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Abstract

Artificial intelligence and machine learning research is dedicated to building intelligent ar-
tifacts that can imitate or even transcend the cognitive abilities of human beings. To emulate
human cognitive abilities with intelligent artifacts, one must first render machines capable of
capturing critical aspects of sensory data, with adequate data representations and performing
reasoning and inference with formal knowledge representations. In recent years, the research
in deep learning and knowledge engineering has made wide impact on the two problems of
data and knowledge representations. Deep learning is a set of machine learning algorithms that
attempt to model data representations through many layers of non-linear transformations. Hi-
erarchical, distributed, and efficient data representations can be learned through deep learning
models with proper training algorithms. The learned data representation can disentangle the
hidden explanation factors and variations in the input data that are critical for further artificial
intelligence and machine learning tasks. Additionally, the research in knowledge engineering
has frequently focused on modeling the high level human cognitive abilities, such as reasoning,
making inferences, and validation. The formal knowledge representation facilitates knowledge
reusing and sharing in a machine processable way. It also promotes many advances in the
field of semantic data mining which refers to the data mining tasks that systematically incorpo-
rate domain knowledge, especially formal semantics, into the data mining process. Empirical
studies have attested that formal knowledge representations can make positive influences in all
stages of both the data mining and machine learning processes. Inspired by the success of both
deep learning and semantic data mining, we hypothesize that formal knowledge representations
have the potential to assist in the deep learning process as well. In this report, we summarize
the advances in both deep learning and semantic data mining in recent years. We illustrate how
learning models with deeper architectures are capable of constructing better data representa-
tions for further artificial intelligence and machine learning tasks. We also demonstrate how
formal knowledge representation can assist in data mining process at all data mining stages,
from various perspectives. At last, we present our thoughts and intuitions on semantic deep
learning, which addresses the topic of learning deep data representation with the assistance of
formal knowledge representation.

1 Introduction

Human beings have long been picturing the dreaming of building intelligent artifacts that can com-
prehend and imitate human cognitive intelligent behaviors. Ancient Greeks passed down tales of
conceived intelligent objects, such as intelligent anvils and hammers that can manufacture weapons
and animated statues that can play chess. Science fictions envision our future with pervasive artifi-
cial intelligences that could automate routine labor, understand speech or images, make diagnoses
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in medicine, and support basic scientific research. Since the very first devising of a computer, peo-
ple have started to conceive the idea that it could become intelligent. Using computers to model
our world and to proceed with intelligent tasks has been the main focus of artificial intelligence
(AI) [137] and machine learning (ML) [115] research over the past century. Today, AI and ML are
thriving fields with many practical applications and active research topics.

Using computers to transcend human limits and build artifacts and solutions to problems is an
indeed breathless undertaking. However, such tasks have never been trivial ones. Many progresses
in AI and ML research have been made to understand and improve learning algorithms. However,
human beings exhibits such exceptionally complex intelligent abilities that contemporary research
has not yet obtained satisfactory solutions for most of AI and ML tasks. We do not yet have al-
gorithms that can understand scenes and describe them in natural language, except in very limited
settings. We lack of methods that can infer enough semantic concepts to interact with most humans
using these concepts. If we consider image recognition, one of the most fundamental AI tasks, we
found that we do not yet have algorithms that can discover the semantic concepts from image that
are necessary to interpret most of them.

The complexity of human intelligent behaviors mostly derives from the sophisticated yet del-
icate structure of the cognitive center of human being, the human brain. The human brain is a
complicated network contains around eighty-six billion neurons. Contemporary neural science re-
search has demonstrated that such neural networks of the human brain should account for almost
all of the cognitive activities of human being. Science and technology often treat natural inspira-
tions with great caution; so is artificial intelligence. When computer scientists first start to conceive
the idea of building intelligent artifacts with ability of learning and reasoning, an artificial neural
network (ANN) [18, 115] seems to be the most natural and rational counter part of human brain.

1.1 The importance of depth: From Neural Network to Deep Learning

Early designs of ANNs are usually feedforward networks with large amounts of connected, non-
linear processing units, called artificial neurons, organized in layers. While ANNs have made pro-
nounced progresses in many AI and ML applications, many challenges persist in ANNs, and their
performances are often far from satisfactory [54]. The deficiencies of ANNs come from multiple
facets, of which the most important one should account for the difficulty to build an effective ANN
with deep-architecture (non-linear transformation with more than 3 layers) [19, 54]. Previous em-
pirical studies have shown that deeper neural networks, with larger quantities of processing units
and greater depth, were generally found to be not better, and often worse, than neural networks
with one or two hidden layers [169]. The reason for such roughness should mostly account for the
difficulty in training; i.e., classical training methods that proved effective for shallow-architectures
are not as effective when adapted to deeper models.

For example, back-propagation (BP) [135] was the first and most popular computational model
for the training of feed-forward ANNs. Training ANN with BP requires labeled data, which are,
in practice, hard to obtain with a great amount. Adding more layers to a neural network also di-
minishes the error back-propagated to the lower layers, which makes the training process hard to
converge [176, 64]. Overfittings are pervasive when training complex models with a large number
of parameters. The training of BP usually accounts for the local gradient information with a ran-
dom initial point. As the feature space of ANN is often highly non-linear, the training gets trapped
in poor local optimals and plateaus easily [16]. Such severity increases drastically along with the
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depths of the network. Therefore, for many similar reasons similar to the ones above, in the past two
decades, AI and ML researchers have often preferred to limit the depth of machine learning models
to within only one or two layers. The trends of machine learning models once shifted from neural
network models to shallow models with a mostly convex loss function.

The depth issue of machine learning models persisted until 2006, when the first break through
was made in designing and training with many layers of Restricted Boltmann Machines (RBM) [66,
64]. RBM is a probabilistic graphic model that can be interpreted as both a generative model
and a stochastic neural network. This special property renders RBM the ability to make good
use of both unlabeled data and labeled data in the training process. As a generative model, RBM
learns a representation of data, instead of classifying them as in the traditional neural networks.
Training with unlabeled data proceeds in a greedy layer-wise pre-training process that has a time
complexity linear to the size of the network. Through the pre-training process, the DBN parameters
are initialized to a point that is closer to the global optimum. This alleviates the pervasive local
optimal problems that occur in the traditional training of neural networks. As a discriminative
model, fine-tuning through back-propagation further adjusts the model parameters with labeled data
as a stochastic neural network. While it is still possible for DBNs to fall into local optimal, they
now have much larger probabilities to stay closer with the global optimum, due to the pre-training.

In the following years, RBM based deep networks demonstrated exceptional performance in
many AI and ML tasks [34, 52, 117]. The importance of depth in learning models raised wide
attentions in AI and ML research communities. The term deep learning is formally defined as the
learning model with many layers of non-linear transformations. The machine learning model in
deep learning is often called deep-architecture, while previous machine learning machine models
with only transformation of only one of two layers are often called shallow-architecture. Later on,
AI and ML communities started to ponder about deep learning models in various other forms. The
deep convolution neural networks (CNN) were designed to effectively train data with topological
structures and strong local correlations, such as image and speech [88, 70]. Deep conditional RBM
were proposed to model time-series data, especially data of human motion [117]. Natural language
processing often uses deep recurrent neural networks, in which dependencies from previous inputs
could well assist in the prediction of the next word [150, 151]. In the domain of speech recogni-
tion, artificial neural network based Hidden Markov Model (ANN-HMM) replaced the traditional
Gaussian Mixture Hidden Markov Model (GMM-HMM) with better recognition accuracy [38, 63].
Many researcher have also detected performance gain by stacking shallow-architectures with proper
designed architecture and training algorithm. Popular stacked shallow-architecture models include,
deep support vector machine (SVM) network [30, 43], deep conditional random field network [44],
deep sparse coding network [93], so on and so forth. Learning with deep-architecture is now a hot
topic in many fields of computer science research.

Deep learning now has made significant impacts on a wide range of scopes, including key
aspects of machine learning and artificial intelligence. Empirical studies of many deep learning al-
gorithms have demonstrated its success in diverse applications for traditional AI and ML practices,
including computer vision [144, 46, 88, 164, 166], speech and phonetic recognition [89, 34, 42, 143]
and signal processing [118, 36, 63], object recognition [64, 16, 31, 88], information retrieval [140,
65], natural language processing [163, 177, 111], multi-task and multi-modal learning [155, 121],
robotics [145, 95], and many other domains. Pervasive successes of deep learning algorithms have
lead to deep speculations and wide discussions in AI and ML communities. Theoretical researcher
have identified many key characteristics by which deep architecture and related algorithms can
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maximize their performances for distinct tasks [13, 11], such as deep-architecture, distributed rep-
resentation, and making use of unlabeled data. Many of these characteristics in deep learning were
found to coincide with the architecture of the biological neural network, especially the visual and
auditory cortexes of human brain. Comparably, deep learning methods have demonstrated excep-
tional performance in processing low-level sensory data, such as image and speech data.

