is similar to the corresponding Ax rule in
natural deduction:

B ` B Ax

A ∧B ` B ∧L2

(A ∧B) ∧ C ` B
∧L1

A ` A Ax

A ∧B ` A ∧L1

(A ∧B) ∧ C ` A
∧L1

(A ∧B) ∧ C ` B ∧A ∧R

` (A ∧B) ∧ C ⊃ B ∧A ⊃ R

End example 4.
The definitions and rules of the sequent calculus are summa-

rized in Figure 5, where we consider connectives for logical con-
junction (∧), disjunction (∨), implication (⊃), and negation (¬). In

addition to the logical rules and the single axiom, we also have the
Cut rule, which allows us to connect an assumption and a conclu-
sion in two different proofs. The intuition behind Cut is that if we
are able to prove either A or ∆ from Γ, and we know how to use Γ
and A to prove ∆ alone, then either way we have a proof of just ∆.
Notice that the rules for disjunction are a mirror image of the rules
for conjunction. Also, as we saw with conjunction, the right rules
for disjunction and implication in the sequent calculus are similar
to the corresponding introduction rules in natural deduction, but the
left rules are quite different from the elimination rules. In particular,
the left rule for implication may seem a bit unintuitive as compared
to its presentation in natural deduction.
Example 5. In order to convince ourselves that the left implication
rule makes sense, consider how we can eliminate implication in
natural deduction:

A,A ⊃ B ` A ⊃ B Ax
A,A ⊃ B ` A Ax

A,A ⊃ B ` B ⊃ E

In the sequent calculus, we may begin a proof of the same goal by
using the ⊃ L rule:

....
A ` A,B

....
A,B ` B

A,A ⊃ B ` B ⊃ L

when then allows us to directly conclude the first sub-proof by
connecting the A we assumed with the conclusion of A produced
by ⊃ L, and the second sub-proof by connecting the hypothesis B
produced by the ⊃ L with the conclusion from our goal:

A ` A,B Ax
A,B ` B Ax

A,A ⊃ B ` B ⊃ L

Intuitively, A ⊃ B means that if A is true then B must be true.
Therefore, if we independently know that A is true, then assuming

11 2014/1/23

A ⊃ B is just as good as assuming B, since we can always
apply the hypothesis A ⊃ B to our proof of A to recover B.

End example 5.
Remark 3. Recall the structural rules weakening and contraction in
natural deduction from Remark 1, which were derivable from the
definition given in Figure 1. We should also check whether these
rules still apply in the sequent calculus defined in Figure 5, even
though they are not given as explicit rules. The single weakening
rule from natural deduction is reflected as two rules in the sequent
calculus — one rule for working on each side of the sequent:

Γ ` ∆
Γ ` A,∆ WR

Γ ` ∆
Γ, A ` ∆

WL

These two weakening rules are an implicit global property of the
system defined in Figure 5, since we may apply the Ax axiom with
any number of extra assumptions and conclusions. On the other
hand, the two corresponding contraction rules:

Γ ` A,A,∆
Γ ` A,∆ CR

Γ, A,A ` ∆

Γ, A ` ∆
CL

are not quite so simple to prove, since many of the logical rules
make a destructive choice. For example, working from the bottom
up, the ∧L1 rule takes an assumption A∧B and breaks it down by
choosing to use A while simultaneously discarding the knowledge
that B is true. Similar problems occur for the right disjunction
rules. However, contraction is still derivable from the Cut rule
as follows (parenthesis have been added to highlight the active
proposition being cut):

(Γ, A), A ` ∆ (Γ, A) ` A,∆ Ax

(Γ, A) ` ∆
Cut

Therefore, the implicit presentation in Figure 5 still admits the
explicit structural rules as sound reasoning steps, which may be
expanded into the above derivation. End remark 3.

4.1 Consistency and cut elimination
The motivation behind the original development of the sequent
calculus was to prove the consistency of natural deduction. When
natural deduction first came about, there was no guarantee that it
actually captured the notion of logical reasoning that it intended
to. What if the rules of natural deduction are so strong that they
allowed for a proof of every single proposition? This would make
natural deduction proofs absolutely useless, as they would deduce
both true and false propositions, alike. For example, if we can prove
the judgment:

D....
` X

which says that an unknown proposition X is provable without
using any assumptions, then we may substitute any proposition for
X and use D as a generic proof of anything. If we try to show
that such a proof is impossible by a “bottom up” induction on D,
then the elimination rules of natural deduction cause us trouble.
The problem with the elimination rules is that, when read from the
bottom up, they cause new propositions to appear out of thin air.
The worst offender is the implication elimination rule, because who
is to say that there isn’t some very clever A such that we can fill in
the following proof:

D....
` A ⊃ X

E....
` A

` X ⊃ E

Instead of trying to deal with the problem of consistency in
natural deduction, one trick is to translate every proof in natural
deduction into a proof in the sequent calculus. For example, we can
translate the problematic ⊃ E rule into an alternate proof in the
sequent as follows:

D....
Γ ` A ⊃ B

E....
Γ ` A

Γ ` B ⊃ E

⇓

D′....
Γ ` A ⊃ B,B

E ′....
Γ ` A,B Γ, B ` B Ax

Γ, A ⊃ B ` B ⊃ L

Γ ` B Cut

It follows that if we can prove that the sequent calculus is consis-
tent, we know that natural deduction must also be consistent.

Observe that in all the logical rules of sequent calculus pre-
sented in Figure 5, every proposition above the line of inference
appears somewhere below. For example, in the implication left rule,
both the propositions A and B above the line come from the orig-
inal proposition A ⊃ B from below. We can say that the logical
rules of the sequent calculus enjoy the sub-formula property, which
states that every proposition (formula) in the premise appears some-
where (as a subformula) below the line. Therefore, if we are given
a proof of ` X in the sequent calculus:

D....
` X

then we know that the final rule used to deduce ` X could not
have been any of the logical rules, since X is an unknown propo-
sition not containing any connectives and with no sub-formulas. In
addition, the Ax rule also does not apply. The only rule in the se-
quent calculus that does not follow the subformula property is the
cut rule, which allows us to invent an arbitrary proposition A out
of thin air. For example, we need to make sure that there is no very
clever proof:

D....
` A,X

E....
A ` X

` X Cut

Notice how translating the problematic implication elimination rule
into the sequent calculus reveals a hidden use ofCut, and similarly
for the other elimination rules. It follows that if we can show that
the cut rule is superfluous, so that any proof in the sequent calculus
can be rewritten into an equivalent proof that doesn’t make use
of Cut, then we can prove that there is no the sequent calculus
derivation of ` X and the system is consistent. Therefore, the
so-called cut elimination theorem of the sequent calculus is a key
ingredient to showing that both the sequent calculus and natural
deduction are consistent.

Theorem 1 (Cut elimination). For all proofs D of a judgment
Γ ` ∆ in the sequent calculus, there exists an alternate proof D′
of Γ ` ∆ does not contain any use of the Cut rule.

4.2 Logical duality in the sequent calculus
In contrast to natural deduction, observe the deep symmetries ap-
parent in the sequent calculus, giving rise to a notion of duality.
The form of judgment, Γ ` ∆, allows for multiple conclusions as
well as multiple assumptions. The logical rules for conjunction and

12 2014/1/23

Duality of judgments:

(Γ ` ∆)◦ = ∆◦ ` Γ◦

Duality of propositions:

(A ∧B)◦ = (A◦) ∨ (B◦) (A ∨B)◦ = (A◦) ∧ (B◦)

(A ⊃ B)◦ = (B◦)− (A◦) (B −A)◦ = (A◦) ⊃ (B◦)

(¬A)◦ = ¬(A◦)

Figure 6. The duality of logic in the sequent calculus.

disjunction are exactly mirror images of one another across entail-
ment: the ∧R rule is opposite to ∨L, and the ∧L1 and ∧L2 rules
are opposite to ∨R1 and ∨R2. Additionally, the logical negation is
the internal realization of this duality, as its left and right rules are
the mirror images of one another. Logical duality in the sequent cal-
culus captures a relationship between the connectives that follows
the familiar De Morgan’s laws about the distribution of negation
over conjunction and disjunction:

¬(A ∧B) ≈ (¬A) ∨ (¬B)

¬(A ∨B) ≈ (¬B) ∧ (¬B)

But what about implication? It is missing a logical connective
that serves as its dual counterpart. Recall that implication is logi-
cally equivalent to an encoding in terms of conjunction and nega-
tion:

A ⊃ B ≈ (¬A) ∨B
so that A implies B holds if and only if either B is true or A is
false. Then we may compute the dual counterpart to implication
using De Morgan’s laws:

¬(A ⊃ B) ≈ ¬(¬A ∨B)

≈ (¬(¬A)) ∧ (¬B)

≈ (¬B)− (¬A)

That is to say, the opposite of the implication A ⊃ B is the
subtraction B −A, which states that B is true and A is false:

B −A = B ∧ (¬A)

Now, how do we express inference rules for forming proofs using
the relatively unfamiliar concept of subtraction? Luckily, we do not
have to be overly clever, and the symmetry of the sequent calculus
gives us a mechanical way of generating the rules: flip the rules of
implication across the left and right sides of the sequent:

Γ ` B,∆ Γ, A ` ∆

Γ ` B −A,∆ −R
Γ, B ` A,∆

Γ, B −A ` ∆
−L

In order to check that these rules are correct, we can translate them
in terms of the rules for conjunction and negation according to
our original encoding: B − A = B ∧ (¬A). The right rule for
subtraction is derived from the other right rules:

Γ ` B,∆
Γ, A ` ∆

Γ ` ¬A,∆ ¬R

Γ ` B ∧ ¬A,∆ ∧R

and the left rule is derived with the help of contraction as follows:

Γ, B ` A,∆
Γ,¬A,B ` ∆

¬L

Γ, B ∧ ¬A,B ` ∆
∧L2

Γ, B ∧ ¬A,B ∧ ¬A ` ∆
∧L1

Γ, B ∧ ¬A ` ∆
CL

Now that we have a connective for the dual to implication, we
can express the duality of proofs in the sequent calculus — for
every valid proof of a judgment:

D....
A1, A2, . . . An ` B1, B2, . . . , Bm

there is a valid proof to the dual judgment:

D◦....
B1
◦, B2

◦, . . . , Bm
◦ ` A1

◦, A2
◦, . . . , An

◦

The duality relation on propositions, is given in Figure 6. Note that
the duality operation A◦ may be read as taking the negation of
A, ¬A, and pushing the negation inward all the way using the De
Morgan laws, until an unknown proposition variable X is reached.

Theorem 2 (Logical duality). If D is a sequent calculus proof
of the judgment Γ ` ∆, then there exists a proof D◦ of the dual
judgment ∆◦ ` Γ◦.

Remark 4. The duality of proofs in the sequent calculus means that
if a propositionA is unconditionally true, ` A, then that means that
its dual must be a contradiction,A◦ `, and vice versa. For example,
take a general proof of the basic contradiction A ∧ (¬A):

A ` A Ax

A ∧ ¬A ` A ∧L1

A ∧ ¬A,¬A ` ¬L

A ∧ ¬A,A ∧ ¬A ` ∧L2

A ∧ ¬A ` CL

For free, duality gives us a general proof of the law of excluded
middle, A ∨ (¬A):

A ` A Ax

A ` A ∨ ¬A ∨R1

` ¬A,A ∨ ¬A ¬R

` A ∨ ¬A,A ∨ ¬A ∨R2

` A ∨ ¬A CR

This is not a trivial property — the fact that the sequent calculus
can prove the law of excluded middle means that it is a proof sys-
tem for classical logic. Natural deduction, as given in Figure 1
and extended with disjunction and negation, is unable to deduce
a general proof of A ∨ (¬A). For this reason, natural deduc-
tion is instead a proof system for intuitionistic logic, which can-
not prove propositions like the law of excluded middle or dou-
ble negation elimination, ¬(¬A). Notice that the sequent calcu-
lus proof of excluded middle made critical use of multiple con-
clusions to the right of entailment. The difference between a sin-
gle conclusion and multiple conclusions is the difference between
intuitionistic and classical logic. In fact, extending natural deduc-

13 2014/1/23

tion with multiple conclusions turns it into a system of classical
logic [7, 89]. End remark 4.

4.3 The sequent calculus as a language
Having explored the sequent calculus from the perspective of logic,
what does it mean from the perspective of computation? Is there a
programming language that corresponds with the sequent calcu-
lus, in the same sense that the λ-calculus corresponds to natural
deduction? As it turns out, the computational interpretation of the
sequent calculus reveals a lower-level language for describing pro-
grams, both corresponding to intuitionistic logic [61] like with the
λ-calculus (see Remark 4) as well as classical logic [62, 63].

Similar to the way that the sequent calculus turns half the rules
of natural deduction upside down, a programming language cor-
responding to the sequent calculus turns half the syntax of the λ-
calculus inside out. For example, consider the syntax tree for a λ-
calculus term that applies a function to three arguments:

(((λx.M) M1) M2) M3

shown in Figure 7 (a). Notice how the main interaction of the term,
the reducible expression (redex) (λx.M) M1, is buried at the very
bottom of the syntax tree. We may want to emphasize the redex
by bringing it to the top of the syntax tree, so that it is immediately
visible upon first inspection. Imagine grabbing the edge connecting
λx and the first application to M1 and lifting it upward, so that
the rest of the tree hangs downward off of this edge. In effect, this
action re-associates the syntax tree so that each function application
in the context (where the hole surrounding the function λx.M is
written �):

((�M1) M2) M3

is inside out, giving us the half-inverted syntax tree in Figure 7 (b).
Additionally, the overall context of the whole expression, labeledα,
is buried to the bottom of the re-associated syntax tree, so that the
path leading from the top of the syntax tree to the top application of
M3 becomes the spine hanging off to the right. The re-association
of the syntax tree from natural deduction to sequent style fits within
the general procedure for forming of the zipper [66, 83, 84] of a tree
in functional programming languages, which takes a path into a tree
and reifies it into a concrete structure in its own right.

This sequent style of writing programs, by inverting half of
the program to bring out the relevant interactions, is captured by
Curien and Herbelin’s λµµ̃-calculus [23]. The λµµ̃-calculus em-
phasizes symmetries in computation that are not so obvious in the
λ-calculus. In particular, computation in the λµµ̃-calculus is repre-
sented as an interaction between a term, M , and its counterpart, a
co-term K, which together form a command, 〈M ||K〉. In the more
traditional setting of the λ-calculus, a co-term K may be under-
stood as the representation of a context that specifies how to con-
tinue after it receives input, and the command 〈M ||K〉 may be un-
derstood as plugging the term M into the context represented by
K, K[M].

The most basic form of co-term in the λµµ̃-calculus corre-
sponds to a let binding common in functional programming lan-
guages. The term letx = M ′ inM means to bind the variable x
to the value returned by M ′ during evaluation of the sub-term M ,
and may be encoded in the λ-calculus using functions:

(letx = M ′ inM) = (λx.M) M ′

The λµµ̃-calculus includes a syntactic representation of a let bind-
ing missing its input:

letx = � inK[M]

which may be written as the co-term, inx⇒〈M ||K〉, that is wait-
ing for an input, a term named x, before running the underlying

command 〈M ||K〉, giving us a form of input abstraction. The sym-
metrical of the sequent calculus also points out a term correspond-
ing to the dual of an ordinary let binding. The dual to input ab-
straction, an output abstraction written outα⇐〈M ||K〉, is wait-
ing for an output, a co-term namedα, before running the underlying
command. In this term, α is a variable standing in for an unknown
co-term, and is the dual to ordinary variables of the λ-calculus (a
co-variable).

The subset of the λµµ̃-calculus discussed so far, corresponding
to Herbelin’s [63] µµ̃-calculus, gives a core language for describ-
ing input, output, and interactions. The grammar and typing rules
for this core language is given in Figure 8. Note that the type sys-
tem brings out an aspect of deduction that was implicit in the se-
quent calculus: the role of a distinguished active proposition that
is currently under consideration. For example, in the ∧R rule from
Figure 5, we are currently trying to prove the propositionA∧B, so
it is considered the active proposition of the judgment Γ ` A ∧B.
The concept of an active proposition corresponds to three different
situations in a program:

• Active on the right (Γ ` M : A|∆): we are building a term M
that sends as its output information of type A (that is, M is a
producer of type A).
• Active on the left (Γ|K : A ` ∆): we are building a co-term K

that receives as its input information of type A (that is, K is a
consumer of type A).
• Passive (S : (Γ ` ∆)): we are building a command S that

has no distinguished input or output, but may only reference
(input) variables Γ and (output) co-variables ∆ available from
its environment.

Also notice that this language does not include any particular con-
nectives — it is purely a structural system for describing the in-
troduction and use of parameters (variables and co-variables). The
V ar rule creates a term by just referring to a variable from the
available environment, and similarly the CoV ar rule creates a
co-term by referring to a co-variable. The Cut rule connects a term
and co-term that are both waiting to send and receive information
of the same type. Finally, the activation rules AR and AL pick a
distinguished type from the environment to activate by creating an
output or input abstraction, respectively. Intuitively, if x is a vari-
able of type A referenced by a command S, then the input abstrac-
tion inx⇒S is a co-term that is waiting for an input of type A
that it will internally name x. Dually, if α is a co-variable of typeA
referenced by S, then the output abstraction outα⇐S is a term
that is waiting for a place send information of type A that it will
internally name α.
Remark 5. As it turns out, general output abstractions in the se-
quent calculus give rise to a manipulation over control flow that
is equivalent to the callcc control operator from Scheme [74], or
Felleisen’s [40] C operator. Intuitively, the term outα⇐〈M ||K〉
can be read as:

outα⇐〈M ||K〉 = callcc(λα.K[M])

This phenomenon is a consequence of Griffin’s [56] observation
in 1990 that the under the Curry-Howard isomorphism, classical
logic corresponds to control flow manipulation, along with the
fact that the sequent calculus with multiple conclusions formalizes
classical logic (see Remark 4). Under this interpretation, multiple
conclusions in the sequent calculus correspond to the availability
of multiple co-variables. Indeed, multiple conclusions may be seen
as the logical essence for this “classical” form of control effects (so
called for the connections to classical logic as well as the traditional
control operator callcc), since extending natural deduction with
multiple conclusions, as in Parigot’s [89] λµ-calculus, also gives a

14 2014/1/23

α

·

M3·

M2·

M1λx

M

||

·

·

·

αM3

M2

M1

λx

M

(a) Natural deduction (b) Sequent calculus

Figure 7. Re-association of the abstract syntax tree for function calls.

A,B,C ∈ Type ::= X

M ∈ Term ::= x || outα⇐S
K ∈ CoTerm ::= α || inx⇒S
S ∈ Command ::= 〈M ||K〉

Γ ∈ Input ::= x1 : A1, . . . , xn : An

∆ ∈ Output ::= α1 : A1, . . . , αn : An

Judgment ::= (Γ `M : A|∆) || (Γ|K : A ` ∆) || S : (Γ ` ∆)

Axiom and cut:

Γ, x : A ` x : A|∆ V ar
Γ|α : A ` α : A,∆

CoV ar
Γ `M : A|∆ Γ|K : A ` ∆

〈M ||K〉 : (Γ ` ∆)
Cut

Structural rules:
S : (Γ ` α : A,∆)

Γ ` outα⇐S : A|∆ AR
S : (Γ, x : A ` ∆)

Γ|inx⇒S : A ` ∆
AL

Figure 8. The types and grammar of the core language of the sequent calculus.

programming language with control effects equivalent to callcc [7].
Additionally, just like restricting the sequent calculus to a single
conclusion makes it a system of intuitionistic logic, restricting
the λµµ̃-calculus to a single co-variable makes it a language for
pure functional programming equivalent to the λ-calculus [61].

End remark 5.

The remainder of the λµµ̃-calculus is a term and a co-term for
representing functions of typeA→ B in the language, correspond-
ing to the right and left rules for implication in the sequent calculus.
The grammar and typing rules are given in Figure 9. Since the right
rule for implication is the same as implication introduction in natu-
ral deduction, the term for creating a function is the same as in the
λ-calculus. On the other hand, the different form of the left impli-
cation rule means that we need to use a different syntactic form to
represent function application. In the λµµ̃-calculus, function appli-
cation is represented by the co-term,M ·K. Intuitively, the co-term
built by the→ L rule represents a call-stack. IfM is a term of type
A, and K is expecting a result of type B, then the call-stack M ·K
is waiting to receive a function of type A. As an example, given
that M1, M2, and M3 are all terms of type A1, A2, and A3, and
K is a co-term waiting for an input of type B, then the call-stack
M1 · (M2 · (M3 ·K)) is a co-term waiting to receive a function of

type A1 → (A2 → (A3 → B)):

D1....
Γ `M1 : A1|∆

D2....
Γ `M2 : A1|∆

D3....
Γ `M3 : A3|∆

E....
Γ|K : B ` ∆

Γ|M3 ·K : A3 → B ` ∆
→ L

Γ|M2 ·M3 ·K : A2 → A3 → B ` ∆
→ L

Γ|M1 ·M2 ·M3 ·K : A1 → A2 → A3 → B ` ∆
→ L

Wadler [111, 112] gives an alternate interpretation of the se-
quent calculus as a programming language, shown in Figure 10.
Instead of focusing on functions as in the λµµ̃-calculus, Wadler’s
dual sequent calculus instead considers the other connectives —
conjunction, disjunction, and negation — as primary, and functions
may be reduced to these basic building blocks. As was the case
with functions in λµµ̃, the terms of Wadler’s sequent calculus are
similar to terms in the λ-calculus, whereas elimination forms are
expressed as a co-term. On the one hand, terms of pair type,A×B,
are introduced as a pair of two terms, (M1,M2). On the other hand,
the first and second projections are considered two ways of build-
ing a co-term of pair type, fst[K] and snd[K]. For example, if K
is a co-term expecting an input of type A, then fst[K] takes an
input of type A × B, extracts the first component, and forwards

15 2014/1/23

A,B,C ∈ Type ::= X || A→ B

M ∈ Term ::= x || outα⇐S || λx.M
K ∈ CoTerm ::= α || inx⇒S ||M ·K

Logical rules:

Γ, x : A `M : B|∆
Γ ` λx.M : A→ B|∆ → R

Γ `M : A|∆ Γ|K : B ` ∆

Γ|M ·K : A→ B ` ∆
→ L

Figure 9. The types and grammar for the logical part of the λµµ̃-calculus.

A,B,C ∈ Type ::= X || A×B || A+B || ¬A
M ∈ Term ::= x || outα⇐S || (M1,M2) || inl(M) || inr(M) || not(K)

K ∈ CoTerm ::= α || inx⇒S || fst[K] || snd[K] || [K1,K2] || not[M]

Logical rules:

Γ `M1 : A|∆ Γ `M2 : B|∆
Γ ` (M1,M2) : A×B|∆ ×R

Γ|K : A ` ∆

Γ| fst[K] : A×B ` ∆
×L1

Γ|K : B ` ∆

Γ| snd[K] : A×B ` ∆
×L2

Γ `M : A|∆
Γ ` inl(M) : A+B|∆

+R1

Γ `M : B|∆
Γ ` inr(M) : A+B|∆

+R2

Γ|K1 : A ` ∆ Γ|K2 : B ` ∆

Γ|[K1,K2] : A+B ` ∆
+L

Γ|K : A ` ∆

Γ ` not(K) : ¬A|∆ ¬R
Γ `M : A|∆

Γ not[M] : ¬A ` ∆
¬L

Figure 10. The types and grammar for the logical part of Wadler’s sequent calculus.

it along to K. The syntax for sum types is dual to the syntax for
pairs. The terms of sum type are introduced in a similar manner
to the λ-calculus, by injecting a term into the sum by tagging it as
inl(M) or inr(M), whereas the co-terms of a sum type consist of a
pair of co-terms [K1,K2]. Intuitively, given two co-terms K1 : A
and K2 : B, the co-term [K1,K2] accepts an input of type A+B
by checking the tag and forwarding the value of type A or B along
to either K1 or K2 as appropriate. Finally, the less familiar type
corresponding to negation captures a form of continuations: a term
of type ¬A is actually a co-term expecting input and vice versa.
The ¬A type is a crucial part of the encoding of functions in the
calculus.

