
Refinement and Composition in Formal Modeling of

Temporal Systems

Philip Johnson-Freyd

December 8, 2015

Human lives are increasingly dependent on digital control systems which operate every-
thing from airplanes to power-plants. Consequently, it is crucial that we be able to verify
the correctness of these systems. However, “correctness” only makes sense with respect to
some specification of their behavior. Formal methods allow for establishing with certainty
that digital systems satisfy safety and correctness properties, leaving only the reliability
of the final translation of digital logic into the physical universe in doubt. Highly auto-
mated formal methods such as model checkers and common type systems allow for verifying
properties of digital systems which minimal human effort but are limited in their range
of applicability. Less automated techniques such as interactive theorem proving are more
generally applicable but require more human intervention. In either case, however, formal
verification techniques can only prove systems correct with respect to formal specifications.
As such, the problems of constructing and reasoning about specification are paramount.

A key challenge for specification and formal methods is scalability. Digital systems
may become too large to effectively reason about. To address this problem, it is crucial
to be able to describe systems abstractly and compositionally. At its most basic, the idea
of refinement is to formally relate two formal models: one more abstract and one more
concrete with the goal of being able to carry reasoning performed at the more abstract
(and perhaps simpler) model over to the more concrete one.

Further, refinement enables a development methodology, suggested more that 40 years
ago by Wirth, whereby a system is constructed by first giving a highly abstract high level
description and then by applying successive refinements deriving a final concrete system
which is correct by construction [44]. In Wirth’s account, each level of abstraction takes
the form of an executable program but where successive refinements move from an easy
to understand but inefficient program to an equivalent one which is more complicated but
also much more efficient. This approach has been particularly effective in the development
of functional programs as demonstrated by [10]. Often time, this refinement approach
to software allows one to, in the words of Shan and Thurston while demonstrating a
particularly impressive example of the technique, “first write a program to specify the
problem, then interpret the program creatively to find the solution before the universe
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ends.” [40] However, refinement is useful for more than just optimizing functional programs.
In general, there is no requirement that the objects related by refinement be executable
programs. Instead, they could be specifications which describe whole classes of programs.
The act of refining a specification then could be understood as narrowing its associated
class of programs. Nor should we be restricted to reasoning about transformational systems
which merely convert inputs to outputs. Many interesting digital systems instead take
the form of reactive systems characterized by complex patterns of interaction with their
environment [23]. It is vital to be able to use refinement techniques in these areas.

In addition to refinement, scalable development calls for composition where multiple
formal models at the same level of abstraction can be put together. A complete digital
system will often admit multiple useful abstractions emphasizing different aspects of its
behavior. Composition is connected to modular development whereby different components
are constructed separately.

In this exam, we consider refinement and composition for formal models which describe
how digital systems evolve over time. We focus on three general approaches. First, we
consider the Event-B formalism (implemented in the Rodin tool) where models are roughly
state transition systems and refinement is a form of simulation. Second, we look at the
pure logic based approach in Lamport’s Temporal Logic of Actions (TLA) which allows
us to associate composition of models with logical conjunction and refinement of models
with logical implication. Thirdly, we consider an approach based on adapting techniques
from algebraic specification languages to a temporal setting which is explicitly categorical
in flavor. Along the way we pay particular attention to the use of these formalism and
notions of refinement as tools for verification.

1 Background

A specification tells us what implementations are possible. A refinement of a specification
is one which admits strictly fewer implementations. A consequence of this is that if a
specification implies some property about all its implementations then that same property
is implied by all its refinements. What kinds of properties are implied by a specification
depends on the particular specification language used. In this work, we are particularly
interested in properties of reactive systems. We take the view of reactive systems as
evolving through time. Various properties are of interest in this kind of system.

For example, an invariant is a property about the system state which is maintained by
any evolution of the system. That is, an invariant is a property about the state which must
always hold. Invariants are among the most important, but also the simplest, class of prop-
erties. Many properties considered in program verification and analysis, such as the types
of variables or properties maintained by loops, take the form of invariants. Event-B, one of
the specification approaches we consider in this work, focus almost exclusively on invari-
ants. As a consequence, its accompanying notion of refinement ensures that any invariant

2



maintained by a specification is also maintained by any refinement of that specification.
However, properties other than invariants are not necessarily preserved.

Each invariant takes the form of a property on the states of the system. Beyond
invariants though, we may need to consider properties of sequences of states. Specifications
of reactive systems need to describe how those systems can evolve over time. Reactive
systems are fundamentally dynamic: at any given time they might be in a particular state,
but as time goes on that state is expected to change. Thus, we will consider specifications
and properties which classify the “behaviors” or traces of such systems.

The first major class of properties about behavior are safety properties. Formally, a
safety property is one which can be finitely disproven. That is, if a safety property does
not hold of a behavior then it must be the case that there is some finite prefix of states
in this behavior which is sufficient to disprove the safety property. Invariants are safety
properties, and indeed safety properties can be seen as a generalization of invariants, since
an invariant is a property which must hold always and if an invariant does not hold of a
behavior than there must be some point in the trace of states that make up that behavior
where that property fails. Even when they are not invariants, safety properties often take
the form of statements which must “always” hold.

Properties about behaviors which are not safety properties are called liveness properties.
These properties may fail to hold about an infinite behavior even if they could hold about
all the finite prefixes of that behavior. The quintessential liveness property on states is
that some property will eventually hold. If we consider as behaviors simply sequences of
numbers then “contains an even number” is a liveness property. The sequence formed by
the function f(n) = 2 ∗ n+ 1 does not satisfy this liveness property, yet the property can
not be disproven by any finite prefix since any finite prefix extends to a sequence containing
an even number. Conversely, the property that “every number is odd” is an invariant (and
thus a safety property) while the property that the sequence is “monotonically increasing”
is a safety property but not an invariant.

Composition of specification refers to the ability to construct a complete specification
out of smaller component specification. Different approaches to composition differ: compo-
sition of two specifications may be satisfied by all the implementations which satisfy both
component specifications, or the composition may be given in a different form. In either
case, compositionality mechanisms are vital to the ability to reason about large systems.
A key property of composition should therefore be that reasoning performed about the
components’ specifications can be used to reason about the composed specification.

As a running example we will consider the problem of specifying a vending machine.
The essential features of a vending machine vary depending on your perspective: for a user
of a vending machine its most important feature is that it, when demanded, can provide the
user with desired products. However, from the point of view of the provider of the vending
machine, which we take here, the machine’s principal role is to collect money. Indeed, at
a very high level of abstraction we can think of the state of a vending machine as specified
by a single variable cash representing the value of the money it currently holds. Such a
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machine evolves when a user insert more money into the machine during use.
In greater detail, however, the transactions between the user and the vending machine

are more complicated than this. For example, in addition to inserting money, the cus-
tomer also selects an item from the machine and has that item dispensed decreasing the
vending machines inventory. Further, the amount of money a user inserts into the machine
matches the price for the item vended. Incorporating these additional details constitutes
a refinement of the original abstract model.

However, there are other possible refinements which are of interest to us. For example, it
is unlikely that the user inserts money into the machine all at once as part of a transaction.
Instead, the user would insert a number of coins and bills incrementally until reaching the
price of the item being dispensed. Thus, the single abstract change in the machine state
may be made up of multiple incremental changes at a higher level of refinement.

These and other refinements (such as, considering the way in which money is not stored
in the machine as a single variable but rather as the sum of amounts of money in different
denominations) are at least partially orthogonal and can each be considered independently.
Combining these multiple refinements to produce a complete vending machine model which
incorporates all the relevant details and refines each abstraction appropriately thus serves
as a non trivial composition problem.

2 Event-B

Event-B was designed by Jean-Raymond Abrial based on the earlier B-Method [5]. In
Event-B, specifications take the form of models of discrete transition systems or state
machines. The main component of an Event-B model is called a machine and consists of
a number of variables describing the state of the system, guarded events describing the
possible evolution of the system through time, and invariants which are properties which
remain true throughout the evolution of the system [21]. As way of illustration, we will
consider the vending machine in Event-B.

MACHINE
Vending1

SEES
VendingCtx

VARIABLES
cash

INVARIANTS
inv1 : cash ∈ N

EVENTS

INITIALISATION ,
BEGIN

act1 : cash := s t a r t i n g c a s h

4



END

t r a n s a c t i o n ,
ANY

new money
WHERE

grd1 : new money ∈ N
THEN

act1 : cash := cash + new money
END

END

This specification already includes most of the essential features of Event-B [4]. The
machine, called Vending1, consists of a single variable cash. The initial value of cash is
set to the constant starting cash which is brought into scope by the fact that we specify
that the machine sees the context component VendingCtx. For its part, VendingCtx

CONTEXT
VendingCtx

CONSTANTS
s t a r t i n g c a s h

AXIOMS
axm1 : s t a r t i n g c a s h ∈ N

END

simply declares starting cash to be a constant with the associated axioms that it is
an integer and that it is non-negative. Vending1 is equipped with two transitions called
events: the initialization event 1 as well as an event specific to the vending machine. This
event, transaction models a user purchasing something from the machine. Note that
transaction is parameterized by a local variable new money such that the transaction

event can only fire when new money’s value is a non-negative integer. This is an example
of a guard which is actually a more general feature: an event can only fire when its guard
is true and thus we might use guards which depend on the current state of the machine.

Additionally, the machine includes an invariant which generate proof obligations for
our model [22]. In this case, the only invariant we consider is the type invariant that cash
is always a natural number. The proof obligations generated require that this invariant is
preserved by each event.

Event-B includes an extensive refinement mechanism allowing models to be extended
as they are developed. At the highest level of abstraction we modeled a vending machine
as a transition system whose state was entirely described by the amount of money it held.
However, a vending machine also needs to vend something. In order to model a vending

1unlike other events, Event-B requires INITIALISATION to be capitalized and spelled with an “s”.
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machine which vends we can refine the model we gave earlier. The states of the new model
will need to include not just the amount of money in the system, but also the machine’s
inventory. One natural way of modeling the inventory is as a mapping from some collection
of Items that the machine could dispense to natural numbers indicating how many of that
type of item the vending machine currently has available for sale. We will also need to
keep track of the price of each item. Observe however that the price of items should not
change as the vending machine evolves over time. In Event-B it is thus natural to provide
our extended model with a new context which extends the previous context to provide a
set of Items that the machine might hold, a function assigning a price to each item, and
a description of the initial inventory of the vending machine.

CONTEXT
VendingCtx2

EXTENDS
VendingCtx

SETS
Items

CONSTANTS
p r i c e
s t a r t i n g s u p p l y

AXIOMS
p r i c e T y p e : p r i c e ∈ Items→ N
s t a r t i n g s u p p l y T y p e : s t a r t i n g s u p p l y ∈ Items→ N

END

With the extended context it is possible for us to define the extended version of the vending
machine as a machine in Event-B. This new machine called Vending2 refines the previous
machine Vending1 to incorporate not only the variable cash but also a variable supply

representing the current inventory.

MACHINE
Vending2

REFINES
Vending1

SEES
VendingCtx2

VARIABLES
cash
supply

INVARIANTS
inv1 : cash ∈ N
inv2 : supply ∈ Items→ N

EVENTS
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INITIALISATION , extended
BEGIN

act1 : cash := s t a r t i n g c a s h
act2 : supply := s t a r t i n g s u p p l y

END

purchase , extended
REFINES t r a n s a c t i o n
ANY

new money
s
f

WHERE
grd1 : new money ∈ Z
grd2 : new money ≥ 0
grd3 : s ∈ Items
grd4 : f ∈ Items→ Z
grd5 : ∀x. x 6=s ⇒ f (x) = supply (x)
grd6 : f ( s ) = supply ( s )−1

THEN
act1 : cash := cash + new money
act2 : supply := f

END
END

In the refined model each event is stated to refine a specific event in the more abstract
model. In our case, purchase models a transaction where not only is money inserted but
also an item is selected and dispensed. In Event-B, each refined event generates a proof
obligation ensuring that the refinement is correct. In order to understand how this works,
we can think of the two models as related by a simulation relation. As we used the name
cash for a variable in both models, the simulation relation automatically relates states
if and only if they have the same value for cash. The generated proof obligation is the
standard one for simulation. Suppose we use R for the relation on states in the refined and
abstract models. Then our proof obligation is that it (sr, sa) ∈ R and sr can step to state
s′r along an event Er which refines event Ea then there must exist some s′a such that sa
steps to s′a along event Ea such that (s′r, s

′
a) ∈ R. The Event-B language though actually

allows for refinement in ways which are somewhat more general than in this example.
First of all, there is no requirement that the variables in the abstract machine appear as
variables in the concrete machine. Instead variables in from the abstract machine may be
referenced directly in invariants of the concrete machine. Invariants that refer to variables
from both machines are called gluing invariants and we can think of gluing invariants as
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representing an extension of the invariant concept from just restricting the state space of
a single machine to also defining the simulation relation [6].