1.2 Modeling the high-level cognitive ability: Knowledge Engineering, Ontology,
and Semantic Data Mining

Although the deep-architectures have demonstrated exceptional performances in processing low-
level sensory data, few evidences have shown the association of deep learning with high-level
cognitive abilities of human being, such as reasoning, making inferences, comprehending, and in-
terpreting human knowledge. Previous AI researchers have devoted many efforts to addressing the
such abilities through a subfield of AI, the knowledge engineering (KE) [137]. KE is a research field
that is dedicated to developing techniques to build and reuse formal knowledge in a systematic way.
In the past few decades, the proliferation of knowledge engineering (KE) has remarkably enriched
the family of formal knowledge representation. Ontology is one of the successful knowledge engi-
neering advances, which is the explicit specification of a conceptualization [58, 156]. Normally, an
ontology is developed to specify a particular domain (e.g., genetics). Such an ontology, often known
as a domain ontology, formally specifies the concepts and relationships in that domain. The encoded
formal semantics in ontologies are primarily used for effectively sharing and reusing of knowledge
and data. Prominent examples of domain ontologies include the Gene Ontology (GO [170]), Uni-
fied Medical Language System (UMLS [97]), and more than 300 ontologies in the National Center
for Biomedical Ontology (NCBO [2]). The ontologies that formally represent domain knowledge,
including structured collection of prior information, inference rules, knowledge-enriched datasets,
etc., could thus develop frameworks for systematic incorporation of domain knowledge in an intel-
ligent data mining environment.

The formal knowledge representation facilitates the knowledge reusing and sharing in a ma-
chine processable way. Advances in semantic data mining have also attested that formal knowledge
representation could well assist in the data mining and machine learning process. Semantic Data
Mining refers to data mining tasks that systematically incorporate domain knowledge, especially
formal semantics, into the process. The effectiveness of domain knowledge in data mining has been
attested in past research efforts, in both empirical and theoretical studies. Fayyad et al. [51] claimed
that formally encoded domain knowledge can play an important role in all stages of data mining
including, data transformation, feature reduction, algorithm selection, post-processing, model in-
terpretation, and so forth. Russell and Norvig [137] believed that an intelligent agent (e.g., a data
mining system) must have the ability to obtain background knowledge and should learn knowledge
more effectively with the background knowledge.

The formal knowledge representations play such a role in semantic data mining that the en-
coded rich semantics could fundamentally promote the performance of data mining from many
perspectives. The formal knowledge can bridge the semantic gap between the data, applications,
data mining algorithms, and data mining results. It has have been shown that formal knowledge can
reduce semantic gap through semantic aware preprocessing [83, 126, 165], semantic data annota-
tion [48, 85]. Formal knowledge can also provide data mining algorithms with a priori knowledge
which either guides the mining process or reduces/constrains the search space. It could influence
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the semantic similarities of entities in the search space, in the form of graph or hypergraph; [98] or
it could incorporate ontology as consistency constraints into multiple related classification tasks [9]
and information extractors in information extraction tasks [26]. It could prune the data mining re-
sults with consistency checking, presented post-processing of the association rule mining [104, 105].
The formal knowledge can provide a formal way for representing the data mining flow, from data
postprocessing of mining results. In ontology-based information extraction (OBIE) [119, 179], the
extracted information is a set of annotated terms from the document, with the relations defined in
the ontology. It is therefore straight-forward to represent the extracted information with ontology.

Empirical studies of semantic data mining research have attested the positive influence of do-
main knowledge on data mining. The data preprocessing can benefit from domain knowledge that
it can help filter out the redundant or inconsistent data [83, 126]. During the searching and pattern
generating processes, domain knowledge can work as a set of prior knowledge of constraints to help
reduce search space and guide the search path [9, 10]. Further more, the discovered patterns can be
cleaned out [104, 103] or made more visible by encoding them in the formal structure of knowledge
engineering [179].

1.3 Bridging the semantic gap: Semantic Deep Learning

Based on the success of both deep learning and semantic data mining, we have more reasons to hy-
pothesize that the formal knowledge representations have the potential to assist in the deep learning
process as well. The study of semantic data mining has attested the positive influences of formal
knowledge on data mining and machine learning: that they often present results with better preci-
sion, recall, consistency, and richer semantics. However, in most semantic data mining research,
the potential of the rich semantics encoded in formal knowledge representations was usually not
fully explored. In knowledge engineering, domain knowledge is usually encoded in a highly for-
mal and abstract way, for example, formal logic, that in many scenarios it is often impractical to
apply abstract semantic directly on raw data. Researchers commonly realize that there is often a
large semantic gap between the raw data and formal knowledge representation. For such reasons,
many semantic data mining practices tend to transform the formal knowledge representation into a
form with reduced semantics, for example, a graph of connected entities, to bridge the gap between
formal semantics and raw data. Such transformation will result in a loss of information and many
useful aspects of formal knowledge representation. The reasoning abilities of formal knowledge,
such as consistency checking and inferencing, were mostly applied on the data pre-processing, post-
processing of the data, or data mining results rather than the key stages of the data mining process,
including model design and training.

Fortunately, previous studies of deep learning have identified one key characteristic of using
deep-architecture in machine learning and data mining, that is the data representations learned often
corresponds to more abstract human cognitive concepts. Due to the large depth of the deep learning
architecture, features and data representations can be learned in increasing levels of abstractions
that higher level of features and concepts were often attested to have encoded closer semantics
with human cognitive concepts [70, 94, 84], such as image scenes [46], sentiments [164, 152, 151],
semantics of speech and natural language [35, 36]. Based on such fact, it is nature to speculate
that deep learning can be a better formalism to incorporate the formal knowledge into the machine
learning process through the such reduced semantic gap [13].

On the other hand, even though the deep-architectures have demonstrated the potential of reduc-
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ing the semantic gap between data and formal knowledge representation, evidences are still scarce
that current deep learning can fully explored such limit of data mining without the involvement
of priori knowledge. For example, no deep learning technique have made use of the taxonomy
constraints between labels in classification and recognition tasks, or potential semantic relations in
feature space of object recognition tasks. Further more, no deep learning model has ever addressed
the problem of modeling the high level cognitive intelligent abilities, such as reasoning, inferencing
or validation, all of which have been well studied in the many year of the research of knowledge
engineering.

The advances in both deep learning and semantic data mining have gave raise the hope to com-
pensate their deficiencies for each other. With the abstract representation build by deep-architecture,
it is reasonable to expect that formal knowledge representation has better potential to be applied on
the data representation learned by deep-architecture in semantic rich way. With the assistant of for-
mal knowledge, it is promising to expect the deep learning process to obtain the ability to model
not only the representation of data, but also high level cognitive abilities of human being. We
hypothesize that the formal knowledge representation could well assist in many aspects of deep
learning process in a similar way as in semantic data mining, including deep-architecture design-
ing, parameter tunning, representation explaining and result interpretation. We formally define the
term, semantic deep learning, as the deep learning technique with the assistant of formal knowledge
representation.

In this report, we exploit the possibility of semantic deep learning with the most popular form of
formal knowledge, ontology. We start by making a brief introduction to the deep learning techniques
in section 2 and some popular deep learning architectures and variants in section 3; in section 4
we describe few key characteristics of deep learning techniques, especially the ones that have the
potential to assist in the semantic deep learning process; in section 5, we introduce the current
advances in semantic data mining, specifically the ontology based approaches; in section 6 we
present the major applications of semantic data mining and in section 7 we summarize the common
ways that ontologies assist in semantic data mining, i.e. the roles that ontologies usually play in
the semantic data mining process; finally in section 8 we present the thoughts and intuitions we
currently have of the ontology based semantic deep learning.

2 Introduction to Deep Learning

Deep learning [66, 11, 64] refers to a set of machine learning algorithms that can learn the data
representation and feature extraction with many layers of non-linear transformations. As shown
in figure 1, a typical deep learning architecture, deep-architecture, resembles an artificial neural
network, yet has many more layers of non-linear processing units. Deep learning is often called
representation learning when it is necessary to highlight its importance in automatic feature and
representation learning from data. A hierarchical, distributed, efficient data representation can be
learned with deep-architecture in which higher level features and representations are defined in
terms of the ones from lower layers. Features and data representations are learned in increasing
levels of abstractions that higher layers are often found to have encoded representations with closer
semantics with human cognitive concepts.

Deep learning is also often called deep structure learning in order to emphasize the distributed
natural of its learned representation. The higher level features and data representations are con-
structed from a distributed subset of lower level components. Such distributed data representation
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Figure 1: A deep-architecture usually consists of many layers of non-linear transformations. Fea-
tures and data representations in a deep-architecture are often learned in increasing level of abstrac-
tion. Processing units in low level layers often learn low level features and data representations, e.g.
edges of objects, while high level layers can learn more abstract representations from lower layer
processing units, e.g. human face.

promotes the reuse of low-level features so that representations are learned in a succinct and efficient
way. Bengio et al. claimed that the distributed representations in deep learning are often exponen-
tially more efficient than many machine learning models [17]. Such efficiency potentially allows the
deep learning techniques to get around with the pervasive curse of the dimensionality problem [15]
in many previous machine learning techniques, especially for the ones with local smooth priori.