5. The duality of evaluation
Having described the static properties, the syntax and types, for lan-
guages based on the sequent calculus, we still need to show their
dynamic properties, to explain what it means to run a program. Pro-
grams of the λ-calculus are evaluated by repeated application of the
β rules for functions (and pairs) which serve as the primary vehi-
cle of computation, and correspond to the proof of local soundness
for connectives in natural deduction. However, the sequent calculus
does not include elimination rules in the manner of natural deduc-
tion, so how can we phrase evaluation? It turns out that the answer
to “what is computation in the sequent calculus?” comes from the
concept of cut elimination mentioned in Section 4.1.

The proof of cut can be divided into two parts: the logical
steps and the structural steps. The logical steps of cut elimination
consider the cases when we have cut together two proofs ending
in the left and right rules for the same connective, and show how
to rewrite the proof into a new one that does not mention that

particular connective. For example, we may have a proof where
the ⊃ R and ⊃ L rules for the same proposition are cut together:

D....
Γ, A ` B,∆

Γ ` A ⊃ B,∆ ⊃ R

E1....
Γ ` A,∆

E2....
Γ, B ` ∆

Γ, A ⊃ B ` ∆
⊃ L

Γ ` ∆
Cut

and this proof can be rewritten without mention of implication by
breaking apart the proposition A ⊃ B as follows:

E1....
Γ ` A,∆

D....
Γ, A ` B,∆

E2....
Γ, A,B ` ∆

Γ ` A,∆ Cut

Γ ` ∆
Cut

This transformation on proofs can be expressed by the reduction of
a command in the λµµ̃-calculus as follows:

(β→) 〈λx.M ||M ′ ·K〉 → 〈M ′||inx⇒〈M ||K〉〉
Intuitively, this reduction states the fact that evaluating a function
λx.M with respect to the call M ′ ·K is the same thing as binding
the argument M ′ to x and then evaluating the body of the function
M with respect to the calling context K.

The structural steps of cut elimination handles all the other cases
where we do not have a left and right rule for the same proposition
facing one another in a cut. These steps involve rewriting the
structure of the proof and propagating the rules until the relevant
logical steps can take over. In the λµµ̃-calculus, a case where a
structural step is needed is reflected by the presence of an input or

16 2014/1/23

output abstraction. We can capture the essence of these structural
steps in the λµµ̃-calculus by means of substitution:

(µ) 〈µα.S||K〉 → S {K/α}
(µ̃) 〈M ||inx⇒S〉 → S {M/x}

The µ̃ reduction substitutes the term M for the variable x intro-
duced by an input abstraction, distributing it in the command S to
the points where it is used. The µ reduction is the mirror image,
which substitutes a co-term K for a co-variable α introduced by an
output abstraction.

Unfortunately, reduction in this calculus is extremely non-
deterministic, to the point where the execution of a program may
take completely divergent paths. The non-determinism of reduc-
tions in the λµµ̃-calculus corresponds to the fact that classical cut
elimination in the sequent calculus is also non-deterministic. The
phenomenon is expressed by the fundamental conflict between in-
put and output abstractions, as shown by the two dual µ and µ̃
reductions for performing substitution:

〈outα⇐S||inx⇒S′〉

S′ {(outα⇐S)/x}S {(inx⇒S′)/α}

µ µ̃

Both the term outα⇐S and co-term inx⇒S′ are fighting
for control in the command, and either one may win. The non-
deterministic outcome of this conflict is exemplified in the case
that neither α nor x referenced in their respective commands:

S ←µ 〈out ⇐S||in ⇒S′〉 →µ̃ S
′

showing that any program may produce arbitrary results, since the
same starting point may step to two different completely arbitrary
commands. This form of divergent reduction paths is called a criti-
cal pair and is evidence that the reduction system is not confluent,
meaning that reductions can be applied in any order and still reach
the same result. From the perspective of the semantics of program-
ming languages, this type of non-determinism is undesirable since
it makes it impossible to predict the behavior of a program during
execution.

5.1 Confluence and evaluation strategy
In order to restore determinism to the calculus, Curien and Herblin
observed that all that is needed is to give priority to one reduction
over the other [23]:

Call-by-value consists in giving priority to the (µ)-redexes
(which serve to encode the terms, say, of the form M M ′),
while call-by-name gives priority to the (µ̃)-redexes.

This observation led them to splinter the λµµ̃-calculus into two
separate sub-languages — the λµµ̃Q-calculus and the λµµ̃T -
calculus — which embody call-by-name and call-by-value compu-
tation in the sequent calculus. The λµµ̃Q-calculus follows a call-
by-value evaluation strategy, and is so named since it corresponds
to the LKq fragment of Danos et. al.’s [26] system LKtq for de-
terministic cut elimination in the sequent calculus. Likewise, the
λµµ̃T -calculus follows a call-by-name strategy and corresponds to
the LKt fragment of LKtq .

The design of the λµµ̃Q and λµµ̃T sub-languages is guided by
stability under call-by-value and call-by-name evaluation, respec-
tively, based on the connection between natural deduction and the
sequent calculus. For this reason, the call-by-value sub-language
points out a subset of terms called values, denoted by the meta-
variable V , which consists of variables and λ-abstractions as in
Plotkin’s original call-by-value λ-calculus [91]. This allows the µ̃
rule to be restricted according to the call-by-value priority so that

only values may be substituted for a variable:

(µ̃V) 〈V ||inx⇒S〉 → S {V/x}

In addition, the co-term for function calls is restricted to the form
V ·K, so that only values may be the argument to a function call.
Similarly, the call-by-name sub-language points out a subset of
co-terms called co-values, denoted by the meta-variable E, which
correspond to evaluation contexts in the call-by-name λ-calculus.
That way the µ rule may be restricted according to the call-by-name
priority so that only co-values are substituted for a co-variable:

(µE) 〈outα⇐S||E〉 → S {E/α}

The reduction rules for the call-by-value and call-by-name sub-
language of the λµµ̃-calculus are summarized in Figures 11 and
12.
Remark 6. We may regard the co-term for a function call, M ·K,
as a syntactic representation of a single frame on a call-stack. The
first component stores the argument to be used by the function, and
the second component stores a representation of the return pointer
which specifies what should happen once the function call has com-
pleted. For example, the co-termM1 ·M2 ·M3 ·K may be viewed
as a call-stack for a function accepting three arguments, and which
returns to K. This reading gives the λµµ̃-calculus, and the sequent
calculus in general, its low-level flavor. By representing a context
by an explicit syntactic object K, we have a direct representation
of a tail-recursive interpreter [12], which can also be seen as a form
of abstract machine. In particular, we may view the syntax of the
λµµ̃-calculus as a higher-level representation of a form of CEK
machine [38]: the control (C) is represented by a term M , the con-
tinuation (K) is represented by a co-term K, and the environment
(E) is implicit and instead implemented as a static substitution oper-
ation. Finally, the configuration state of the machine is represented
by a command S in the λµµ̃-calculus.

Furthermore, the syntactic restrictions of the λµµ̃Q and λµµ̃T
sub-languages correspond to restrictions that occur in call-by-name
and call-by-value abstract machines for the λ-calculus, namely the
Krivine machine [76] and a CEK-like machine [38], respectively.
On the one hand, in a call-by-name abstract machine for the λ-
calculus, only strict call-stacks which immediately perform a func-
tion call are formed during execution. On the other hand, only val-
ues are pushed on the call-stack in a call-by-value abstract machine,
rather than unevaluated terms M . For example, the command:

〈λx.M ||M1 ·M2 ·M3 · α〉

where M1,M2,M3 are unevaluated terms, would not be legal
in the call-by-value sub-language, since we would only push
a computed value onto the call-stack. Additionally, the com-
mand 〈λx.M ||N1 · in [⇒x]S〉 would not be legal in the call-by-
name sub-language, since K corresponds to the non-strict context
letx = � in z — this context is not strict because it does not
need the evaluation of the term plugged into � to return a re-
sult. End remark 6.

In contrast to the solution to non-determinism devised for the
λµµ̃-calculus, Wadler’s dual sequent calculus takes a slightly dif-
ferent approach. In accordance with Curien and Herbelin, Wadler
carves out a subset of terms called values and a subset of co-terms
called co-values, and forms two deterministic restrictions of the re-
duction rules for the sequent calculus following a call-by-value and
call-by-name evaluation order, respectively. The rules for substi-
tution, µ and µ̃, follow the same pattern in the call-by-value and
call-by-name dual sequent calculus as in λµµ̃. Additionally, the re-
duction rules for the logical constructions of the language take on
additional restrictions as appropriate, similar to the syntactic re-
strictions in λµµ̃. For example, the β rule for projecting the com-

17 2014/1/23

S ∈ Command ::= 〈M ||K〉
V ∈ V alue ::= x || λx.M
M ∈ Term ::= V || outα⇐S

K ∈ CoTerm ::= α || V ·K

(µ) 〈outα⇐S||K〉 → S {K/α}
(µ̃V) 〈V ||inx⇒S〉 → S {V/x}
(β→) 〈λx.M ||V ·K〉 → 〈V ||inx⇒〈M ||K〉〉

Figure 11. The call-by-value λµµ̃Q-calculus.

S ∈ Command ::= 〈M ||K〉
M ∈ Term ::= V || outα⇐S

E ∈ CoV alue ::= α ||M · E
K ∈ Coterm ::= E || inx⇒S

(µE) 〈outα⇐S||E〉 → S {E/α}
(µ̃) 〈M ||inx⇒S〉 → S {M/x}

(β→) 〈λx.M ||M ′ · E〉 → 〈M ′||inx⇒〈M ||E〉〉

Figure 12. The call-by-name λµµ̃T -calculus.

V ∈ V alue ::= α || (V, V) || inl(V) || inr(V) || not(K)

F ∈ TermContext ::= (�,M) || (V,�) || inl(�) || inr(�)

(µ) 〈outα⇐S||K〉 → S {K/α}
(µ̃V) 〈V ||inx⇒S〉 → S {V/x}
(β×V) 〈(V1, V2)||fst[K]〉 → 〈V1||K〉 〈(V1, V2)||snd[K]〉 → 〈V2||K〉
(β+
V) 〈inl(V)||[K1,K2]〉 → 〈V ||K1〉 〈inr(V)||[K1,K2]〉 → 〈V ||K2〉

(β¬) 〈not(K)||not[M]〉 → 〈M ||K〉
(µη) M → outα⇐〈M ||α〉
(µ̃η) K → inx⇒〈x||K〉

(ς) F [M]→ outα⇐〈M ||inx⇒〈F [x]||α〉〉

Figure 13. Wadler’s call-by-value dual sequent calculus.

ponents of a pair must be restricted so that the pair is first a value:

〈(V1, V2)||fstK〉 →β× 〈V1||K〉
〈(V1, V2)||sndK〉 →β× 〈V2||K〉

Likewise, the call-by-value β reductions for the sum type can only
match on the tag of a sum term when the underlying component is
a value:

〈inl(V)||[K1,K2]〉 →β+ 〈V ||K1〉
〈inr(V)||[K1,K2]〉 →β+ 〈V ||K2〉

However, the syntax for these two deterministic reduction sys-
tems is not restricted — the same programs are acceptable in both

the call-by-value and call-by-name systems. To compensate for this
additional generality, additional rules must be added to push com-
putation forward when we are facing a term that lies outside the
syntactic restriction. For example, when we are trying to match on
the term inl(outα⇐S), where outα⇐S is not a value, then the
β rule for sums is not strong enough to choose which branch to
take:

〈inl(outα⇐S)||[K1,K2]〉 6→β+

Similar issues arise when we attempt to project out of a non-value
pair (M1,M2). Instead, Wadler’s dual sequent calculus adds a new
family of reductions ς whose purpose is to lift computations out of
structures so that reduction may continue. In the above program,

18 2014/1/23

E ∈ CoV alue ::= α || fst[E] || snd[E] || [E,E] || not[M]

F ∈ CoTermContext ::= fst[�] || snd[�] || [�,K] || [E,�]

(µE) 〈outα⇐S||E〉 → S {E/α}
(µ̃) 〈M ||inx⇒S〉 → S {M/x}

(β×E) 〈(M1,M2)||fst[E]〉 → 〈M1||E〉 〈(M1,M2)||snd[E]〉 → 〈M2||E〉
(β+
E) 〈inl(M)||[E1, E2]〉 → 〈V ||E1〉 〈inr(M)||[E1, E2]〉 → 〈V ||E2〉

(β¬) 〈not(K)||not[M]〉 → 〈M ||K〉
(µη) M → outα⇐〈M ||α〉
(µ̃η) K → inx⇒〈x||K〉

(ς) F [K]→ inx⇒〈outα⇐〈x||F [α]〉||K〉

Figure 14. Wadler’s call-by-name dual sequent calculus.

we may instead take the step:

〈inl(outα⇐S)||[K1,K2]〉 →ς 〈outα⇐S||inx⇒〈inl(x)||[K1,K2]〉〉
where we have pulledM out of the sum tag inl by giving it a name.
Now reduction may continue by letting the term take control over
computation through the µ rule. The full set of rules for Wadler’s
call-by-value and call-by-name systems of reduction for the dual
sequent calculus are given in Figures 13 and 14.

The rules for functions in Wadler’s dual calculus are derived
from an encoding of functions in terms of the other basic types for
pairs, sums, and negation. There are two encoding of implications
in terms of the other connectives:

A→ B = (¬A) ∨B
A→ B = ¬(A ∧ (¬B))

which are both logically equivalent in the setting of classical logic.
These two logical encodings reveal two encodings of functions, one
in terms of disjunction:

λx.M = out γ ⇐〈inl(not(inx⇒〈inr(M)||γ〉))||γ〉
M ·K = [not[M],K]

and one in terms of conjunction:

λx.M = not(out z ⇐〈z||fst[inx⇒〈z||snd[not[M]]〉]〉)
M ·K = not[(M, not(K))]

The second encoding, in terms of conjunction, is used to define
functions in the call-by-value calculus, since the encoding of a λ-
abstraction is a value as intended. The first encoding, in terms of
disjunction, is used to define functions in the call-by-name calculus.

5.2 Classical computation and the devil’s choice
Example 6. Now that we have some reduction systems that tell us
how to compute with classical logic, examine how a proof like the
law of excluded middle from Remark 4 may be interpreted from the
perspective of a program. To first gain some intuition, consider the
following tale (with acknowledgments to Wadler [111], Selinger,
and countless others who have made similar allegories):

One day, the devil approached a man and presented him with
a tempting offer: “I will give you one trillion dollars, or I
will grant you any wish your heart desires upon payment
of one trillion dollars. However, if accept the offer, I may
choose which prize you receive.”
The man, as one may expect, was hesitant of making such a
deal — what were the hidden costs? The devil assured him

that the terms are as he said, all the man need to do is accept
and he will be presented with a gift of the devil’s choosing.
Deciding that he has nothing to lose from either option, the
man agrees, “I will take your offer, now which will you give
me?”
After some hesitation, the devil replies “I will grant you
your wish, but only once you have paid me my sum.”
The man is disappointed by the response, how is he to afford
such a high price? For a time, he went about his life as
before, but over time, the open offer began to hang heavy
over his head. How could he just ignore the unbounded
potential of a free wish? From then on, he made it his life’s
goal to accrue the hefty sum required to receive his wish.
The task took him many years, demanded all his time and
energy, and pushed him to perform some questionable deeds
along the way. However, as he became an old man, he finally
saved up enough money to pay for his prize.
At this time, the devil appeared before the now old man
again, and the man beamed triumphantly, “I have your pay-
ment, devil, now give me my wish!” as he handed over a
case full of money for his end of the bargain.
The devil takes the money and looks it over in contempla-
tion for a moment. Facing the man again, he says, “Did I say
I would give you a wish? I meant that I would give you one
trillion dollars,” and with a sly smirk hands the very same
case back to the old man.

We may phrase the devil’s choice of gift as the type riches +
(riches → wish), either the devil will choose to give riches
(produce a value of type riches) or accept riches in order to
produce an arbitrary wish (present a function for transforming
values of type riches to a result of type wish). Note that since the
devil is the giver, so he is modeled as a term of the type, whereas
the man is the receiver, so he is a co-term. A term that follows the
behavior of the devil from the parable may be defined as:

Devil′s Choice = outα⇐〈inr(λx.out ⇐〈inl(x)||α〉)||α〉

whose typing derivation is given in Figure 15 where the type
riches is denoted by A and wish by B. Note that this term makes
critical use of the fact that it may (1) name the co-term it is inter-
acting with by introducing a co-variable, and (2) duplicating that
co-variable.

We can exhibit the behavior of the devil’s choice by considering
different paths that the man may take, and show that the devil is
never stumped by an obligation he cannot fulfill. For our purposes,

19 2014/1/23

x : A ` x : A| V ar

x : A ` inl(x) : A+ (A→ B)|
+R1

α : A+ (A→ B) ` α : A+ (A→ B)
CoV ar

.... Cut,WR,WL

〈Inl(x)||α〉 : (x : A ` α : A+ (A→ B), δ : B)

x : A ` out δ ⇐〈inl(x)||α〉 : B|α : A+ (A→ B)
AR

` λx.out δ ⇐〈inl(x)||α〉 : A→ B|α : A+ (A→ B)
→ R

` inr(λx.out δ ⇐〈inl(x)||α〉) : A+ (A→ B)|α : A+ (A→ B)
+R2 |α : A+ (A→ B) ` α : A+ (A→ B)

CoV ar

〈inr(λx.out δ ⇐〈inl(x)||α〉)||α〉 : (` α : A+ (A→ B))
Cut

` outα⇐〈inr(λx.out δ ⇐〈inl(x)||α〉)||α〉 : A+ (A→ B)
AR

Figure 15. Typing derivation of the devil’s choice.

we will focus on reduction in the call-by-value setting, although
similar behavior holds in call-by-name as well. Since we know that
the devil’s first choice is to offer the wish for payment (present a
value of the form inr(V)), we focus on the mans reaction to this
move. On the one hand, we can model what happens if the man
were to ignore this offer with the co-term [K1, in ⇒S2], so that
the second branch discards the given value:

〈outα⇐〈inr(λx.out ⇐〈inl(x)||α〉)||α〉||[K1, in ⇒S2]〉
→µ 〈inr(λx.out ⇐〈inl(x)||[K1, in ⇒S2]〉)||[K1, in ⇒S2]〉
→β+ 〈λx.out ⇐〈inl(x)||[K1, in ⇒S2]〉||in ⇒S2〉
→µ̃V S2

In this case, the man never made use of the devil’s offer, so the
devil can safely promise anything without being called out on
it. On the other hand, we also have the course taken in the tale
where the man manages to save up enough money (modeled by
a value V2 of type riches) and demands his wish (modeled by
a co-value K2 of type wish), which is modeled by the co-term
[K1, V2 ·K2]. The reduction of this command illustrates the devil’s
trick of changing his mind in order to use the man’s own money to
fulfill his obligation, which is shown by feeding the argument V2

given in the second branch of the co-term to the first branch K1:

〈outα⇐〈inr(λx.out ⇐〈inl(x)||α〉)||α〉||[K1, V2 ·K2]〉
→µ 〈inr(λx.out ⇐〈inl(x)||[K1, V2 ·K2]〉)||[K1, V2 ·K2]〉
→β+ 〈λx.out ⇐〈inl(x)||[K1, V1 ·K1]〉||V2 ·K2〉
→β→ 〈V2||inx⇒〈out ⇐〈inl(x)||[K1, V2 ·K2]〉||K2〉〉
→µ̃V 〈out ⇐〈inl(V2)||[K1, V2 ·K2]〉||K2〉
→µ 〈inl(V2)||[K1, V2 ·K2]〉
→µ 〈V2||K1〉
We may also illustrate this phenomenon in the syntax of natural

deduction by using the callcc operator of Scheme. In a λ-calculus
based language, we may rephrase the devil’s choice by the term:

Devil′s Choice = callcc(λk. inr(λx. throw k inl(x)))

Then the man’s reaction to the devil is given by a case statement
that analyzes the devil’s choice. On the one hand, the course where
the man ignores the offer is given by a case statement that ignores
the input:

caseDevil′s Choiceof∣∣∣∣ inl(x)⇒M1

inr()⇒M2

→→M2

Since the function given in the second case is never used, we just
take the second branch. On the other hand, the course where the
man demands his wish is given by a case statement that calls the

function in the second case with an argument:

caseDevil′s Choiceof∣∣∣∣ inl(x)⇒M1

inr(f)⇒ K2[f V2]

→→M1 {V2/x}

The devil pulls out his trick and unexpectedly re-routes the pro-
gram, feeding the argument to f in the second case in order to fulfill
the value expected by the first case. End example 6.

5.3 Call-by-value is dual to call-by-name
We saw how the symmetries of the sequent calculus present a log-
ical duality that captures De Morgan duals in Section 4.2. This du-
ality carries over the Curry-Howard isomorphism and presents it-
self as dualities in programming languages: (1) a duality between
the static semantics (types) of the language, and (2) a duality be-
tween the dynamic semantics (reductions) of the language. These
dualities of programming languages were first observed by Filin-
ski [42] in 1989 from the correspondence with duality in cate-
gory theory, which was later expanded upon by Selinger [105, 106]
in the style of natural deduction. Curien and Herbelin [23] and
Wadler [111, 112] bring this duality to the sequent calculus, and
show how it is better reflected in the language as a duality of syn-
tax corresponding to the inherent symmetries in the logic.

The static aspect of duality between types corresponds directly
from the logical duality of the sequent calculus. Since duality in
the sequent calculus flips a judgment, so that assumptions are
exchanged with conclusions, we also have a corresponding flip in
the programming language. The dual of a term M of type A is
a co-term K of the dual type and vice versa, and the term and
co-term components of a command are swapped. Likewise, the
duality on types lines up directly with the De Morgan duality on
logical propositions. For example, since the types for pairs (×) and
sums (+) corresponds to conjunction (∧) and disjunction (∨), we
have

(A×B)◦ , (A◦) + (B◦)

(A+B)◦ , (A◦)× (B◦)

The full duality relationship of types and programs in Wadler’s
dual sequent calculus is defined in Figure 16, giving us a syntactic
duality between terms and types:

Theorem 3 (Type duality). In Wadler’s dual sequent calculus:

• S : (Γ ` ∆) is a well-typed command if and only if S◦ : (∆◦ `
Γ◦) is a well-typed command.
• Γ `M : A|∆ is a well-typed term if and only if ∆◦|K◦ : A◦ `

Γ◦ is a well-typed co-term.
• Γ|K : A ` ∆ is a well-typed co-term if and only if ∆◦ `
K◦ : A◦|Γ◦ is a well-typed term.

20 2014/1/23

Duality of judgments:

(S : (Γ ` ∆))◦ , S◦ : (∆◦ ` Γ◦)

(Γ `M : A|∆)◦ , ∆◦|M◦ : A◦ ` Γ◦ (Γ|K : A ` ∆)◦ , ∆◦ ` K◦ : A◦|Γ◦

Duality of types:

(A×B)◦ , (A◦) + (B◦) (A+B)◦ , (A◦)× (B◦) (¬A)◦ , ¬(A◦)

Duality of programs:

〈M ||K〉◦ , 〈K◦||M◦〉
(outα⇐S)◦ , inα◦ ⇒(S◦) (inx⇒S)◦ , outx◦ ⇐(S◦)

(M1,M2)◦ , [M1
◦,M2

◦] [K1,K2]◦ , (K1
◦,K2

◦)

(inl(M))◦ , fst[M◦] (fst[K])◦ , inl(K◦)

(inr(M))◦ , snd[M◦] (snd[K])◦ , inr(K◦)

(not(K))◦ , not[K◦] (not[M])◦ , not(M◦)

Figure 16. The duality relation of Wadler’s sequent calculi.