Further, refinements in Event-B need not be simulations: the refined machine can add
new events which do not refine any of the events in the abstract model. Instead, these
new events must correspond to a “skip” event in the abstract model, and so, in particular,
cannot modify variables which correspond to aspects of the abstract model’s state space
[11].

The concept of “decomposition” in Event-B works by splitting a machine into multiple
components, performing a refinement chain on each of those components, and then stitching
the refinement components together into a single refined machine [8]. In the original
approach, the events of a starting abstract machine are partitioned between the various
components. Communication between components happens by way of shared variables. As
each component is refined new invariants must be added, but additional proof obligations
are generated indicating that these invariants are preserved by the “external events” which
existed in the original machine but were partitioned into other components. Finally, the
combined machine is defined as the union of the various refined components [7].

An alternative approach to composition of Event-B machines is to consider the variables
of each machine to be independent of the others, but to combine events which have the
same name [36]. Two descriptions of events of the same name only ever happen at the
same time yielding a mechanism for describing communication [12]. Event fusion scales
to parameterized events [11]. The combination of models using the shared event approach
has all of the invariants of each of the component models [41] and is further compatible
with the decomposition/refinement/composition methodology where the variables, rather
than events, of the initial model are partitioned [42].

The use of shared names for sharing in composition has been criticized for requiring an
“engineering omniscience” [17].

Event-B is a very convenient language for describing state machines. It is simple and
intuitive. However, Event-B is limited as a specification language in that the only proper-
ties about systems it can express are invariants. In general, specifications can be divided
roughly into two forms: system specifications describing how a system behaves and re-
quirement specifications describing properties that must hold but not fully describing the
system [35]. While, Event-B seems relatively well suited for the former, the restriction to
only considering invariants makes it less well suited for the later. Further, because Event-
B is focused on invariants, its notion of refinement does not necessarily preserve other
properties of interest. Thus, Event-B may not be sufficient for all our specification needs.

3 Logics of Time

A second approach to modeling reactive systems we consider is the use of temporal logic.
The use of temporal logic for specifying programs goes back to Pnueli’s [34] work in the
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1970s. The idea is to describe both systems and the theorems about those systems as
logical statements in an underlying logic which directly incorporates a notion of time. We
write specifications as formulae based on the following idea: an implementation satisfies
its specification precisely if that logical statement of the specification is true about the
implementation.

The view of specifications as formulae is convenient because it allows us to work with
specifications using the ordinary tools of logic. For example, one specification refines
another if all implementations of the refined specification are also implementations of the
more abstract one. Put another way, if the more refined specification is true about an
implementation then it follows that so is the more abstract one. In logical terms, this
means that a specification P refines a specification Q precisely when the formula P → Q is
true. Similarly, ordinary logical connectives provide an easy way to combine specifications:
implementations which satisfy P and which satisfy Q are exactly those which satisfy P ∧Q.
Thus, just as refinement can be modeled as implication, so too can composition be modeled
as conjunction.

In order to specify reactive systems, however, we will need additional logical facilities
beyond the ordinary connectives because we care about additional concerns such as how
systems evolve over time which are not part of the standard logical framework. Temporal
logics address this by extending ordinary propositional or first order logic with additional
features for reasoning about time.

We first consider a tense logic where the truth of a statement can vary in time [37]. In
such a system we say “T is true” if right now T is true, but we don’t necessarily assume T
will continue to hold. The core feature of the tense logic is modalities for considering the
truth value in the future. The modality 2 which is pronounced “always” is used to express
properties that must continue to be true. Thus, 2T holds if T holds now and at all future
times. Conversely, we have an alternative modality 3 pronounced “eventually,” which is
used for statements which must become true at some point. 3T is true if T is true now or
if it will be true at some point in the future. Additionally, we suppose the ability to reason
about changing state in the logic. Thus, in addition to “rigid variables” (x) and function
symbols (fn) whose meaning remain constant over time we have “flexible variables” (x)
whose values can change over time.

E ∈ Expressions ::= x | x | fn(E1, . . . , En)

T ∈ Predicates ::= Pn(E1, . . . , En) | T ∧ T | ∃x.T | ¬T | 2T | 3T

If we assume a classical conception of truth, the modalities 2 and 3 are related as De
Morgan duals similar to the quantifiers ∃ and ∀. Specifically

� 3T ↔ ¬2¬T

and indeed, the duality can be seen as induced by the duality between ∃ and ∀ as 3T
asserts that there exists some future time where T holds while 2T asserts that at all
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future times T holds. Although, as a technical matter, we need only include one or the
other of 3 and 2 we include both as the temporal operators are the focus of our study.
By contrast, the standard logical operators of ∧, →, and ∀ are considered derived forms as
they can be defined in terms of the other connectives.

Returning to the vending machine, we can, assuming function and predicate symbols
corresponding to ordinary mathematics, express as a temporal formula the invariant that
the variable representing money in the vending machine is always a positive number:

2cash ∈ N.

Additionally, we can express properties which are not expressible in Event-B as Event-B
provides no mechanism for stating general liveness properties. Here though, it is possible
to express properties asserting that something must hold eventually. For example, the
property that the amount of money in the vending machine will eventually exceed some
fixed constant (such as 100):

3cash ≥ 100.

Beyond simply stating properties though, we would like to be able to specify the vending
machine as a state machine [35]. However, doing so is a challenge in the simple tense logic.
For example, we might attempt to construct a specification for the vending machine by
stating that initially cash is a non-negative integer, and at any time no matter what the
value of cash is that value will eventually become higher:

Vending1tense , cash ∈ N ∧2(∃n.cash = n ∧3(cash > n)).

This specification captures at least some of what we want to hold about the vending
machine. For example, we should have that:

� Vending1tense → 3cash ≥ 100.

However, while it is clear that the specification implies this liveness property, it does not
imply the safety property. That is

6� Vending1tense → 2cash ∈ N.

The reason why the specification does not imply the invariant is because while cash =
n ∧ 3(cash > n) means that cash will eventually be higher than n, in the mean time it
could hold any value. For example, cash might start out at 3 decrease to −7 grow back to
4 and then monotonically increase to higher values ever there after. Or, its values might
come from the sequence 0,−1, 1,−2, 2,−3, 3,−4, 4, . . . or any other sequence of values so
long as that sequence is unbounded.

As such, it seems that the tense logic alone is insufficient and we need something more
to specify state machines.
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Remark 1. The tense logic we consider here is based on a linear conception of time. What
that means is that while it is possible for us to speak about a statement being true in the
future, the logic does not include features to discuss the idea of a statement potentially
being true in some potential future. The linear conception of time is not the only design
choice, others have considered branching time logics such as CTL [13] and the extremely
expressive CTL* [15] which are based on the a view of time not as a line but rather as
a tree. However, while CTL has found significant use in model checking, branching time
logic has also been found to be less compositional and more difficult to use in practice than
logics based on a linear conception of time [43].

3.1 Linear Temporal Logic

Pnueli’s Linear Temporal Logic (LTL) [34] extends the tense logic with one extra modality,
◦, pronounced “next.” Here ◦T is true of a system if T is true in the next state of the
system. In order to formalize this, we can adopt a discrete view of time in which the full
behavior of system is understood as an infinite sequence of states. With this idea, ◦T is
true for some infinite sequence of states ρ if T is true for the tail (that is, all the states
but the first one) of ρ. 2T is true of ρ if T is true of any sequence obtained by removing
any number of the initial states from ρ. Conversely, 3T is true of ρ if ρ consists of some
(possibly empty) prefix of states and then the sequence ρ′ for which T is true. We write
ρ � T to indicate that T is true of ρ and � T to indicate that ρ � T holds for all ρ.

Using LTL with its ◦ modality we can specify state machines quite directly. For exam-
ple, rather than specifying that at any time cash will eventually increase, we can simply
state that it will increase immediately. Thus we have

Vending1LTL , cash ∈ N ∧2(∃n.cash = n ∧ ◦(cash > n)).

The updated specification of the vending machine is detailed enough that it directly
implies both properties we care about:

� Vending1LTL → 2cash ∈ N
� Vending1LTL → 3cash ≥ 100.

However, while this highly detailed specification guarantees both liveness and safety
properties, it turns out to be less than amenable to refinement. Consider the extension
to vending machine which incorporates temporary cash. Here, at any time the vending
machine will either increase the variable cash by the amount in temp or it will increase
temp and keep cash constant.

Vending2LTL , cash ∈ N ∧ temp ∈ N
∧2((∃n.∃m.cash = n ∧ temp = m ∧m > 0 ∧ ◦(cash = n+m ∧ temp = 0))

∨ (∃n.∃m.cash = n ∧ temp = m ∧ ◦(cash = n ∧ temp > m)))
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We want to think of Vending2 as a refinement of Vending1 where we simply implement
steps of Vending1 where cash increases in value as sequences of steps involving increasing
amounts of money held in temp. However, this does not work since

6� Vending2LTL → Vending1LTL.

At its core, the issue here is that the ◦modality ends up being too tight. When Vending1LTL

specifies the value of cash changing in the next state it prevents implementations which
increase cash by means of a series of states.

The problem here is not a problem with LTL per se, but rather with the particular
specifications. Using ◦ to define state machines leads to specifications which are simple to
read and where the liveness and safety properties we care about follow. However, it also
prevents refinements of those state machines to insert intermediate states as implementa-
tions of transitions. What we would like is an approach which gives us the same sort of
simple and easy to read specifications for state machine while implying the properties we
care about while also allowing refinements which are not forced to respect the meaning of
“next” state so exactly.

3.2 The Temporal Logic of Actions

The challenge with using LTL specifications of state machines with refinement is that the
next operator in LTL leads to specifications which force machines to run at a certain speed
and which can not be implemented by running slower (that is, with more steps).

For this reason Lamport suggested a variant of LTL called the Temporal Logic of Ac-
tions (TLA) [26] which ensures that the truth value of temporal formulae does not depend
on how fast the system being considered runs. While other logics have been proposed
to achieve the same goals by changing the semantics of the ◦ operator [25], TLA works
by replacing it. Syntactically and semantically TLA is constructed in layers. At the base
layer, we have the language of state expressions which consist of expressions in the ordinary
language of first order logic with both rigid and flexible variables. Being completely formal,
TLA is parameterized by a signature consisting of for each natural number n a family of
function symbols fn and a family of relation symbols Pn. Intuitively, functions, relations,
and rigid variables correspond to the usual notions from logic: timeless and fixed entities
unchanged as a reactive system evolves through time. By contrast, flexible variables are
used to model time varying values and so the meaning of the flexible variables will change
over time.

Above this is the language of action expressions which looks just like the language of
state expressions except that for each flexible variable x,y, z we have the addition of a
primed variable symbol x′,y′, z′. Note that rather than simply indicating a new variable,
the prime symbol is semantically significant. While an unprimed variable is used for a
current value, the primed version is used for the next value of that variable. Note that
while all state expressions are action expressions, the converse is not true.
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E ∈ StateExpressions ::= x | x | fn(E1, . . . , En)

D ∈ ActionExpressions ::= x | x′ | x | fn(D1, . . . , Dn)

A ∈ ActionPredicates ::= Pn(D1, . . . , Dn) | A ∧A | ¬A | ∃x.A
T ∈ TemporalPredicates ::= Pn(E1, . . . , En) | T ∧ T | ¬T | ∃x.T | 2T | 3T | 2[A]E

Figure 1: Syntax of TLA

Logical formulae formed from action expressions will be called action predicates. An
action predicate can be macro expanded into an LTL predicate which only makes a single
use of the ◦ modality and otherwise does not incorporate any temporal modalities. More
specifically, if A is an action predicate that makes use of the primed flexible variables
x′1 . . .x

′
2 then A should correspond to the LTL formula

∃y1. . . .∃yn.A[y1/x
′
1, . . . , yn/x

′
n] ∧ ◦(y1 = x1 ∧ . . . yn = xn).

In this way, the language of action predicates provides a restricted language for talking
about changes in the state, capturing some of the expressive power of the ◦ operator in
LTL.