Deep learning is now a thriving field with many practical applications and active research topics.
Empirical studies of many deep learning algorithms have demonstrated its success in diverse range
of traditional AI and ML practices, including computer vision [144, 46, 88, 164, 166], speech and
phonetic recognition [89, 34, 42, 143] and signal processing [118, 36, 63], object recognition [64,
16, 31, 88], information retrieval [140, 65], natural language processing [163, 177, 111], multi-task
and multi-modal learning [155, 121], robotics [95], and many others. Excellent surveys on recent
deep learning research progresses can be found in [12, 13, 11, 17, 96, 14, 141].

In this section, we briefly introduce the major variants of deep architectures proposed in recent
years. Due to space limitation, we focus on summarizations of the major deep learning variants
that have potential to assist the goal of our research, semantic deep learning. We first introduce
one important family of deep-architecture, the Restricted Boltzmann Machine (RBM) based deep-
architecture in section 2.1; we present the deep convolutional neural networks (CNN), which have
wide applications in computer vision and speech, in section 2.3; we introduce the deep autoencoder
in section 2.4; and finally, we briefly summarize other popular deep learning architecture variants
in section 2.5.

2.1 RBM based deep-architecture

RBM based deep learning was first introduced by G. E. Hinton et al. in 2006 [66, 64] in his re-
markable work of RBM based deep autoencoder. RBM is a probabilistic graphic model that can be
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interpreted as both a generative model and a stochastic neural network. This special property ren-
ders RMB based deep-architecture the ability to make use of both unlabeled data and labeled data in
the training process. As a generative model, RBM learns a representation of data distribution instead
of classifying the data as in the traditional neural networks. Training with unlabeled data proceed
through a greedy level-wise unsupervised pre-training process in which weight optimization of pa-
rameters has a time complexity linear to the size of the network. The unsupervised pre-training
initializes the parameters to a point closer to the global optimum. As a stochastic neural network,
the model is further fine-tuned with BP after pre-training with labeled data. Such optimization
process alleviates the pervasive local optimal problem occurred in the traditional neural networks.
While the model is still possible to fall into a local optimal, it has a much better probability to stay
closer with the global optimum with the pre-training and fine-tunning. Based on the success of RBM
based deep autoencoder, many other RBM based deep-architectures were proposed in the following
years. In this section, we will give a brief introduction to important family of the RMB based deep
learning method. Note that as RBM can be used as building block for many other categories of
deep-architecture, such as deep autoencoder and deep sparse coding, many of the important RBM
based deep learning advances are also detailed in next few sections.

2.2 Restricted Boltzman Machine

Restricted Boltzmann machine (RBM) is a probabilistic graphic model that serves as building blocks
for many deep learning models. RBM is a simplified version of the Boltzmann Machine (BM) with
a bipartite connection restriction.

2.2.1 Boltzmann Machine

Boltzmann machine (BM) is a bidirectionally connected network with binary stochastic processing
units. A global energy function E, which indicates the degree of harmony of the network, is usually
defined on the state of the network,

E = −
∑
i< j

wi jsis j +
∑

i

θisi, (1)

in which wi j is weight of the connection between unit i and j, si ∈ {0, 1} is the state of unit i, θi is
a bias which indicate the threshold of activation for unit i. Boltzman machine consists of two types
of units, the visible units v and hidden units h. The v and h correspond to input data and hidden
variation factors respectively. A probabilistic distribution function is defined on each network state
by the engergy function,

p(v, h) =
1
Z

e−E(v,h), (2)

where Z =
∑
v,h

e−E(v,h) is the partition function to normalize the distribution. To train a BM, we

usually compute the gradient of the log-likelihood given a single training example v,

∂lnL(θ | v)
∂θ

= −
∑

h

p(h | v)
∂E(v, h)
∂θ

+
∑
v,h

p(v, h)
∂E(v, h)
∂θ

. (3)
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Figure 2: Restricted Boltzmann Machine

Note that this expression leads to a computation that runs over all values of the variables which
makes the computational complexity intractable. Gibbs sampling based techniques are usually used
to approximate such gradient.

2.2.2 Restricted Boltzmann Machine as probabilistic graphic model

As shown in figure 2, RBM is a simplified BM with restriction that variables in the same layer share
no connections between each other. The energy function of a RBM can be rewritten from equation 1

E(v, h) = −
∑

i ∈ visible

aivi −
∑

i ∈ hidden

bihi −
∑
i, j

vih jwi j. (4)

Under such constraint, the conditional distribution p(h|v) and p(v|h) factorize nicely:

p(h|v) =

n∏
i=1

p(v | hi) (5)

and

p(v|h) =

m∏
j=1

p(h | vi) (6)

Training of a RBM is can be done by gradient ascent from training data set S = {x1, ..., xl}.
Using equation 3, the ascent from training data set can be written as,

∂logp(S )
∂wi j

=
∑
x∈S

∂logp(x)
∂wi j

=
∑
x∈S

−∑
h

p(h | v)
∂E(v, h)
∂θ

+
∑
v,h

p(v, h)
∂E(v, h)
∂θ


=

∑
x∈S

[
Ep(h|v)[vih j] − Ep(h,v)[vih j]

]
=

∑
x∈S

< vih j >p(h|v) − < vih j >p(h,v),

(7)

where the first term is the expectation of ∂E(v,g)
∂wi j

when v is set to the input data, and h are sampled ac-

cording to p(h|x). The second term is the expectation of ∂E(v,g)
∂wi j

when u and g are sampled according
to the joint distribution of p(u, g).
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2.2.3 Restricted Boltzmann Machine as stochastic neural network

Another important property of RBM is that it can be interpreted as a stochastic neural network. In
the RBM, the conditional property of a single variable being one is

p(hi = 1|v) = sigm(
m∑

j=1

wi jv j + ci) (8)

and

p(hi = 1|h) = sigm(
n∑

i=1

wi jh j + bi), (9)

where sigm(x) = 1 / (1 + exp(-x) ) is the logistic function. A RBM can thus be interpreted as a
standard feed-forward neural network with one layer nonlinear processing units. The observation is
mapped to the expected value of the hidden neuron given the observation.

2.2.4 RBM based deep-architecture

Following the sucess of RBM in non-linear dimensional reduction, many other variants of RBM
based deep learning techniques were proposed. Gaussian-Bernoulli RBM (GRBM) [66, 118], Gaus-
sian Gated Boltzmann Machine (GBM) [106, 60] and mean covariance RBM (mcRBM) [34, 131,
87] were often used as the input layer for continuous data. Deep Conditional RBM (CRBM) were
proposed to model time-series data, especially the data of human motion [117, 167]. Deep sparse
DBN [22] follows the biological inspiration of sparse coding in biological neural networks that it
further restrict the RBMs with sparse activation constraint. Convolutional RBM [122] processes the
image data with translation invariant feature learning. Recurrent temporal RBM [161, 116] models
the sequential data in a similar way as recurrent neural network. RBMs were often used as building
blocks for deep autoencoder [174], which will be introduced in detail in section 2.4.

2.3 Deep Convolutional Neural Networks

Convolutional neural network (CNN, ConvNet) is an important family of feed-forward ANN where
each neuron is responsible for local and overlapping receptive fields from lower layer inputs. The
notion of CNN can be traced back to the early 80’s [91] when object recognition tasks were inspired
from biological visual cortex organization. The cells in visual cortex were found to be arranged in
a way that they are only sensitive to small sub-regions of the visual field [72], called local receptive
field. Local receptive fields are tiled to cover the whole visual fields. Typical design of neural
network enables full connections between neurons in adjacent layers. Such design is, however,
inefficient when modeling data with topological structures, such as images and speech (with time-
frequency representation). A general assumption of image and speech data is their 2D structure and
locality of dependencies, i.e. inputs (pixels or speech spectrum) that are spatially or temporally near
by are strongly correlated. CNNs explore such assumption by restricting the lower layer input to a
local area. They have, therefore, much fewer connections and parameters so that they are easier to
train while with theoretically slightly worse performance.