Also of note is the fact that the duality operation is involutive:
the dual of the dual is exactly the same as the original.

Theorem 4 (Involution). For all commands S, terms M , and
co-terms K in Wadler’s dual sequent calculus, S◦◦ , S, M◦◦ ,
M , and K◦◦ , K.

The dynamic aspect of duality takes form as a relationship
between the two reduction systems for evaluating programs in
the sequent calculus: call-by-value reduction is dual to call-by-
name reduction. That is, if we have a command S that behaves
a certain way according to the call-by-value calculus, then the
dual command S◦ behaves the same in a correspondingly dual
way according to the call-by-name calculus. The two systems for
reduction mirror each other exactly rule for rule.

Theorem 5 (Operational duality). • If S → S′ by Wadler’s
call-by-value sequent calculus, then S◦ → S′

◦ by Wadler’s
call-by-name sequent calculus (and analogously for terms and
co-terms).
• If S → S′ by Wadler’s call-by-name sequent calculus, then
S◦ → S′

◦ by Wadler’s call-by-value sequent calculus (and
analogously for terms and co-terms).

A similar situation holds in the λµµ̃-calculus. Just like how we
needed to add subtraction as the logical counterpart to implication
in Section 4.2, here we need to add the dual form of functions to
complete the duality of the λµµ̃-calculus. By analogy, the dual
of functions is also referred to as subtraction, and it represents a
transformation on co-terms, as the counterpart to a transformation
on terms. The type rules for subtraction are the same as the rules
for subtraction, and the syntax is reversed from functions:

Γ|K : B ` α : A,∆

Γ|λ̃α.K : B −A ` ∆
−R

Γ `M : B|∆ Γ|K : A ` ∆

Γ `M −K : B −A|∆ −L

Similarly, the β rule for subtraction is a mirror image of the rule for
functions:

(β−) 〈M −K′||λ̃α.K〉 → 〈outα⇐〈M ||K〉||K′〉

Finally, we extend the set of values in the λµµ̃Q-calculus so that
V − K is a value, and extend the set of co-values in the λµµ̃T -

calculus so that λ̃α.K is a co-value. With the addition of subtrac-
tion, duality of the λµµ̃-calculus is defined in Figure 17. Further-
more, we get similar static and dynamic properties of this dual-
ity relation: duality preserves typing, duality is involutive, and the
λµµ̃Q-calculus (call-by-value) is dual to the λµµ̃T -calculus (call-
by-name).

Theorem 6 (Type duality). In the λµµ̃-calculus:

• S : (Γ ` ∆) is a well-typed command if and only if S◦ : (∆◦ `
Γ◦) is a well-typed command.
• Γ `M : A|∆ is a well-typed term if and only if ∆◦|K◦ : A◦ `

Γ◦ is a well-typed co-term.
• Γ|K : A ` ∆ is a well-typed co-term if and only if ∆◦ `
K◦ : A◦|Γ◦ is a well-typed term.

Furthermore, if a command, term, or co-term lies in the λµµ̃Q-
calculus, its dual lies in the λµµ̃T -calculus and vice versa.

Theorem 7 (Involution). For all commands S, terms M , and
co-terms K in the λµµ̃-calculus, S◦◦ , S, M◦◦ , M , and
K◦◦ , K.

Theorem 8 (Operational duality). • If S → S′ by the λµµ̃Q-
calculus then S◦ → S′

◦ by the λµµ̃T -calculus (and analo-
gously for terms and co-terms).
• If S → S′ by the λµµ̃T -calculus then S◦ → S′

◦ by the λµµ̃Q-
calculus (and analogously for terms and co-terms).

6. The unity of duality
More recently, insights developed in the realm of logic have re-
vealed a deeper connection in the dual roles between the two sides
of the sequent calculus. The inspiration for this connection can be
tracked back to Dummett’s [33] 1976 lectures on the justification of
logical principles. In essence, Dummett suggested that there are ef-
fectively two ways for determining whether logical laws are mean-
ingful, which reveals a certain bias in the logician: the verification-
ist and the pragmatist.

In the eyes of a verificationist, it is the introduction rules (corre-
sponding to the right rules in the sequent calculus), that give mean-
ing to a logical connective. These are the primitive rules that define
its character. All other rules (the elimination or left rules) must then
be justified by means of the forms of introduction. In other words,
the meaning of a proposition can be devised from its canonical

21 2014/1/23

Duality of judgments:

(S : (Γ ` ∆))◦ , S◦ : (∆◦ ` Γ◦)

(Γ `M : A|∆)◦ , ∆◦|M◦ : A◦ ` Γ◦ (Γ|K : A ` ∆)◦ , ∆◦ ` K◦ : A◦|Γ◦

Duality of types:

(A→ B)◦ , (B◦)− (A◦) (B −A)◦ , (A◦)→ (B◦)

Duality of programs:

〈M ||K〉◦ , 〈K◦||M◦〉
(outα⇐S)◦ , inα◦ ⇒(S◦) (inx⇒S)◦ , outx◦ ⇐(S◦)

(λx.M)◦ , λ̃x◦.(M◦) (λ̃α.K)
◦
, λα◦.(M◦)

(M ·K)◦ , K◦ −M◦ (M −K)◦ , K◦ ·M◦

Figure 17. The duality relation of the λµµ̃-calculus (extended with subtraction).

proofs [93], composed of introduction rules, and the other rules are
sound with respect to them. This is a very similar property to local
soundness for natural deduction described in Section 2.1, albeit a
deeper one. In this case, given any canonical proof of Γ ` A ∧ B,
we know that it must end with the ∧I rule since it is composed of
introduction rules. Therefore, either elimination rule applied to a
canonical proof of Γ ` A ∧ B is subject to the appropriate local
soundness reduction, which results in a canonical proof of either A
or B.

In the eyes of a pragmatist, it is the elimination rules (corre-
sponding to the left rules in the sequent calculus), that give mean-
ing to a logical connective. That is to say, the primitive concept is
what can possibly be done with such an assumption. This stance is
the polar opposite of the verificationist. For a pragmatist, canonical
proofs are composed of eliminations and the other rules are shown
sound with respect to the uses of assumptions rather than the veri-
fication of facts. Dummett originally called for “harmony,” that the
two perspectives aught to result in the same meaning. However, we
will see that in the sequent calculus, these two different approaches
to viewing connectives gives a symmetric framework for viewing
important concepts that arise in both proof search and in program-
ming languages. In particular, we end up with two different styles
of organizing programs (data construction vs. message passing),
leading to two different forms of programs for product and sum
types.

6.1 Polarization and focalization
Modern proof search employs several techniques to improve the
efficiency of searching algorithms. Of particular interest are the
searching techniques that come from the proof theoretic concepts
of focalization and polarization, developed by Andreoli [4], Gi-
rard [53, 54], and Laurent [78]. The nature of these concepts are
most apparent in the way they arise in Girard’s linear logic [51].
Therefore, let us take a brief look at linear logic and its basic con-
cepts before considering the impact on proof search.

Girard’s linear logic [51] can be seen as a logic of resources.
Recall in Remarks 1 and 3 that we admitted additional structural
rules that gave us some flexibility over the use and tracking of as-
sumptions (and conclusions). In particular, we assumed weakening
principles that allowed for hypotheses and consequences to go un-
used in a proof, as well as contraction that allowed for their du-
plication. Linear logic disregards these allowances, instead treating
assumptions as resources that must all be used and conclusions as

obligations that must all be met.5 In terms of our implicit treatment
of the structural rules in the sequent calculus from Figure 5, this
restriction corresponds to a restriction of the basic Ax axiom:

A ` A Ax

so that we are only allowed to conclude a proof when we have
exactly the right assumption to draw our desired conclusion, with
no waste on either side.

Due to the careful use of resources in a proof, linear logic
reveals different presentations of the usual connectives that are no
longer equivalent. For example, the rules for conjunction given
in Figure 5 are used to define the & connective of linear logic
(pronounced “with”):

Γ ` A1,∆ Γ ` A2,∆

Γ ` A&A1,∆
&R

Γ, A1 ` ∆

Γ, A1 &A2 ` ∆
&L1

Γ, A2 ` ∆

Γ, A1 &A2 ` ∆
&L1

However, linear logic also presents a different set of rules for de-
scribing conjunction, giving rise to the ⊗ connective (pronounced
“times” or “tensor”):

Γ1 ` A1,∆1 Γ2 ` A2,∆2

Γ1,Γ2 ` A1 ⊗A2,∆1,∆2
⊗R

Γ, A1, A2 ` ∆

Γ, A1 ⊗A2 ` ∆
⊗L

which makes essential use of our interpretation that all of the
hypotheses must be true, effectively forcing a comma to the left
of entailment to mean “and.”

Dually, we also have two presentations of disjunction in linear
logic. The traditional presentation of disjunction in the sequent
calculus is distinguished by the⊕ connective (pronounced “plus”):

Γ ` A1,∆

Γ ` A1 ⊕A2,∆
⊕R1

Γ ` A2,∆

Γ ` A1 ⊕A2,∆
⊕R2

Γ, A1 ` ∆ Γ, A2 ` ∆

Γ, A1 ⊕A2 ` ∆
⊕L

5 It is typical for systems of linear logic to also include exponential connec-
tives, usually called “of course!” (!A) and “why not?” (?A), that explicitly
permit and track the erasure or duplication of propositions in a proof. How-
ever, for our purposes, we will not be considering such connectives.

22 2014/1/23

A,B,C ∈ Proposition ::= X || A⊕B || A⊗B || 0 || 1 || A&B || A`B || ⊥ || >
Γ ∈ Hypothesis ::= A1, . . . , An

∆ ∈ Consequence ::= A1, . . . , An

Judgment ::= Γ ` ∆

Axiom and cut:

A ` A Ax
Γ1 ` A,∆1 Γ2, A ` ∆2

Γ1,Γ2 ` ∆1,∆2
Cut

Logical rules:

Positive: Negative:

Γ ` A1,∆

Γ ` A1 ⊕A2,∆
⊕R1

Γ ` A2,∆

Γ ` A1 ⊕A2,∆
⊕R2

Γ, A1 ` ∆ Γ, A2 ` ∆

Γ, A1 ⊕A2 ` ∆
⊕L

Γ, A1 ` ∆

Γ, A1 &A2 ` ∆
&L1

Γ, A1 ` ∆

Γ, A1 &A2 ` ∆
&L2

Γ ` A1,∆ Γ ` A2,∆

Γ ` A1 &A2,∆
&R

no 0R rule Γ, 0 ` ∆
0L no >L rule Γ ` >,∆ >R

Γ1 ` A1,∆1 Γ2 ` A2,∆2

Γ1,Γ2 ` A1 ⊗A2,∆1,∆2
⊗R

Γ, A1, A2 ` ∆

Γ, A1 ⊗A2 ` ∆
⊗L

Γ1, A1 ` ∆1 Γ2, A2 ` ∆2

Γ1,Γ2, A1 `A2 ` ∆1,∆2
`L

Γ ` A1, A2,∆

Γ ` A1 `A2,∆
`R

` 1
1R

Γ ` ∆
Γ, 1 ` ∆

1L ⊥ ` ⊥L
Γ ` ∆

Γ ` ⊥,∆ ⊥R

Figure 18. Girard’s linear logic with two forms of conjunction (⊗,&), disjunction (⊕,`), truth (1,>), and falsehood (0,⊥).

Whereas we have an alternate definition of disjunction called `
(pronounced “par”):

Γ ` A1, A2,∆

Γ ` A1 `A2,∆
`R

Γ1, A1 ` ∆1 Γ2, A2 ` ∆2

Γ1,Γ2, A1 `A2 ` ∆1,∆2
`L

which makes essential use of our interpretation that only one of the
consequences must be true, effectively meaning that a comma to the
right of entailment means “or.” Furthermore, we have a similar split
in the connectives that represent truth or falsehood in the sequent
calculus, giving us two representations of “true” — > and 1 —
and two representations of “false” — 0 and ⊥ — which are the
units (the degenerate nullary versions) of the connectives &, ⊗, ⊕,
and ` respectively. This system of linear logic is summarized in
Figure 18

Example 7. It may be illustrative to show how the different for-
mulations of conjunction and disjunction differ from one another.
As an example, we cannot prove one conjunction from the other,
and vice versa. On the one hand, consider the following attempt to

prove A&B from A⊗B:

A,B ` A A,B ` B
A,B ` A&B

&R

A⊗B ` A&B
⊗L

We cannot conclude this proof because the resources we received
from A⊗B were both duplicated by the &R rule, leaving us with
“left over” assumptions and preventing us from ending the proof.
The fact that we get both A and B as resources is why the left rule
for ⊗ splits assumptions and conclusions, so that we may prove
A⊗B from itself:

A ` A Ax
B ` B Ax

A,B ` A⊗B ⊗R

A⊗B ` A⊗B ⊗L

Note that the order of the left and right rules for⊗matter. If we had
instead applied the right rule first (so that it appears as the bottom
rule of the proof):

A,B ` A
A⊗B ` A ⊗L ` B

A⊗B ` A⊗B ⊗R

23 2014/1/23

then we would be stuck in an unprovable state, since we would have
had to move the entire assumptionA⊗B to one branch of the proof
or the other.

On the other hand, consider the following attempts to prove
A⊗B from A&B:

A ` A Ax

A&B ` A &L1 ` B
A&B ` A⊗B ⊗R

` A B ` B Ax

B ` A⊗B ⊗R

A&B ` A⊗B &L2

Even though the assumption A&B grants us allowance to assume
A and to assume B, we must choose one of the two to use, leaving
the other end dangling. The fact that choosing which assumption
we would like to use eliminates the other option is why the right
rule for & duplicates assumptions and conclusions, so that we may
prove A&B from itself:

A ` A Ax

A&B ` A &L1
B ` B Ax

A&B ` B &L2

A&B ` A&B
&R

Note again that the order of the left and right rules for & matter. If
we had instead applied one of the left rules first (so that we choose
&L1 or &L2 at the bottom of the proof):

A ` A Ax
A ` B

A ` A&B
&R

A&B ` A&B
&L1

then we would be stuck in an unprovable state, since we would have
already committed to use of either assumption A or assumption B
throughout the remainder of the proof. End example 7.

Performing proof search is like an exercise where we are given a
judgment, Γ ` ∆, as a goal, and our task is to either: (1) show that
the judgment is provable by building a completed proof tree starting
with Γ ` ∆ at the bottom and working our way up to the leaves
by successive application of inference rules, or (2) show that the
judgment is unprovable by demonstrating that no such proof tree
can be built. When we search for a proof in this way, it is very easy
to waste a lot of effort by pushing the proof tree into an unprovable
state and then spending a lot of time working on it before realizing
that we are stuck. It is in our best interest to minimize work done on
a futile partial proof during the search procedure, and the choices
we make can have a huge impact on this. For example, suppose we
are trying to prove the judgment Γ ` A⊗B,∆, where Γ and ∆ are
very large collections of very complicated propositions. As a first
move, we might begin by trying the rules:

....
Γ ` A,∆

....
` B

Γ ` A⊗B,∆ ⊗R

and spend a very long time working out a proof of Γ ` A,∆ before
we look at the second branch and realize that we don’t have enough
assumptions to finish a proof of ` B, meaning that all of our effort
was for naught. These kinds of situations are what the concept of
focalization aims to minimize in the practice of proof search.

The main idea behind focalization is a recognition that some
inference rules are “safe” from the perspective of proof search, in
that they will never turn a partially completed proof from provable
to unprovable, whereas other rules are “dangerous”, in that they
have the potential to create a dead end that creates wasted effort.
For example, we already saw that the ⊗R rule is “dangerous,” it

began an unprovable proof out of a potentially provable judgment.
On the other hand, we can consider the⊗L “safe” because this rule
is reversible, meaning that the premise follows from the deduction:

Γ, A⊗B ` ∆

Γ, A,B ` ∆

Therefore, if the deduction of the rule, Γ, A⊗B ` ∆, is a provable
goal, then the premise, Γ, A,B ` ∆, is also a provable goal. The
fact that a rule is reversible means that both sides of the rule are
equally provable, and so it can never cause us any harm to use the
rule during proof search when its available. Any rule that is not
reversible, like ⊗R, is called irreversible. For example, the ⊕R1

rule is irreversible, since provability of Γ ` A1 ⊕ A2,∆ certainly
does not imply provability of Γ ` A1,∆, as we may have needed
to deduce A2 instead.

As it turns out, the connectives⊕,⊗, 0, and 1 all have reversible
left rules and irreversible right rules. On the other hand, their
symmetric counterparts, &, `, >, and ⊥ all have reversible right
rules and irreversible left rules. We can concisely summarize the
reversibility properties of these sets of rules by diving them into
two camps and assigning each one a polarity: positive connectives
(with reversible left rules) and negative connectives (with reversible
right rules). The polarity of the connectives in linear logic is shown
in Figure 18.

Returning to focalization, we can use the polarity of a connec-
tive to guide the building of a proof so that we cut down on the
potential search space and avoid less wasted work on a dead end
conjecture. The general procedure of focalization is to separate the
development of a proof into two distinct, alternating phases:

1. asynchronous: where we apply as many reversible rules as
possible, and their order doesn’t matter (hence the name). In this
phase, we use any available left rules for positive connectives
and right rules for negative ones.

2. synchronous: where we pick a single proposition (the focus) and
break it down as much as possible with irreversible rules. In this
phase, we use right rules for positive connectives and left rules
for negative ones.

Then, the general procedure for proof search is begin with the
asynchronous phase and carry it out for as long as possible before
switching to the synchronous phase, so that this work cannot be un-
done due to backtracking caused by a wrong move in the following
synchronous phase. The point of sticking with a single focus during
the synchronous phase is so that once a dangerous move has made,
we should carry this train of thought through to the end to see if
we’ve made a mistake early as possible.

These principles of focalized proof search can be reflected in the
logic itself, as shown in Figure 19. The basic idea is to syntactically
point out that a particular proposition is in focus by placing it in
a so-called stoup [52], either on the right (Γ ` A; ∆) or on the
left (Γ;A ` ∆), in contrast to the usual sequent judgment where
no particular proposition stands out. The new form of judgments
give a syntactic account of the phases: the synchronous phase (a
sequent with a focus on the left or right) and the asynchronous
phase (an unfocused sequent). With a syntactic notion of focus,
we can restrict the dangerous, irreversible rules so that they can
only be applied to a proposition that is already in focus, whereas
the reversible rules apply to unfocused judgments. Additionally, we
need to add structural rules, FR and FL, that assert that a focused
proof is as good as an unfocused proof (read top down), and which
correspond to picking a proposition to focus on (read bottom up).
We also have the opposite structural rules,BR andBL, that “blur”
a sequent by removing a proposition from focus (read bottom up)
if it has the wrong polarity.

24 2014/1/23

A+, B+, C+ ∈ Proposition+ ::= X+ || A⊕B || A⊗B || 0 || 1
A−, B−, C− ∈ Proposition− ::= X− || A&B || A`B || ⊥ || >

A,B,C ∈ Proposition ::= A+ || A−

Γ ∈ Hypothesis ::= A1, . . . , An

∆ ∈ Consequence ::= A1, . . . , An

Judgment ::= Γ ` ∆ || Γ ` A; ∆ || Γ;A ` ∆

Axiom and cut:

A+ ` A+;
Ax+

;A− ` A− Ax−
Γ1 ` A,∆1 Γ2, A ` ∆2

Γ1,Γ2 ` ∆1,∆2
Cut

Logical rules:

Positive: Negative:

Γ ` A1; ∆

Γ ` A1 ⊕A2; ∆
⊕R1

Γ ` A2; ∆

Γ ` A1 ⊕A2; ∆
⊕R2

Γ, A1 ` ∆ Γ, A2 ` ∆

Γ, A1 ⊕A2 ` ∆
⊕L

Γ;A1 ` ∆

Γ;A1 &A2 ` ∆
&L1

Γ;A1 ` ∆

Γ;A1 &A2 ` ∆
&L2

Γ ` A1,∆ Γ ` A2,∆

Γ ` A1 &A2,∆
&R

no 0R rule Γ, 0 ` ∆
0L no >L rule Γ ` >,∆ >R

Γ1 ` A1; ∆1 Γ2 ` A2; ∆2

Γ1,Γ2 ` A1 ⊗A2; ∆1,∆2
⊗R

Γ, A1, A2 ` ∆

Γ, A1 ⊗A2 ` ∆
⊗L

Γ1;A1 ` ∆1 Γ2;A2 ` ∆2

Γ1,Γ2;A1 `A2 ` ∆1,∆2
`L

Γ ` A1, A2,∆

Γ ` A1 `A2,∆
`R

` 1;
1R

Γ ` ∆
Γ, 1 ` ∆

1L
;⊥ ` ⊥L

Γ ` ∆
Γ ` ⊥,∆ ⊥R

Structural rules:
Γ ` A+; ∆

Γ ` A+,∆
FR

Γ;A− ` ∆

Γ, A− ` ∆
FL

Γ ` A−,∆
Γ ` A−; ∆

BR
Γ, A+ ` ∆

Γ;A+ ` ∆
BL

Figure 19. Focalized sequent calculus with two forms of conjunction (⊗,&), disjunction (⊕,`), truth (1,>), and falsehood (0,⊥).

25 2014/1/23

As it turns out, the concept of polarity in the sequent calculus
corresponds with the choice of Dummett’s two approaches: positive
is to verificationist as negative is to pragmatist. Moreover, the veri-
ficationist and pragmatist notions of canonical proofs correspond to
focusing on the right and left of the sequent, respectively. Focusing
on the right forces us to continue to build a positive conclusion with
right rules beginning from basic atoms of truth: axioms, standing
in for constants or unknown proofs, or from a negative conclusion
that lives in the pragmatist world and cannot be broken down fur-
ther into atomic pieces. Similarly, focusing on the left forces us to
continue to build negative assumptions from basic atoms of false-
hood.

6.2 Positive connectives
Both Zeilberger [116, 117] as well as Curien and Munch-Maccagnoni [24,
87] observed the similarities between polarity and focalization in
proof search and structures in programming languages. For now,
let us restrict our attention to the positive connectives, which cor-
respond to a verificationist style of proof. The verificationist style
structures rules of formation so that the deductions of a proposi-
tion fall within a fixed set of well-known canonical forms, whereas
the uses of a proposition are arbitrary. Therefore, in a program
that corresponds with a verificationist proof, the terms that produce
output also must fall within a fixed set of forms. The co-terms of
that consume input, however, are allowed to be arbitrary. In order
to gain a foot-hold on the unrestricted nature of positive co-terms,
we may describe them by inversion on the possible forms of their
input. That is to say, positive co-terms may be defined by cases on
all possible structures that it may receive as input.

For example, let’s consider how to interpret the rules for ⊕
as verificationist programs of sum types by extending the basic
structural core from Figure 8.6 On the one hand, we have two rules
for building a proof concluding A1 ⊕ A2, so we can distinguish
which of the two rules was chosen for building a term by using
the injection constructors inl and inr, like we did for Wadler’s dual
sequent calculus:

Γ `M : A1|∆
Γ ` inl(M) : A1 ⊕A2|∆

⊕R1

Γ `M : A2|∆
Γ ` inr(M) : A1 ⊕A2|∆

⊕R2

On the other hand, the use of A1 ⊕ A2 is permitted to be open
ended; the only requirement is that it be well-defined with respect
to the constructed forms of the right rules. Therefore, we can build
a co-term by using case analysis on the two constructors for sums,
allowing for them to give arbitrary behavior so long as they give
behavior for both cases:

S1 : (Γ, x1 : A1 ` ∆) S2 : (Γ, x2 : A2 ` ∆)

Γ|case [inl(x1)⇒ S1|inl(x2)⇒ S2] : A1 ⊕A2 ` ∆
⊕L

denoted case by analogy to case statements in functional program-
ming languages. This terminology is not an accident; the above use
of constructors and case analysis for programming with sum types
is analogous to the use of algebraic data types in functional lan-
guages.