Finally, there is the layer of temporal predicates formed by the usual logical connectives
with state expressions as the notion of expression, and the temporal modalities for always
(2) and eventually (3). These constructs share their meaning with LTL. Additionally,
given any state expression E and action predicate A there is a temporal predicate, 2[A]E
whose intuitive meaning is that at any step either A occurs or E stays the same. In full
LTL, the predicate 2[A]E could be interpreted as syntactic sugar for

2(A ∨ (∃x.E = x ∧ ◦E = x)).

Observe that this means that 2[⊥]E is true precisely if E never changes [14]. The special
operator 2[] in TLA is particularly well suited for expressing state machines. For example,
the initial vending machine can be expressed in TLA as

Vending1’TLA , cash ∈ N ∧2[cash < cash′]cash.

Similarly, the specification of the refined vending machine can be expressed as

Vending2’TLA ,− cash ∈ N ∧ temp ∈ N
∧2[(cash′ = cash + temp ∧ temp′ = 0) ∨ (cash = cash′ ∧ temp < temp′)](cash,temp).

With these specifications it follows immediately that Vending2’TLA is a refinement of
Vending1’TLA:

� Vending2’TLA → Vending1’TLA.
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The issue faced with the version of the specifications constructed in LTL is resolved since in
the extra possible action (cash = cash′ ∧ temp < temp′), cash stays constant. Further,
Vending1’TLA is strong enough to show all the safety properties we need, including the
invariant:

� Vending1’TLA → 2cash ∈ N.
However, it does not imply the liveness property

� Vending1’TLA → 3cash ≥ 100

as Vending1’TLA would be satisfied by a sequence of states which just kept cash constant
forever. Giving up this and similar liveness properties is a significant loss. However, TLA
turns out to be expressive enough to write state machine style expressions which imply
them.

First, we introduce a new operator for lifting action predicates into temporal predicates
dual to the existing one. If A is an action predicate and E is a state expression, then 3 〈A〉E
is temporal predicate whose meaning can be given by macro expansion into the rest of TLA:

3 〈A〉E , ¬2[¬A]E .

Taking the interpretation of TLA in terms of LTL, we can further simplify this to an LTL
formula

3 〈A〉E , ¬2[¬A]E

, ¬2(¬A) ∨ ∃x.E = x ∧ ◦E = x

↔ ¬2¬(A ∧ ¬∃x.E = x ∧ ◦E = x

↔ 3A ∧ ¬∃x.E = x ∧ ◦E = x

↔ 3A ∧ ∀x.E 6= x ∨ ◦E 6= x

which suggests an intuitive meaning of 3 〈A〉E as that eventually A will happen and E will
change value.

Another useful operator is the Enabled predicate. If A is an action predicate then
Enabled(A) is the temporal predicate which is true if the current state is one such that A
might be possible. That is, regardless of what the next state actually is, Enabled(A) is true
if there is some potential next state such that A holds. The Enabled predicate does not
add any new power not already present in TLA so we can treat it also as simply syntactic
sugar. Let x′1 . . .x

′
n be the primed variables which occur in A, then we simply set

Enabled(A) , ∃y1 . . . ∃yn.A[y1/x
′
1, . . . , yn/x

′
n.

From these, we can define, internally to TLA, the notion of weak fairness with respect
to an action. The temporal predicate WFE(A) asserts that either A happens infinitely
often or there are an infinite number of times when A can’t happen [2]. That is

WFE(A) , (23 〈A〉E) ∨ (23¬Enabled(A)).
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Similarly, TLA also allows for the assertion of a strong fairness condition. The temporal
predicate SFE(A) asserts that either A happens infinitely often, or at some point A becomes
completely and permanently blocked. That is,

SFE(A) , (23 〈A〉E) ∨ (32¬Enabled(A)).

Strong fairness implies weak fairness but not vice versa.
Even weak fairness, however, is strong enough to extend our state machine specifications

sufficiently to prove liveness properties. We can outlaw the situation where cash never
changes by simply adding the side condition that the action of incrementing cash is treated
fairly (and, thus, happens sometimes). This yields to the full TLA specification of the
vending machine at its greatest abstraction:

Vending1TLA , Vending1’TLA ∧WFcash(cash < cash′).

Of course, Vending1TLA continues to imply all the safety properties of Vending1’:

� Vending1TLA → 2cash ∈ N.

Additionally, we now add the liveness property that cash eventually exceeds any fixed
value:

� Vending1TLA → 3cash ≥ 100.

While Vending2’TLA is not itself a refinement of Vending1TLA as it does not establish
liveness, it can be extended with fairness conditions yielding the full specification of the
refined machine.

Vending1TLA , Vending2’TLA

∧WFcash,temp(cash′ = cash + temp ∧ temp′ = 0)

∧WFcash,temp(cash = cash′ ∧ temp < temp′)

With fairness conditions included, we have

� Vending2TLA → Vending1TLA

showing that we have TLA allows us to capture all the properties of interest.

3.3 Formal Semantics of TLA

We have so far considered TLA as macro expanding into LTL. However, we now turn to fully
specifying the semantics of TLA directly. When we later turn to the problem of variable
hiding we will see that it makes sense to incorporate into TLA additional constructs which
are not part of LTL. Further, it should be noted that the macro based interpretation of
TLA often make use of first order features of LTL even when the original formula was
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quantifier free. It turns out that if we are restricted to the propositional subset of LTL
(even extended with propositional variables whose truth values are functions of the state)
then the goal of making propositions invariant under stuttering is achieved exactly by
eliminating the ◦ operator [33].

In order to give a semantics for TLA we will first fix an interpretation of first order
logic consisting of a pair < D,F > where

• D is a set modeling the domain of discourse and

• F is a mapping associating each function symbol fn with a function, Dn → D and
each relation symbol Pn with a function Dn → {true, false}.

The interpretation of state expressions then will be parameterized by a function called
the environment and usually written as θ mapping rigid variables to D and function called
a state and usually written σ mapping flexible variables to D.

JxK(θ, σ) = θ(x)

JxK(θ, σ) = σ(x)

Jfn(D1, . . . , Dn)K(θ, σ) = F(fn)(JD1K(θ, σ), . . . , JDnK(θ, σ))

By contrast, the semantics of action expressions is parameterized by an environment θ and
two states σ and σ′ referring to the current (unprimed variables) and next state (primed
variables) of the system at a given time.

JxK(θ, σ, σ′) = θ(x)

JxK(θ, σ, σ′) = σ(x)

Jx′K(θ, σ, σ′) = σ′(x)

Jfn(E1, . . . , En)K(θ, σ, σ′) = F(fn)(JE1K(θ, σ, σ′), . . . , JEnK(θ, σ, σ′))

Just as the meaning of an action expression depends on two states so does the truth value
of an action predicate.

θ, σ, σ′ � Pn(D1, . . . , Dn) iff F(Pn)(JD1K(θ, σ, σ′), . . . , JDnK(θ, σ, σ′)) = true

θ, σ, σ′ � A1 ∧A2 iff θ, σ, σ′ � A1 and θ, σ, σ′ � A2

θ, σ, σ′ � ¬A iff θ, σ, σ′ 6� A
θ, σ, σ′ � ∃x.A iff there is some v ∈ D such that (θ, x 7→ v), σ, σ′ � A

By contrast, the truth value of a temporal predicate is not parameterized by a state but
rather by an infinite family of states called a behavior and usually written ρ. We treat a
behavior as a function from natural numbers to states and so use ρ(0) for the initial state
in ρ and ρ(1) for the next state. The syntax ρk is used for the shift which when written
as a function in lambda notation would be λn.ρ(n+ k). A bare state expression is treated
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as being an expression of the initial state of ρ. Otherwise the interpretation of the logical
connectives is standard, while the temporal modalities are interpreted using shifts.

θ, ρ � Pn(E1, . . . , En) iff F(Pn)(JE1K(θ, ρ(0)), . . . , JEnK(θ, ρ(0))) = true

θ, ρ � T1 ∧ T2 iff θ, ρ � T1 and θ, ρ � T2
θ, ρ � ¬T iff θ, ρ 6� T
θ, ρ � ∃x.T iff there is some v ∈ D such that (θ, x 7→ v), ρ � T

θ, ρ � 2T iff for every k ∈ N such that θ, ρk � T

θ, ρ � 3T iff there exists some k ∈ N where θ, ρk � T

Finally, the operator 2[] allows us to lift an action predicate into a temporal predicate
according to the following idea: 2[A]E is true of a behavior ρ if at every pair of states of
ρ are either related by A, or, have the same value of E.

θ, ρ � 2[A]E iff for every k ∈ N either θ, ρ(k), ρ(k + 1) � A or JEK(θ, ρ(k)) = JEK(θ, ρ(k + 1))

The most important property about TLA’s semantic interpretation is the idea of in-
variance under stuttering. Intuitively, a behavior might stutter by staying at the same state
for several time steps. In some sense, such a stuttering behavior is equivalent to one which
does not stutter, and TLA formulae should be unable to observe the difference between
these behaviors.

Formally, we define ≈ to be the least equivalence relation on behaviors such that for
every k ∈ N

ρ ≈ λn.if n ≤ k then ρ(n) else ρ(n− 1)

which is to say that a behavior ρ is equivalent to the behavior ρ′ which is defined to be
identical to ρ except for an extra copy of the state ρ(k) inserted into ρ at the position k+1.

Theorem 1 (Stuttering Invariance [31]). For any temporal predicate T and ρ ≈ ρ′ we have
θ, ρ � T if and only if θ, ρ′ � T .

Generally, TLA developments will use a single signature for all the various models
in a project. This signature, together with some non-temporal axioms, provides the math
language used. In Lamport’s TLA+ [28] the math language is a variant of Zermelo-Fraenkel
set theory with choice. Here, we follow that convention and assume D and F to be a fixed
interpretation of set theory.

As we take D and F to be fixed, we will say that a temporal predicate T is valid written
� T if for every interpretation of rigid variables θ and behavior ρ that θ, ρ � T .

Observe that with no consequence on the meta-theory, we can extend the syntax of
TLA in various ways. One very convenient extension is to allow for the addition of the
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prime operator on any expression, and not just flexible variables

D ∈ ActionExpressions ::= . . . | E′

where the semantic interpretation of JE′K(θ, σ, σ′) is JEK(θ, σ′) by simply unfolding the
prime in the following way: priming a rigid variable reduces to just the rigid variable,
priming a flexible variable reduces to the flexible variable with the prime, and priming a
function symbol reduces to that function symbol with each of its argument primed.

The proof theory for TLA is a bit more challenging, and indeed, a bit of an open
question. It is relatively easy to come up with sound rules of inference for TLA. However,
it is more to challenging to come up with a system of inference rules which is complete.
The crux of the difficulty is in encoding the induction principle which allows for deriving an
invariant from an initial condition and an action. Such an induction principle is difficult
to give in full generality for TLA as presented here, but can be given for a variant of
TLA called TLA* where action predicates can contain temporal modalities [31]. It is
also possible to give a complete proof system for TLA extended with quantification over
flexible variables as will be considered later. However, in this work we do not focus on
the construction of proof systems and so instead suggest that reasoning at the level of the
semantics may be used. In addition to a system for deductive proof, the TLA+ system
includes a model checker which can demonstrate some properties fully automatically and
which in other cases can be used to test specifications up to finite bounds [45].

3.4 Refinement and Composition in TLA

Reducing refinement to implication is quite convenient in a number of ways. For one thing,
it means that no extra features need to be included in TLA to work with refinement. For
another, it allows us to easily carry properties about the abstract model over to the concrete
one. For example, we know that � Vending1→ 2(cash ∈ Z) and � Vending2→ Vending1
therefore we can immediately conclude that this invariant also holds for Vending2.

� Vending2→ 2(cash ∈ Z)

Moreover, that refinement is understood as implication ensures that it preserves not just
invariants or other safety properties but all the properties expressible in TLA including
liveness properties.

However, the implication based approach is implicitly taking advantage of the fact
that we are using the same variables in both models. This seems slightly worrying and
anti-modular: we cannot simply rename a variable in one model without renaming it in
the other [30]. Consider for example the model Vending1[money/cash] which is just like
Vending1 except that the variable cash has been renamed money. It is apparent that we
do not get the same kind of simple refinement relationship we had above.

6� Vending2→ Vending1[money/cash]
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And yet, it seems that there is still some sort of refinement relationship between these
models. In particular, we are able to combine the two models with a gluing invariant
namely

Glue ,money = cash

as we can show that

� (2Glue ∧Vending2)→ Vending1[money/cash]

however, it is not immediately clear that we have constructed a refinement in this case as
2Glue might restrict the possible behaviors of the variables in Vending2.