As shown in figure 3, the convolutional layer in CNN learns a set of N feature maps F =

{ f1, ..., fN} through convolution transformation C = {c1, ..., cN}.

fk = ck ⊗ x, (10)

10



Figure 3: Two layers in a convolutional neural network. Each neuron in higher level layer, a local
receptive field, only connects to a set of local neurons.

in which ⊗ is the convolution operator. Typical CNN design often contains other layers, including
weight sharing, pooling, and drop out, to address the problem of translation invariants and overfit-
ting. Shift invariance is obtained by forcing the replication of weight configurations across space.
As shown in figure 3, the weights of local filter enforce to be the same across all local receptive
fields in a feature map. Then pooling layer summarizes a small region R of a local receptive fields
in a feature map in the way that it output the maximum or average these receptive fields.

pR = max
i∈R

fi. (11)

Dropout [67, 154] is usually used to reduce overfitting by randomly setting the output of few neurons
to zero. It was proved to successfully reduce complex co-adaptations of neurons, since a neuron
cannot rely on the presence of particular other neurons [56]. Typical CNNs design usually contains
few fully connected neural network work layers before they output to the final classifier.

2.4 Deep Autoencoder

Autoencoder (AE) is a special type of DNN that learns to reconstruct the data with minimal error,
noise or distortion. Figure 4 shows the typical structure of an autoencoder which usually consists
of two parts, an encoder f (·) and a decoder g(·). An autoencoder learns to reconstruct the input
data x by minimizing a loss function L(r(x), x) between input and reconstruction, where r(x) =

g( f (x)) is the learned reconstruction function. An autoencoder transforms the input data to a desired
representation (also known as the code or the feature vector) at the output layer of the encoder
c = f (x), the code layer. The decoder, on the other hand, is trained to reconstruct the input from the
representation c.

Autoencoder was first introduced in the 1980s by Rumelhart et al. [134] as a dimensionality
reduction technique via unsupervised learning of error propagation. The dimensionality reduction
was enforced though a code layer with a dimension dc smaller than the input dimension dx with min-
imized reconstruction error. Linear auto-encoders can be solved analytically while it were proved
to learn the same subspace as PCA. Like neural networks, non-linear autoencoders are often trained
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Figure 4: A example of deep autoencoder. Deep autoencoder transform the input data into a repre-
sentation in the code layer and recovery the data from the code layer with minimum error.

via variants of back-propagations, such as gradient descent and contrastive descent. Training of non-
linear autoencoders thus suffer from all the deficiencies of the training of neural networks. More-
over for deep autoencoders with more layers of non-linear transformations, the back-propagated
error becomes minuscule when it reaches the input layer. Training of deep autoencoder are thus
often ineffective with poor solutions. These problems were alleviated when RBM based deep au-
toencoder for non-linear dimension reduction was proposed by G.E. Hinton in 2006 [66]. The deep
autoencoder is composed by stacking RBMs. Level-wised greedy pre-training with unlabeled data
reduces the training problems that often occur in autoencoders. A significant performance gain were
observed when it was compared to PCA and logistic PCA.

Deep autoencoders nowadays play an important role in unsupervised learning and transfer learn-
ing. Besides the its impressive application in dimension reduction, the learned representation were
used to boost the performance of subsequent machine learning algortihms. It is then become neces-
sary that the code layer has a dimension larger than the input dimension inorder to learn a richer set
of variations from the input data.It is then become necessary to add regularizations to the autoen-
coder to prevent a identical mapping. Such autoencoders are called regularized autoencoders. Pri-
mary variants of regularized autoencoder include denoising autoencoder, contrastive autoencoder,
and sparse autoencoder. Denoising autoencoder [174, 175] tries to improve the generalization by
learning a robust reconstruction from a noisy input x. Contrastive autoencoder [133] improves the
sensitivity to the input data. It learns to penalize the sensitivity through the Frobenius norm of
the Jacobian J f (x) of the non-linear mapping to encourages the encoder to be contractive in the
neighborhood of the training data. Other variants of deep autoencoder includes autoencoder with
regularizations applied in order to avoid learning a identical mapping, such as weight decay [17]
and sparse coding [93] [22]. Applications of deep autoencoder spreads through many fields natural
language processing [149], speech processing [151] [42].
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2.5 Other deep-architectures

There are many other variants of deep-architectures which target different applications with various
optimization goals and constraints. Stacking shallow-architectures is one of the popular ways to ob-
tain a deep-architecture. Popular stacked shallow-architecture models include, deep support vector
machine (SVM) network [30, 43], deep conditional random field network [44], deep sparse coding
network [127, 93], so on and so forth. Deep recurrent neural network explores the limitation of the
context length that information can cycle in the neural network for arbitrary long time [112]. Sparse
coding [124, 125] also called dictionary learning, learns an over-complete set of basis with sparse
activations. The representation of input data is a linear superposition of the basis functions φi(x, y)
and the parameters ai under sparse constraints. The input data is represented by

I(x, y) =
∑

i

aiφi(x, y). (12)

The learning of sparse code usually involves an optimization of a loss function with two compo-
nents, information loss and sparse constraint:

E = −[In f ormation loss] − λ[sparse constraint]. (13)

3 Application of Deep Learning

3.1 Natural Language Processing

Natural language processing (NLP) [102] addresses the problem of building a machine processable
formal representation of human language for further applications, such as information extraction,
machine translation, search, and summarization. Before recent prosper of deep learning in NLP,
NLP systems and techniques often treat words as atomic units - there is no notion of similarity
between words, as these are represented as indices in a vocabulary. This choice has several good
reasons - simplicity, robustness and the observation that simple models trained on huge amounts of
data outperform complex systems trained on less data.

”” Many current NLP systems and techniques treat words as atomic units - there is no notion
of similarity between words, as these are represented as indices in a vocabulary. This choice has
several good reasons - simplicity, robustness and the observation that simple models trained on
huge amounts of data outperform complex systems trained on less data. An example is the popular
N-gram model used for statistical language modeling - today, it is possible to train N-grams on
virtually all available data (trillions of words [3]).

Large language models in machine translation. ””
In other practices of NLP, similar as the prevalence of feature engineering practices in computer

vision and speech, the overwhelming majority of the state of the art NLP systems relies on applying
task specific features engineering on linear statistical models, such as n-gram language model. The
performance improvements on these benchmarks were often a result of applying knowledge of
linguistic, which is often very task dependent. Applications of deep learning technique on NLP
were often proved to have avoided task specific engineering. The deep-architecture was used as a
single learning system to discover adequate internal representations for multiple natural language
processing tasks [33], including part-of-speech tagging (POS), chunking (CHUNK), named entity
recognition (NER) and semantic role labeling (SRL).
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Deep-architectures often benefits natural language models from its distributed natural of the
learned representation. Many deep learning based NLP models adopts deep-architectures to learn
continuous vector space model [173] of the word representation. The words and phrases were often
randomly mapped to a vector representation through one-hot vector representation as the input of the
deep-architecture. The deep learning algorithms then train the deep-architecture to map the word,
predicate, or sentence space into high dimensional continuous vector space. Such deep learning
models largely reduct the curse of dimensionality problem embedded in the rich semantic and syntax
relations in the NLP corpus.

Successful NLP applications of the deep vector space model includes, parsing [150], sentiment
analysis [151, 100, 55], word similarity [110, 149, 32]. The representation learned in NLP were
often attested to better capture the semantics of the natural language. Each word in NLP is rep-
resented as a real-valued feature vector such that the inner product well addresses their similarity.
One recent finding in NLP attested that the mapping learnt by deep architecture can capture both
syntactic and semantic regularities in language, and also relationship by a relation-specific vector
offset [113]. For example, they observe the plural syntactic regularity xapples − xapple = xcars − xcar,
and the male/female semantic regularity xking−xman+xwoman = xqueen. The learned deep-architecture
were also attested to be able to assist in multiple NLP task with one architecture, including part-of-
speech tags, named entity tags, semantic roles, semantic similarities [32]. As the deep-architecture
can learn a vector representation for multiple data sources, the continuous vector space model were
often combined with other data sources, for example, image to assist in scene parsing [150] or
interpret sentiment and semantic predictions of natural images [172].

Deep neural tensor network (DNTN) has been another deep neural network model for NLP
tasks. Socher et. al. [152] use DNTN model to solve a sentiment classification prediction tasks
over the movie review context. The DNTN learns a vector representation both the single word and
the rhetorical relationships between adjacent phrases and sentences. The DNTN captures both the
semantics and syntax structure from the context. It is therefore successful the negative transition in
natural language which is hard to manage by any previous methods. As a related topic with semantic
deep learning, DNTNs are used to learn the vector representation of knowledge bases and knowl-
edge graphs as well. Boardes et.al [21] use DNTN from both WordNet [114] and Freebase [20].
Chen et. al. [28] uses DNTN to learn the representation of WordNet [114] to predict new relation-
ship entries that can be added to the WordNet database. Socher et. al. [148] use DNTN to model the
reasoning ability of knowledge base to predict and classify the unseen relationship in knowledge
base.