Following the verificationist development of sums, we can also
give programs for the other positive connectives. The general pat-
tern for the verificationist approach to the positive connectives is
that the terms are formed by construction, similar to Wadler’s dual
sequent calculus, whereas the co-terms are formed by case analy-
sis on term constructors. The ⊗ connective is interpreted as a pair
data type, corresponding to a special case of tuples from functional
languages. The one rule for concluding A1 ⊗ A2 gives us a single

6 Note that we are now leaving the linear world and returning to classical
logic with the unrestrained management of resources.

constructor for forming pairs:

Γ `M1 : A1|∆ Γ `M2 : A2|∆
Γ ` (M1,M2) : A1 ⊗A2|∆

⊗R

along with a co-term for performing case analysis on pairs:

S(Γ, x1 : A1, x2 : A2 ` ∆)

Γ|case [(x1, x2)⇒ S] : A1 ⊗A2 ` ∆
⊗L

Finally, we can incorporate continuations into the verificationist
paradigm by introducing a constructor for building a negated term
out of a co-term, corresponding to the rule ¬R from Figure 5:

Γ|K : A ` ∆

Γ ` not+(K) : ¬+A|∆ ¬+R

and the corresponding co-term that matches on the constructor:

S : (Γ ` α : A,∆)

Γ|case [not+(α)⇒ S] : ¬+A ` ∆
¬+L

This system for positive types is shown in Figure 20, which extends
Figure 8 and is based on the positive fragment of system L [87].

In order to incorporate focalization into the system, we can
restrict the typing rules for terms in the same way as the focalized
logic in Figure 19. As it turns out, the restricted forms of focalized
proofs correspond exactly to the definitions of values in the call-
by-value setting, as in Figure 13. The focalized variant of positive
system L [24] is shown in Figure 21. Note that the syntax of
programs has been restricted; for example, we can no longer write
the (non-value) term inl(outα⇐S). However, we can write such
a term in expanded form by first giving a name to the non-value
component:

inl(outα⇐S) = outβ ⇐〈outα⇐S||inx⇒〈inl(x)||β〉〉

So the focalized syntax can be seen as a more verbose, but more
explicitly ordered, alternative that introduces more naming for non-
value terms.

The concept of reversibility also gives us an answer to the
fundamental non-determinism of the classical sequent calculus.
When faced with a command like 〈outα⇐S1||inx⇒S2〉, we
can use the type of the command to tell us what the term and the
co-term “really look like.” For example, if the command is between
a term and co-term of type A ⊗ B, then the typing derivation has
the following form:

D....
S1 : (Γ ` α : A⊗B,∆)

Γ ` outα⇐S1 : A⊗B|∆ AR

E....
S2 : (Γ, x : A⊗B ` ∆)

Γ|inx⇒S2 : A⊗B ` ∆
AL

〈outα⇐S1||inx⇒S1〉 : Γ ` ∆
Cut

However, since we know that the left rule for ⊗ is reversible, we
can achieve an equivalent co-term that ends with ⊗L:

D....
S1 : (Γ ` α : A⊗ B,∆)

Γ ` outα⇐S1 : A⊗ B|∆
AR

E′....
S′2 : (Γ, x : A, y : B ` ∆)

Γ|case [(x, y)⇒ S′2] : A⊗ B ` ∆
⊗L

〈outα⇐S1||case [(x, y)⇒ S′2]〉 : Γ ` ∆
Cut

Therefore, by using the reversibility of the typing rules, we discov-
ered that there wasn’t an issue after all, revealing the fact that the
co-term was in a sense “lying” by misrepresenting its intent. On
the other hand, if we have the command 〈V ||inx⇒S〉, where V
is a value (i.e., a focused term) then it is safe to substitute V for x
since it must be a pair (V1, V2) (or a variable standing in for a pair).

26 2014/1/23

A,B,C ∈ Type ::= X || A⊕B || A⊗B || ¬+A

M ∈ Term ::= x || outα⇐S || inl(M) || inr(M) || (M,M) || not+(K)

K ∈ CoTerm ::= α || inx⇒S || case [inl(x)⇒ S|inr(y)⇒ S] || case [(x, y)⇒ S] || case [not+(α)⇒ S]

Logical rules:

Γ `M : A1|∆
Γ ` inl(M) : A1 ⊕A2|∆

⊕R1

Γ `M : A2|∆
Γ ` inr(M) : A1 ⊕A2|∆

⊕R2

S1 : (Γ, x1 : A1 ` ∆) S2 : (Γ, x2 : A2 ` ∆)

Γ|case [inl(x1)⇒ S1|inl(x2)⇒ S2] : A1 ⊕A2 ` ∆
⊕L

Γ `M1 : A1|∆ Γ `M2 : A2|∆
Γ ` (M1,M2) : A1 ⊗A2|∆

⊗R
S(Γ, x1 : A1, x2 : A2 ` ∆)

Γ|case [(x1, x2)⇒ S] : A1 ⊗A2 ` ∆
⊗L

Γ|K : A ` ∆

Γ ` not+(K) : ¬+A|∆ ¬+R
S : (Γ ` α : A,∆)

Γ|case [not+(α)⇒ S] : ¬+A ` ∆
¬+L

Figure 20. Syntax and types for system L (the positive fragment).

A,B,C ∈ Type ::= X || A⊕B || A⊗B || ¬+A

V ∈ V alue ::= x || inl(V) || inr(V) || (V, V) || not+(V)

M ∈ Term ::= V || outα⇐S
K ∈ CoTerm ::= α || inx⇒S || case [inl(x)⇒ S|inr(y)⇒ S] || case [(x, y)⇒ S] || case [not+(α)⇒ S]

S ∈ Command ::= 〈M ||K〉
Γ ∈ Input ::= x1 : A1, . . . , xn : An

∆ ∈ Output ::= α1 : A1, . . . , αn : An

Judgment ::= S : (Γ ` ∆) || Γ ` V : A; ∆ || Γ `M : A|∆ || Γ|K : A ` ∆

Axiom and cut:

Γ, x : A ` x : A; ∆
V ar

Γ|α : A ` α : A,∆
CoV ar

Γ `M : A|∆ Γ|K : A ` ∆

〈M ||K〉 : (Γ ` ∆)
Cut

Logical rules:

Γ ` V : A1; ∆

Γ ` inl(V) : A1 ⊕A2; ∆
⊕R1

Γ ` V : A2; ∆

Γ ` inr(V) : A1 ⊕A2; ∆
⊕R2

S1 : (Γ, x1 : A1 ` ∆) S2 : (Γ, x2 : A2 ` ∆)

Γ|case [inl(x1)⇒ S1|inl(x2)⇒ S2] : A1 ⊕A2 ` ∆
⊕L

Γ ` V1 : A1; ∆ Γ ` V2 : A2; ∆

Γ ` (V1, V2) : A1 ⊗A2; ∆
⊗R

S(Γ, x1 : A1, x2 : A2 ` ∆)

Γ|case [(x1, x2)⇒ S] : A1 ⊗A2 ` ∆
⊗L

Γ|K : A ` ∆

Γ ` not+(K) : ¬+A; ∆
¬+R

S : (Γ ` α : A,∆)

Γ|case [not+(α)⇒ S] : ¬+A ` ∆
¬+L

Structural rules:
S : (Γ ` α : A,∆)

Γ ` outα⇐S : A|∆ AR
S : (Γ, x : A ` ∆)

Γ|inx⇒S : A ` ∆
AL

Γ ` V : A; ∆

Γ ` V : A|∆ FR

Figure 21. Syntax and types for focalized system L (the positive fragment).

27 2014/1/23

(µ) 〈outα⇐S||K〉 → S {K/α}
(µ̃V) 〈V ||inx⇒S〉 → S {V/x}
(β⊕) 〈inl(V)||case [inl(x1)⇒ S1|inr(x2)⇒ S2]〉 → S1 {V/x1}
(β⊕) 〈inr(V)||case [inl(x1)⇒ S1|inr(x2)⇒ S2]〉 → S2 {V/x2}
(β⊗) 〈(V1, V2)||case [(x1, x2)⇒ S]〉 → S {V1, V2/x1, x2}

(β¬
+

) 〈not+(K)||case [not+(α)⇒ S]〉 → S {K/α}

Figure 22. Reduction in focalized system L (the positive fragment).

Therefore polarity of the type of a cut can tell us “who is the liar,”
and restore determinism in an analogous manner as in Section 5.

The β rules for system L follows similar rules as case analysis
in functional languages. For example, we have sum types which
select a branch of the case based on the constructor tag:

〈inl(V)||case [inl(x1)⇒ S1|inr(x2)⇒ S2]〉 → S1 {V/x1}
and pair types which decompose the pair into elements:

〈(V1, V2)||case [(x1, x2)⇒ S]〉 → S {V1, V2/x1, x2}
In Figure 22, we give the rules for reduction of the positive frag-
ment of focalized system L [24]. If we want to evaluate programs
in the unfocalized syntax, we run into similar problems as Wadler’s
dual sequent calculus in Section 5. The solution is the same [87]:
add additional reduction rules, ς , for lifting terms out of construc-
tors, analogous to the ς rules of Wadler’s sequent calculus.

6.3 Negative connectives
In comparison to the positive connectives, the negative connectives
and pragmatist approach to proofs may seem a bit unusual. Instead
of focusing on how we may conclude true facts we instead take
the dual approach and focus our attention on how we may make
use of those facts. In this way, we limit the ways that we may
use an assumed proposition to a fixed set of known canonical
forms, whereas the conclusions of a proposition are arbitrary. The
programs that correspond with pragmatist proofs are likewise dual
to verificationist proofs, so that the relative roles of producers and
consumers are reversed. In a pragmatist program, the terms that
produce output are allowed to be completely arbitrary. Instead, it
is the co-terms that consume input that must fall within a fixed set
of known forms — the legal observations of a type. We may then
define terms by inversion on the possible forms of their consumer,
so that they are given by cases on the observation of their output.

To begin our exploration of negative connectives, consider how
to interpret the rules for & as types for a pragmatist programming
construct. According to the pragmatist programmer, the most fun-
damental thing a type tells us is how we may use information of
that type. Building on the structural core from Figure 8, the two
rule for building a proof assuming A1 & A2 gives us two ways to
construct a consumer for processing information of type A1 & A2

in terms of the two fixed projections fst and snd like we did for
Wadler’s dual sequent calculus:

Γ|K : A1 ` ∆

Γ| fst[K] : A1 &A2 ` ∆
&L1

Γ|K : A2 ` ∆

Γ| snd[K] : A1 &A2 ` ∆
&L2

For example, if we have a co-term K1 that accepts something
of type A1, then fst[K1] accepts something of type A1 & A2

by requesting the first component and forwarding it along to K1.
Likewise, if K2 accepts type A2, then snd[K2] accepts A1 & A2

by requesting the second component and forwarding it to K2.
By the pragmatist approach, the production of A1 & A2 is

allowed to be open ended; the only requirement is that it be well-

defined with respect to the constructed forms of the left rules. How
then are we to define what a term of type A1 & A2 looks like?
Rather than try to be clever, we will utilize the symmetry of the
sequent calculus and make terms of type A1 & A2 analogous to
co-terms of type A1 ⊕ A2. More specifically, dual to the fact that
co-terms of a positive type are defined by case analysis on the terms
of that type, terms of a negative type are defined by case analysis on
the co-terms of that type. This means that terms of the typeA1&A2

give rise to a dual form of case analysis than is found in functional
programming languages:

S1 : (Γ ` α1 : A1,∆) S2 : (Γ ` α2 : A2,∆)

Γ ` case (fst[α1]⇐ S1|snd[α2]⇐ S2) : A1 &A2|∆
&R

Intuitively, a term of type A1 & A2 is an abstract form of product
that says what to do when it is asked for the first component
and when it is asked for the second component, running some
arbitrary behavior that (may) respond to the underlying co-term
expecting a result of type A1 or A2. In other words, a term of
type A1 & A2 considers all the cases for the possible observations
that may be made upon it, and defines some specific behavior for
each observation. The pragmatist style of programming resembles
a form of message passing, where the observations fit into a fixed
set of molds (the possible messages), and the producers decide on
what to do based on the observation.

Let us now extend the pragmatist approach to products (A1 &
A2) to also give programs that correspond to the other negative
connectives. The general pattern for the pragmatist approach to the
negative connectives is that the co-terms are formed by construc-
tion, similar to Wadler’s dual sequent calculus, whereas the terms
are formed by case analysis on co-term constructors. The ` con-
nective is interpreted as an abstract form of disjunction. The one
rule for assuming A1 ` A2, `L, gives us a single constructor for
forming a message containing two branches, one for accepting A1

and one for A2:

Γ|K1 : A1 ` ∆ Γ|K2 : A2 ` ∆

Γ|[K1,K2] : A1 `A2 ` ∆
`L

along with a term for responding to the message:

S : (Γ ` α1 : A1, α2 : A2,∆)

Γ ` case ([α1, α2]⇐ S) : A1 `A2|∆
`R

Intuitively, we may think of [K1,K2] as a concrete counter-
part to the abstract form of case analysis given for A1 ⊕ A2,
both sub-co-terms are two messages given to the term of type
A1 ` A2 that serve as two branches that the term may take.
For example, a term of type Int` Int may send an integer to the
left branch, like case ([α, β]⇐ 〈1||α〉), or to the right branch,
like case ([α, β]⇐ 〈2||β〉), which serve similar roles as the con-
structed terms inl(1) and inr(2). Finally, the pragmatist paradigm
gives a different formulation of continuations with a single co-term

28 2014/1/23

A,B,C ∈ Type ::= X || A&B || A`B || ⊥ || > || ¬−B
M ∈ Term ::= x || outα⇐S || case (fst[α1]⇐ S1|snd[α2]⇐ S2) || case ([α1, α2]⇐ S) || case (not−[x]⇐ S)

E ∈ CoV alue ::= α || fst[E] || snd[E] || [E,E] || not−[M]

K ∈ CoTerm ::= E || inx⇒S
S ∈ Command ::= 〈M ||K〉

Γ ∈ Input ::= x1 : A1, . . . , xn : An

∆ ∈ Output ::= α1 : A1, . . . , αn : An

Judgment ::= S : (Γ ` ∆) || Γ `M : A|∆ || Γ;E : A ` ∆ || Γ|K : A ` ∆

Axiom and cut:

Γ, x : A ` x : A|∆ V ar
Γ;α : A ` α : A,∆

CoV ar
Γ `M : A|∆ Γ|K : A ` ∆

〈M ||K〉 : (Γ ` ∆)
Cut

Logical rules:

Γ;E : A1 ` ∆

Γ; fst[E] : A1 &A2 ` ∆
&L1

Γ;E : A2 ` ∆

Γ; snd[E] : A1 &A2 ` ∆
&L2

S1 : (Γ ` α1 : A1,∆) S2 : (Γ ` α2 : A2,∆)

Γ ` case (fst[α1]⇐ S1|snd[α2]⇐ S2) : A1 &A2|∆
&R

Γ;E1 : A1 ` ∆ Γ;E2 : A2 ` ∆

Γ; [E1, E2] : A1 `A2 ` ∆
`L S : (Γ ` α1 : A1, α2 : A2,∆)

Γ ` case ([α1, α2]⇐ S) : A1 `A2|∆
`R

Γ `M : A|∆
Γ; not−[M] : ¬−A ` ∆

¬−L
S : (Γ, x : A ` ∆)

Γ ` case (not−[x]⇐ S) : ¬−A|∆ ¬−R

Structural rules:
S : (Γ ` α : A,∆)

Γ ` outα⇐S : A|∆ AR
S : (Γ, x : A ` ∆)

Γ|inx⇒S : A ` ∆
AL

Γ;E : A ` ∆

Γ|E : A ` ∆
FL

Figure 23. Syntax and types for focalized system L (the negative fragment).

constructor corresponding to the rule ¬L from Figure 5:

Γ `M : A|∆
Γ| not−[M] : ¬−A ` ∆

¬−L

along with a term that matches on the constructor of the message:

S : (Γ, x : A ` ∆)

Γ ` case (not−[x]⇐ S) : ¬−A|∆ ¬−R

Intuitively, the verificationist approach defines continuations by
how they are produced (a continuation is built from a co-term,
corresponding to the reification of an evaluation context), whereas
the pragmatist approach defines continuations by how they operate
(a continuation is used by throwing a value to it, corresponding to
the throw operation of SML/NJ).
Remark 7. It is worthwhile to pause and ask why the pragmatist
representation of logical connectives may appear to be backwards.
For example, ` is a logical “or” whose interpretation appears to be
an “and” combination of two things, whereas & is a logical “and”
that whose interpretation appears to be an “or” choice of two alter-
natives. The reason is that the pragmatist approach requires us to
completely reverse the way we think about proving. With the veri-
ficationist approach, the focus is on the way that we may establish
truth: to show that “A and B” is true, we need to show that both
A and B are true; to show that “A or B” is true, we it suffices
to show that either A is true or B is true. Instead, the pragma-

tist approach asks us to focus on the ways that we may establish
falsehood: to show that “A and B” is false, it suffices to show that
either A is false or B is false; to show that “A or B” is false we
need to show that both A and B are false. Whereas the verifica-
tionist is primarily concerned with building a proof, the pragma-
tist is instead concerned with building a refutation. Therefore, the
pragmatist interpretation of negative connectives intuitively has a
negation baked in: “and” is represented by a choice and “or” is rep-
resented by a pair because they are about refutations rather than
proofs. End remark 7.

As with the verificationist approach to positive connectives, we
can incorporate focalization into the pragmatist approach to nega-
tive connectives as well. The focalized variant of negative system
L [24] is shown in Figure 23. Dually to the fact that focalized proofs
of the positive fragment give rise to a definition of values, the fo-
calized proofs of the negative fragment give rise to a definition of
co-values in the call-by-name setting, exactly the same as in Fig-
ure 14. Again, focalization restricts the syntax of programs, so that
we can no longer write the (non-co-value) co-term fst[inx⇒S].
Just like the terms in the positive fragment can be expanded into
focalized form, the co-terms in the negative fragment can be ex-
panded as well by giving a name to the non-co-value component:

fst[inx⇒S] = in y ⇒〈inα⇒〈y||fst[α]〉||inx⇒S〉

29 2014/1/23

(µE) 〈outα⇐S||E〉 → S {E/α}
(µ̃) 〈M ||inx⇒S〉 → {M/x}

(β&) 〈case (fst[α1]⇐ S1|snd[α2]⇐ S2)||fst[E]〉 → S1 {E/α1}

(β&) 〈case (fst[α1]⇐ S1|snd[α2]⇐ S2)||snd[E]〉 → S2 {E/α2}

(β`) 〈case ([α1, α2]⇐ S)||[E1, E2]〉 → S {E1, E2/α1, α2}

(β¬
−

) 〈case (not−[x]⇐ S)||not−[M]〉 → S {M/x}

Figure 24. Reduction in system L (the negative fragment).

So the focalized syntax for pragmatist programs is a more verbose
way of explicitly ordering computation by introducing more nam-
ing for non-co-value co-terms.

The type-based answer to the fundamental non-determinism of
the classical sequent calculus also extends to the negative connec-
tives. This approach still relies on the reversibility of inference
rules, except that because negative connectives are reversible in op-
posite ways to positive connectives, we get the opposite resolution
to the dilemma. Suppose again that we are faced with the com-
mand 〈outα⇐S1||inx⇒S2〉 with a similar typing derivation as
before, except that now x and α have the type A ` B. We know
that the right rule for ` is reversible, so we can turn the typing
derivation into the more explicit:

D′....
S′1 : (Γ ` α : A, β : B,∆)

Γ ` case ([α, β]⇐ S′1) : A` B|∆
`R

E....
S2 : (Γ, x : A` B ` ∆)

Γ|in x⇒S2 : A` B ` ∆
AL

〈case ([α, β]⇐ S′1)||in x⇒S2〉 : (Γ ` ∆)
Cut

giving us the more explicit command 〈case ([α, β]⇐ S′1)||inx⇒S2〉
that now spells out exactly which side should be prioritized. There-
fore, for negative types, asking “who is the liar” gives the oppo-
site answer, restoring determinism to the system by favoring the
co-term over the term.

The β rules for the negative fragment of system L follow the
same notion of case analysis as the positive fragment, except in
the reverse direction. For example, terms of product types select a
response based on the constructor tag of their observation:

〈case (fst[α]⇐ S1|snd[β]⇐ S2)||fst[E]〉 → S1 {E/α}
and terms of sum types decompose their observation into the two
independent branches:

〈case ([α, β]⇐ S)||[E1, E2]〉 → S {E1, E2/α, β}
In Figure 24, we give the rules for reduction of the negative frag-
ment of focalized system L [24]. The role between Wadler’s ς rules
in the call-by-name sequent calculus and evaluation of the unfocal-
ized syntax is the same for the negative fragment of system L [87].

6.4 Synthetic connectives and deep patterns
Recall that the focalization procedure for proof search described
in Section 6.1 was made up of two phases: asynchronous and syn-
chronous. The type focalized type systems given in Figures 21 and
23 are concerned with enforcing the synchronous phase: when we
apply an irreversible rule to a type, the stoup prevents us from
switching to work on a completely different type (by activating
some free variable with the AR or AL rules). However, these
type systems to not attempt to enforce the completion of the syn-
chronous and asynchronous phases. We may end a focused deriva-
tion in the synchronous phase using the V ar and CoV ar rules
whenever we like, even if we could continue to break apart the

type in focus. We may switch from the asynchronous to the to the
synchronous phase and begin using irreversible rules whenever we
like, even if some reversible rules could still apply. Instead, Zeil-
berger’s [116, 117] polarized logic enforces completion of the syn-
chronous and asynchronous phases, leading to a notion of synthetic
connectives which correspond to a mandatory form of deep pattern
matching, similar to pattern matching found in functional program-
ming languages.

We will begin to examine the consequences of forcing comple-
tion of the two phases to completion by considering only the posi-
tive fragment of the polarized logic. The first observation to make
is that the judgments that mark the end of an asynchronous phase
always follow a certain form. On the one hand, if we have the judg-
ment Γ, A ⊗ B ` ∆, then it cannot be at the end of the asyn-
chronous phase because we can apply the reversible left ⊗ rule to
break the A⊗B on the left down further into Γ, A,B ` ∆. On the
other hand, if we have the judgment Γ ` A⊗B,∆, then we cannot
do anything with the A⊗B in the right since the right ⊗ rule is ir-
reversible, thus forcing us to focus on it and enter the synchronous
phase. Therefore, a positive judgment at the end of an asynchronous
phase will always have the form X1, . . . , Xn ` A1, . . . , Am: the
A1, . . . , Am to the right of the sequent are positive propositions
that do not have reversible rules to apply, and the X1, . . . , Xn are
positive proposition variables that we cannot do anything with since
they are an unknown. This form of judgment is stable since no re-
versible rules can apply to it, and thus it marks the end of an asyn-
chronous phase. A stable judgment corresponds to only allowing
variables of unknown positive types, while letting co-variables be
of any positive type.