To get around this problem we introduce the idea of a refinement mapping. Suppose
T is a temporal logic formula with free flexible variables ~x and S is a temporal logic
specification with the set of free flexible variables ~y. A refinement mapping h associates
each variable in ~y with a state expression which does not use any of the variables from ~y
(but might use variables from ~x). Then, we have the following fact

(� (2~y = ~h(y) ∧ T )→ S)⇔ (� T → S[h])

where S[h] is the substitution formed by replacing each variable in S with its associated
expression from h [27].

The use of refinement mappings gives us a way to treat refinement as implication
without globally agreeing on variable names. Further, because we might associate a variable
with an expression and not just another variable in the refinement mapping, this notion is
actually more general. The concrete model might use multiple variables to capture a single
variable in the abstract model: for example, we might further refine our vending machine
to store separately the number of different kinds of coins (quarters, nickels, dimes, etc): the
refinement mapping would have to then compute the value of cash as the sum of values of
these coins. Observe also that

(� T )⇒ (� T [h])

for any TLA formula T and refinement mapping h. This means that we can lift properties
we have proven about an abstract model to be properties about a concrete model by
substituting along a refinement mapping: if � S → P then � S[h]→ P [h] so if � T → S[h]
then � T → P [h].

The implication connective allows us to talk about refinement internally to TLA. How-
ever, allow us to step back and think about what such a refinement means semantically.
If � T → S[h] then for any Θ and for any ρ we have Θ, ρ � T → S[h] which means that
(Θ, ρ � T )⇒ (Θ, ρ � S[h]). Put another way, this says that for any Θ that

{ρ | Θ, ρ � T} ⊆ {ρ | Θ, ρ � S[h]}

which, in English, is that the set of behaviors which satisfy T is a subset of the set of
behaviors which satisfy S[h]. Or, in other words, any sequence of states which satisfies T
also satisfies S[h].
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Composition is particularly elegant in TLA where composition is achieved using nothing
more than logical conjunction [3]. Given two formulae T1 and T2 which each restrict the
possible set of behaviors, the conjunction T1 ∧ T2 is satisfied by the intersection of the
behaviors of T1 and T2. If T1 and T2 involve non-overlapping sets of variables, then the
behaviors which satisfy the conjunction can be viewed as pairs of behaviors which satisfy the
two components. On the other hand, if the sets of variables overlap, then the conjunction
describes a combined model which is restricted by both formulae. Thus, a natural way of
building large TLA specifications is as the conjunction of smaller component models where
communication is achieved by variable sharing.

3.5 Variable Hiding

So far, we have only considered quantification in TLA over rigid variables, but it is also
possible to quantify over flexible variables. Naively, we might define the meaning of exis-
tential quantification over flexible variables as being given by the existential in the meta
logic. First, let ρ ] (x 7→ d) denote the behavior which for each time step gives the same
state as ρ except that for every time n ∈ N, x is assigned the value d(n). Then we can
interpret the existential by simply quantifying over d:

θ, ρ � ∃x.T iff the exists d ∈ DN such that θ, ρ ] (x 7→ d) � T

However, this definition suffers from a major flaw. Namely, it is not invariant under
stuttering. To see the problem, consider the temporal formula

T , (x = y) ∧2[(x = x′ = y = y′ − 1) ∨ (y = y′ = x + 1 = x′)]x,y

where E1 = E2 = E3 = E4 is syntactic sugar for E1 = E2 ∧ E2 = E3 ∧ E3 = E4. The
idea is that T is satisfied if x and y represent a pair of numbers which start equal and
advance in the following fashion: first y is incremented while x stays the same, then x is
incremented to “catch up” while y stays the same bringing the two variables to the same
value, at which point, the cycle repeats. Using T and the existential we can construct a
formula in a single variable

∃y.T

however, in so doing we have constructed a formula which is not stuttering invariant.
Namely, if ρ is the behavior which assigns x the sequence of states 1, 1, 2, 2, 3, 3, 4, 4, . . .
then we can use d = 1, 2, 2, 3, 3, 4, 4, . . . to prove that ∃y.T is satisfied by ρ. However, if ρ′

is the behavior which assigns x the sequence of states 1, 2, 3, 4, 5, . . . then ∃y.T can not be
satisfied by ρ′. This is concerning because ρ′ is formed simply by eliminating stutters from
ρ and so it should be the case that ρ ≡ ρ′.

As stuttering invariance is the crucial property which TLA is designed to achieve, this
naive existential quantification over flexible variables is not permissible. However, we can
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construct an alternative semantics for the existential which is stuttering invariant simply
by forcing stuttering invariance into the definition [26].

θ, ρ � ∃x.T iff the exists d ∈ DN and ρ′ such that ρ ≡ ρ′ and θ, ρ′ ] (x 7→ d) � T

The updated definition preserves stuttering invariance by construction and so the main
property of our system is met.

Having the existential satisfy stuttering invariance can be interpreted as allowing quan-
tified flexible variables to change value between time steps of the behavior. Allowing such
changes is precisely what we want, since, we do not want to be able to observe how quickly
states change. The stuttering invariance means that a formula ∃x.T is satisfied by a be-
havior ρ which can be, in some sense, implemented by a different behavior ρ′ that satisfies
T by taking multiple steps for each step of ρ.

However, the alternative semantics for the TLA existential is surprising because it
means that the TLA semantics is not a standard Kripke semantics for modal logic. Such
an outcome is worrying: how do we know that the connective we are calling an existential
really behaves like a logical existential?

In order to resolve this problem, it makes sense to consider an alternative semantics
of TLA with a continuous, real valued interpretation of time [24]. The ordinary TLA
semantics defines a temporal logic where the time is discrete and so modeled by natural
numbers. In contrast, we normally perceive time to be a continuous, and thus real valued,
quantity. The use of natural numbers for time means that there is no intermediate time
between two time steps and this is the reason why the naive existential does not work. By
contrast, there is always a real number between two (non equal) real numbers.

However, in order to construct a real valued semantics of TLA we must be careful to
ensure that we are still modeling digital systems. States of a digital do not vary contin-
uously: they change episodically between values which they hold for positive amounts of
time. To capture these we restrict temporal varying values to only certain functions of real
numbers. Namely, a non-zeno function over a set S is a function from f non negative real
numbers to S such that

1. for every non negative real number t there exists a positive number ε such that
∀t′, t ≤ t′ ≤ t+ ε, f(t) = f(t′) and

2. for every increasing sequence t0, t1, t2, . . . such that f(ti) 6= f(ti+1) the set {ti} is
unbounded.

These two conditions ensure that a non-zeno function not change too quickly: the first by
guaranteeing that each state is held for positive time, while the second ensures that only
a finite number of states are visited in any finite length of time. We use the notation SR+

to refer to the set of non-zeno functions over S.
The challenge with using real valued behaviors for the semantics of TLA is in inter-

preting the primed variables x′ as these should be given by the value of the variable at the
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“next” time and in general, there is no next real number. However, non-zeno functions
allow us to define a next time function. Let f ∈ SR+

and t be a non-negative real number.
next(f, t) is intuitively, the least number greater than t such that f(t) 6= f(next(f, t)) or
t if there is no t′ greater than t such that f(t′) 6= f(t). Formally,

next(f, t) , t ∀t′ ≥ t, f(t′) = f(t)

next(f, t) ,min({t′ | t′ ≥ t ∧ f(t′) 6= f(t)}) otherwise

However, the minimum of a set of real numbers is not well defined in general, so we must
prove this function is well defined. The idea is that if there exists a t′ ≥ t such that
f(t′) 6= f(t) then it works out that

min({t′ | t′ ≥ t ∧ f(t′) 6= f(t)}) = sup({t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)})

which is well defined when sup is the notation for the supremum. The reason this works
out is two fold: first there exists a positive epsilon such that

∀s,(sup({t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)})
≤ s
≤ sup({t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)}) + ε)

⇒ f(s) = f(sup({t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)}))

since f is non-zeno, but that means f(sup({t′ | t′ ≥ t∧∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)})) 6=
f(t) since if they were equal then sup({t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)}) + ε
would be in the set {t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)} which is clearly a
contradiction. And, similarly, given any s such that s ≥ t and f(s) 6= f(t) we know
that s is an upper bound of {t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)} and so
s ≤ sup({t′ | t′ ≥ t ∧ ∀t′′, t ≤ t′′ ≤ t′ ⇒ f(t) = f(t′)}).

With the ability to select a next state, it is possible to give a real time semantics for
TLA. The semantics for actions and expressions is identical to what is used with the discrete
time semantics. All that differs is the interpretation of temporal predicates. In the real
time semantics, a behavior τ ∈ SR+

is a non-zeno function over the set S of states mapping
from flexible variables to the domain D. We use τk for the map λr.τ(r + k). If θ is a first
order interpretation and τ is such a behavior, we define the satisfiability relation θ, τ �R T
by induction on T . The majority of the connectives are interpreted nearly identically to
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how they are in the discrete time semantics.

θ, τ �R P
n(E1, . . . , En) iff F(Pn)(JE1K(θ, τ(0)), . . . , JEnK(θ, τ(0))) = true

θ, τ �R T1 ∧ T2 iff θ, τ �R T1 and θ, τ �R T2
θ, τ �R ¬T iff θ, τ 6�R T
θ, τ �R ∃x.T iff there is some v ∈ D such that (θ, x 7→ v), τR � T

θ, τ �R 2T iff for every k ∈ R such that θ, τk �R T

θ, τ �R 3T iff there exists some k ∈ R where θ, τk �R T

The main difference comes in handling the action lifting connective where we use the next

function instead of simply incrementing the time.

θ, τ �R 2[A]xi
iff for every k ∈ R either θ, τ(k), τ(next(τ, k)) � A

or for every i, τ(k)(xi) = τ(next(τ, k))(xi)

The other major difference is in the handling of the existential connective over flexible
variables. Here, the real time semantics no longer needs to force stuttering invariance.
Using τ ] (x 7→ f) for the continuous behavior which at any time t corresponds to τ for
every variable except x and where (τ ] (x 7→ f))(t)(x) = f(t), the interpretation of flexible
variables becomes the standard interpretation for Kripke style semantics.

θ, τ �R ∃x.T iff the exists f ∈ DR+
such that θ, τ ] (x 7→ f) �R T

A formula T is continuously valid written �R T if for every θ and continuous behavior
τ we have θ, τ � T .

Stuttering gave us a way of relating discrete time behaviors which, intuitively, differed
only in their rate. There is a similar way of relating continuous time behaviors. A time
transform is a function on the non-negative real numbers which is one-to-one, onto, and
continuous. It follows that time transforms map 0 to 0, are monotonic, and have inverses
which are themselves time transforms. Two behaviors τ and τ ′ are time transform equiv-
alent, written τ ∼ τ ′ if there exists a time transform f such that τ = τ ′ · f . Since time
transforms are invertible we know that τ = τ ′ ·f means τ ·f−1 = τ ′ ·f ·f−1 = τ ′ and so ∼ is
symmetric. Similarly, since the identity function is a time transform and time transforms
compose, ∼ is reflexive and transitive. The notion of time transform equivalence corre-
spondence to stuttering equivalence in TLA, and, in particular, all formulae are invariant
under time transformation.

Lemma 1. If τ ∼ τ ′ and θ, τ �R T then θ, τ ′ �R T .

This holds even though the semantics for existential quantification of flexible variables
does not force equivalence. Further, time transform equivalence is useful in the following
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way: any discrete behavior ρ yields a continuous behavior λr.ρ(brc) which is clearly non-
zeno. We see at once that stuttering equivalent discrete behaviors will yield continuous
behaviors which are time transform equivalent. Similarly, given a continuous behavior τ
we can construct a discrete behavior disc(τ) which captures each change in τ

disc(τ)(n) , change(τ)(n)

change(τ)(0) , 0

change(τ)(n+ 1) , next(τ, change(τ)(n)).

Together, these two operations define a sort of equivalence between discreet and continuous
behaviors.

Lemma 2. 1. For any τ ∼ τ ′, disc(τ) = disc(τ ′),

2. for any ρ ≡ ρ′, λr.ρ(brc) ∼ λr.ρ′(brc),

3. for every τ , τ ∼ λr.disc(τ)(brc), and

4. and for every ρ, ρ ≡ disc(λr.ρ(brc)).
Further, the ability to travel between discrete and continuous behaviors allows us to

show that the two semantics are equivalent.

Lemma 3. θ, τ �R T if and only if θ, disc(τ) � T .

Finally, this is enough to show that the two semantics have the same notion of validity.

Theorem 2 ([24]). �R T if and only if � T .