3.2 Speech Recognition

Automatic speech recognition refers to the task of translating speech signals into text. It is still a
challenging task due to high viability of the speech signal. Speech data can be affected by many
task irrelevant factors such as accents, intonations, pronunciations, speaking style, speaking rate,
and even recording devices and background environment. To disentangle the critical factor, the
semantics from the speech signal is the primary task for most speech recognition systems. Speech
recognition has been dominated by the Gaussian Mixture Hidden Markov Model (GMM-HMM)
[61, 40, 39] before the prevalence of deep learning based method. The dominance of GMM-HMM
in speech recognition mostly due to the piecewise stationary signal or a short-time stationary signal
characteristic of the speech signal. Speech signals can usually be approximated as a stationary
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process in a short time-scale. Therefore, the random process model of speech can be natural thought
of as a Markov model for many stochastic purposes. In each HMM state the spectral representation
of the sound wave is models by a mixture Gaussian model. HMMs-based speech recognition models
are simple and computationally feasible to use. However, one important deficiency of Gaussian
mixture models should still attribute to assumption of the statistical properties of the speech data.
HMMs are usually statistically inefficient for modeling data with non-linear manifold in the search
space.

DNN started to influent the speech recognition since 2010 and soon became the mainstream
technology of speech recognition in recent years. Reviews of deep learning on speech recognition
can be found on [38, 63]. Early work of deep learning on speech recognition present a hybrid view
of DNN architecture and traditional speech recognition methods. Specifically, deep neural network
hidden markov model (DNN-HMM) architectures were attested to be a success in which DNN
replaces the role of GMM to estimate the observation probability [118, 35, 36, 184]. Except for
the state-of-the-art performance gain in many speech recognition benchmarks, DNN-HMM often
demonstrate the ability to handle tasks with large vocabulary [35, 36] which promotes the practical
applications in speech industry including Microsoft [41, 29] IBM [139, 138], and Google [62, 75].
Comparing with previous popular Mel-frequency cepstral coefficients (MFCC) features [183], deep
speech recognition methods often applied raw spectral [41] and temporal data [147] while obtaining
significantly lower speech recognition error.

Hiton et. al. [63] proposed a deep neural network method which use coefficients in previous
frames to predict the posterior probability of the HMM. Graves et. al. [57] uses deep recurrent
neural network (RNN) with long short-term architecture to obtain the flexibility to model long
ranges context.

3.3 Computer Vision

Over the past decades, tremendous progress has been made in computer vision by the research of
deep learning. Distinguished advances include advances in hand writing recognition [31], object de-
tection localization [144, 46], image classification [88], face recognition [164], 3D video [166] [76].
Early works of deep learning on computer vision often adopts generative feature learning, in which
RBM is used to train with the unsupervised data. Hinton et al. [64, 66] first explored the power
of RBM in DBN and deep autoencoder on hand writing recognition [64] and dimension reduction
tasks [66]. Variations of DBN were also applied on 3D object recognition [120] and human motion
modeling [168]. The largest so far DBN for image processing were built by Le et al. in 2012 with
a nine-layer sparse autoencoder with one billion connections, trained on the dataset with 10 million
images [90]. They explored the possibility of detecting objects, such as human faces, with only
unlabeled data and large scale distributed DBN.

In following years, the advent of CNN divert the trends in image processing with deep learning
while pre-training were often attested to be less important when large amount of labeled data is
available. CNN based supervised feature learning method starts to be prevalent in many computer
vision task since 2012. Large scale benchmarks were setup for research of computer vision tasks
includes PASCAL VOC challenge [49] and ImageNet Large Scale Visual Recognition (ILSVRC)
[136]. These challenges have been running annually since 2005 and 2010. CNN achieved the state-
of-the-art in most of the recent computer vision challenge benchmarks. Specifically, deep-learning
based image recognition methods won ILSVRC classification contest from 2012 to 2014 [88, 185,
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162], and the ILSVRC object localization and detection contest in 2013 [144] and 2014 [77].
Due to the complexity of the human face, face recognition tasks has been explored by more as

a standalone tasks by multiple deep learning architectures, including Deep Convolutional Neural
Network [142, 159, 50, 189, 160], Deep Convolutional Belief Network [70], Deep Neural Net-
work [188, 189], CNN-RBM hybrid model [158], Deep Independent Subspace Analysis Network
[24]. Representative success of face recognition application in deep learning includes facial point
hallmark detection [157, 187], facial recognition and identity detection [159, 70, 164], face align-
ment and view reconstruction [188, 189]. Current state-of-art performance of face recognition on
LFW [71], and YouTube Faces DB [180] was achieved by FaceNet [142] with an identification
accuracy of 99.63% and 95.12%. Deep learning also demonstrate the ability to building high-level
features that could identify human face without labeled data, i.e., using large scale unsupervised
learning Quoc V. Le [90]., and traffic sign identification [146].

4 Characteristics of deep learning

Deep learning has demonstrated exceptional performance in many fundamental AI and ML practices
in the past decade. The pervasive successes of deep learning techniques has intrigued the AI and
ML communities to ponder over the theoretical groundings of deep learning. Previous research have
identified several key common characteristics for deep-learning techniques, including learning data
representation, deep architecture and abstraction, distributed representation, disentangling factors
of variation, utilizing unlabeled data, unsupervised pre-training and transfer learning etc [13, 11,
17]. In this section, we summarize several key advantages of deep learning that favors our proposal
of data driven approach of formal semantics, including:

• Representation learning: learning feature representations from data

• Deep architecture: composing representation of complex high order functions by many weakly
nonlinear transformations.

• Distributed representation: the appeal of hierarchical distributed representations for more
efficient data representations.

More importantly, we will see how these feature will help better integrate the formal semantics into
the data mining process, i.e., the semantic data mining.

4.1 Learning Feature Representation from Data

Bengio et al. argued that to make AI fundamentally understand the world around us, it must be
able to learn to process and identify the explanatory factor from the low-level sensory data [13].
For many complex machine learning tasks, such as computer vision and speech recognition, the
data are well known for their the variability and richness. For those tasks, generic machine learning
algorithms were often found to be very difficult to extract discriminative information while handle
the translation and trasformation of data. For such reason, much of the efforts in image and speech
processing went into the hand-crafting of features and data representations. Such process is often
called feature engineering which aims at taking advantage of priori knowledge and human ingenuity
to promote the machine learning tasks.
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Hand-crafted features were known to have made profound progresses in many fields, such as
SIFT [99] and HOG [37] in computer vision, LBP for face detection [5] [123] and MFCC [183]
for speech recognition. However, they were often proved to have many deficiencies, including in-
accuracy, intensive, domain and task-dependent and labor intensive. The design of features is often
more subjective trial and error process which would rely heavily on the experiences and knowledge
of the designer. The features are often either over-specified or incomplete depending rather than
a accurate reflex of the underlying factors of the data. The feature design process is strongly task
dependent which has to be redone for every new task [33]. Most hand-crafted features were proven
to be only able to capture low-level information from data, such as edges in images or senones in
speech, while capturing high-level representation such as object parts is often more difficult.

Previous research has long contented that better pattern recognition systems can be built by
relying more on automatic learning, and less on human ingenuity [92]. Deep learning is such a
fundamental method which is known to take advantage of the priori in the data to compensate this
labor-intensive. In order to highlight the role of automatic learning representation from data, in
many deep learning literatures, the deep learning technique is often called representation learning.
We argue that the learned representation can assist the application of formal semantics on the data
mining and machine learning process in a fundamental way. in semantic data mining higher level
features with more abstract concepts are constructed using combination of lower level features. In
practice, such representation learning through deep-architecture were often used to obtain higher
level representations with correpondent to higher level and more abstract representations. Such
representation closer the semantic gaps.

4.2 Power of representation: Deep Architecture

One of the long term goal of AI and ML research is to develop methods that are capable of highly
complex intelligent tasks, such as perception, reasoning, and intelligent control. To achieve such
goals, the machine learning community must endeavor to discover algorithms that are capable of
expressing complex behaviors that require highly varying mathematical functions, i.e. mathemat-
ical functions that are highly non-linear in terms of raw sensory inputs [11]. While many previ-
ous algorithms have endeavored to do so, theoretical and empirical evidence have suggested that
shallow-architectures are fundamentally limited in modeling high-dimensional complex functions.
Although theoretical research show that some shallow architectures can represent functions with
arbitrary precision, the efficiency of learning such representation would be usually too low in terms
of number of computational elements and examples [17]. Bengio and leCun [17] have argued that it
usually requires exponentially more parameters and components for a shallow-architecture to repre-
sent function with the same precision as the architecture with more layers, i.e. the deep-architecture.
More parameter usually not only means more training time, but also fundamentally more data is re-
quired to achieve the learning accuracy at the same level. The fact that the deep learning community
established a distinction between shallow-architecture and deep-architecture highlights the recent
discovery of the importance of depths with regarding to model the complex functions and profound
limitation of the shallow architectures.