The second observation to make is that a proposition composed
out of positive connectives can be fused together into a single syn-
thetic connective by describing the patterns of its proofs. For ex-
ample, suppose we would like to prove the positive proposition
X⊗(Y ⊕¬+A) using the rules from Figure 19. There are two pro-
totypical, focused derivations of this proposition. The first deriva-
tion attempts to prove both X and Y using the irreversible⊗R and
⊕R1 rules:

X ` X; Ax
+

Y ` Y ; Ax
+

Y ` Y ⊕ ¬+A;
⊕R1

X,Y ` X ⊗ (Y ⊕ ¬+A);
⊗R

We may complete this prove by taking X and Y as hypotheses.
The second derivation attempts to prove both X and ¬+A using

30 2014/1/23

the irreversible ⊗R, ⊕R2, and ¬+A rules:

X ` X; Ax
+

E....
Γ, A ` ∆

Γ ` ¬+A; ∆
¬+R

Γ ` Y ⊕ ¬+A; ∆
⊕R2

X,Γ ` X ⊗ (Y ⊕ ¬+A); ∆
⊗R

Besides assumingX , we need the additional hypotheses Γ and con-
sequences ∆. Since the premise of the ¬+A rule puts the positive
sub-proposition A into our assumptions, and we are not able to
focus on an assumed positive proposition, the synchronous phase
ends and we have some arbitrary proof E of the unfocused judg-
ment Γ, A ` ∆. Every single focalized proof of X ⊗ (Y ⊕ ¬+A)
must follow the shape of one of these two forms. In effect, we can
treat this particular combination of the⊗,⊕ and ¬+ connectives as
a single synthesized connective defined by the following two right
rules:

X,Y ` X ⊗ (Y ⊕ ¬+A);
⊗ (⊕ ¬+)R1

Γ, A ` ∆

Γ, X ` X ⊗ (Y ⊕ ¬+A); ∆
⊗ (⊕ ¬+)R2

This observation may be formalized in terms of a language as pat-
terns that expose named placeholders (i.e., variables) deep within
some structure, similar to patterns for data structures in functional
programming languages. The first derivation of the synthetic rule
⊗ (⊕ ¬+)R1 is summarized by the pattern (x, inl(y)) which

contains the placeholders x : X and y : Y that stand in for the
unknown assumptions:7

x : X ⇒ (x : X `)

y : Y ⇒ (y : Y `)

inl(y) : Y ⊕ ¬+A⇒ (y : Y `)

(x, inl(y)) : X ⊗ (Y ⊕ ¬+A)⇒ (x : X, y : Y `)

The second derivation of the synthetic rule ⊗ (⊕ ¬+)R2 is
summarized by the pattern (x, inr(not+(α))) which contains the
placeholders x : X and α : A, where α stands in for the unknown,
unfocalized proof E for using A:

x : X ⇒ (x : X `)

not+(α) : ¬+A⇒ (` α : A)

inr(not+(α)) : Y ⊕ ¬+A⇒ (` α : A)

(x, inr(not+(α))) : X ⊗ (Y ⊕ ¬+A)⇒ (x : X ` α : A)

By forcing completion the complete elaboration of the structure
of the connectives, we effectively turn X ⊗ (Y ⊕ ¬+A) into a
single structure in its own right with the two irreversible right rules
following the above proofs — at the end of the focalized derivation
of the X ⊗ (Y ⊕¬+A) patterns, we have completely atomized the
structure into its constituent parts. The rules for forming patterns
show us how to build these synthesized rules out of more basic
principles for each combination of connectives.

The third observation to make is that a complete, synchronous
phase of a focalized proof may be summarized by filling the place-
holders left in a proof pattern. In the case of positive connectives,
the synchronous phase for A has the form Γ ` A; ∆ which gives
us a notion of the direct proofs of A (recall that the judgment ` A
is interpreted as “with no assumptions A is true”). For example,
suppose we have the value (9, inl(9)) of type Int⊗(Int⊕¬+ Int),

7 The notation for pattern judgments is borrowed from case analysis on
positive types from Section 6.2.

which is a pair of two integers.8 Then this value may be seen as
filling the pattern (x, inl(y)) so that both x and y are given the
value 9. In other words the value (9, inl(9)) lies in the image of
a substitution over the proof pattern described by the synthetic
⊗ (⊕ ¬+)R1 rule, (x, inl(y)) {9/x} {9/y}. Other values of

this same shape can be expressed as different substitutions over
the same pattern. For example, the value (9, inl(5)) is the same as
(x, inl(y)) {9/x} {5/y}. The type Int⊗(Int⊕¬+ Int) also allows
for values of a different shape that made up of an integer and a
co-term that accepts an integer like (3, inr(E)). This value is equiv-
alent to a substitution for the other pattern (x, inr(α)) equivalent
to the ⊗ (⊕ ¬+)R2 rule: the value (3, inr(E)) is the same
as (x, inr(α)) {9/x} {E/α}. Observe that completion of the syn-
chronous phase is enforced by the placeholders in a pattern must
stand in for either a value of an unknown positive type X that has
an unknown structure, or a co-value of a positive type that would
not be in focus. Therefore, an entire synchronous phase of a verifi-
cationist proof of a positive proposition corresponds to a notion of
value that fills in the details missing in a pattern of the type.

The fourth observation to make is that completely breaking
down a single proposition in an asynchronous phase may be sum-
marized by inversion on the possible proof patterns. In the case of
the positive connectives, the asynchronous phase forA has the form
Γ, A ` ∆ which gives us a notion of indirect refutations of A (re-
call that the judgment A ` is interpreted as “if A is true then false
is true,” or in other words “assuming A leads to a contradiction”).
The general way to refute a positive proposition A is to suppose all
the ways it could have been true (that is, all the proof patterns for
direct proofs), and show that each possibility leads to a contradic-
tion. In terms of programming in the sequent calculus, this method
of refutation corresponds to matching on the patterns of A values,
and giving a command for each pattern. Since we do not care about
the order in which we match on the structure of values, the pattern
match is deep, drilling down to the leaves of a structure in a single
step. For example, refuting the propositionX⊗ (Y ⊕¬+A) corre-
sponds to giving a co-value that pattern matches on values of type
X ⊗ (Y ⊕ ¬+A):

S1 : (Γ, x : X, y : Y ` ∆) S2 : (Γ, x : X ` α : A,∆)

Γ|case [(x, inl(y))⇒ S1|(x, inr(not+(α)))⇒ S2] : X ⊗ (Y ⊕ ¬+A) ` ∆

In this rule, we consider all the possible derivable patterns for the
type X ⊗ (Y ⊕ ¬+A), which turns out to be only the previously
discussed patterns (x, inl(y)) and (x, inr(not+(α))). In order to
derive a contradiction in each case, the underlying commands may
reference placeholders in the patterns as well anything else in Γ
and ∆. Observe that by inverting on the deep patterns, we have
in effect applied all the possible reversible rules for X ⊗ (Y ⊕
¬+A). Therefore, the entire asynchronous phase for a verificationst
refutation of a positive proposition corresponds to a notion of
co-value that matches on the patterns of the type.

All together, the above observations form the basis of Zeil-
berger’s CU calculus [116] (also known as L [117]). The syntax
and types of the positive fragment of CU are given in Figure 26.
Patterns take on a primary role in defining this language: values
are written as an explicit syntax for substitution applied to a pat-
tern, and co-values are written by encapsulating a map from pat-
terns to commands. On the one hand, the rules for patterns describe
the particular structural details for each individual positive connec-
tive.9 On the other hand, the rules for values and co-values are de-

8 For this example, the type Int is treated as neither a positive nor negative
proposition, but instead some unknown atomic proposition of the same
status as a proposition variable X .
9 Notice that the typing rules for patterns use input and output environments
as linear resources, similar to linear logic. This is because the (co-)variables

31 2014/1/23

A,B,C ∈ Type ::= X || A⊕B || A⊗B || ¬+A || . . .
p ∈ Pattern ::= x || inl(p) || inr(p) || (p, p) || not+(α) || . . .

σ ∈ Substitution ::= {E1/α1} . . . {y1/x1} . . .
V ∈ V alue ::= pσ

φ ∈Map ::= [p⇒ S| . . .]
E ∈ CoV alue ::= case [φ]

S ∈ Command ::= 〈V ||α〉 || 〈V ||E〉
Γ ∈ Input ::= x1 : X1, . . . , xn : Xn

∆ ∈ Output ::= α1 : A1, . . . , αn : An

Judgment ::= p : A⇒ (Γ ` ∆) patterns

|| (Γ′ ` ∆′)σ : (Γ ` ∆) substitutions

|| Γ ` V : A; ∆ direct values

|| Γ|E : A ` ∆ indirect co-values

|| S : (Γ ` ∆) commands

Pattern rules:

x : X ⇒ (x : X `)

p : A1 ⇒ (Γ ` ∆)

inl(p) : A1 ⊕A2 ⇒ (Γ ` ∆)

p : A2 ⇒ (Γ ` ∆)

inr(p) : A1 ⊕A2 ⇒ (Γ ` ∆)

p1 : A1 ⇒ (Γ1 ` ∆1) p2 : A2 ⇒ (Γ2 ` ∆2)

(p1, p2) : A1 ⊗A2 ⇒ (Γ1,Γ2 ` ∆1,∆2)

not+(α) : ¬+A⇒ (` α : A)

. . .

Substitution rules:

(`)ε : (Γ ` ∆)

(Γ′ ` ∆′)σ : (Γ, x : X ` ∆)

(Γ′, x′ : X ` ∆′)σ {x/x′} : (Γ, x : X ` ∆)

Γ|E : A ` ∆ (Γ′ ` ∆′)σ : (Γ ` ∆)

(Γ′ ` α : A,∆′)σ {E/α} : (Γ ` ∆)

Value and co-value rules:
p : A⇒ (Γ′ ` ∆′) (Γ′ ⇒ ∆′)σ : (Γ ` ∆)

Γ ` pσ : A; ∆

∀(p : A⇒ (Γ′ ` ∆′)).φ(p) : (Γ,Γ′ ` ∆,∆′)

Γ|case [φ] : A ` ∆

Cut rules:
Γ ` V : A;α : A,∆

〈V ||α〉 : (Γ ` α : A,∆)

Γ ` V : A; ∆ Γ|E : A ` ∆

〈V ||E〉 : (Γ ` ∆)

Figure 25. Syntax and types of CU (the positive fragment).

fined once and for all, relying on patterns to describe the peculiari-
ties of the particular type in question. A value is formed by filling
in the holes of a pattern, and a co-value is formed by quantifying
over all possible patterns of a type. The positive fragment of CU
has judgments for forming patterns, substitutions, direct values, in-
direct co-values, and commands. The negative fragment of CU,
given in Figure 25, is the mirror image of the positive fragment,
similar to the symmetry between the positive and negative frag-
ments of system L, and forms direct co-values out of co-patterns
and indirect values by matching over co-patterns.
Remark 8. The mappings from patterns to commands can be
thought of as a finite set of pattern-command pairs, generalizing
the form of case analysis from Figure 20. However, in the original
presentation, the syntax is generalized even further so that maps

in patterns represent a unique place in a structure, and should not be
referenced more than once in the same pattern.

so maps are considered as functions from the meta-theory, giv-
ing a higher-order syntax [115]. This technique allows us to use a
broader form of pattern matching than is typically used in program-
ming languages. For instance, we may define the natural numbers
by an infinite set of patterns:

0 : Int⇒ (`) 1 : Int⇒ (`) 2 : Int⇒ (`) . . .

Then, a co-value of type Int would be given by an infinite set
of cases case [0⇒ S0|1⇒ S1|2⇒ S2| . . .] given by a mapping
between the natural numbers and commands. This technique ef-
fectively pushes the burden of defining well-founded relations
over the natural numbers (perhaps by induction) to the meta-
theory, instead of defining the meaning inside of the language
itself. End remark 8.

We can also give reduction rules for pattern matching in CU, as
shown in Figure 27. Because the positive and negative forms of val-

32 2014/1/23

A,B,C ∈ Type ::= X || A&B || A`B || ¬−A || . . .
q ∈ CoPattern ::= α || fst[q] || snd[q] || [q, q] || not−[x] || . . .

σ ∈ Substitution ::=
{
V ′1/x1

}
. . . {β1/α1} . . .

E ∈ CoV alue ::= qσ

ψ ∈ CoMap ::= (q ⇐ S| . . .)
V ∈ V alue ::= case (ψ)

S ∈ Command ::= 〈x||E〉 || 〈V ||E〉
Γ ∈ Input ::= x1 : A1, . . . , xn : An

∆ ∈ Output ::= α1 : X1, . . . , αn : Xn

Judgment ::= q : A⇐ (Γ ` ∆) co-patterns

|| (Γ′ ` ∆′)σ : (Γ ` ∆) substitutions

|| Γ;E : A ` ∆ direct co-values

|| Γ ` V : A|∆ indirect values

|| S : (Γ ` ∆) commands

Co-pattern rules:

α : X ⇐ (` α : X)

q : A1 ⇐ (Γ ` ∆)

fst[q] : A1 &A2 ⇐ (Γ ` ∆)

q : A2 ⇐ (Γ ` ∆)

snd[q] : A1 &A2 ⇐ (Γ ` ∆)

q1 : A1 ⇐ (Γ1 ` ∆1) q2 : A2 ⇐ (Γ2 ` ∆2)

[q1, q2] : A1 `A2 ⇐ (Γ1,Γ2 ` ∆1,∆2)

not−[x] : ¬−A⇐ (x : A `)

. . .

Substitution rules:

(`)ε : (Γ ` ∆)

(Γ′ ⇒ ∆′)σ : (Γ ` α : X,∆)

(Γ′ ⇒ α′ : X,∆′)σ {α/α′} : (Γ ` α : X,∆)

Γ ` V : A|∆ (Γ′ ⇒ ∆′)σ : (Γ ` ∆)

(Γ′, x : A⇒ ∆′)σ {V/x} : (Γ ` ∆)

Value and co-value rules:
q : A⇐ (Γ′ ` ∆′) (Γ′ ` ∆′)σ : (Γ ` ∆)

Γ; qσ : A ` ∆

∀q : (A⇐ (Γ′ ` ∆′)).ψ(q) : (Γ,Γ′ ` ∆,∆′)

Γ|case (ψ) : A ` ∆

Cut rules:
Γ, x : A;E : A ` ∆

〈x||E〉 : (Γ, x : A ` ∆)

Γ ` V : A|∆ Γ;E : A ` ∆

〈V ||E〉 : (Γ ` ∆)

Figure 26. Syntax and types of CU (the negative fragment).

(β+) 〈pσ||case [φ]〉 → (φ(p))σ

(β−) 〈case (ψ)||qσ〉 → (ψ(q))σ

Figure 27. Reduction in CU.

33 2014/1/23

ues and co-values are given once and for all, we only have two rules
to consider: the positive rule for pattern matching on direct val-
ues and the negative rule for pattern matching on direct co-values.
These reductions may be understood by analogy to the reductions
of system L. For instance, suppose we have the reduction:

〈inl(9)||case [inl(x)⇒ S1|inr(y)⇒ S2]〉 → S1 {9/x}

Recall that the value inl(9) may be seen as substituting 9 for x in the
pattern inl(x). Therefore, the above reduction may also be written
as:

〈inl(x) {9/x}||case [inl(x)⇒ S1|inr(y)⇒ S2]〉 → S1 {9/x}
Unpacking the steps of this rule, we see that we match the pattern
inl(x) in order to look up the correct command described by the
case abstraction. Next, we select the correct command, and then
perform the same substitution over the command as we used to
obtain our original value inl(9). This process is generalized for
deep patterns in CU. The rule

〈pσ||case [φ]〉 → (φ(p))σ

is implemented by (1) looking up the correct command described
by the case analysis (written φ(p)), and (2) actually performing
the substitution to fill in the specifics of the value in the resulting
command (written Sσ).
Remark 9. Note that, oddly enough, stable judgments are not sta-
ble under substitution of positive types for type variables X . For
instance, if we have the stable judgment Γ, X ` ∆, and we find
out that X actually stands in for X1 ⊗ X2. By substitution, we
get the judgment Γ, X1 ⊗ X2 ` ∆, which is no longer stable
since we can apply an additional reversible ⊗L rule before end-
ing the asynchronous phase. In order to regain stability under sub-
stitution, we would need to relax our mandate and allow for more
complex hypothesis [117] like X1 ⊗ X2, therefore permitting the
asynchronous phase to be ended early. This relaxing of the restric-
tion corresponds to complex variables that choose to give a name to
a value of positive type without decomposing its structure, ending
pattern matching early. Allowing for complex variables gives us a
calculus that is more like system L extended with a notion of deep
(but not mandatory) pattern matching, except without general out-
put abstractions for positive types and without input abstractions
for negative types. End remark 9.

6.5 Combining polarities
Now that we have both the positive and negative fragments of
logic and programming, how do we combine them into a single,
unified languages? One of the simplest things we could do is to
just take the disjoint union of the two. That way, some type A is
either a type from the positive fragment, A+, or from the negative
fragment,A−, and similarly for terms and co-terms. However, such
a system would be unusually restrictive compared to functional
programming languages. In a functional language, it is typical to
store a function (which is a negative term) inside of a data structure
(which is a positive term). However, this would not be allowed by
a simple disjoint union between the two fragments: a positive term
like a data structure is positive all the way down. Instead, we would
like to allow for some mingling between positive and negative types
and positive and negative (co-)terms.

In order to be explicit about the presence of negative terms in
positive structures, and vice versa, by using Girard’s [54] “shift”
connectives to identify a switch between the positive and negative
polarities. Therefore, in addition to putting together the positive
and negative fragments of system L side-by-side, we also extend
them so they may reference each other. On the one hand, in the
positive fragment, we add the additional type ´A−, so that for every
negative type A− we have the positive type ´A−. Going along

with our story that positive values are structures, we likewise add
the structured term ´(M−) of type ´A− that contains a negative
term along with a co-term, case [´(x)⇒ S], for unpacking the
structure and pulling out the underlying term. On the other hand, in
the negative fragment, we add the additional type ˆA+, so that for
every positive type A+ we have the negative type ˆA+. In order
to remain symmetric, we add the abstract term case (ˆ[α]⇐ S)
which is waiting for a structured message ˆ[K+] of type ˆA+

containing a positive co-term. The syntax and types for shifts in
focalized system L is given in Figure 28.

Additionally, we can explain how to evaluate a program contain-
ing shifts by extending the reduction rules of system L to include
β rules for the new types. The β rules for the shift connectives fol-
low the same general pattern as all the others: use case analysis to
examine the structure of (co-)values and substitute the underlying
values for variables in the pattern. The rule for case analysis on a
shift from negative to positive is

〈´(M−)||case [´(x)⇒ S]〉 → S
{
M−/x

}
and the rule for case analysis on a shift from positive to negative is

〈case (ˆ[α]⇐ S)||ˆ[K+]〉 → S
{
K+/α

}
Notice two things about these rules: (1) they resemble the call-
by-name µ̃ rule and the call-by-value µ rule, except wrapped up
in a case analysis that unpacks a singleton structure, and (2) they
imply that a negative term is a value in the sense of call-by-value,
and a positive co-term is a co-value in the sense of call-by-name.
Therefore, another way of interpreting the shift connectives in the
polarized setting is that they allow for embedding a call-by-name
term in a call-by-value structure and embedding a call-by-value
co-term in a call-by-name co-structure.

We can also extend the pattern calculus CU with shift con-
nectives in a similar fashion. Since neither the values, co-values,
nor the reduction rules mention any connective in particular, all we
need to do is extend the patterns and co-patterns to include the ap-
propriate structures, as shown in Figure 29. On the one hand, the
pattern for the positive shift outlines a structure containing a nega-
tive component called x:

´(x) : ´A− ⇒ (x : A− `)

On the other hand, the pattern for the negative shift outlines a
co-structure containing a positive component called α:

ˆ[α] : ˆA+ ⇐ (` α : A+)

By adding these two patterns for shifts, the rest of the rules in CU
for forming values, co-values, and commands are automatically
extended to accommodate the new types.
Remark 10. Now that we can talk about both polarities in the same
setting, we are able to consider other connectives, besides the shifts,
that mix polarities. For example, let’s consider functions in a po-
larized and focalized language. There are different interpretations
of functions according to different evaluation strategies — call-by-
name, call-by-value, and call-by-need. However, because we are
using types to determine evaluation order, each of these different in-
terpretations gives rise to a different function type. In order to cut to
the heart of the meaning of functions in polarized logic, we should
look for the “ideal” function type, the most “primordial” [117] one
from which all the others can be derived.

Recall that the function type is negative, since its right rule is
reversible, and so programs of the function type are defined by the
pragmatist in terms of the structure of a function call (the co-term of
function type). Additionally, Section 6.4 showed that trying to carry
out a proof search phase for as long as possible encouraged us to
pattern match as deeply as we could into a structure. Therefore, it is

34 2014/1/23

A+ ∈ Type+ ::= . . . || ´A−
V + ∈ V alue+ ::= . . . || ´(M−)

E+ ∈ CoV alue+ ::= . . . || case [´(x)⇒ S]

A− ∈ Type− ::= . . . || ˆA+

V − ∈ V alue− ::= . . . || case (ˆ[α]⇐ S)

E− ∈ CoV alue− ::= . . . || ˆ[K+]

Γ `M : A−|∆
Γ ` ´(M−) : ´A−; ∆

´R
S : (Γ, x : A− ` ∆)

Γ|case [´(x)⇒ S] : ´A− ` ∆
´L

Γ|K+ : A+ ` ∆

Γ; ˆ[K+] : ˆA+ ` ∆
ˆL

S : (Γ ` α : A+,∆)

Γ ` case (ˆ[α]⇐ S) : ˆA+|∆
ˆR

(β´) 〈´(M−)||case [´(x)⇒ S]〉 → S
{
M−/x

}
(βˆ) 〈case (ˆ[α]⇐ S)||ˆ[K+]〉 → S

{
K+/α

}
Figure 28. Explicit polarity shifts in focalized system L.

´(x) : ´A− ⇒ (x : A− `) ˆ[α] : ˆA+ ⇐ (` α : A+)

Figure 29. Polarity shifts in patterns and co-patterns.

in our best interest to define the function type so that it allows us to
peer deeply into the structure of a function call. This corresponds to
keeping the sub-components of a function call in focus. That leads
us to the following left rule for functions:

Γ ` V : A+; ∆ Γ;E : B− ` ∆

Γ;V · E : A+ → B− ` ∆
→ L

Given a function call, V ·E, to maintain focus on the argument V it
must have a positive type and to maintain focus on E it must have
a negative type, based on our judgments for focusing in logic. The
terms of function type may be given in exactly the same manner as
all the other negative connectives

S : (Γ, x : A+ ` β : B−,∆)

Γ ` case (x · β ⇐ S) : A+ → B−|∆
→ R

or in terms of the more familiar λ-abstraction notation from the
λ-calculus

Γ, x : A+ `M : B−|∆
Γ ` λx.M : A+ → B−|∆

→ R

The two notations for functions are equivalent to one another.
Additionally, we may give a rule for co-patterns of function type

p : A+ ⇒ (Γ ` ∆) q : B− ⇐ (Γ′ ` ∆′)

p · q : A+ → B− ⇐ (Γ,Γ′ ` ∆,∆′)

which reveals the impact of the choice of polarities for the argument
and result of a function. If we were to make the argument to a
function negative, then we would no longer be able to form a
pattern for it, thus forcing the an end to the first premise, and
similarly if the result was positive.

However, it is easy to halt a pattern by inserting a shift which
signals the end of a phase. Therefore, we may recover other choices
of polarities for function types by inserting shifts where appropri-
ate. For example, the wholly negative function type is given by
shifting the argument, ´(A−) → B−, which signals in the type
that we cannot directly examine the structure of the argument. Ad-
ditionally, the whole positive function type is given by shifting
both the result of the function call as well as the function itself,
´(A+ → ˆ(B+)), which signals that we cannot directly examine

the use of the result or on a function value (that is, both the con-
tinuation that accepts the result and the function itself are “black
boxes”).