Our journey through the real time semantics is principally important for one reason: it
shows that, indeed, the “existential quantifier” over flexible variables really is an existential
in the sense of logic, even though its definition is unusual and is, certainly, at odds with
the view of TLA as being nothing but a restriction of LTL. Additionally, a variant of TLA
based on a real time semantics has proven useful for verifying cyber-physical systems such
as autonomous vehicles where real valued physics interacts with discrete digital components
[38].

Variable hiding allows us to have specifications which make use of pieces of state which
are not externally observable. For example, we built a specification for Vending2TLA which
made use of an extra variable temp which plays an important role in defining the re-
fined vending machine, but which is perhaps not externally observable to systems (e.g.
users) interacting with the vending machine. We could, therefore, instead work with the
specification

∃temp.Vending2TLA

which hides the variable temp. In general, TLA specifications are likely to begin by
existentially quantifying over hidden variables in this way. A convenient result is that,
under certain reasonable assumptions, refinement of specifications with hidden variables
implies the existence of refinement mappings between their underlying state spaces [1].
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4 Temporal Theories

A rather different perspective on temporal logic was presented by Fiadeiro and Maibaum in
their work on modular temporal theories [16]. We will refer to the specifications constructed
in this style as “temporal theories” and the approach as “the temporal theory approach.”

The temporal theory approach uses temporal logic for describing specifications. How-
ever, this is done in a very different way than what was seen with logics like TLA. The
difference is that while a specification in TLA was encoded as a logical formula, here we rep-
resent specifications as logical theories (hence the name “temporal theory”). This means
that composition and refinement cannot simply be accounted for as logical connectives.
However, it also enables a potentially richer account of specifications and how they are
interrelated.

Further, while TLA was constructed as an extension of single sorted first order logic,
and both Event-B and TLA+ are based on untyped set theoretic reasoning, temporal
theories are based on multi-sorted or typed first order logic where equality is the basic
relation of interest.

In order to see temporal theories in action, let us construct a temporal theory corre-
sponding to the vending machine at the highest level of abstraction. As before, we model
the amount of money in the system with a variable cash, called an attribute, indicating the
amount of money in the system. Because we work in a typed system, we give this variable
the sort N. Unlike what we saw in Event-B, that cash has type N is not a theorem which
derives from the specification, but intrinsically part of the definition since every expression
must have a type.

We need now axioms for reasoning about how cash evolves over time. We could have
an axiom which asserts that at any time the next value of cash is greater than its current
value. However, we already witnessed how that created problems for refinement. Instead,
let us theorize the existence of an action which the system can take called transaction.
We then have an axiom, which is always true, which asserts the liveness property that this
action keeps happening:

3transaction.

Further, we should have an axiom that anytime transaction happens cash increases:

transaction→ cash < ◦cash.

Here we, in a slight change of notation from TLA, use ◦ to indicate the next value of an
expression.

There is an additional detail we must consider: in Event-B and TLA we assumed the
existence of a flexible math language which includes collections such as N and operations
like <. However, in temporal theories we make no such assumption. Instead, we must
include N as a sort symbol in the theory and account for < ourselves. As [16] did not
utilize relation symbols except for indexed action symbols (which, as action symbols, have
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truth values that vary with time), we will instead introduce a new sort bool together with
a function symbol lt which takes two natural numbers as inputs and outputs a bool, and
rewrite our axiom as

transaction→ lt(cash, ◦cash) = true.

Further, the constant true must be included as a function symbol with zero arguments
(that is, a constant) of sort bool as part of the theory. Similarly, we would have a constant
false of sort bool, a constant Z or sort N, and a function S which takes an N as an
argument and outputs an N. With these, we still need to axiomatize N, bool, and lt (note
that rigid variables are implicitly universally quantified)

¬(true = false)

¬(Z = S(n))

t = true ∨ t = false

n = Z ∨ ∃m,n = S(m)

lt(n,m) = true→ lt(m,n) = false

lt(n,m) = true ∨ n = m ∨ lt(m,n) = true

lt(Z, S(n)) = true

lt(n,m) = true↔ lt(S(n), S(m)) = true.

A temporal theory signature (called an object signature in Fiadeiro and Maibaum’s
original paper) consists of a a four tuple < S,O,A,G > where

• S is a set of sorts,

• O is a S? × S indexed collection of function symbols,

• A is a S? × S indexed collection of attribute symbols and

• G is a S? indexed collection of action symbols.

Intuitively, S and O will yield the (standard) notion of a many sorted algebra signature.
By contrast A contains the evolving or programmatic variables; these variables can have
parameters similar to function and array variables in programming languages. The action
symbols are a form of relation symbols and will refer to transitions which may be taken in
a particular time step.

Each temporal theory signature defines a syntax for expressions and logical formulae.
Because we are working in a typed setting only well typed expressions and formulae are
interpretable. For clarity, we present the syntax in two steps. First we give the syntax of
raw terms without considering types in Figure 2. Here we use f as the meta variable for
symbols in O, a for symbols in A, and g for symbols in G.
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E ∈ Expressions ::= f(E1, . . . , En) | a(E1, . . . , En) | x | ◦E
P,Q ∈ Formulae ::= P ∧Q | ¬P | ∃x : S.P | g(E1, . . . , En) | BEG | ◦P | 2P | 3P

Figure 2: Syntax for Temporal Theories

The special formula BEG serves as a marker for the begging of time: it is true at the
first time and at no other. As before, we consider the other logical connectives such as
∨, → and ∀ to be derived from ¬, ∧ and ∃. The type system, Figure 3, is given in two
judgments: Γ ` E : S says that E is a well formed expression of sort S ∈ S while Γ ` P wff
says that P is a well formed formula; in either case Γ is interpreted as a set of pairs x : S
associating a variable x with a sort S

x : S ∈ Γ

Γ ` x : S

Γ ` E : S

Γ ` ◦E : S

f ∈ O([S1, . . . , Sn], S) Γ ` E1 : S1 . . .Γ ` En : Sn

Γ ` f(E1, . . . , En) : S

a ∈ A([S1, . . . , Sn], S) Γ ` E1 : S1 . . .Γ ` En : Sn

Γ ` a(E1, . . . , En) : S

Γ ` E1 : S Γ ` E2 : S

Γ ` E1 = E2 wff

Γ ` P wff Γ ` Q wff

Γ ` P ∧Q wff

Γ, x : S ` P wff x : S′ 6∈ Γ

Γ ` ∃x : S.P wff

Γ ` P wff

Γ ` ¬P wff Γ ` BEG wff

Γ ` P wff

Γ ` ◦P wff

Γ ` P wff

Γ ` 2P wff

Γ ` P wff

Γ ` 3P wff

g ∈ G([S1, . . . , Sn], S) Γ ` E1 : S1 . . .Γ ` En : Sn

Γ ` g(E1, . . . , En) wff

Figure 3: Typing Rules for Temporal Theories

For < S,O,A,G > a temporal theory signature, a < S,O,A,G > interpretation is a
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four tuple < S,O,A,G > where

• S is a map assigning to each symbol in S a set,

• O is a map which assigns each f ∈ O([S1, . . . , Sn], S) a function S(S)× . . .×S(Sn)→
S(S),

• A is a map which assigns each a ∈ A([S1, . . . , Sn], S) a function S(S)× . . .×S(Sn)×
N→ S(S) and

• G is a map which assigns each g ∈ G([S1, . . . , Sn], S) a function S(S)× . . .×S(Sn)×
N→ {true, false}.

Intuitively, temporal theory interpretations are the natural extension of algebras to accom-
modate the temporally dependent symbols in A and G where, as was the case in TLA, time
is interpreted as simply a natural number. Specifically, we can interpret symbols in A as
time varying attributes of a system and symbols in G as events which either happen at a
specific time or do not. However, we use a slightly more restricted notion of model than
temporal theory interpretations to allow for a modular approach to temporal logic. The
problem with the notion of interpretation given above is that it is possible for an attribute
to change at a time when no events in G are interpreted to occur. This is a problem because
it means we can not use the event structure of the signature to constrain our understanding
of when things change.

To get around this, we define the notion of a locus of a signature < S,O,A,G >. A
locus is a < S,O,A,G >-interpretation < S,O,A,G > such that attributes only change
at times witnessed by an event. Formally, a time t ∈ N is witnessed by an event if there
is some g ∈ G([S1, . . . , Sn]) and v1 ∈ S(S1), . . . , vn ∈ S(Sn) such that G(g)(v1, . . . , vn, t) =
true. < S,O,A,G > is a locus if for every t ∈ N such that t is not witnessed then
A(a)(v1, . . . , vn, t) = A(a)(v1, . . . , vn, t + 1) for every a ∈ A([S1, . . . , Sn], S) and v1 ∈
S(S1), . . . , vn ∈ S(Sn).

Although we will only care about loci in the definition of validity, it is possible to inter-
pret a statement in the language of a temporal theory signature using any interpretation.
Specifically, we can define the semantics for expressions and formulae as in Figure 4.

We say a formula Γ ` P wff is true with respect to an interpretation < S,O,A,G > if
for every t ∈ N and θ which is well typed in the sense that x : S ∈ Γ implies θ(x) ∈ S(S)
then S,O,A,G, θ, t � P .

A temporal theory (also called an “object description”) is a pair of a temporal theory
signature Θ =< S,O,A,G > and a set Φ of formulae such that P ∈ Φ implies ` P in the
signature < S,O,A,G >. A locus l for Θ is a model for < Θ,Φ > if every every formula
in Φ is true with respect to l. A well formed formula is valid for < Θ,Φ > if it is true with
respect to all of < Θ,Φ >’s models.

Because we use loci instead of general interpretations, any temporal theory with sig-
nature < S,O,A,G > has a valid formula which encodes the locality principle that either
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JxKS,O,A,G,θ,t = θ(x)

Jf(E1, . . . , En)KS,O,A,G,θ,t = O(f)(JE1KS,O,A,G,θ,t, . . . , JEnKS,O,A,G,θ,t)
Ja(E1, . . . , En)KS,O,A,G,θ,t = A(A)(JE1KS,O,A,G,θ,t, . . . , JEnKS,O,A,G,θ,t, t)

J◦EKS,O,A,G,θ,t = JEKS,O,A,G,θ,t+1

S,O,A,G, θ, t � P ∧Q iff (S,O,A,G, θ, t � P ) and (S,O,A,G, θ, t � Q)

S,O,A,G, θ, t � ¬P iff S,O,A,G, θ, t 6� P
S,O,A,G, θ, t � ∃x : S.P iff there exists v ∈ S(S) s.t. S,O,A,G, (θ, x 7→ v), t � P

S,O,A,G, θ, t � g(E1, . . . , En) iff G(g)(JE1KS,O,A,G,θ,t, . . . , JEnKS,O,A,G,θ,t, t) = true

S,O,A,G, θ, t � BEG iff t = 0

S,O,A,G, θ, t � ◦P iff S,O,A,G, θ, t+ 1 � P

S,O,A,G, θ, t � 2P iff for all k ≥ t S,O,A,G, θ, k � P

S,O,A,G, θ, t � 3P iff there existsl k ≥ t s.t. S,O,A,G, θ, k � P

Figure 4: Semantics of Temporal Theory Expressions and Formulae

no attribute changes or there is an action. Specifically, if we use the syntax
∨
v∈T for the

disjunction of formulae parameterized by T and
∧
v∈T for the conjunction, and use ∃xi : Si

as shorthand for ∃x1 : S1. . . .∃xn : Sn (and similarly for ∀) we get a locality principle of
the form

(
∨

g∈G([S1,...,Sn])

∃xi : Si.g(x1, . . . , xn))∨
∧

a∈A([S1,...,Sn],S)

∀xi : Si.a(x1, . . . , xn) = ◦a(x1, . . . , xn)

which together with the formulae in Φ forms the axioms specific to a temporal theory.
The locality property in temporal theories and the stuttering invariance property in

TLA are of fundamentally different characters. Stuttering invariance is a limitation on
what questions can be asked, while locality is a limitation on what interpretations are
models. However, they seem to be both attempts to ensure that local reasoning about a
specification can be used as that specification is embedded into a larger system.

For temporal theories the relevant notion of refinement will come from what is called
a temporal theory morphism. Before formally defining these morphisms, however, let us
consider a refinement of the vending machine to include an extra attribute temp to model
temporarily inserted cash as a temporal theory. As before, we would need to include
sorts for naturals and booleans, together with constants for truth values, numbers, and
comparison. The axioms associated with these operations would be identical to what we
saw in the first vending machine temporal theory. In addition, it would be helpful to have
a function symbol plus taking two naturals and producing a natural. A potential set of
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axioms about plus would be:

plus(Z, n) = n

plus(S(n),m) = S(plus(n,m))

plus(n,m) = plus(m,n)

plus(n, plus(m, r)) = plus(plus(n,m), r)

lt(n,m) = true→ lt(plus(n, r), plus(m, r)) = true

lt(n, plus(n, S(m))) = true.