4.3 Distributed Representation: explore the representation efficiency

Deep learning techniques are capable of learning a distributed data representation. High level fea-
tures in a deep-architecture are composed by distributed sets of components. Each low level feature
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is often reused to represent multiple feature representation. The distributed representation which
promotes the notion of feature reuse is at the heart of theoretical advantages of deep learning. The
idea behind the distributed representation is that the feature reuse can represent exponentially large
number of concepts by composing many features. One example of the distributed representation
is the binary representation of numbers, in which n independent bits can represent 2n numbers, an
exponential size of the size of representation. The distributed representation reuses local represen-
tations at diverse levels and representation schemas which could potentially make a much more
succinct representation of the input data. Such representation is proved to be able to better get
around the curse of dimensionality problem in many other machine learning algorithms.

The distributed representation benefits the learning process that it has the strength of modeling
well the correlations and dependencies in the data. Such ability largely relax the restriction on input
data that the input data of deep learning can often be raw data samples. In speech recognition, deep
learning was proved to have the best performance on the time series data or speech spectrum. In
natural language processing, the input data is often the random indexing of the vocabulary. The
distributed representation learns to model the best representation of dependencies batten input data
through the learned data representation.

5 Introduction to semantic Data Mining

While the deep learning models have demonstrated exceptional performance for the data represen-
tation and transformation tasks, they have shown little evidences of the ability to associate with
the high level cognitive behaviors such as reasoning, understand and interpreting the knowledge.
Such behaviors were addressed by previous AI researches from a knowledge driven perspective, i.e.
using formal knowledge representation. The formal knowledge representation not only facilitated
the knowlede sharing and resuing in a formal and effective way, but was also attested to be able to
assist in the machine learning and data mining process, through the technique called semantic data
mining.

Semantic Data Mining refers to data mining tasks that systematically incorporate domain knowl-
edge, especially formal semantics, into the process. The effectiveness of domain knowledge in data
mining has been attested in past research efforts. Previous theoretical and empirical semantic data
mining research has attested the positive influence of domain knowledge on data mining. For ex-
ample, the preprocessing can benefit from domain knowledge that can help filter out the redundant
or inconsistent data [83, 126]. During the searching and pattern generating process, domain knowl-
edge can work as a set of prior knowledge of constraints to help reduce search space and guide
the search path [9, 10]. Further more, the discovered patterns can be cleaned out [104, 103] or
made more visible by encoding them in the formal structure of knowledge engineering [178]. As
a formal specification of domain concepts and relationships, ontology can assist in the data mining
process in various perspectives. It is reasonable to expect a performance gain in ontology-based
approaches compared with the data mining approaches without using ontologies or other forms of
domain knowledge. Many semantic data mining research efforts have attested such improvements.
With well designed algorithms, previous research either reports performance improvement or ac-
complishments of data mining tasks that could not be achieved without using ontologies. In the
following sections, we give a brief summarization of the performance improvement in ontology-
based approaches and their applications.
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6 Application of Semantic Data Mining

Empirical results from previous research have attested the potential of ontology to assist in various
data mining tasks. In this section, we summarize semantic data mining algorithms designed in sev-
eral important tasks, including association rule mining, classification, clustering, recommendation,
information extraction, and link prediction.

6.1 Ontology-based Association Rule Mining

Association rule mining is a fundamental data mining task that finds the associations of frequent
item sets. As the item found in association mining often corresponds to concepts in the ontology, it
is very convenient to provide constraint or auxiliary information using the ontology relations. On-
tology can provides pruning constraints and abstraction constraints for the association rule mining
task [10]. The pruning constraints are used for filtering a set of non-interesting items while the ab-
straction constraints promote the generalization of item into more general concepts in the ontology.
Ontology can also assist in the post-processing of the association rule mining results using an on-
tology for the consistency checking. Invalid or inconsistent association rules are pruned and filtered
out with the help of ontology and an inference engine [104, 105]. In [98], Liu et al. use ontology as
auxiliary information to discover latent associations in the data. They built the connections between
ontology and data using a bipartite hypergraph model.

6.2 Ontology-based Classification

In semantic data mining, one typical use of ontology is to annotate the classification labels with
the set of relations defined in the ontology. With the ontology annotated classification labels, the
semantics encoded in the classification task was often proved to have the potential not only to influ-
ence the labeled data in the classification task but also to handle large number of unlabeled data [9].
Ontology can serve as consistency constraints into multiple related classification tasks. These tasks
classify multiple categories in parallel. An ontology specifies the constraints between the multiple
classification tasks.An unlabeled error rate is defined as the probability the classifier assigns a label
for the unlabeled data that violates the ontology. This classification task produces the classification
hypothesis with the classifiers that produce the least unlabeled error rate and thus most classification
consistency. In other classification tasks, ontology often provides a similarity measure for terms and
concepts in the data, for example documents. In [8] semantic graph of connected entities are con-
structed from the set of relations from DBpedica-based ontology. HITS algorithm [86] is used to
identify the core entities in the semantic graph for the further identification of dynamic topics. The
classification of documents is based on calculating the similarity of document’s semantic graph to
define ontological context (topics).

6.3 Ontology-based Clustering

Clustering [74] is a data mining task that grouping a set of objects in the same cluster which are sim-
ilar to each other. Early work of ontology-based clustering includes using ontology in the text clus-
tering task for the data preprocessing [68], enriching term vectors with ontological concepts [69],
and promoting distance measure with ontology semantics [79].
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In recent works, ontologies were often used to annotate the data in the text clustering with an
enriched conceptual similarities [153], [153]. It also helps to re-weight the vectors in knowledge-
based vector space for text clustering [78] and the terms in the medical documents [186]. Fodeh [53]
used the onotology to prune the feature space in document clustering. He claimed that ontology can
be used to greatly reduce the number of features needed. In gene clustering task, gene ontology
(GO) assisted the similarity measure between genes with graph structure (GS) and information
content (IC) based measures.

6.4 Ontology-based Information Extraction

Information extraction (IE) refers to the task of retrieving certain types of information from natural
language text by processing them automatically. IE is closely related to text mining. Ontology-
based information extraction (OBIE) is a subfield of information extraction, which uses formal
ontologies to guide the extraction process [82, 179]. Because of this guidance in the extraction
process, OBIE systems have mostly implemented following a supervised approach [178]. Although
very few semi-supervised IE systems are considered as ontology-based [181, 182], they rely on
instances of known relationships [4, 132]. Therefore those semi-supervised systems can also be
considered as OBIE systems.

Early work of OBIE includes knowledge extraction from web documents [6] and data-rich un-
structured documents [47]. Ontology can provide consistency checking for the extracted informa-
tion in the IE system [81] and constraints and exclusions for different categories and relations [27].
As a way to promote the adoption of OBIE, Ontology-based Components for Information Extrac-
tion (OBCIE) [178] aims to encourage re-usability by modeling the components of the IE system
as modular as possible using ontology. Gutierrez et al. [59] extended the OBCIE architecture by
incorporating hybrid configurations (e.g., different implementations and different functionalities).

6.5 Ontology-based Recommendation System

Recommender systems or recommendation systems [3, 23] are the systems that dedicate to predict
the preference or ratings that a user would give to an item. In a good recommendation system,
heterogeneous information from multiple sources is usually required. Ontology can integrate the
use of heterogeneous information and guide the recommendation preference.

Early work of ontology-based recommendation system uses ontology for user profiling [109],
personalized search [128], and web browsing [108, 107]. In recent works, ontology helps to generate
and recommend tags automatically for web resources [129]. The web documents are annotated and
matched by terms in the ontology first. Then ontology-based reasoning is conducted to infer the
new knowledge from the annotated terms. This inference is made by finding the common ancestor
nodes for them and possibly all the nodes in the path between the matched nodes with ontological
concepts. In other works, ontology is used to encode the long term and short term user preference
information [80, 25]. The user preference ontology is constructed from the concepts of the general
domain ontology together with the documents that the user visited. Ontology can also help to
store concepts and relationships to the web items, for example, in a news feed recommendation
system [73, 25]. A news ontology can be used to build a news personalization service to provide
the concept framework for new contents and determine the semantic relations between terms and
concepts.
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6.6 Ontology-based Link Prediction

Link prediction for social networks becomes a very active research area in data mining due to the
success of online social networks such as Twitter, Facebook, and Google+. As link prediction is
often closely related with graph structures between social entities, the graph structure of entities and
relations in ontologies plays an important role in link prediction. Aljandal et al. [7] presented a link
prediction framework with ontology-enriched numerical graph features. The authors claimed that in
previous social network research flat representation of interest taxonomies limited the improvement
of link prediction. Ontology aggregated distance measure is proposed to encode the interest tax-
onomies in ontology into the distance measure to more accurately describe the shared user interests.
In other works, ontology often helps to annotate the data with rich semantics [171]. The annotation
links between the data and predicates in ontology form an annotation graph. Semantic information
in the ontology is used in the sequential pattern mining algorithm to prune the search space and par-
tially relieve the algorithm from support counting [101]. Amakrishnan [130] proposed a method to
discover the informative connection subgraphs that relate two entities in the graph. They proposed
heuristics for edge weighting that depend indirectly on the semantics of entity and property types in
the ontology and on characteristics of the instance data.