Following this exploration of function types in focalized, polar-
ized logic, it is worthwhile to revisit our definitions of negation.
Notice that in the positive and negative fragments of CU, from
Figures 25 and 26, the (co-)patterns for the two forms of negation
end abruptly. This is because they are defined all within the same
polarity: the positive negation not(α) contains a positive co-term,
which is a black box that we cannot directly examine, whereas the
negative negation (pardon the apparent redundancy of terminology)
contains a negative term, which is also a black box. If we want
to continue forming a pattern through a negation, we are forced
to switch polarity as well. This observation suggests the existence
of yet another two dual forms of negation that are more “ideal”
and more “primordial” than the ones we previously considered. In
essence, by swapping both the polarity and the sides of a command,
these notions of negation internalize the duality of the sequent cal-
culus and correspond to the notion of involutive negation from lin-
ear logic.

The negative form of the dual negation, which we’ll write as
(A+)

⊥ in the spirit of linear logic, is similar to ¬−A− except for
the polarity of the underlying type. Instead of turning a negative
term into another negative co-value, (A+)

⊥ turns a positive value
into a negative co-value, allowing us to keep the sub-term in focus:

Γ ` V : A+; ∆

Γ; [V]⊥ : (A+)
⊥ ` ∆

⊥L

And the term for (A+)
⊥ is similar to the one for ¬−A−:

S : (Γ, x : A+ ` ∆)

Γ ` case ([x]⊥ ⇒ S) : (A+)
⊥|∆

⊥R

Likewise, the positive form of dual negation, which we’ll write as
(A−)>, is similar to ¬+A+ except for the polarity of the underly-
ing type. Instead of turning a positive co-term into a positive value,
(A−)> turns a negative co-value into a positive value, maintaining

35 2014/1/23

focus on the sub-co-term:
Γ;E : A− ` ∆

Γ ` (E)> : (A−)>; ∆
>R

And by this point, there are no surprises in the co-term for (A+)
⊥:

S : (Γ ` α : A−,∆)

Γ|case [(α)> ⇒ S] : (A−)> ` ∆
>L

Additionally, the patterns and co-patterns for the positive and neg-
ative forms of dual negation are given as

p : A+ ⇒ (Γ ` ∆)

[p]⊥ : (A+)
⊥ ⇐ (Γ ` ∆)

q : A− ⇐ (Γ ` ∆)

(q)> : (A−)> ⇒ (Γ ` ∆)

where unlike ¬+A+ and ¬−A−, we are able to continue form-
ing a pattern for the underlying component. To recover the pre-
vious forms of negation, we can manually signal an end to the
(co-)patterns by inserting an explicit shift, so that ¬−(A−) is iso-
morphic to (´A−)

⊥ and ¬+(A+) is isomorphic to (ˆA+)>.
Furthermore, the fact that involutive negation in linear logic

is actually involutive, so that (A⊥)⊥ is exactly the same as A,
is reflected in the forms of dual negation, although in a slightly
weaker sense. In essence, the type ((A+)

⊥
)> is isomorphic toA+,

so that an arbitrary value of type ((A+)
⊥

)> has the form ([V]⊥)>
which is isomorphic to V . Intuitively, any direct examination of
the structure of V can also be done to ([V]⊥)> by just peeling off
the outer ([]⊥)> (and similarly for [(E)>]⊥). In other words, the
extended pattern ([p]⊥)> neither adds nor hides any information
about the underlying pattern p. End remark 10.
Remark 11. In order to relate polarized languages to functional
programming languages, we need to account for the evaluation
strategy of the particular functional language by using polarities in
the polarized types. This means that since ML is a strict language
whereas Haskell is a lazy language, a program that looks the same
in both ML and Haskell will actually correspond to completely dif-
ferent programs in a polarized language with completely different
types. In essence, a translation into polarized logic reveals the eval-
uation strategy of a language in both the type and the syntax of the
program, similar to a continuation-passing style (CPS) transform.
Additionally, polarized logic may be viewed as a sort of type and
effect system [80], in which evaluation is considered an effect that
is static tracked along with types.

For example, the correspondence between polarities, in the form
of the CU calculus, and parts of ML are illustrated in Figure 30.
In particular, the data types of ML, like the pair type ′a ∗′ b and
sum type ′a +′ b, correspond to positive types. Additionally, ML
functions correspond to a wholly positive function type, which can
be encoded in terms of the primordial function type mentioned in
Remark 10, and are isomorphic to a similar encoding in terms of
conjunction and negation as Wadler’s call-by-value encoding of
functions from Section 5.1.

One very important detail to note is that in CU, the type of
ML terms is different than the type of ML values. In particular,
all the terms in ML are shifted. The extra shift arises because in
CU, the terms of positive type are values that contain no (direct)
computation — they just are. Therefore, in order to introduce any
ability to represent computation in a term of positive type in CU,
it needs to be shifted to the negative polarity. This extra shift opens
the door to modeling behavior by making the term into a case
abstraction — a positive pair value (1, 2) : Int⊗ Int cannot do
anything, but the negative value case (ˆ[α]⇐ S) : ˆ(Int⊗ Int)
can. A pair of two non-value terms in ML, (M1,M2) :′ a ∗′ b,
would have to be translated to the polarized calculus in CPS style
case (ˆ[α]⇐ 〈M1||ˆ[case [x⇒ 〈M2||ˆ[case [y ⇒ 〈(x, y)||α〉]]〉]]〉)

where we use complex variables (see Remark 9) to avoid writing
down how to break down and reconstruct the values returned by
M1 and M2.10 Additionally, notice that to model an ML compu-
tation that produces a function we need to insert even more shifts,
making ˆ(´(A+ → ˆB+)) the type of function computations. The
extra shift surrounding the type is necessary for modeling com-
putations that cause a side effect before returning a function, like
(print ”hi”; (λx.x)), or computations that never return. Notice
that the shifted value case (ˆ[α]⇐ S) bears resemblance to an
output abstraction outα⇐S of type Int⊗ Int. In effect, the shift
makes up for the fact that, unlike system L, CU does not contain
output abstractions for positive types. Therefore, the extra input and
output abstractions in system L (as well as the non-polarized lan-
guages in Section 5), allow for a more direct style representation of
programs.

Additionally, Figure 30 shows the relationship of Haskell with
CU. Of note, the correspondence between CU and a lazy func-
tional language is much less direct than it was for a strict func-
tional language. This is because the data types of Haskell to not
map so nicely onto the positive connectives in polarized logic due
to extra laziness. For instance, when performing case analysis on a
sum type Either a b in Haskell, we stop evaluation once we reach
the distinguishing tag, instead of continuing on to evaluate the sub-
term. The fact that we stop evaluation once reaching a constructor
is revealed as the inner shifts in the table. On the other hand, an
unevaluated term of the Haskell Either a b is also passed around
like a value (ignoring the sharing and memoization performed by
many implementations), which introduces the outer shifts. Dually
to ML, Haskell functions correspond to a wholly negative function
type, which can be encoded in terms of the primordial function type
mentioned in Remark 10, and are isomorphic to a similar encoding
in terms of disjunction and negation as Wadler’s call-by-name en-
coding of functions from Section 5.1.11 On the nicer side, there is
no split in the distinction between terms and values as there was for
ML, every term in Haskell is given the same type without introduc-
ing an extra type-level notion of “valueness.”

It is worthwhile to note that some accounts [116] of polarized
logic suggest that pairs in Haskell correspond to the & connective,
the negative form of conjunction. However, this characterization of
Haskell pairs is not correct — as with Haskell sums and ML pairs,
Haskell pairs are defined by their constructors and observed by an-
alyzing the structure of a pair. For example, if we let Ω be a non-
terminating program, then if Haskell pairs were modeled by & the
terms Ω and (fst(Ω), snd(Ω)) should be indistinguishable. How-
ever, the context case�of (x, y) ⇒ True observes a difference
between the two: plugging in (fst(Ω), snd(Ω)) causes the program
to return True and plugging in Ω causes the program to loop for-
ever. Therefore, pairs are better modeled in terms of the positive
form of conjunction, in the same vein as the fact that the data type
for Haskell sums are better modeled with ⊕ than with `. And in
general, all of Haskell data types are modeled in terms of positive
connectives (and shifts) in polarized logic. End remark 11.

10 Note that the fact that without adding complex variables to CU, we
would be forced to pattern match on the structures of x and y means that
we would have to write a different program for sequencing the elements for
every pair type. This means that without the help of complex variables, the
CU calculus cannot be polymorphic over structures.
11 This model of Haskell functions does not account for memoization, as
performed by every major implementation of Haskell, and does not hold
up in the presence of the primitive seq operation which can distinguish a
λ-abstraction from any other term of function type.

36 2014/1/23

ML Polarities
V :′ a V : A+

M :′ a M : ˆ(A+)
′a ∗′ b A+ ⊗B+

′a+′ b A+ ⊕B+

′a→′ b ´(A+ → ˆ(B+))
≈ ¬+(A+ ⊗ ¬+B+)

Haskell Polarities
M : a M : A−

(a, b) ˆ(´(A−)⊗ ´(B−))
Either a b ˆ(´(A−)⊕ ´(B−))
a→ b ´(A−)→ B−

≈ ¬−(A−) `B−

Figure 30. Rosetta stone for relating strict (ML) and lazy (Haskell) functional languages to the polarized CU.

7. A retrospective
By now, we have covered many different systems that give various
approaches to the computational interpretation of the sequent cal-
culus and the computational perspective of duality. The concept of
duality comes up when considering the relationship between pro-
ducers and consumers of information, the call-by-value and call-
by-name evaluations strategies, and structures and destructive case
analysis. We also saw how concepts that arose in the field of proof
search, namely focalization and polarization, are connected to the
concept of pattern matching on structures in functional program-
ming languages.

However, there are still some questions that have not been
addressed. For instance, how do other evaluation strategies, like
call-by-need [6, 9, 81]12 fit into the picture? If we follow the story of
polarized logic, that the polarity determines evaluation order, then
there is no room — by definition there are only two polarities so
we can only directly account for two evaluation strategies with this
approach.

Instead, let’s take a step back and look at the bigger picture,
letting go of the particular details of each of these systems in or-
der to bring out the general themes hiding under the surface of
each of them. Since our primary goal is to understand the behavior
of programs, we will play down the emphasis on types from per-
spective of the proof theoretic background in favor of considering
run-time behavior first, in terms of an equational theory that deter-
mines when two programs (commands, terms, or co-terms) behave
the same as one another. This is a shift from an intrinsic [98] view
of types (types define the meaning of programs) to an extrinsic one
— a divide that goes back to Church and Curry. In particular, we
will consider the sequent calculus with an approach more similar to
ones taken for the λ-calculus, and see what it can tell us about how
we write programs.13

7.1 A parametric theory of the sequent calculus
Notice that, with the exception of the CU calculus from Sec-
tion 6.4, every language for the sequent calculus in Sections 4, 5,
and 6 are based on the same structural core. This core, given in Fig-
ure 8, forms the basis of naming in the sequent calculus in terms of
variables and co-variables as well as input and output abstractions.
Further still, the fundamental dilemma of computation in classi-
cal sequent calculus lies wholly within this core. The root cause
of non-determinism is a conflict between the input and output ab-
stractions, where each one tries to take control over the future path
of evaluation. Therefore, we will first focus on how to resolve the
fundamental dilemma in the structural core of the sequent calculus
before tackling any other issues.

12 Call-by-need can be thought of as a memoizing version of call-by-name
where the arguments to function calls are performed on demand, like in
call-by-name, but where the value of an argument is remembered so that it
is computed only once, like in call-by-value.
13 This following discussion is based on work to appear in ESOP 2014 [32].

Recall that the source of the conflict in the structural core of the
sequent calculus are the two rules for implementing substitution:

(µ) 〈outα⇐S||K〉 = S {K/α}
(µ̃) 〈M ||inx⇒S〉 = S {M/x}

As stated, a command like 〈out ⇐S1||in ⇒S2〉, where the
(co-)variables are never used, is equal to both S1 and S2, so any two
arbitrary commands may be considered equal. All of the various
languages solve this issue by restricting one of the two rules to
remove the conflict — languages that restrict the µ rule implement
a form of call-by-name evaluation and languages that restrict the µ̃
rule implement a form of call-by-value evaluation. However, in lieu
of inventing various different languages with different evaluation
strategies, let’s instead allow for restriction to what both rules are
capable of substituting

(µE) 〈outα⇐S||E〉 = S {E/α}
(µ̃V) 〈V ||inx⇒S〉 = S {V/x}

and leaving specifics of what stands in for V and E open for
interpretation. That is to say, we make the sets of values (V) and
co-values (E) a parameter of the theory, in the same sense as the
parametric λ-calculus [99], that may be filled in at a later time. The
full parametric equational theory for the structural core is given in
Figure 31. Since the rules for extensionality of input and output
abstractions did not cause any issue, we leave them alone.

By leaving the choice of restrictions open as parameters, the
same parametric theory may describe different evaluation strategies
by instantiating the parameters in different ways. For this reason,
we say that a strategy for the parametric theory is defined by a
choice of values and co-values. The previous characterizations of
call-by-value and call-by-name come out as particular instances of
the parametric theory. For example, we can define the call-by-value
strategy V , shown in Figure 32, by restricting the set of values to
not include output abstractions, leaving variables as the only value,
and letting every co-term be a co-value. Notice that in effect, this
decision restricts the µ̃ rule in the usual way for call-by-value while
letting the µ rule be unrestricted. The call-by-name strategy N
is defined in the dual way by letting every term be a value and
restricting the set of co-values to not include input abstractions,
leaving co-variables as the only co-value.

We can also explore other choices of the parameters that de-
scribe strategies other than just call-by-value and call-by-name. For
instance, we can characterize a notion of call-by-need in terms of a
“lazy value” strategy LV shown in Figure 33. This strategy is sim-
ilar to a previous call-by-need theory for the sequent calculus [13].
The intuition is similar to the call-by-need λ-calculus [9]: a non-
value term bound to a variable represents a delayed computation
that will only be evaluated when it is needed. Then, once the term
has been reduced to a value (in the sense of call-by-value), it may
be substituted for the variable. Therefore, in the command

〈M1||inx⇒〈M2||in y ⇒S〉〉

37 2014/1/23

(µE) 〈outα⇐S||E〉 = S {E/α}
(µ̃V) 〈V ||inx⇒S〉 = S {V/x}

(ηµ) outα⇐〈M ||α〉 = M

(ηµ̃) inx⇒〈x||K〉 = K

Figure 31. A parametric theory for the structural core of the sequent calculus.

V ∈ V alueV ::= x

E ∈ CoV alueV ::= K

V ∈ V alueN ::= M

E ∈ CoV alueV ::= α

Figure 32. Call-by-value (V) and call-by-name (N) strategies for the structural core.

V ∈ V alueLV ::= x

E ∈ CoV alueLV ::= α || inx⇒ CLV [〈x||E〉]
CLV ∈ DelayedCxt ::= � || 〈M ||in y ⇒ CLV〉

V ∈ V alueLN ::= x || outα⇐ CLN [〈V ||α〉]
E ∈ CoV alueLN ::= α

CLN ∈ DelayedCxtLN ::= � || 〈outα⇐ CLN ||K〉

Figure 33. “Lazy-call-by-value” (LV) and “lazy-call-by-name” (LN) strategies for the structural core.

we temporarily ignoreM1 andM2 and work on the inner command
S. If it turns out that S evaluates to 〈x||E〉, we are left in the state

〈M1||inx⇒〈M2||in y ⇒〈x||E〉〉〉
where E is a co-value that wants to know something about x, mak-
ing inx⇒〈M2||in y ⇒〈x||E〉〉 into a co-value as well. Therefore,
if M1 is a non-value output abstraction, it may take over by the µE
rule.
Remark 12. Another way to think about strategies, and the param-
eterized notions of values and co-values, is to consider the parts of
an equational theory. Typically, equational theories are expressed
by a set of axioms (primitive equalities assumed to hold) along
with some basic properties or rules for forming larger equations.
By definition, equations are closed under reflexivity, symmetry, and
transitivity. In other words, we know the following principles, ex-
pressed as inference rules, hold for equality in the sequent calculus

S = S
Refl

S2 = S1

S1 = S2
Sym

S1 = S2 S2 = S3

S1 = S3
Trans

and similarly for terms and co-terms. We also consider equality in
an expression language to apply anywhere in an expression — if
two things are equal, then they must be equal in any context. This
principle is called congruence, and may be expressed as

S = S′

C[S] = C[S′]
Congruence

and again similarly for (co-)terms.
Additionally, in a language with an internal notion of variables,

like the λ-calculus or the structural core of the sequent calculus, we
generally expect the equational theory to be closed under substitu-
tion. That is to say, if two things are equal, then they should still be
equal when I substitute the same term for the same variable in both
of them. However, this principle does not always hold in full gen-
erality. For example, the ML terms let y = x in 5 and 5 are equal.
However, if we substitute the term (print ”hi”; 1) for x, we end
up with let y = (print ”hi”; 1) in 5 and 5, which are no longer
equal because one produces a side effect and the other does not.
Instead, ML has a restricted notion of the substitution principle: if
two programs are equal, then they are still equal when we substitute
the same value (an integer, a pair of values, a function abstraction,
. . .) for the same variable in both of them. This restriction prevents
the previous counter-example. The exact same issue arises in the
classical sequent calculus, since it also includes a notion of effects

that allows for manipulation over the flow of control. Therefore, we
need to restrict the substitution principle in the sequent calculus to
only allow for substituting values for variables. Additionally, since
we have a second notion of substitution, we also have a restriction
to only allow for substituting co-values for co-variables. This leads
us to substitution principles that say if two commands (or terms
or co-terms) are equal, they must still be equal after substituting
(co-)values for (co-)variables:

S = S′

S {V/x} = S′ {V/x}
SubstV

S = S′

S {E/α} = S′ {E/α}
SubstE

We may also consider the axioms for the structural core of the
sequent calculus to be trivial statements about variable binding. The
ηµ and ηµ̃ rules state that giving a name to something, and then
using it immediately (without repetition) in the same place is the
same thing as doing nothing. Additionally, we may say that binding
a variable to itself is the same thing as doing nothing:

(µα) 〈outα⇐S||α〉 = S

(µ̃x) 〈x||inx⇒S〉 = S

If we take the substitution principles as reasoning steps in our equa-
tional theory, we can derive the axioms in Figure 31. The trick is to
realize that a command like command 〈V ||inx⇒S〉 is the image
of 〈x||inx⇒S〉 under substitution of V for x. That is to say that
〈V ||inx⇒S〉 is syntactically the same as 〈x||inx⇒S〉 {V/x}.
Therefore, we can derive the µ̃V axiom from µ̃x and SubstV as
follows:

〈x||inx⇒S〉 = S
µ̃x

〈V ||inx⇒S〉 = S {V/x} SubstV

The derivation of µE from µα and SubstE is similar.
Additionally, the substitution principles are derivable from the

more powerful µ̃V and µE axioms. For example, we can derive
SubstV from by recognizing that both sides of the equation can be
deduced from a command like 〈V ||inx⇒S〉 with the µ̃V axiom,
so that congruence allows us to lift the equality S = S′ under the
bindings. The full derivation of SubstV is shown in Figure 34, and
SubstE may be derived in a similar way. Therefore, the µ̃V and
µE rules may be seen as a realization of the substitution principles
of an equational theory in the form of axioms. End remark 12.

38 2014/1/23

〈V ||inx⇒S〉 = S {V/x}
µ̃V

S {V/x} = 〈V ||inx⇒S〉
Sym

S = S′

〈V ||inx⇒S〉 = 〈V ||inx⇒S′〉
Congr.

〈V ||inx⇒S′〉 = S′ {V/x}
µ̃V

〈V ||inx⇒S〉 = S′ {V/x} Trans

S {V/x} = S′ {V/x} Trans

Figure 34. Deriving the substitution principle for values from the µ̃V axiom.

7.2 User-defined data and co-data types
Having considered the structural core of the sequent calculus, and
resolving the fundamental dilemma in a general way by making
the strategy a parameter to the equational theory, we now move
on to add connectives to the calculus. Instead of looking at each
connective individually, and determining its properties case-by-
case, we will again try to remain general: we will summarize
all of the previously discussed connectives under the umbrella of
user-defined types. In deciding how we may add new types to the
language, we will take the verificationist and pragmatist approaches
from Section 6 as part of the type declaration. On the one hand,
the verificationist approach gives us a notion of user-defined data
types similar to algebraic data types in functional programming
languages. On the other hand, the pragmatist approach gives us the
dual notion of user-defined co-data types, which are instead similar
to interfaces in object-oriented languages. In lieu of spelling out the
full generality of user-defined types, we will work by examples.

As a starting point, we will base the syntax of user-defined
(co-)data type declarations in the sequent calculus on data type
declaration in functional languages. However, in order to provide
a syntax for (co-)data type declaration that covers every single
connective we have considered so far, we need a syntax that is
more general than the usual form of algebraic data type (ADT)
declaration from ML-based languages. Therefore, we will consider
how the generalized syntax for GADTs in Haskell [71, 104] may be
used for ordinary data type declarations. For example, the typical
sum type Either and pair type Both may be declared as:

dataEither a bwhere

Left : a→ Either a b

Right : b→ Either a b

dataBoth a bwhere

Pair : a→ b→ Both a b

In the declaration for Either, we specify that there are two construc-
tors, Left and Right, that take a value of type a and b, respectively,
and build a value of type Either a b. In the declaration for Both, we
specify that there is one constructor, Pair, that takes a value of type
a, a value of type b, and builds a value of type Both a b.

When declaring a new type in the sequent calculus, we will take
the general form of a GADT, but instead describe the constructors
by a sequent-style judgment. For connectives following the veri-
ficationist approach, we have data type declarations that introduce
new concrete terms and abstract co-terms. For instance, we can give
a declaration of A⊕B as

dataA⊕Bwhere

inl : A ` A⊕B|
inr : B ` A⊕B|

where we mark the distinguished output of the constructor as A ⊕
B| and replace the function arrow (→) with logical entailment (`),
to emphasize that the function type is just another user-defined
type like all the others. This declaration extends the syntax of
the language with two new concrete terms for the constructors,

inl(M) and inr(M), and with one new abstract co-term for case
analysis, case [inl(x)⇒ S1|inr(y)⇒ S2]. Additionally, we can
declare A⊗B as

dataA⊗Bwhere

pair : A,B ` A⊗B|
where the multiple inputs to the constructor are given as a list
of inputs to the left of the sequent, as opposed to the “curried”
style used in the declaration of Both. This declaration extends
the syntax of the language with one new concrete term for the
constructor, pair(M,M ′), and one new abstract co-term for case
analysis, case [pair(x, y)⇒ S].

However, note that the notion of user-defined types in the se-
quent calculus is more general than in functional programming lan-
guages. We also have co-data declarations that introduce abstract
terms and concrete co-terms. A co-data declaration may be thought
of as an interface that describes the allowable messages we may
send to an abstract value. By analogy to object-oriented program-
ming, an interface (co-data type declaration) describes the fixed set
of methods (co-structures) that an object (co-case abstraction) has
to support (provide cases for), and the object (co-case abstraction)
defines the behavior that results from a method call (command).
For example, we can declare A&B as

codataA&Bwhere

fst : |A&B ` A
snd : |A&B ` B

which extends the language with a new abstract term for case analy-
sis, case (fst[α]⇐ S1|snd[β]⇐ S2), and two concrete co-terms,
fst[K] and snd[K]. We can also declare the function type as an
instance

codataA→ Bwhere

call : A|A→ B ` B
which, following the pattern by rote, extends the language with
a new abstract term, case (call[x, α]⇐ S), and a new concrete
co-term, call[M,K]. The rest of the basic connectives are declared
as user-defined (co-)data types in Figure 35.