With the help of the plus function, we can describe the temporal behavior of the updated
vending machine. Here, instead of using the single action symbol transaction we will
have two: insert money and vend. The final axioms we need are:

insert money→ lt(temp, ◦temp) = true

insert money→ cash = ◦cash

vend→ (◦cash) = plus(cash, temp)

vend→ Z = ◦temp

vend→ ¬(temp = Z)

3vend ∧3insert money.

Now, it what sense can we say that this second theory is a refinement of the first? Well,
the idea is that we can embed the symbols of the first theory into the second: most of the
symbols are interpreted as themselves, but we also map transaction to vend. Then, under
this embedding all of the true statements of the first theory are also true in the second.
We see this by checking all of the axioms: in most cases the result is automatic. The one
that is not is the fact that

vend→ lt(cash, ◦cash) = true.

But, here we know that vend implies that ◦cash = plus(cash, temp) so we only need to
show that lt(cash, plus(cash, temp) = true. However we know that vend also implies
temp is not Z and so it must be the case that temp = S(m) for some m and, because of
how we axiomatized plus the property we are after follows.

This is the essential idea of a temporal theory morphism: we embed one theory into
another showing that the target (the refined theory) is strong enough to validate all the
true statements of the initial theory.

Given two temporal theory signatures < S,O,A,G > and < S ′,O′,A′,G′ > a morphism
of temporal theory signatures φ :< S,O,A,G >→< S ′,O′,A′,G′ > consists of a function
mapping symbols in S to symbols in S ′, symbols in O to symbols in O′ and so on, which
is well typed. Specifically,
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• ∀f ∈ O([S1, . . . , Sn], S), φ(f) ∈ O′([φ(S1), . . . , φ(Sn)], φ(S)),

• ∀a ∈ A([S1, . . . , Sn], S), φ(a) ∈ A′([φ(S1), . . . , φ(Sn)], φ(S)), and

• ∀g ∈ G([S1, . . . , Sn]), φ(a) ∈ G′([φ(S1), . . . , φ(Sn)]).

A morphism of signatures naturally induces a translation function on expressions and
formulae. We will, in a slight abuse of notation, use φ(E) for the translation of expression
E using φ, and φ(P ) for the translation of formula P using φ (the definition is given in
Figure 5).

φ(f(E1, . . . , En) = φ(f)(φ(E1), . . . , φ(En))

φ(a(E1, . . . , En) = φ(a)(φ(E1), . . . , φ(En))

φ(x) = x

φ(◦E) = ◦φ(E)

φ(P ∧Q) = φ(P ) ∧ φ(Q)

φ(¬P ) = ¬φ(P )

φ(∃x : S.P ) = ∃x : φ(S).φ(P )

φ(g(E1, . . . , En) = φ(g)(φ(E1), . . . , φ(En))

φ(BEG) = BEG

φ(◦P ) = ◦φ(P )

φ(2P ) = 2φ(P )

φ(3P ) = 3φ(P )

Figure 5: Translation Function Extension

Theorem 3. For any theory signature morphism φ :< S,O,A,G >→< S ′,O′,A′,G′ >

1. if Γ ` E : S is true according to < S,O,A,G > then φ(Γ) ` φ(E) : φ(S) according to
< S ′,O′,A′,G′ > and

2. if Γ ` P wff is true according to < S,O,A,G > then φ(Γ) ` φ(P ) wff according to
< S ′,O′,A′,G′ >.

The notion of theory signature morphism also induces a translation on interpretations.
Suppose φ :< S,O,A,G >→< S ′,O′,A′,G′ > is a signature morphism and and Ψ =<
S′,O′,A′,G′ > is a < S ′,O′,A′,G′ >-interpretation. Then, we define Ψ|φ called Θ’s reduct
along φ to be the interpretation < S,O,A,G > formed by composing Ψ with φ, that is
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• S(S) = S′(φ(S)),

• O(f) = O′(φ(f))),

• A(a) = A′(φ(a))), and

• G(g) = G′(φ(g))).

It is immediate that the reduct operation and the extension of a morphism of signatures to
formulae are related by Goguen and Burstall’s satisfaction condition for institutions [20].

Theorem 4. Given any signature morphism φ :< S,O,A,G >→< S ′,O′,A′,G′ >, <
S ′,O′,A′,G′ >-interpretation Θ and formula P such that ` P wff according to < S,O,A,G >
we have that

(Θ|φ, ∅, t � P )⇔ (Θ, ∅, t � φ(P ))

for any time t.

Given temporal theories < Θ1,Φ1 > and < Θ2,Φ2 > a temporal theory morphism
φ :< Θ1,Φ1 >→< Θ2,Φ2 > is a morphism of signatures φ : Θ1 → Θ2 such that for any
valid P which is valid for < Θ1,Φ1 > we have φ(P ) valid for < Θ2,Φ2 >.

We can further characterize temporal theory morphisms in terms of their behavior
with respect to loci. Observe specifically that if φ :< Θ1,Φ1 >→< Θ2,Φ2 > is a temporal
theory morphism and Ψ is a < Θ2,Φ2 > locus then for any formula P which is valid for
< Θ1,Φ1 > we know that φ(P ) is valid for < Θ2,Φ2 > and so Ψ � φ(P ) which means that
Ψ|φ � P . Since Ψ|φ models all true statements of < Θ1,Φ1 > it must in particular model
all of Φ1 and the locality axiom and so therefore be a < Θ1,Φ1 >-locus. Going the other
way, suppose that < Θ1,Φ1 > and < Θ2,Φ2 > are temporal theories and that φ : Θ1 → Θ2

is a morphism of signatures such that for every < Θ2,Φ2 > locus Ψ, Ψ|φ is a < Θ1,Φ1 >
locus. Then, given any valid formula of P of < Θ1,Φ1 > and Ψ|φ � P and so Ψ � φ(P ) for
every < Θ2,Φ2 >-locus which means that φ(P ) is valid for < Θ2,Φ2 >. Thus, φ must be
a morphism of temporal theories < Θ1,Φ1 >→< Θ2,Φ2 >.

Theorem 5. If φ is a temporal theory morphism < Θ1,Φ1 >→< Θ2,Φ2 > if and only if
it is a morphism of temporal theory signatures Θ1 → Θ2 and for every < Θ2,Φ2 >-locus Ψ
the reduct Ψ|φ is a < Θ1,Φ1 >-locus.

The above theorem gives a characterization of temporal theory morphisms in terms of
models, but we can also give a characterization which is about the axioms of the models
and thus may be more amenable to proving that a given signature morphism is a theory
morphism. By definition a temporal theory morphism preserves all true statements. So a
morphism < Θ1,Φ1 >→< Θ2,Φ2 > must map all of the axioms in Φ1 to valid statements in
< Θ2,Φ2 >. However, preserving the axioms Φ1 alone is not sufficient because the axioms
in Φ1 all the true statements of < Θ1,Φ1 > as we work only with loci. We have noted
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however that we can derive the set of true formulae for < Θ1,Φ1 > from Φ1 together with
a locality axiom. This axiom must be preserved by any theory morphism (which preserve
all valid statements) but, moreover, preserving locality and the axioms of Φ1 is sufficient
since those axioms are enough to derive all the true statements in < Θ1,Φ1 > using only
temporal reasoning principles which are preserved by any morphism of signatures.

Theory morphisms induce a notion of refinement for temporal theories. Namely, <
Θ2,Φ2 > refines < Θ1,Φ1 > if there exists a temporal theory morphism φ :< Θ1,Φ1 >→<
Θ2,Φ2 >. We see this is an appropriate notion of refinement because any formula P which
is valid in < Θ1,Φ1 > induces a valid formula φ(P ) in < Θ2,Φ2 >.

4.1 Background on Category Theory

Category theory provides a set of tools and terminology for mathematical reasoning at a
very high level of abstraction.

A category is consists of the following data

• a collection of “objects”,

• for every pair of objects A and B a collection of morphisms hom(A,B),

• for every object A a morphism idA ∈ hom(A,A) and

• for any three objects A B and C, an operation · : hom(B,C) × hom(A,B) →
hom(A,C).

Where,

1. given any objects A,B,C,D and morphisms f ∈ hom(D,C), g ∈ hom(C,B) and
h ∈ hom(A,B) were have that (f · g) · h = f · (g · h), and

2. for and objects A and B and any morphism f ∈ hom(A,B), f · idA = f = idB · f .

In any category we write f : A→ B to indicate that the morphism f is in hom(A,B).
Categories provide a common abstraction for reason about a great variety of mathematical
objects. Perhaps the quintessential category is the category of SET whose objects are sets
and whose morphisms are functions such that f : A→ B has the usual meaning. Here idA
is the identity function on A and · is just function composition. SET motivates the use of
the term “collection” instead of “set” for the objects and morphisms of a category, as the
“set of all sets” presents foundational problems. However, here we will not dwell on these
foundational issues, and simply assume that large collections of some sort (be they proper
classes, types, or sets of unreachable cardinality) are available as we require little in the
way of details about the behavior of these collections.

Similar to SET is the category GROUP whose objects are groups and where hom(A,B)
is the set of group homomorphisms from A to B. Of course, idA is once again the identity
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function and · is function composition as the identity function is always a homomorphism
and composition of two group homomorphisms yields a new group homomorphism. Similar
categories can be constructed whose objects are other sorts of algebraic object such as
monoids or rings and whose morphisms are functions which preserve the algebraic structure
we are interested. Similarly, the category TOP has as objects topological spaces and as
morphisms continuous functions.

All of these are examples of categories whose underlying objects are sets with structure
and whose morphisms are functions which preserve that structure. However, there are other
categories. The category REL has as objects, like the category SET, sets, but has relations
as morphisms, specifically hom(A,B) = P (A×B). In REL, the identity map 1A is the least
reflexive relation on A, namely {(x, x) | x ∈ A} while the composition is the composition
of relations: for f : B → C and g : A→ B, f · g = {(x, y) | ∃z ∈ B, (x, z) ∈ f ∧ (z, y) ∈ g}.
One can check that the associativity and identity laws hold for REL just as they do for the
various categories of sets with structure. REL is another large category in that its objects
do not form a set, however, this is not a requirement either. Indeed, many interesting
categories are small.

For example, let S be a set. The discrete category on S has as objects just the elements
of S and for every pair of objects A,B ∈ S, the set of morphisms hom(A,B) is the empty
set if A 6= B and the set with one element {∅} when A = B. Here, there is only one
possibility for composition (if f · g type checks then f · g = {∅}) and identity (1A = ∅).
Indeed, we could define the notion of “set” (modulo issues of size) as a category where the
only morphisms are identity morphisms.

Another example comes when (S,⊗, 1) is a monoid. Then, a category is formed consist-
ing of a single object A where hom(A,A) = S The identity morphism 1A is just the unit
of the monoid, namely, 1 and the composition operator is just defined as the composition
from the monoid, namely ⊗. The identity and associativity properties for the category
flow from those properties for the monoid. An alternative definition of a monoid therefore
would be a category with exactly one object.

A third way to construct categories generally is to start with a pre-ordered set (S,≤).
A category is produced whose objects are the elements of S and where hom(A,B) = {∅}
whenever A ≤ B and is the empty set otherwise. We see immediately that 1A = ∅ which
is well defined since A ≤ B by reflexivity of the preorder. Similarly, f · g = ∅ which is well
defined since if f : B → C and g : A → B then A ≤ B and B ≤ C which by transitivity
of the pre-order implies that A ≤ C. The identity and associativity axioms are of course
automatic. Any category which has at most one morphism between any pair of objects is
called a “pre-order category” or, just a “pre-order.”

Thus, categories generalize common mathematical constructs such as monoids, pre-
orders, and sets. Moreover, “large categories” generalize the basic algebraic properties of
sets and functions. The utility of this is that various important ideas can be expressed in a
general way by framing them in terms purely of objects and morphisms. One such general
definition concerns combining objects. For example, two objects A and B are said to be
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isomorphic if there are a pair of morphisms f : A→ B and g : B → A such that f ·g = idA
and g · f = idB. The morphisms f and g are referred to as an isomorphism. Isomorphic
objects are interesting because they can be said to “behave the same” in the sense that
when A and B are isomorphic any property true about A which can be expressed just in
terms of morphisms and other objects must must also be true about B. In the category SET
two sets are isomorphic if they have the same cardinality while in the category GROUP
isomorphic objects share all group theoretic properties.