7 Role of Ontologies in Semantic Data Mining

The question why domain knowledge is helpful in the data mining process has been long discussed
in previous semantic data mining research. The perspective and mechanism of utilizing ontologies
in semantic data mining often varies across different systems and applications. Of the many ways
that ontologies assist in semantic data mining, we have identified three major ways that have the
potential to assist in the goal of our research. In this section we introduce the three major roles
ontology could play in semantic data mining, bridging the semantic gap, provide priori knowledge,
and provide a formal data mining flow representation.

7.1 Bridging the semantic gap

The application of ontology in semantic data mining was often attested that it could bridge the
semantic gap between the data, applications, data mining algorithms, and data mining results. Re-
searchers claim that there exists a knowledge gap between the data, data mining algorithm, and
mining results in all stages of data mining including preprocessing, algorithm execution, and re-
sult generation [45]. Previous research practices have identified many senarious where there exist
semantic gaps in data preprocessing. Data preprocessing usually contains data cleaning, normaliza-
tion, transformation, feature extraction and selection. Without considering formal semantics, data
mining practices usually deploy ad-hoc or empirical methods to determine the quality of the data.
For example, scarcity and nearest neighbor rules are the dominant method to determine the out-
liers and missing values. In the normalization and transformation step, it is important to determine
the correlation between features and attributes of the data when performing data normalization.
Strongly correlated attributes could be reduced into one combined attribute. In practice, semantic
gaps are usually filled manually by domain experts. However, ontologies have been shown to be
beneficial in many data preprocessing tasks [83, 126, 165].

We are easy to observe semantic gap between the data mining algorithm and data as well. Data
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mining algorithms are usually generic methods that designed for data from different domains and
scenarios. Data from a specific domain usually carry domain specific semantics. The generic data
mining algorithms lack the ability to identify and make use of semantics across different domains
and applications. Ontologies are useful to specify domain semantics and can reduce the semantic
gap by annotating the data with rich semantics. Semantic annotation aims at assigning the basic
element of information links to formal semantic descriptions [48, 85]. Semantic annotation is crucial
in realizing semantic data mining by bringing formal semantics to data. The annotated data are very
convenient for the later steps of semantic data mining because the data are promoted to the formal
and structured format that connects ontological terms and relations.

Other research efforts have dedicated to bridge the semantic gap between data mining results and
users. The data mining results can be represented by ontologies in the semantic rich format which
help sharing and reuse. For example, information extraction (IE) is the task of automatically extract-
ing structured information from text. The data/text mining results are sets of structured information
and knowledge with regarding to the domain. To represent the structured and machine-readable
information, it is natural to represent the information with ontology. Ontology Based Information
Extraction (OBIE) [179] has extensively used this representation. With OBIE, the information ex-
tracted is not only well structured but also represented by predicates in the ontology which are easy
for sharing and reuse. In other semantic data mining research, ontology is used for the post pruning
and filtering of the association rule mining results [104, 105, 103].

7.2 Providing prior knowledge and constraints

Ontology could provide data mining algorithms with a priori knowledge, which either guides the
mining process or reduces/constrains the search space. The definition and reuse of prior knowl-
edge is one of the most important problems for semantic data mining. As a formal specification
of concepts and relationships, ontology is a natural way to encode the formal semantics of prior
knowledge. The encoded prior knowledge has the potential to guide and influence all stages of the
data mining process, from preprocessing to result filtering and representation. For example, Liu et
al. [98] developed a RDF hypergraph representation to capture information from both ontologies
and data. Ontologies are incorporated into the graph representation of the data as the priori knowl-
edge to bias the graph structure and also representing the distances between terms and concepts in
the graph. The approach transforms the hypergraph and weighted hyperedges into a bipartite graph
to represent both the data and ontology in a uniformed structure. Random walk with restart over
the bipartite graph is performed to generate semantic associations. Whenever the random walk goes
through the ontology-based edges, the domain knowledge encoded in ontologies bridges the latent
semantic relations underneath the data with rich semantics.

As a collection of concepts and predicates, ontology has the ability to perform logic reasoning
and thus make consistent inference for those predicates. In semantic data mining, the ability to
make consistent inference is usually represented as constraints. The set of constraints powered
by the ontology have the ability to detect inconsistent data and results in the preprocessing stage,
the algorithm execution stage, and the result filtering and generation stage. For example, Balcan et
al. [9] incorporated ontology as consistency constraints into multiple related classification tasks. The
ontology specifies the constraints between multiple classification tasks. Carlson et al. [26] presented
a semi-supervised information extraction algorithm that couples the training of many information
extractors. Using ontology as constraints on the set of extractors, it yields more accurate results.
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Claudia Marinica et al. [104, 105] presented post-processing of the association rule mining results
using ontology for consistency checking. Invalid or inconsistent association rules are pruned and
filtered out with the help of ontology and an inference engine.

7.3 Formally representing data mining results

Ontology could provide a formal way for representing the data mining flow, from data preprocess-
ing to mining results. The well designed data mining systems should present results and discovered
patterns in a formal and structured format, so that data mining results are capable to be interpreted
as domain knowledge and to further enrich and improve current knowledge bases. Ontology is
one of the way to represent the data mining results in a formal and structured way. As a formal
definition of concepts and relationships, ontology can encode rich semantics for different domains.
The data mining results from different domains and tasks conform naturally with the representa-
tion of ontology, for example, information extraction and association rule mining. Specifically, in
ontology-based information extraction (OBIE) [119, 179], the extracted information are a set of an-
notated terms from the document with the relations defined in the ontology. It is therefore straight
forward to represent the extracted information with ontology.

Wimalasuriya and Dou [179] claimed that ontology is a valid form to represent the OBIE results
in a semantic rich format. Encoding OBIE results in the formal structure of ontology could stream-
line the data mining process of other data mining tasks that need to make use of the current result.
The inference engines which was designed in the field of knowledge engineering could perform
consistency checking that validate the data mining results and clean out the inconsistent results.
OBIE systems can extract information with higher recall and accuracy compared with traditional
IE systems. The ontology in OBIE provides the function as a conceptual framework and consis-
tency checking. It also organizes the extracted information in a formal and structured way using
explicit ontology representation. Similarly, ontology-based association pattern mining method [98]
can represent latent semantic associations.

8 Semantic Deep Learning

Machine learning and data mining tasks were found to involve with rich data semantics more often
than not. Identifying key semantics from data is often the primary goal for many important machine
learning and data mining tasks, such as image recognition and information extraction. In other
scenario, such as clustering, classification and recommendation, data semantics can play important
roles as well, by either promoting the task performances or producing semantic rich results. Unfor-
tunately, fully exploiting the data semantics is often a nontrivial task. Machine learning and data
mining algorithms are usually generic methods that were designed for data from different domains
and scenarios. Data from a specific domain usually carries domain specific semantics. The generic
algorithms lack the ability to identify and make use of semantics across different domains and appli-
cations. For such reason, researchers have claimed that there exists semantic gaps between the data,
algorithm, and results in all stages of machine learning and data mining including preprocessing,
algorithm execution, and result generation [45].

As we have shown in previous sections, both deep learning and semantic data mining were
proved to have the abilities in reducing the semantic gaps from either a data driven or a knowledge
driven perspective. We have shown in section 2 and section 3, deep-architectures have demonstrated
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their exceptional abilities in learning efficient, hierarchical, distributed data representations which
could further facilitate many other machine learning tasks.

Increasing level of abstractions are often observed along with the increasing level of layers in
deep-architectures, especially the ones in semantic rich machine learning and data mining tasks.
For example, in deep learning based image processing, lower level layer representations were often
found to correspond to low level image abstractions, such as edges and object parts, through which
abstractions in high level layers can often encode representations of human face and automobiles.
We have also shown in section 4 one key benefit of such incremental data abstractions which is the
higher level data representations in a deep-architecture could often be related with more abstract
human cognitive concepts and activities [70, 94, 84], such as image scenes [46], sentiments [164,
152, 151], semantics of speech and natural language [35, 36]. On the other hand, as we have shown
in section 7.1, the formal knowledge can bridge the semantic gap between the data, applications,
data mining algorithms, and data mining results. Formal knowledge can often reduce semantic gap
from data through semantic aware preprocessing [83, 126, 165], semantic data annotation [48, 85],
and producing semantic rich data mining results [179].