Having allowed for extending the language with an ample va-
riety of new syntactic forms, we now need to explain how they
behave. In addition, since the evaluation strategy is given as a pa-
rameter to the equational theory of the structural core, we should
express the behavior in some way that is valid in any choice of
strategy. To accomplish our goal, we will use β and η axioms for
defining the dynamic meaning of user-defined (co-)data types. For
example, we may extend the equational theory with the following
β axiom for functions

(β→) 〈case (call[x, α]⇐ S)||call[M,K]〉
= 〈M ||inx⇒〈outα⇐S||K〉〉

which matches on the structure of function application and binds
the sub-components to the appropriate (co-)variables. The thing
to notice is that this rule applies for any function call call[M,K],
whether or notM orK are (co-)values. This works becauseM and
K are put in interaction with input and output abstractions, and we

39 2014/1/23

dataA⊕Bwhere

inl : A ` A⊕B|
inr : B ` A⊕B|

dataA⊗Bwhere

pair : A,B ` A⊗B|
data 1where

unit : ` 1|
data 0where

dataA−Bwhere

uncall : A ` A−B|B

data¬+Awhere

not+ : ` ¬+A|A

codataA&Bwhere

fst : |A&B ` A
snd : |A&B ` B

codataA`Bwhere

split : |A`B ` A,B
codata⊥where

tp : |⊥ `
codata>where

codataA→ Bwhere

call : A|A→ B ` B

codata¬−Awhere

not− : A|¬−A `

Figure 35. Declarations of the basic data and co-data types.

have already informed the core structural theory how to correctly
implement our chosen strategy. Therefore, if we are evaluating our
program according to call-by-value, would have to evaluateM first
before substituting it for x. Likewise, in call-by-name, we would
have to evaluate K into a co-value before it may be substituted for
α. Next, we have the following η axiom for functions

(η→) z = case (call[x, α]⇐ 〈z||call[x, α]〉)
which says that an unknown function z is equivalent to a trivial
case abstraction that matches a function call, and forwards it along
unchanged to z. Here, it is important to note that the η rule would
not work if we replaced z with a general term M . The problem
is exactly the same as in the call-by-value λ-calculus: if we are
allowed to η expand any term, then we have that

5 =β (λx.5) (λy.Ω y) =η (λx.5) Ω ≈ Ω

where Ω stands in for a term that loops forever. So if we allow for
η expanding arbitrary terms in the call-by-value λ-calculus, then
a value like 5 is the same thing as a program that loops forever.
The solution in the call-by-value λ-calculus is to limit the η rule
to only apply to values. Here, we use the variable z to stand in for
an unknown value, since we are only allowed to substitute values
for variables. This has the nice side effect that neither the β or η
rules explicitly mention values or co-values in any way — they
are strategy independent. To make the comparison with previous
characterizations of functions in the sequent calculus, we can also
express these rules a more traditional syntax:

(β→) 〈λx.M ||M ′ ·K〉 = 〈M ′||inx⇒〈M ||K〉〉
(η→) z = λx.outα⇐〈z||x · α〉

The β and η rules for user-defined data types follow a similar,
but mirrored, pattern. For example, the β rule for ⊕ performs case
analysis on the tag of the term without requiring that the sub-term
be a value:

(β⊕) 〈inl(M)||case [inl(x)⇒ S1|inr(y)⇒ S2]〉
= 〈M ||inx⇒S1〉

(β⊕) 〈inr(M)||case [inl(x)⇒ S1|inr(y)⇒ S2]〉
= 〈M ||in y ⇒S2〉

Again, this rule works because we end up putting the sub-term in
interaction with an input abstraction, allowing the equational theory
of the structural core take care of managing evaluation order. For
example, in the call-by-value setting, while this rule is stronger than

the one given for Wadler’s dual sequent calculus, it is still allowable
according to the given call-by-value CPS transformation [111]. The
η rule for ⊕ is also similarly mirrored from functions, where we
expand an unknown co-value γ into a case abstraction:

(η⊕) γ = case [inl(x)⇒ 〈inl(x)||γ〉|inr(y)⇒ 〈inl(x)||γ〉]

Recall that both Wadler’s dual sequent calculus and system L
included ς rules that lift out sub-(co-)terms from inside a structure.
However, we did not include them as axioms in our equational
theory. As it turns out, these rules are derivable in general by using
the β and η axioms described above. For example, we have the ς
rules for ⊕:

(ς⊕) inl(M) = outα⇐〈M ||inx⇒〈inl(x)||α〉〉
(ς⊕) inr(M) = outα⇐〈M ||inx⇒〈inr(x)||α〉〉

These rules can be derived by η expansion followed by β reduction:

inl(M) =ηµ outα⇐〈inl(M)||α〉
=η⊕ outα⇐〈inl(M)||case [inl(x)⇒ 〈inl(x)||α〉| . . .]〉
=β⊕ outα⇐〈M ||inx⇒〈inl(x)||α〉〉

Notice here that the steps of this derivation are captured exactly by
our formulation of β and η axioms: 1. the ability to η expand a
co-variable, and 2. the ability to perform β reduction immediately
to break apart a structure once the constructor is seen. We also have
similar ς rules for functions

(ς→) M ·K = inx⇒〈M ||in y ⇒〈x||y ·K〉〉
(ς→) V ·K = inx⇒〈outα⇐〈x||V · α〉||K〉

which are again derivable by a similar procedure of η expansion
and β reduction. These particular ς axioms for functions are inter-
esting because they were left out of Wadler’s dual sequent calcu-
lus [111], however, they were implicitly present in the equational
theory [112] as a consequence of the β and η axioms. This same
procedure words for all the definable (co-)data types.
Remark 13. Aggressively applying the various ς rules, so that
structures are only built out values and co-values are, gives a pro-
cedure for producing a program in a sub-syntax that corresponds to
focalization described in Section 6. The focalized sub-syntax cor-
responds to A-normal forms [100], which give a name to the re-
sults of all non-trivial computations in a program. In particular, the
ς rules for functions provides a system for transforming a general
program in λµµ̃ into an equivalent program in either of the two

40 2014/1/23

sub-syntaxes, λµµ̃Q or λµµ̃T , by choosing either a call-by-value
or call-by-name strategy. End remark 13.

7.3 Composing strategies
We have present a general framework for describing all the basic
connectives discussed so far, giving a mechanism for extending the
syntax and semantics of the sequent calculus to account for a wide
variety of new structures. However, what about the connectives that
mixed polarities in Section 6.5? Can we include the shifts, dual
negation, and “primordial” function type into our notion of user-
defined data and (co-)data types? Also, what happened to polarized
logic’s promise of using multiple evaluation strategies in a single
program? Is there a way to instantiate the parametric equational
theory with more than one strategy at the same time?

The answer to all of these questions is to take a step back from
polarized logic and look at the more general case. Separating types
into different classifications is not a new idea, and shows up in
several type systems in the form of kinds. Effectively, kinds classify
types in the same way that types classify terms, i.e., kinds are types
“one level up the chain.” Therefore, perhaps we can use kinds to fill
in the essential role for distinguishing evaluation strategies that was
filled by polarities in polarized logic. So that the way that polarized
languages use polarities to denote evaluation order, we may use
kinds to denote evaluation order. That way, we can instantiate the
parametric equational theory with a composite strategy made up
of several primitive strategies, and the kinds make sure that the
strategies of terms and co-terms correctly line up.

For example, let’s suppose we want a wholly call-by-value
notion of pair, which we will suggestively denote by a kind named
V .14 We can make this intent explicit by adding explicit kinds to
the declaration of ⊗ from Figure 35:15

data (A : V)⊗ (B : V) : Vwhere

pair : A : V, B : V ` A⊗B : V|
Here, we say that both components of the pair have some type of
kind V , and the pair type also is of kind V . If we interpret the
kind V as denoting the strategy V , then this declaration gives us
the basic pair type in the call-by-value instance of the parametric
equational theory. However, suppose we also want a pair that has
one call-by-name component, one call-by-value component, and is
overall evaluated in a call-by-name way. We can signify this intent
by declaring a different pair type that uses two different kinds, N
and V:

dataMixedProduct(A : V, B : N) : N where

MixedPair : A : V, B : N ` MixedProduct(A,B) : N|
In this declaration, the fact that the type A has kind V denotes
that the first component should be evaluated with the call-by-value
strategy V , whereas the second component and the pair as a whole
should be evaluated with the call-by-name strategyN .

Now that we are looking at programs with multiple different
strategies running around, we need to be able make sure that only
terms and co-terms from the same strategy interact with one an-
other. Otherwise, we could lose determinism of the equational the-
ory. However, a full typing discipline is overkill. After all, the para-

14 Here we use the name V to mean both a strategy (a set of values and
co-values) and a kind (a “type of types”), so even though the two are dif-
ferent things, the clash in naming is meant to make obvious the connection
between the kind and the strategy. Both kinds and strategies are used in very
different places, so the meaning of V can usually be distinguished from con-
text.
15 Adding explicit kinds to a data type declaration is not new; it is supported
by GHC with the extension “kind signatures.” Rather, the new idea is to
have the kind impact the meaning of a term by denoting its evaluation
strategy.

metric equational theory, when instantiated with a single primitive
strategy, did not need to use types to maintain determinism. There-
fore, we use a type-agnostic kind system for making sure that all
commands are well-kinded. By “type-agnostic,” we mean that we
are checking the properties likeM :: S, that isM is a term of some
unknown type that has the kind S. The kind system for the struc-
tural core of the sequent calculus is shown in Figure 37, and unre-
markably resembles the ordinary type system except at “one level
up.” The whole point of the system is shown in the Cut rule that
only allows commands between term and co-term of the same kind.
The main property that distinguishes this from an ordinary type sys-
tem is that we “forget” the types, effectively collapsing them down
into a single universal type for each kind, similar to a generalized
version of Zeilberger’s [117] “bi-typed” system.

For example, for a term or co-term of type MixedProduct(A,B),
we only know that they belong to some type of the kind N , giving
us the following two inference rules:

Γ `M :: V|∆ Γ `M ′ :: N|∆
Γ ` MixedPair(M,M ′) :: N|∆

S :: (Γ, x :: V, y :: N ` ∆)

Γ|case [MixedPair(x, y)⇒ S] :: N ` ∆

In order to make the kind of a term explicitly apparent in the syntax,
we can annotate variables with their kind, like xV and yN . Recall
that the β rules do not make reference to the chosen strategy in
any way, they are only responsible for breaking apart structures.
This means that the β rules are completely unaffected by the use
of composite strategies. For instance, we may run a program using
MixedProduct in the same way as the call-by-value ⊗:

〈MixedPair(M,M ′)||case [MixedPair(xV , yN)⇒ S]〉
=β 〈M ||inxV ⇒〈M ′||in yN ⇒S〉〉
=µ̃V 〈M ||inx

V ⇒S
{
M ′/yN

}
〉

Notice that as before, the input abstractions take over for determin-
ing evaluation order in even when multiple primitive strategies are
in play. In this case, we are allowed to substitute M ′ for yN since
M ′ is a value in the sense of the strategy N . However, we must
first evaluate M before substituting it for xV , since we judge both
M and the input abstraction for xV according to the strategy V .

Finally, using this notion of kinds to distinguish between differ-
ent primitive strategies, we can give (co-)data declarations for the
various connectives of polarized logic that mix polarities in terms
of declarations using the two kinds V and N . Types for the shifts,
dual negations, and “primordial” functions (and the dual “primor-
dial” substitution) are given in Figure 36. Notice how the kinds
point out similar patterns as were used in polarized logic: all the
data structures are call-by-value and all the co-data structures are
call-by-name. Additionally, with the exception of the shifts, all the
input parameters are call-by-value and all the output parameters are
call-by-name.
Remark 14. Recall from Section 7.2 that although the η axioms for
data and co-data types do not reference the chosen strategy, their
expressive power is affected by the substitution principle, which
is in turn affected by the choice of values and co-values. In light
of this observation, if we were forced to pick only one strategy
for all data types and one strategy for all co-data types, it would
make sense to pick the strategies that would give us the strongest
equational theories. Therefore, if we want to make the η axiom for
a data type as strong as possible, we should choose the call-by-
value V strategy, since by substitution every co-term of that data
type is equivalent to a case abstraction on the structure of the type.
Likewise, if we want to make the η axiom for a co-data type as
strong as possible, we should choose the call-by-name N strategy,

41 2014/1/23

data ´(A : N) : Vwhere

shiftV : A : N ` ´A : V|
data (A : N)> : Vwhere

DualV : ` A> : V|A : N
data (A : V)− (B : N) : Vwhere

uncall : A : V ` (A−B) : V|B : N

codata ˆ(A : V) : N where

shiftN : |ˆA : N ` A : V

codata (A : V)⊥ : N where

DualN : A : V|A⊥ : N `
codata (A : V)→ (B : N) : N where

call : A : V|(A→ B) : N ` B : N

Figure 36. Declarations of composite strategy data and co-data types.

Γ, x :: S ` x :: S|∆ V ar
Γ|α :: S ` α :: S,∆ CoV ar

Γ `M :: S|∆ Γ|K :: S ` ∆

〈M ||K〉 :: (Γ ` ∆)
Cut

S :: (Γ ` ∆)

Γ ` outα⇐S :: S|∆ AR
S :: (Γ ` ∆)

Γ|inx⇒S :: S ` ∆
AL

Figure 37. Type-agnostic kind system for the structural core of the sequent calculus.

since by substitution every term of that co-data type is equivalent
to a co-case abstraction on the co-structure of the type. In this
sense, the decision use of polarities (i.e., the data/co-data divide) to
determine evaluation strategy is the same as choosing strategies to
get the strongest and most universal η principles for every (co-)data
type. End remark 14.

8. Future directions
The sequent calculus holds some exciting potential as a computa-
tional model: intertwining multiple evaluation strategies, explain-
ing the meaning of duality in programming languages, giving a rig-
orous framework for structures and pattern matching, showing a
natural setting for first-class manipulation of control flow, provid-
ing a foundation for a message-passing style of programming, and
revealing the connection between object-oriented and functional
paradigms. However, there has been a lot of development of the
λ-calculus as a model of programming, and the sequent calculus
has a lot of catching up to do. In particular, the λ-calculus has been
extended with several features, summarized in the λ-cube [15], that
make it a rich substrate for studying programs and languages. What
we need is a similar development of extensions to the sequent cal-
culus. For instance, if we want to fulfill the promise that the sequent
calculus provides a foundation of object-oriented programming, we
will need to explain phenomenon like other computational effects,
self-referential objects (the “this” or “self” reference), subtyping,
and parametric polymorphism (generics and packages). Addition-
ally, the previous study of the computational interpretation of the
sequent calculus observed similarities with abstract machines. This
suggests that a sequent-based language would be a good fit as an
intermediate language of a compiler, bridging between a high-level
programming language and lower-level implementation.

8.1 Computational effects
We have already discussed in Section 4.3 how the sequent calculus
naturally expresses a form of computational effect that allows for
manipulation over control flow, equivalent to control operators like
Scheme’s [74] callcc, or Felleisen’s [40] C. However, we would
also like to explain other computational effects, like mutable state,
exceptions, external input and output, etc.

One effect that is particularly interesting from a theoretical
standpoint, and which is related to classical control, is delimited

control [27, 28, 36, 39], which enjoys a remarkable completeness
property: any effect that can be simulated by a monad can be
implemented by delimited control [43–45]. The general notion of
delimited control effects has spawned a number of variations and
extensions, including differences in the way context delimiters are
scoped [28, 36] and the ability to give names to delimiters [31, 34,
57, 75]. However, we would rather understand delimited control
from more basic principles. So far, the understanding of classical
control[8, 11, 64] in terms of Parigot’s λµ-calculus [89] has been
extended to delimited control in different ways: adding a dynamic
co-variable in the call-by-value setting [11], relating control effects
to logical subtraction [10], or by relaxing the syntax in the call-by-
name setting [64].

Additionally, the λµ-calculus, as a language for classical logic
in the style of natural deduction, has a relation to the sequent calcu-
lus [111]. Therefore, it would be interesting to look at how the se-
quent calculus might be similarly extended with delimited control.
Of particular interest is the relationship between logical subtraction
and control effects. For all the basic (co-)data types in Figure 35,
the ones whose constructors have exactly one conclusion (⊕, ⊗,
1, 0, &, >, →) have a good understanding in programming lan-
guages. The other connectives, that make use of multiple conclu-
sions, are not so well understood. Perhaps the key to understanding
these types in a more traditional setting relies on some more ad-
vanced manipulation of control flow.

Another general framework for effects that has recently gained
attention is the notion of algebraic effect handlers [16, 18, 94]
which extends programs with an administrator that handles re-
quests for primitives effectful operations. Data and co-data in the
sequent calculus may be seen as a way of describing the interface
of interaction between the program and the administrator. In par-
ticular, the dual nature of data and co-data suggests two dual ways
of describing the third party that defines an effect: third-party as
an administrator, where there is an external, abstract definition for
the behavior of primitive operations and the program must yield
execution when reaching an effectful operation, or third-party as
a resource, where the program carries around extra, external infor-
mation that may be scrutinized in order to perform arbitrary effect-
dependent behavior. The sequent calculus already gives a rich lan-
guage for interacting with contexts described as structures and ab-
stract processes; extending the sequent calculus with a notion of al-
gebraic effects would extend this language to programmable com-

42 2014/1/23

putational effects, similar to Felleisen’s proposal for abstract con-
tinuations [41].

8.2 Induction and co-induction
An important step toward making the sequent calculus into a full-
fledged model of general computation is to provide some form
of looping or recursion.16 Functional programming languages like
SML and proof assistants like Coq rely heavily on inductive data
types such as lists and binary trees. These inductive data struc-
tures allow the program to represent arbitrarily large, but finite
information, which is then analyzed by recursively looping over
the structure of the data. Currently, we have a large set of tools at
our disposal for reasoning about programs that make use of induc-
tively defined data. For instance, the Calculus of Inductive Con-
structions [67], which lies at the heart of Coq, gives a rich theory
for inductively constructed data that allows for proving properties
about recursive programs; for example, one may want to check that
an inductive program for processing lists always terminates.

On the other hand, there is a another notion of recursion dual
to induction, called co-induction, which is also an important pro-
gramming tool. Co-inductive types give a model for an infinite
source of information, like a character input stream, or a contin-
ually running process like a server or operating system that should
always be responsive. Additionally, co-recursion, the general form
of co-induction, lies at the heart of self-referential objects in object-
oriented languages. Unfortunately, our tools for reasoning about
co-inductive programs are less well-developed than those for induc-
tive programs. For example, the current extension of the Calculus
of Inductive Constructions with co-inductive data structures breaks
the type system since evaluation does not preserve types [48, 88].
This disparity between induction and co-induction is unsatisfying.
Since the two concepts are dual to one another, if we know how to
express one we should also know how to express the other.

Instead, it would be interesting to utilize the natural duality in
the sequent calculus to treat induction and co-induction as equal
and opposite approaches to recursion. It follows that the dual to an
inductive data type is a co-inductive co-data type, where the con-
sumer is an arbitrarily large but finitely constructed observation,
and the producer is a recursive process for responding to observa-
tions. For example, the type of infinite streams is defined by the
observations for retrieving the head and the tail of a stream, and a
value for producing a stream is an abstract infinite process defined
by structural recursion on the possible observations. This view co-
incides with Hagino’s [58] model of induction and co-induction
that defines co-data types by a list of destructors [59], and gives a
calculus for the more recent development of co-patterns [3] used
to formulate strongly normalizing co-induction in functional lan-
guages [2]. In the sequent calculus, both induction and co-induction
are unified under the umbrella of structural recursion. Intuitively,
an inductive consumer sees its input and thinks, “Hmm, that’s a
rather large collection of information, I better process it bit-by-
bit,” whereas a co-inductive producer sees its request and thinks,
“Hmm, that’s a rather large question, I better answer it bit-by-bit.”
The difference between the two is a matter of orientation: induc-
tion consists of a finitely constructed producer and a looping con-
sumer, whereas co-induction consists of a finitely constructed con-
sumer and a looping producer. In this setting, for anything that can
be achieved inductively, the dual follows co-inductively and vice
versa.

16 We already have encodings of fixpoint combinators that exist in the un-
typed language, similar to the untyped λ-calculus, but it would be interest-
ing to have a more primitive treatment of recursion in the language. Espe-
cially when we consider restricted forms of recursion that are well-behaved
and do not get stuck in an infinite loop.

8.3 Subtyping
In a typical object-oriented language, subtyping allows for casting
an object into one with less specified behavior. For example, in
a language using a form of duck typing like Go, an object that
responds to the messages M1, M2, and M3 may be used in a
context that only requires that object to have a response for the
message M1, because it will never receive an unknown message.
Duality in the sequent calculus also gives us the opposite form of
subtyping, where a data structure that is built out of the constructors
F1 and F2 may be used in a context that considers cases for
additional constructors. The general principle, in terms of data
and co-data, is that a structure and case abstraction may safely
interact with one another so long as the structure matches one of
the cases that was taken into consideration. Subtyping allows for a
more liberal use of types: instead of restricting interactions between
exactly the same type, we may allow for interactions where one side
has a type that considers more cases than necessary or uses fewer
possible constructors.

It would be interesting to give a sequent calculus presentation
of subtyping that defines the subtyping relationship as a general-
ized guarantee of safe interaction between a producer and a con-
sumer of two different types. In addition to establishing the dual
relationship between subtyping of data and co-data types, it would
also be interesting to consider how variance might arise from the di-
rectional flow of information and interplay between producers and
consumers, i.e., input and output types, in (co-)data type defini-
tions. For example, the correct subtype relation, written A :< A′

meaning that A is a subtype of A′, for the function type is:

A′ <: A B <: B′

A→ B <: A′ → B′

Notice that the subtype relationship for the return types of the func-
tion follows the same direction as the function itself (is covariant),
but the subtyping for the argument types is reversed (is contravari-
ant). This comes from the fact that the consumer for function types,
a function call, contains another consumer (which is covariant, as
it follows the current flow of information) in addition to a producer
(which is contravariant, as it reverses the flow of information). It
would be interesting to see if this same pattern follows not only for
ordinary (co-)data types, like pairs and sums, but also more exotic
types that correspond to connectives for logical negation and sub-
traction. In general, this pattern would allow for a generic principle
for inferring the variance of arbitrary user-defined data and co-data
types.

8.4 Parametric polymorphism
Another type feature needed to model modern programming lan-
guages is quantification, i.e., parametric polymorphism. In partic-
ular, universal quantification plays an important role in both func-
tional and modern object-oriented languages, showing up as para-
metric polymorphism in languages like SML and Haskell, and as
generics in Java and C#. Universal quantification allows the pro-
grammer to write generic functions once and for all. For example,
the identity function, which just returns its argument unchanged,
may be given the type ∀a.a→ a, so that the same identity function
may be used at any type, rather than defining a different identity
function for each specific type at which it is used. The dual con-
cept to universal quantification is existential quantification, which
can be used to model representation hiding in terms of modules or
packages in programming languages [60]. For example, we may
represent an abstract definition of integer sets, with operations for
the constant empty set, building singleton sets (Int→ Set), and set
union (Set→ Set→ Set), as the existential type ∃a.a⊗ (Int→
a)⊗(a→ a→ a). This type provides the essential operations, but
hides the actual type used to represent set values. While the code

43 2014/1/23

defining the set operations may use knowledge about the internal
representation, any consumer is prevented from using this knowl-
edge.