Another example of a common definition which works across all categories is a co-span,
which describes the the situation when two objects both are equipped with morphisms into
a common target. More precisely, if A and B are objects in a category, a co-span of A and
B consists of some other object C together with morphisms f : A → C and g : B → C.
Diagrammatically:

A B

C

f

g

An interesting case occurs when we have not just any co-span but the best co-span. This
is called a co-product. If A and B are objects the co-product of A and B is, if it exists, and
object denoted A+B such that there exists maps ι1 : A→ A+B and ι2 : B → A+B

A B

A+B

ι1
ι2

and where, further, given any other object C and maps f : A → C and g : B → C there
exists a unique map u : A+B → C such that u · ι1 = f and u · ι2 = g.

A B

A+B

C

ι1

f
ι2

g

∃!u

In the category of sets the co-product of A and B is, up to isomorphism, the set {(∅, x) |
x ∈ A} ∪ {({∅}, y) | y ∈ B} with ι1 the map x 7→ (∅, x) and ι2 the map y 7→ ({∅}, y). If C
is another set with f : A→ C and g : B → C then the universal map u is given by

(∅, x) 7→ f(x)

({∅}, y) 7→ g(y).
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In a pre-order interpreted as a category, the co-product A + B (if it exists) is the least
upper bound of A and B.

Beyond co-products, there are other interesting concepts that can be expressed purely
in terms of diagrams. For example, the dual notion to a co-span, a span from A to B
consists of some object C and morphisms f : C → A and g : C → B.

Now, suppose A and B are objects and there exists a span with morphisms r1 : S → A
and r2 : S → B then the push-out of r1 and r2 consists of an object A + r1, r2B and
morphisms ι1 : A→ A+ r1, r2B and ι2 : B → A+ r1, r2B which commutes with r1 and r2
in the sense that ι1 · r1 = ι2 · r2,

S

A B

A+r1,r2 B

r1

r2

ι1
ι1

and, moreover, this is the best such span in that given any other object C and morphisms
f : A→ C and g : B → C where f · r1 = g · r2 then there exists a unique morphism u such
that f = u · ι1 and g = u · ι2.

S

A A+r1,r2 B B

C

r1

r2

ι1

f
∃!u g

ι1

In SET, the push-out corresponds to taking the quotient of the co-product under the
equivalence relation generated by the common source. Specifically given r1 : S → A and
r2 : S → B let R be the least equivalence relation on {(∅, x) | x ∈ A} ∪ {({∅}, y) | y ∈ B}
such that given any s ∈ S we have ((∅, r1(s)), ({∅}, r2(s))) ∈ R. Then A+r1,r2B = ({(∅, x) |
x ∈ A} ∪ {({∅}, y) | y ∈ B})/R.

As with the co-product, the definition of a push-out describes an object which, if it
exists, is unique up to isomorphism.

Another general definition that works in any category is of an initial object. The initial
object, which we will denote as 0, is, if it exists, an object such that for every object A
there exists a unique morphism 0 → A. In SET the empty set is initial. In a pre-order
interpreted as a category the initial object is the least element of the pre-order.

The notions of co-product, push-out, and initial object are all generalized by the concept
of co-limit. A diagram consists of a collection of objects and morphisms between those
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objects in a category which is closed under identity and composition. A co-cone of a
diagram consists of an object C and for each object A in the diagram a morphism cA :
A→ C such that given any morphism f : A1 → A2 in the diagram cA2 ·f = cA1 . A co-limit
of a diagram is a co-cone (C, {ci}) such that for any other co-cone (C ′, {c′i}) there exists a
unique morphism u : C → C ′ such that for all objects A in the diagram u · cA = c′A.

The co-product of A and B is the co-limit of the diagram containing A and B as objects
and only idA and idB as morphisms. Similarly, if r1 : S → A and r2 : S → B the push-out
A+r1,r2 B is the co-limit of the diagram containing A, B, and S as objects and r1, r2, and
the identity morphisms as morphisms. The initial object of a category is the co-limit of
the empty diagram.

A diagram is finite if it contains only a finite number of objects and morphisms. It
turns out that a category has an initial object and all push-outs if and only if it has a
co-limit for each of its finite diagrams. Such a category is said to have all finite co-limits.

4.2 Categorical Account of Composition

Temporal theories leverage refinement to form a basis for composition. The idea, is to
specify composition in terms of refinement. In this way, refinement structure can serve as a
higher level specification language for complex systems. Specifically, by viewing refinement
in categorical terms we can leverage general definitions from category theory to account
for composition.

There exists a category whose objects are temporal theory signatures and whose mor-
phisms are, naturally, morphisms of temporal theory signatures. In this category the
identity morphism on a signature simply maps each symbol to itself while composition
of morphisms is just composition of the underlying functions. More importantly, tem-
poral theories and temporal theory morphisms form a category by taking the categorical
structure on their underlying signatures.

If A and B are two models then the composition A⊕B should be a model which refines
both A and B. Using the style of modular temporal theories where refinement is captured
by morphisms going from more abstract to more concrete, this relation can be represented
diagrammatically.

A B

A+B

Here it is immediately the case that A⊕B refines anything which A refines (and similarly for
B) since refinements compose in the “vertical” direction. In categorical language, however,
this diagram simply states that the composition A⊕B must form a co-span of A and B.

However, the co-span diagram does not fully specify the meaning of composition in
terms of refinement as it does not tell us when a theory C should refine A ⊕ B. An idea
then would be to model the composition of A and B as the co-product A+ B. Then, not
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only does A + B refine A as well as B but that A + B is the most abstract model which
refines A and refines B. That is, by the definition of the co-product, if we are provided
some other theory C where C refines A and C refines B it must be the case that C also
refines A+B. Since in temporal theories we do not expect refinements to form a pre-order,
we are additionally interested in which refinement we are given. In particular, we should
have a refinement ι1 by which A+B refines A and a refinement ι2 by which A+B refines
B

A B

A+B

ι1
ι2

such that given any temporal theory C which refines A using refinement f and which
refines B using refinement g there exists a unique refinement u by which C refines A+B
such that the composition of ι1 and u yields the same refinement as f and the composition
of ι2 and g is the the same refinement as g.

A B

A+B

C

ι1

f
ι2

g

∃!u

The notion of a co-product gives a general characterization of the composition of specifi-
cations applicable to nearly any specification language which has refinement. However, this
characterization is abstract and does not directly tell us what composition of specifications
should like in the particular case. Further, it is a characterization of composition in terms
of how composition interacts with refinement, not a recipe for combining specifications.
Yet, all is not lost. Just as a general formula for co-products exists in the category of sets,
so too does so a formula exist in the category of temporal theories.

We defined temporal theories by first defining temporal theory signatures. We defined
temporal theory morphisms by first defining temporal theory signature morphisms. So,
before figuring out how to combine temporal theories we should discuss how to combine
temporal theory signatures. The co-product < S,O,A,G > + < S ′,O′,A′,G′ > of tem-
poral theory signatures < S,O,A,G > and < S ′,O′,A′,G′ > consists of the point wise
co-product < S+,S ′,O+O′,A+A′,G + G′ > where S+,S ′ is the disjoint union of S and
S

{ι1(S) | S ∈ S} ∪ {ι2(S) | S ∈ S ′}

where we use ιi as a formal constant and the other combinations such as O + O′ are
constructed by taking the disjoint union of symbols in O and O′ where a symbol O ∈
O([S1, . . . , Sn], S) leads to a symbol ι1(O) ∈ (O +O′)([ι1(S1), . . . , ι1(Sn)], ι1(S)). We can
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check that this is indeed a co-product: the formal constants ι1 and ι2 can be treated as
functions which preserve typing and thus are theory signatures morphisms.

ι1 :< S,O,A,G >→ (< S,O,A,G > + < S ′,O′,A′,G′ >)

ι2 :< S ′,O′,A′,G′ >→ (< S,O,A,G > + < S ′,O′,A′,G′ >)

Now, suppose < Θ1,Φ1 > and < Θ2,Φ2 > are temporal theories. The co-product
of these two theories should be given as the co-product of the signatures, together with
axioms making the diagram work. In particular, all of the axioms of Φ1 and Φ2 will be
needed to be carried over to < Θ1,Φ1 > + < Θ2,Φ2 >. Beyond these, however, we also
need axiomatic support for locality. In particular, let L1 be the locality law associated
with Θ1 and L2 the locality law associated with Φ2. Then the axioms of the co-product
will also contain ι1(L1) and ι2(L2) indicating that a change to an attributed from Θ1 only
happens at an action from Θ1.

< Θ1,Φ1 > + < Θ2,Φ2 >,< Θ1+Θ2, {ι1(A)|A ∈ Φ1}∪{ι2(A)|A ∈ Φ2}∪{ι1(L1), ι2(L2)} >

The co-product of temporal theories can additionally be understood in terms of its loci.
A locus for < Θ1,Φ1 > + < Θ2,Φ2 > is exactly equivalent to a pair of a locus l1 for <
Θ1,Φ1 > and a locus l2 for < Θ2,Φ2 > where symbols which come from Θ1 are interpreted
by using l1 and symbols which come from Θ2 are interpreted by using l2. Any such pair of
loci yields a < Θ1,Φ1 > + < Θ2,Φ2 > locus, and vice versa.

The co-product ensures the absence of spurious sharing and synchronization, however,
sometimes, indeed often, we want components to communicate. The idea of specifications
and refinements forming a category fits with a view advanced by Gougen as his first dogma
for categories in computer science that “to each species of mathematical structure, there
corresponds a a category whose objects have that structure, and whose morphisms preserve
it.” [19] However, it is Gougen’s fifth dogma that address composition of specifications:
“Given a category of widgets, the operation of putting a system of widgets together to
form some super-widget corresponds to taking the co-limit of the diagram of widgets that
shows how to interconnect them.” Categorically, binary co-products are a kind of co-limit
but they are not the only one. Indeed, temporal theories have all finite co-limits and
more general co-limits support forms of composition with sharing. In order to construct
general co-limits, we first observe that there is an initial temporal theory. Indeed, the
initial temporal theory simply has no symbols and no axioms [16].

Now suppose r1 : ΘA → Θ1 and r2 : ΘA → Θ1 are morphisms of theory signatures.
Then, then push-out Θ1 +r1,r2 Θ2 is given by simply taking the disjoint unions of each set
of symbols (as with the co-product) and then quotienting out by the equivalence relation
where ι1(S1) = ι2(S2) whenever r1(S1) = r2(S2). Extending this to theories requires no
additional work beyond what was needed for co-products. Namely, if r1 :< ΘA,ΦA >→<
Θ1,Φ1 > and r2 :< ΘA,ΦA >→< Θ2,Φ2 > are theory morphisms then the push-out <
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Θ1,Φ1 > +r1,r2 < Θ2,Φ2 > is given as the push-out of signatures together with Θ1+r1,r2 Θ2

and a the set of axioms as in the co-product:

{ι1(A)|A ∈ Φ1} ∪ {ι2(A)|A ∈ Φ2} ∪ {ι1(L1), ι2(L2)}.

Push-outs allow for constructing specifications as components while enabling sharing.
For example, if we want to specify a system consisting of two components communicating
over a shared wire we might first construct a model of the wire and then model each
component as a refinement of the wire and take the push-out to construct a complete
system.

We have already seen two versions of the vending machine as temporal theories. The
first, which we will here refer to as Vending1 described the machine in terms of a single
attribute cash and a single action transaction. The second machine which we will call
VendingTemp added an additional variable temp and had two transactions insert money

and vend. There was also a canonical inclusion morphism r1 : Vending1 → VendingTemp

which simply mapped every symbol to the symbol with the same name except for transaction
which mapped to vend.

However, we can extend the vending machine in other ways. If we wish to model the
dispensing of goods, we might build a machine VendingInventory with would be similar
to Vending1 except that in addition to N and bool it would have a new sort item, a
function symbol price taking an item and valued in N, a attribute symbol supply taking
an item as an argument and yielding an N, and an an attribute symbol selection of
sort item. In addition to the action symbol transaction we would add a new attribute
symbol for making a new selection select which could be parameterized by an item. As
a transaction now will decrease the inventory, we also add a new action symbol service
which allows the inventory to increase. Here, we would retain the axioms for numbers,
booleans, and comparison, and, indeed, include the symbol plus and axioms about it used
in VendingTemp. The remaining axioms would be:

∃n, price(i) = S(n)

select(i)→ i = ◦selection

select(i)→ cash = ◦cash

select(i)→ supply(j) = ◦supply(j)

transaction ∧ i = selection→ plus(cash, price(i)) = ◦cash

transaction ∧ i = selection→ S(supply(i)) = ◦supply(i)

transaction ∧ ¬(selection = j)→ supply(j) = ◦supply(j)

service→ cash = ◦cash

3service ∧ ∃i, lt(supply(j), ◦supply(j)) = true

3transaction
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The canonical morphism r1 from Vending1 to VendingInventory simply maps each symbol
to the symbol with the same name. Each of the axioms of Vending1 become derivable from
the axioms of VendingInventory. Additionally, the locality property holds by construction
since we explicitly include that service and select(i) do not change the value of cash.