Nevertheless, evidence is still scarce that both deep learning and semantic data mining tech-
niques have fully exploited the limits of many machine learning tasks. Few evidences have shown
the association of deep learning with high level cognitive abilities of human being, such as rea-
soning, making inferences, comprehending and interpreting human knowledge. On the other hand,
although the study of semantic data mining have reported data mining results with better precision,
consistency and more importantly, richer data semantic, it is often observed that most contemporary
semantic data mining methods could only make use of very limited aspects of the rich semantics
encoded in the formal knowledge representation. As both semantic data mining and deep learning
has the potential to bridge the semantic gaps between low level sensory data and high level cogni-
tive concepts, it is intuitive to speculate that it is now more promising to further bridge the semantic
gaps between domain knowledge, machine learning algorithms and data through both semantic data
mining and deep learning. We hypothesize that the formal knowledge representation could assist
in many facets of deep learning technique in a similar way as in semantic data mining, including
deep-architecture designing, parameter tunning, feature explaining and result interpretation. We
formally define the term, semantic deep learning, as the deep learning techniques with the assistant
of formal knowledge representation. In this report, we specifically expoit the possibility of semantic
deep learning with the most popular form of knowledge representation, ontology. We will present
the next few sections our study on how to perform semantic aware classification task by exploring
the rich semantics from the ontology on the domain of the data labels. The goal of this study is to

• Develop a deep-architecture design that is guided by ontology,

• Promote the classification task in a semantic rich paradigm by exploiting the relations between
the data labels and their supper concepts using ontology,

• Improve the classification accuracy with the reasoning ability of ontology.

8.1 Deep Learning Ontology

We start by introducing our deep learning ontology (DLO), which is constructed to formally encode
the concepts and relations in the domain of the data label. It contains specifications of data label,
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their super concepts and three types of relations between these concepts, (1) subclass, which defines
the subsumption relations (e.g. bird and farm bird), (2) disjoint, which defines relations between
disjoint or contradictory entities (e.g. duck and chicken), (3) coexists, which defines the relation of
closely related concepts (e.g. butterfly and flower). In our ontology-based deep learning framework,
DLO plays multiple roles through all stages of the machine learning process, including guidance of
the deep network structure, consistency checking, and semantic enrichment results with multi-level
output. The subsumption relation in the DLO presents a tree structure of the concepts, in which the
all leaves concepts and some internal concepts correspond to classification labels of the data. The
concepts of ontology design should cover all the labels that will appear in this classification task.
Other ontology concepts are the super concepts of the classification labels. In figure 5, we present
one example of deep learning ontology for the domain of birds, in which chicken, duck, sparrow,
corresponds the labels of the data. The other concepts farm bird, wild bird, and bird are defined
through the domain knowledge of the bird domain.

Figure 5: Semantic Deep Learning Ontology

8.2 Deep-architecture from Deep Learning Ontology

The deep learning ontology specifies the relations between the classification labels and their super
concepts. We further design a deep-architecture for the ontology based classification task with the
assistant of the deep learning ontology. The design of deep-architecture follows the subsumption
relation hierarchy of the deep learning ontology by proceeding the following steps:

(a) Representation of bird concept (b) Representation of farm bird and wild bird concept

Step zero, initialization. For the top level concept of deep learning ontology, such as object for
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a general ontology or animal for the animal domain ontology, build a one layer RBM with input
variable v0 corresponds to input data and hidden variables h0 as the representation of the top level
concept. For example, figure 6(a) shows the deep architecture at current step for the bird concept of
the ontology in figure 5. After the initialization, Go to step two.

Step one, extend deep-architecture with subconcepts. For each representation layer built in the
last iteration or at initialization, identify the corresponding concept A in the deep learning ontology.
For each B is a A subsumption relation in the deep learning ontology, build a RBM with input
variable vA = {vIA, vRA}, in which VIA accepts the raw input data, vRA is the representation of concept
A built in the last iteration. The hidden variables of this RBM hB corresponds to the representation
of concept B.

Step two, unsupervised pre-training. We train the new RBM layer by unsupervised pre-training
with unlabeled data first. For each input vR, vIR accepts direct input of the raw data, vR is generated
through the RBM layers of its super concepts.

Step three, supervised fine tuning. For each representation learned at step two for concept B,
attach a softmax layer from hB. We then train the network by supervised training using using
labled data. Each data label is promoted to the corresponding concept of the current layer using
subsumption inference of the deep learning ontology. For example, the data with label chicken
is promoted as the label bird during the supervised training of the bird representation. Finally, if
there still exists concepts in the deep ontology that not do correspond to a representation in the
deep-architecture, go to step one.

Note that our deep-architecture design induced from the ontology adopts a top-down paradigm
with regarding to the subsumption structure of ontology. The data representations and features
learned from a super concept were used to assist in the deep-learning process for its subconcepts.
Our design paradigm is different from the current prevalent deep-architecture designs which mostly
adopt a bottom up feature learning paradigm. For example, in DBN, through greedy level-wised
pre-training, lower level features, such as edges in image data, are combined to construct high level
features and representations, such as objects. It is obvious that the bottom up feature learning is
promising in capturing the part-of relation between features, however, it is not capable to model
feature space that is dominated by other relations, such as the is a relation in label space. Our deep-
architecture design follows the ontology subsumption architecture, thus could model the part-of
relations between concepts and features. Note that our deep-architecture will result in a design that
more abstract concepts corresponds to smaller number of non-linear transformations as in contrast
with other deep-architectures. We argue that such design in fact follows the biological intuition
for object recognition and classification. It has been found that biological neural network responds
much fast for identification of general concepts, such as if this is an automobile, than concrete
concepts, such as if this is a Honda or Ford.

8.3 Large scale semantic rich unsupervised learning by deep inference

We argue that a good learned representation is necessary capture not only the variations of the
data but also the key factors that is necessary for our further machine learning tasks. In real world
machine learning practice, it is usually hard to tell how much the learned representation is capable
of supporting the learning task. We usually expect the data representation should be learned from
the unlabeled data, since the labeled data is luxurious to obtain to satisfy the needs of a good data
representation. One would be hard to expect the data representation learned could be related with
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our machine learning tasks.
The ontology deep learning architecture build a framework for the representation of the data

which can produce multiple-hierarchical output. As each output of such deep-architecture corre-
sponds to one concept in the deep learning ontology, inferences can be performed on these outputs
using the deep learning ontology. As the deep learning ontology defines a clear taxonomy sub-
sumption relation architecture for all concepts, the inconsistency found is usually corresponds to a
path from the top concept to one leaf concept. For example, if the classification output from the
deep-architecture produces, bird,Y , penguin,N, emperopenguin,Y , inconsistency can be found in
the subsumption path of emperorpenguin → penguin → bird. Further training through unlabeled
data can proceed through the consistency checking and back propagation process. Such process
contains the following steps,

Step one, identify the inconsistency and inconsistency path. We first identify the inconsistency
in the output label, for instance, for the emperorpenguin → penguin → bird example, we can
identify the inconsistency emperorpenguin,Y → penguin,N using the inference checking ability
of ontology. The inconsistency path is defined as the path from the top concept to the concepts
where inconsistency happens. It contains all the concepts related with the inconsistency if we like
to fix and back propagate the error we found.

Step two, identify the inconsistency correcting schema. For each inconsistency path, we further
identify few inconsistency correcting schemas that would fix the inconsistency. For example, for
the bird,Y , penguin,N, emperopenguin,Y output on the inconsistency path. Two possible incon-
sistency correcting schemas would be,

• Schema A: penguin, N → penguin,Y

• Schema B: bird , Y → bird, N and emperor penguin, Y → emperorpenguinN

For each inconsistency correcting schema, we compute a target function to estimate the cost of
correcting. We define LS = {e|e ∈ correctedlabelsinschemaS }. We can estimate the cost of schema
S by

CS =
∑
e∈LS

||Je(x)||2F =
∑
e∈LS

∑
i j

(
∂he(x)
∂xi

)
(14)

, in which J f (x) is the Frobenius norm of the Jacobian Jx(x) of the non-linear mapping. J f (x)
measures the robustness of the representation fe(x) by estimating the sensitivity to the input, i.e. the
level of contrast to the neighbour of the training data [133]. We further train the deep-architecture
by correcting the according the in the schema S with largest contrast, i.e. the best robustness of
representation.

8.4 Multi-level output of classification result

Without the knowledge of nature relations between labels, the output could be either vague or re-
dundant. For example, as shown in figure 6(c) an output of jaguar from the demo [1] of Caffe [77],
the state-of-art online image classification neural network framework. The top five output from a
image of jaguar are big cat, feline, jaguar, leopard, carnivore respectively. It is easy to observe that
there exists obvious structural relations between the five output labels. With the help of the deep
learning ontology, the relations could be defined shown in figure 6(d).
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(c) Object detection output from Caffe (d) Relations between output labels from Caffe

By specifying using the deep learning ontology, the outputs in figure 6(d) are largely redundant.
For example, for the output jaguar and leopard, as they are defined as similar concept in the deep
learning ontology, we can produce one label jaguar (leopard) output instead of two. Further more,
if the two output labels A and B are disjoint, it is very likely the current system does not have
enough ability to distinguish the two concepts. For example, as the jaguar and leopard shares
very little difference, even most human does not equip with the knowledge to identify from one and
another. As the object detection system would be very likely to produce output with large error rate,
we can output the higher level concepts such as bigcat or f eline instead which largely reduces the
classification error.
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