It would be interesting to extend the sequent calculus with a
notion of universal quantification. One approach could be based
on type abstraction and instantiation, similar to System F [49, 95]
which avoids the known problems of combining parametric poly-
morphism with computational effects [109, 113] like mutable ref-
erences and control operators. Since type abstraction in System F
is conceptually a function taking a type as a parameter, it should
be modeled as co-data. Using the duality of the sequent calculus,
a formulation for existential quantification as a data structure, con-
taining the packaged term and the hidden type, comes out automat-
ically from the co-data type for universal quantification. The form
of modularity given by existential data types is different from the
form given by ordinary co-data types, similar to the differences be-
tween abstract data types and procedural abstractions [96]. As a
much, much longer term goal, it would be interesting to consider
how these dualities may relate to dependent types. In particular, the
dependent Σ type is conceptually a more advanced notion of exis-
tential quantification, ∃. However, Σ types are represented as prod-
ucts defined by projection (i.e., co-data) rather than the constructed
pair representation of ∃ (i.e., data). This suggests an alternate form
of dependent universal quantification that is dual to Σ types, and
is expressed as a data structure similar to sum types, filling in the
following table of quantification:

co-data data
universal ∀ ?

existential Σ ∃

Furthermore, one feature that has been recently added as an
extension to Haskell is kind polymorphism [114], allowing for
types (and thereby constructors) to vary in the kinds that they
inhabit. Following the discussion in Section 7.3 about the role of
kinds in classifying evaluation strategies, if we were to extend the
parametric sequent calculus with kind polymorphism, would this
also imply some notion of strategy polymorphism?

8.5 Intermediate languages
In lieu of translating a program directly to machine code, modern
compilers often use one or more intermediate languages for rep-
resenting and reasoning about programs. Intermediate languages
can aid in the process of optimizing and translating programs in
two different ways: they provide a simpler core system that is eas-
ier to reason about, or they expose lower-level execution details
that the compiler may take advantage of. For example, GHC, the
primary compiler for Haskell, uses a core intermediate language
FC [108] based of an extension of System Fω [50], a λ-calculus
with parametric polymorphism and data types. GHC’s core lan-
guage provides a simpler setting for understanding Haskell pro-
grams by translating many of the advanced Haskell features, like
type classes and GADTs, to a foundational core. Alternately, some
compilers like SML/NJ use a continuation-passing style (CPS) in-
termediate language [5] which inverts a program so that the current
step of evaluation is in focus and the evaluation context is reified
into a continuation, a function waiting for a value before resuming
evaluation, thereby explicitly exposing the evaluation order in the
syntax of the program.

It would be interesting to test if the parametric sequent calcu-
lus is a good fit as an intermediate representation in a compiler.
On the one hand, we illustrated in Section 4 how the sequent cal-
culus forms a model of computation that is similar to an abstract
machine [23, 76], where a function call is reified into a literal call-
stack in the calculus. This presents a representation of the program
in which the most relevant information about its execution behav-

ior is lifted up to the top of the syntax tree. Lifting up the current
step of execution is especially relevant in a lazy language where lo-
cal bindings contain delayed computation, and may be represented
explicitly in the sequent calculus [14]. On the other hand, we dis-
cussed in Section 7 how the sequent calculus still admits high-level
reasoning in the form of equational reasoning and term reduction
with simple β and η principles, similar to the λ-calculus. In par-
ticular, it would be interesting to experiment with a sequent-based
typed intermediate language as an alternative to GHC’s core lan-
guage FC, to test if it provides a better setting for some of the pro-
gram analyses and optimizations performed by the compiler.

GHC makes extensive use of analyzing the calling patterns
for functions. For instance, as part of its simplification procedure,
GHC expresses some domain-specific optimizations as a set of
user-definable rewrite rules [72], which may transform a program
into an equivalent but (hopefully) more efficient version. As an
example, consider the map operation, which applies a function to
every element in a list. In a pure language like Haskell, mapping a
function g over a list and then mapping a second function f over
that result is the same thing as mapping the composed function
f ◦ g over the original list. We can express this knowledge to the
compiler as a rewrite rule:

forall f g xs. map f (map g xs) = map (f.g) xs

Intuitively, to use this rewrite rule on an expression, the compiler
must first (1) find a place where map is used and (2) check if the
arguments to map match the pattern of the rule. These steps are
hindered by the λ-calculus representation of GHC’s core interme-
diate language, since the identifier map is buried at the bottom of
the tree with its arguments floating in its context. For example, as
was shown in Figure 7, the sequent calculus representation places
a function like map at the top of the syntax tree with all of its argu-
ments listed in order. Furthermore, other optimization procedures
for specializing recursive functions [69] rely on searching for calls
to function identifiers with particular call-patterns. In the sequent
calculus, these call-patterns are subsumed by the ordinary notion
of pattern-matching on a co-term (representing the calling context)
as the dual to pattern-matching on a term.

The main advancement of GHC’s current intermediate language
FC is the addition of equality constraints [108], which are wit-
nesses that two types are the same, and allow for type-safe cast-
ing. Equality constraints have shown to be a useful tool for rep-
resenting various type features and extensions of Haskell, includ-
ing GADTs [71, 104], type families [103], and operationally free
newtype declarations. As it turns out, by correcting the variance
properties for function type equality, FC’s notion of equality con-
straints falls exactly into a subtyping regime, with the addition that
every subtyping relationship is symmetric so that casting may be
performed in both directions. It would be interesting to study FC’s
explicit equality constraints from the framework of subtyping in
the sequent calculus. In particular, how does explicit casting in FC
fit into the interplay between terms, co-terms, and the interactions
between them. Understanding this question would help clarify the
management of type-safe casts in the semantics of FC, and open up
the possibility of subtyping in GHC’s intermediate language, and
possibly later even extending Haskell itself with subtyping.

Other specific points that might be interesting to look into along
this line of research is to:

• Study the correctness of compiler optimizations expressed in
the sequent calculus in terms of observational equivalence [86].
The sequent calculus already gives a setting for explicitly work-
ing with contexts, but the notion of co-terms may need to be
extended to directly formulate observational equivalence.

44 2014/1/23

• Study strictness analysis for lazy functional languages in terms
of the intermediate sequent language with multiple evaluation
strategies (Section 7.2), specifically call-by-need and call-by-
value for Haskell. This would incorporate both the currently
lazy intermediate language and strict constructs into a single a
unified language, different from the approach taken by Strict
Core [17].
• Study the run-time behavior of unboxed types [70] in an inter-

mediate lazy language in terms of multiple evaluation strategies
in the sequent calculus, in order to upgrade strict unboxed types
from “nearly” first-class to fully first-class citizens on par with
lazy boxed types.
• Explore the connection between the virtual function table [35]

(vtable) intermediate representation of objects in languages like
C++ with the co-data representation in the sequent calculus.
In a sequent calculus with (co-)data, encoding strict objects
with vtables appears dual to encoding lazy functional case anal-
ysis as return vectors [68] in Haskell. Intriguingly, the use
of vectored returns in GHC has been reconsidered [82] due
to their negative performance impact on modern processors,
which should prompt a re-examination of vtables.

References
[1] M. Abadi and L. Cardelli. A theory of objects. Springer, 1996. ISBN

978-0-387-94775-4.

[2] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a
unified approach to termination and productivity. In ICFP, pages
185–196, 2013.

[3] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns:
programming infinite structures by observations. In POPL, pages
27–38, 2013.

[4] J.-M. Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[5] A. W. Appel and D. B. Macqueen. Standard ml of new jersey. In
Third Int’l Symp. on Prog. Lang. Implementation and Logic Pro-
gramming, pages 1–13. Springer-Verlag, 1991.

[6] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J.
Funct. Program., 7(3):265–301, 1997.

[7] Z. M. Ariola and H. Herbelin. Minimal classical logic and control
operators. In ICALP, pages 871–885, 2003.

[8] Z. M. Ariola and H. Herbelin. Control reduction theories: the benefit
of structural substitution. J. Funct. Program., 18(3):373–419, 2008.

[9] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler.
The call-by-need lambda calculus. In POPL, pages 233–246, 1995.

[10] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation
of continuations and prompts. In ICFP, pages 40–53, 2004.

[11] Z. M. Ariola, H. Herbelin, and A. Sabry. A proof-theoretic founda-
tion of abortive continuations. Higher-Order and Symbolic Compu-
tation, 20(4):403–429, 2007.

[12] Z. M. Ariola, A. Bohannon, and A. Sabry. Sequent calculi and
abstract machines. ACM Trans. Program. Lang. Syst., 31(4):13:1–
13:48, May 2009. ISSN 0164-0925. doi: 10.1145/1516507.1516508.
URL http://doi.acm.org/10.1145/1516507.1516508.

[13] Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and
duality. In TLCA, volume 6690 of lncs, 2011.

[14] Z. M. Ariola, P. Downen, H. Herbelin, K. Nakata, and A. Saurin.
Classical call-by-need sequent calculi: The unity of semantic arti-
facts. In FLOPS, pages 32–46, 2012.

[15] H. Barendregt. Introduction to generalized type systems. Journal of
Functional Programming, 1(2):125–154, 1991.

[16] A. Bauer and M. Pretnar. Programming with algebraic effects and
handlers. Mathematics and Computation, abs/1203.1539, 2012.

[17] M. C. Bolingbroke and S. L. P. Jones. Types are calling conventions.
In Proceedings of the Second ACM SIGPLAN Symposium on Haskell,
pages 1–12, 2009.

[18] R. Cartwright and M. Felleisen. Extensible denotational language
specifications. In TACS, pages 244–272, 1994.

[19] A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 2:33, 346–366, 1932.

[20] A. Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345–363, Apr. 1936.

[21] T. Coquand. Une théorie des Constructions. Dissertation, University
Paris 7, Jan. 1985.

[22] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract
machine. Science of Computer Programming, 8(2):173 – 202, 1987.
ISSN 0167-6423.

[23] P.-L. Curien and H. Herbelin. The duality of computation. In
International Conference on Functional Programming, pages 233–
243, 2000.

[24] P.-L. Curien and G. Munch-Maccagnoni. The duality of computation
under focus. Theoretical Computer Science, pages 165–181, 2010.

[25] H. B. Curry, R. Feys, and W. Craig. Combinatory Logic, volume 1.
North-Holland, 1958.

[26] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: sequent
calculi for second order logic based upon dual linear decompositions
of the classical implication. In Advances in Linear Logic, volume
222, pages 211–224. Cambridge University Press, 1995.

[27] O. Danvy and A. Filinski. A functional abstraction of typed contexts.
Technical Report 89/12, DIKU, University of Copenhagen, Copen-
hagen, Denmark, 1989.

[28] O. Danvy and A. Filinski. Abstracting control. In LISP and Func-
tional Programming, pages 151–160, 1990.

[29] M. Davis. The Undecidable: Basic Papers on Undecidable Propo-
sitions, Unsolvable Problems, and Computable Functions. Dover
Publication, 1965.

[30] N. de Bruijn. Automath, a language for mathematics. Technical Re-
port 66-WSK-05, Technological University Eindhoven, Nov. 1968.

[31] P. Downen and Z. M. Ariola. A systematic approach to delimited
control with multiple prompts. In ESOP, pages 234–253, 2012.

[32] P. Downen and Z. M. Ariola. The duality of construction. In ESOP,
2014.

[33] M. Dummett. The logical basis of methaphysics. In The William
James Lectures, 1976. Harvard University Press, Cambridge, Mas-
sachusetts, 1991.

[34] R. K. Dybvig, S. P. Jones, and A. Sabry. A monadic framework
for delimited continuations. Journal of Functional Programming,
17(06):687–730, 2007.

[35] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Man-
ual. Addison-Wesley, 1990. ISBN 0-201-51459-1.

[36] M. Felleisen. The theory and practice of first-class prompts. In
POPL, pages 180–190, 1988.

[37] M. Felleisen. On the expressive power of programming languages.
Science of Computer Programming, 17(1-3):35–75, 1991.

[38] M. Felleisen and D. Friedman. Control operators, the secd machine,
and the lambda calculus. In Formal Descriptions of Programming
Concepts, pages 193–219, 1986.

[39] M. Felleisen and D. P. Friedman. A reduction semantics for impera-
tive higher-order languages. In PARLE (2), pages 206–223, 1987.

[40] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theor. Comput. Sci., 103(2):235–271,
1992.

[41] M. Felleisen, M. Wand, D. P. Friedman, and B. F. Duba. Abstract
continuations: A mathematical semantics for handling full jumps. In
LISP and Functional Programming, pages 52–62, 1988.

[42] A. Filinski. Declarative continuations and categorical duality. Mas-
ter’s thesis, Computer Science Department, University of Copen-
hagen, 1989.

45 2014/1/23

http://doi.acm.org/10.1145/1516507.1516508

[43] A. Filinski. Representing monads. In POPL, pages 446–457, 1994.

[44] A. Filinski. Representing layered monads. In POPL, pages 175–188,
1999.

[45] A. Filinski. Monads in action. In POPL, pages 483–494, 2010.

[46] M. J. Fischer. Lambda-calculus schemata. Lisp and Symbolic Com-
putation, 6(3-4):259–288, 1993.

[47] G. Gentzen. Investigations into logical deduction. In M. Szabo,
editor, Collected papers of Gerhard Gentzen, pages 68–131. North-
Holland, 1969.

[48] E. Giménez. Un Calcul de Constructions Infinies et son application
a la vérification de systèmes communicants. Ph.D. thesis, Ecole
Normale Supérieure de Lyon, Dec. 1996.

[49] J.-Y. Girard. Une extension de l’interpretation de gödel à l’analyse,
et son application à l’élimination des coupures dans l’analyse et la
théorie des types. In J. Fenstad, editor, Second Scandinavian Logic
Symposium, number 63 in Studies in Logic and the Foundations of
Mathematics, pages 63–92. North Holland, 1971.

[50] J. Y. Girard. Interprtation fonctionnelle et elimination des coupures
de l’arithmtique d’ordre suprieur. These d’tat, Universit de Paris 7,
1972.

[51] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[52] J.-Y. Girard. A new constructive logic: Classical logic. Mathematical
Structures in Computer Science, 1(3):255–296, 1991.

[53] J.-Y. Girard. On the unity of logic. Annals of Pure Applied Logic, 59
(3):201–217, 1993.

[54] J.-Y. Girard. Locus solum: From the rules of logic to the logic of
rules. Mathematical Structures in Computer Science, 11(3):301–506,
2001.

[55] K. Gödel. On undecidable propositions of formal mathematical
systems. in [29], 1934. lecture notes taken by Stephen C. Kleene
and J. Barkley Rosser.

[56] T. Griffin. A formulae-as-types notion of control. In POPL, pages
47–58, 1990.

[57] C. A. Gunter, D. Rémy, and J. G. Riecke. A generalization of excep-
tions and control in ML-like languages. In Functional Programming
Languages and Computer Architecture ’95, pages 12–23, New York,
NY, USA, 1995. ACM. ISBN 0-89791-719-7.

[58] T. Hagino. A typed lambda calculus with categorical type construc-
tors. In Category Theory and Computer Science, pages 140–157,
1987.

[59] T. Hagino. Codatatypes in ml. J. Symb. Comput., 8(6):629–650,
1989.

[60] R. Harper. Practical foundations for programming languages. Cam-
bridge University Press, 2012.

[61] H. Herbelin. A lambda-calculus structure isomorphic to gentzen-
style sequent calculus structure. In CSL, pages 61–75, 1994.

[62] H. Herbelin. Séquents qu’on calcule: de l’interprétation du calcul
des séquents comme calcul de λ-termes et comme calcul de stratégies
gagnantes. Ph.D. thesis, University Paris 7, Jan. 1995.

[63] H. Herbelin. C’est maintenant qu’on calcule. In Habilitation à
diriger les reserches, 2005.

[64] H. Herbelin and S. Ghilezan. An approach to call-by-name delimited
continuations. In POPL, pages 383–394, 2008.

[65] W. A. Howard. The formulae-as-types notion of constructions. In
to H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism. Academic Press, 1980. Unpublished manuscript of 1969.

[66] G. P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

[67] The Coq Proof Assistant Reference Manual. INRIA, version 8.4
edition, 2012.

[68] S. L. P. Jones. Implementing lazy functional languages on stock
hardware: The spineless tagless g-machine. J. Funct. Program., 2
(2):127–202, 1992.

[69] S. L. P. Jones. Call-pattern specialisation for haskell programs. In
ICFP, pages 327–337, 2007.

[70] S. L. P. Jones and J. Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In FPCA, pages 636–
666, 1991.

[71] S. L. P. Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for gadts. In ICFP, pages 50–61,
2006.

[72] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting
as a practical optimisation technique in ghc. In In Haskell Workshop,
pages 203–233. ACM SIGPLAN, 2001.

[73] A. C. Kay. The early history of smalltalk. In HOPL Preprints, pages
69–95, 1993.

[74] R. Kelsey, W. D. Clinger, and J. Rees. Revised5 report on the
algorithmic language scheme. SIGPLAN Notices, 33(9):26–76, 1998.

[75] O. Kiselyov. Delimited control in OCaml, abstractly and concretely:
System description. Functional and Logic Programming, pages 304–
320, 2010.

[76] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

[77] J. Lambek and P. J. Scott. Introduction to higher-order categorical
logic, volume 7. Cambridge University Press, 1988.

[78] O. Laurent. Etude de la polarisation en logique. Thèse de doctorat,
Université Aix-Marseille II, Mar. 2002.

[79] P. B. Levy. Call-by-push-value: A subsuming paradigm. In TLCA,
pages 228–242, 1999.

[80] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
POPL, pages 47–57, 1988.

[81] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. J. Funct. Program., 8(3):275–317, 1998.

[82] S. Marlow, A. R. Yakushev, and S. L. P. Jones. Faster laziness using
dynamic pointer tagging. In ICFP, pages 277–288, 2007.

[83] C. Mcbride. The derivative of a regular type is its type of one-hole
contexts (extended abstract). unpublished manuscript, available via
http://strictlypositive.org/diff.pdf. conor mcbride and
ross paterson. applicative programming with effects, 2001.

[84] C. McBride. Clowns to the left of me, jokers to the right (pearl):
dissecting data structures. In POPL, pages 287–295, 2008.

[85] E. Moggi. Computational λ-calculus and monads. In Logic in
Computer Science, 1989.

[86] J. H. Morris. Lambda Calculus Models of Programming Languages.
Ph.D. thesis, Massachusetts Institute of Technology, 1968.

[87] G. Munch-Maccagnoni. Focalisation and classical realisability. In
Computer Science Logic, pages 409–423. Springer, 2009.

[88] N. Oury. Coinductive types and type preservation. Message on the
coq-club mailing list, June 2008.

[89] M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of
classical natural deduction. In LPAR 92. Springer-Verlag, 1992.

[90] F. Pfenning and R. Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511–540,
2001.

[91] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theoretical Comput. Sci., 1:125–159, 1975.

[92] G. D. Plotkin and J. Power. Notions of computation determine
monads. In FoSSaCS, pages 342–356, 2002.

[93] D. Prawitz. On the idea of a general proof theory. Synthese, 27(1):
63–77, 1974.

[94] M. Pretnar. The Logic and Handling of Algebraic Effects. Ph.D.
thesis, University of Edinburgh, 2010.

[95] J. C. Reynolds. Towards a theory of type structure. In B. Robinet,
editor, Symposium on Programming, volume 19 of Lecture Notes in
Computer Science, pages 408–423. Springer, 1974. ISBN 3-540-
06859-7.

46 2014/1/23

http://strictlypositive.org/diff.pdf

[96] J. C. Reynolds. User-defined types and procedural data structures as
complementary approaches to data abstraction. In C. A. Gunter and
J. C. Mitchell, editors, Theoretical aspects of object-oriented pro-
gramming, pages 13–23. MIT Press, Cambridge, MA, USA, 1994.
ISBN 0-262-07155-X. URL http://dl.acm.org/citation.
cfm?id=186677.186680.

[97] J. C. Reynolds. Definitional interpreters for higher-order program-
ming languages. Higher-Order and Symbolic Computation, 11(4):
363–397, 1998.

[98] J. C. Reynolds. What do types mean?: From intrinsic to extrinsic
semantics. In A. McIver and C. Morgan, editors, Programming
Methodology, pages 309–327. Springer-Verlag New York, Inc., New
York, NY, USA, 2003. ISBN 0-387-95349-3. URL http://dl.
acm.org/citation.cfm?id=766951.766967.

[99] S. Ronchi Della Rocca and L. Paolini. The Parametric λ-Calculus:
a Metamodel for Computation. Springer-Verlag, 2004.

[100] A. Sabry and M. Felleisen. Reasoning about programs in
continuation-passing style. SIGPLAN Lisp Pointers, V(1):288–298,
Jan. 1992. ISSN 1045-3563. doi: 10.1145/141478.141563. URL
http://doi.acm.org/10.1145/141478.141563.

[101] A. Sabry and M. Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 6(3-4):
289–360, 1993.

[102] A. Sabry and P. Wadler. A reflection on call-by-value. ACM Trans.
Program. Lang. Syst., 19(6):916–941, 1997.

[103] T. Schrijvers, S. L. P. Jones, M. M. T. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In ICFP, pages 51–62,
2008.

[104] T. Schrijvers, S. L. P. Jones, M. Sulzmann, and D. Vytiniotis. Com-
plete and decidable type inference for gadts. In ICFP, pages 341–
352, 2009.

[105] P. Selinger. Control categories and duality: on the categorical seman-
tics of the lambda-mu calculus. MSCS, 11(2):207–260, 2001.

[106] P. Selinger. Some remarks on control categories. Manuscript, 2003.
[107] S. Singh, S. P. Jones, U. Norell, F. Pottier, E. Meijer, and

C. McBride. Sexy types—are we done yet? Software Summit, Apr.
2011. URL https://research.microsoft.com/apps/video/
dl.aspx?id=150045.

[108] M. Sulzmann, M. M. T. Chakravarty, S. L. P. Jones, and K. Donnelly.
System f with type equality coercions. In TLDI, pages 53–66, 2007.

[109] M. Tofte. Type inference for polymorphic references. Inf. Comput.,
89(1):1–34, 1990.

[110] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London mathematical
society, 42(2):230–265, 1936.

[111] P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of
ICFP, pages 189–201. ACM, 2003.

[112] P. Wadler. Call-by-value is dual to call-by-name–reloaded. Term
Rewriting and Applications, pages 185–203, 2005.

[113] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–355, 1995.

[114] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and
J. P. Magalhães. Giving haskell a promotion. In TLDI, pages 53–66,
2012.

[115] N. Zeilberger. Focusing and higher-order abstract syntax. In POPL,
pages 359–369, 2008.

[116] N. Zeilberger. On the unity of duality. Annals of Pure Applied Logic,
153(1-3):66–96, 2008.

[117] N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-
Matching. PhD thesis, Carnegie Mellon University, 2009.

47 2014/1/23

http://dl.acm.org/citation.cfm?id=186677.186680
http://dl.acm.org/citation.cfm?id=186677.186680
http://dl.acm.org/citation.cfm?id=766951.766967
http://dl.acm.org/citation.cfm?id=766951.766967
http://doi.acm.org/10.1145/141478.141563
https://research.microsoft.com/apps/video/dl.aspx?id=150045
https://research.microsoft.com/apps/video/dl.aspx?id=150045

	Introduction
	Natural deduction: logic, programming, and categories
	Logic
	Programming languages
	Category theory
	The Curry-Howard isomorphism

	A critical look at the -calculus
	The sequent calculus
	Consistency and cut elimination
	Logical duality in the sequent calculus
	The sequent calculus as a language

	The duality of evaluation
	Confluence and evaluation strategy
	Classical computation and the devil's choice
	Call-by-value is dual to call-by-name

	The unity of duality
	Polarization and focalization
	Positive connectives
	Negative connectives
	Synthetic connectives and deep patterns
	Combining polarities

	A retrospective
	A parametric theory of the sequent calculus
	User-defined data and co-data types
	Composing strategies

	Future directions
	Computational effects
	Induction and co-induction
	Subtyping
	Parametric polymorphism
	Intermediate languages