Now we have two different refinements of Vending1 incorporating different features of
interest. Simply taking the co-product of VendingInventory and VendingTemp would yield
a combined specification, but not one we would find useful because it would include two
versions of the attribute cash and both the action transaction and the action vend having
nothing to do with each other. Instead, however, we can combine the two refinements
using the push-out construction. The specification VendingTemp+r1,r2 VendingInventory

is, modulo renaming of symbols, more akin to what we want. Namely, it has four action
symbols select, vend, insert cash and service and only a single attribute cash (as
well as the attributes temp, supply and selection). The axioms of the push-out are
approximately the union of the axioms of VendingInventory (with transaction renamed
vend) and VendingTemp.

However, there is still a small problem with this characterization. We incorporated
the function symbol plus into both VendingInventory and VendingTemp, however, this
symbol did not originate in Vending1 and so, as a consequence must appear twice in the
push-out. As a consequence, the push-out contains an unfortunately complex set of axioms
including:

vend ∧ i = selection→ ι1(plus)(cash, price(i)) = ◦cash

vend ∧ i = selection→ ι2(plus)(cash, temp) = ◦cash

and other such redundancies. Even if our axioms for plus were strong enough to show that
(plus(n, k) = plus(m, k)) → n = m it is unlikely that we could show from these axioms
that vend→ temp = price(selection), a property we would like to hold, as we have two
different plus symbols.

A solution is to simply define a new specification which only describes the sorts and func-
tion symbols associated with N and bool and which are shared between both VendingInventory

and VendingTemp. Let us call this shared specification, containing no attributes or ac-
tions, PlusRules. It is apparent, that there are canonical morphisms p1 : PlusRules →
VendingTemp and p2 : PlusRules → VendingInventory. With this in place, we can
construct a more complicated diagram demonstrating the full sharing structure.

PlusRules Vending1

VendingTemp VendingInventory

p2p1
r1

r2

Taking the co-limit of this diagram yields a vending machine incorporating both the tem-
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porary money and the inventory which we call VendingTempInventory.

PlusRules Vending1

VendingTemp VendingInventory

VendingTempInventory

p2
p1 r1

r2

Note that, because we have general finite co-limits, this is guaranteed to exist. However, it
may be informative to observe in detail how it can be constructed using co-products and
push-outs. The idea is that if VendingTemp and VendingInventory refine both PlusRules

and Vending1 then we know they must also both refine PlusRules + Vending1, and, in
particular there must be unique morphisms u1 : (PlusRules+ Vending1)→ VendingTemp

and u2 : (PlusRules + Vending1) → VendingInventory such that the following diagram
commutes:

PlusRules Vending1

PlusRules + Vending1

VendingTemp VendingInventory.

p2

p1

ι1

r1

r2

ι1

u1

u2

We then set VendingTempInventory as the push-out of the span formed from by u1 and
u2.

VendingTempInventory , VendingTemp +u1,u2 VendingInventory

As, then there exists a pair of morphism κ1 : VendingTemp→ VendingTempInventory and
κ2 : VendingInventory→ VendingTempInventory such that the diagram

PlusRules Vending1

PlusRules + Vending1

VendingTemp VendingInventory

VendingTempInventory

p2

p1

ι1

r1

r2

ι1

u1

u2

κ1
κ1
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commutes. All that is left to show that this co-cone is a co-limit, which is equivalent to
showing the existence of a universal arrow. Suppose that there was some object T and
morphisms f : VendingTemp→ T and g : VendingInventory→ T where f ·p1 = g ·p2 and
f ·r1 = g·r2. Now, observe that f ·p1 : PlusRules→ T and g·r2 : Vending1→ T , therefore,
there exists a unique morphism uT : (PlusRules + Vending1) → T where f · p1 = uT · ι1
and where g · r2 = uT · ι2. But, we know already that u1 · ι1 = p1 and u1 · ι2 = r1 and so
therefore f · p1 = f · u1 · ι1 and g · r2 = f · r1 = f · u1 · ι2. Thus, uT = f · u1. Similarly,
u2 · ι1 = p2 and u2 · ι2 = r2 so f · p1 = g · p2 = g · u2 · ι1 and g · r2 = g · u2 · ι2 and so
uT = g · u2. Therefore, f · u1 = g · u2 which means, that since VendingTempInventory

is the push-out, there exists a unique morphism u : VendingTempInventory → T where
f = u · κ1 and g = u · κ2.

5 Conclusions and Directions for Future Work

We have seen three formalisms for specifying reactive systems. Event-B provides a con-
venient notation for describing system specifications of state machines and supports an
approach to iterative development of specifications by way of refinement. However, Event-
B is limited when it comes to property specification. While Event-B can be used to express
invariants it does not support liveness. Moreover, Event-B’s notion of refinement does not
preserve liveness properties, so even if an abstract specification seems to imply a liveness
property of interest, its refinements and implementations may not.

By contrast, in supporting both the always and eventually modalities, temporal logics
are well suited for expressing a broad range of safety and liveness properties. Further,
TLA turns out to be well equipped for expressing system specifications as well as property
specifications. By using implication for refinement and conjunction for composition, TLA
allows us to express everything in a single framework. The guarantee that TLA formulae
are stuttering invariant keeps TLA specifications from being too tight to effectively refine
and fits well with philosophical intuition that time is relative and so how fast a system
evolves should not be observable.

Temporal theories leverage temporal logic in a different way. Instead of treating spec-
ifications as formulae, specifications are given as logical theories. Temporal theories are
typed, and no pre-set mathematics language is assumed. Instead, mathematical types and
operators are included directly as part of the specification of a theory. Because different
specifications are different theories instead of different formulae, refinement in temporal
theories corresponds not to implication but to theory morphisms. However, the move to
theory morphisms yields benefits as temporal theories and their morphisms can be viewed
from a higher level using the perspective of category theory. As composition is modeled
via co-limits, complex specifications can be built out of component parts where sharing is
specified using refinement of component specifications. In this way, refinement takes center
stage and serves as the basis of composition.
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Temporal theories and TLA each have their benefits. There is a great conceptual
elegance to modeling refinement as implication and composition as conjunction. These
connectives are simple and easy to understand and mean that everything in TLA is included
as part of a single logic. At the same time, the categorical approach used by temporal
theories is interesting in providing a higher level, diagrammatic, language for constructing
modular specifications. Temporal theories emphasize the importance of not simply knowing
that a refinement between two specifications exists, but also knowing what the refinement is.
A concrete specification might refine an abstract one in multiple ways, and knowing when
two refinements are the same is crucial to understanding how specifications interrelate.

Further, while TLA is based on an untyped single-sorted first order logic, temporal
theories are based on typed multi-sorted logic. While, in general, my personal preference is
for multi-sorted logics, both designs have benefits. Interestingly, recent work has examined
adding types to TLA for the purpose of improved automation [32]. Moreover, reworking
TLA as a typed logic may lead to new insights.

For example, while the most obvious role for types in TLA is to fill the normal math-
ematical purpose of differentiating different sorts of mathematical objects (e.g. sets and
natural numbers) a different dimension of distinction already appears even in untyped TLA.
That is, TLA includes both rigid variables which do not change over time and flexible vari-
ables which do. Instead of handling rigid and flexible variables in an ad hoc manner where
each receives its own form of quantification, they could instead be handled in a uniform
way where there are simply variables and where “rigid integer” and “flexible integer” are
simply different types. In this case, types do not simply classify the possible values of a
variable at any given time, but also, how the values of those variables change over time.

Taking this idea further, we could imagine a whole host of types which classify the
temporal evolution of variables more precisely. We might even allow for comprehension
akin to set theory. Suppose P is a (temporal) proposition over a single flexible variable x
of type T , then we would have a new type {x : T | P} inhabited by objects of type T whose
behaviours satisfy P . In particular we would expect there to be an operator proj where
if E has type {x : T | P} then proj(E) would have type T and where it would always be
the case that � P [proj(E)/x]. Using the comprehension type the rigid version of a type
T could be encoded as {x : T | 2[False]x}. Further, using comprehension could allow us
to unify the diagrammatic perspective on refinement used with temporal theories with the
interpretation of refinement as implication in TLA. If P and Q are both TLA formulae over
a single variable x of type T then P refines Q if it implies it. Just as in set theory, however,
the implication P ⇒ Q should correspond to a type inclusion {x : T | P} ⊆ {x : T | Q}.

Set inclusion is a kind of function, so by analogy we would expect there to be some
“function” in TLA r : {x : T | P} → {x : T | Q}. However, this cant just be any function:
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we need r to be a subset inclusion which means that proj(r(E)) = proj(E) for all E.

T

{x : T | P} {x : T | Q}

proj

r
proj

In order to make this work, of course, we would need to come up with a notion of “mor-
phism” or “function” internal to an extended and typed TLA. But, in doing so we would
end up in a situation where refinement as implication would correspond exactly to mor-
phisms in a category (these commuting triangles are exactly morphism in the slice category
over T ). Of course, we oriented the arrow in the opposite direction from what we used
with temporal theories, but by simply dualizing everything we did with temporal theories
this becomes a non issue.

Further, a slight extension of the picture handles even the case where refinement requires
a refinement mapping. Suppose P is a property over a variable x of type T but Q is a
property over a variable y of type S and that P ⇒ Q[h(x)/y] then we would have some
r : {x : T | P} → {y : S | Q} such that the diagram

T S

{x : T | P} {y : S | Q}

h

proj

r

proj

commutes.
The natural logical setting for such a system is not simply multi-sorted first order logic

but actually higher-order logic where we can have typing judgments like P : T → Prop to
indicate that P is a predicate over the type T . However, building a higher-order version
of TLA seems surprisingly tricky. To get there first we would need an interpretation of
the sort of propositions Prop. Propositions are semantically interpreted as functions from
behaviors to truth values, so it might make sense for propositional variables to range over
such functions. However, various problems emerge with that idea. For example, consider
a formula of the form ∀p : Prop.∃x : T.p∧Q. Here, p would range over propositions which
would be semantically modeled as functions state? → bool. However, the proposition p∧Q
happens under the existential and so would have to be modeled as a function (state ×
S)? → bool for some set S to account for the extra variable x. It is also not immediately
obvious if proposition variables should range over all functions state? → bool or only
those which are stuttering invariant. An alternative design therefore would be to equate
proposition variables with flexible variables of boolean type. A greater challenge comes
then in interpreting the function type constructor. Any temporal logic formula P with a
free variable of type T must yield an expression whose type is T → Prop. Worryingly,
if propositions are simply time varying booleans then some such functions will be anti-
causal in that the value of their output at the initial time will depend on the value of
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their input at future times. Conversely, we do not want there to be functions of type
T → Prop which are not stuttering invariant, however, what stuttering invariant means
in this context is non-obvious. The main insight which could provide a way out of these
challenges is that the function type in a higher-order logic is the internal representation
of its notion of morphisms which we have seen should correspond to refinement. Thus, a
deep understanding of refinement in TLA and the possibility of a higher-order extension
go hand in hand.

That said, is a higher-order version of TLA really that important? The current single
sorted variant of TLA is well understood, while the meaning of higher-order TLA is not
clear. Perhaps then higher-order TLA is not worth pursuing. In response to this, let us
observe some natural places where a higher-order variant of TLA would come in handy.

The most immediate use for combining higher-order reasoning and temporal logic is in
order to build specifications which incorporate both higher-order mathematics and tem-
poral components. We actually saw this very situation in this exam although we did not
dwell on it at the time. In formalizing the vending machine as a temporal theory we
needed a type of natural numbers and an axiomatization of those numbers. In that re-
gard we defined constants for zero and the successor and a number of axioms, however,
he did not give an induction axiom. That is because, in a first order setting, induction is
not an axiom but rather an axiom schema. As such, the ability to reason about natural
numbers in these theories is quite limited. Of course, this problem could easily be avoided
using higher-order quantification. As currently construed, the temporal theory formalism,
which lacks a powerful math language, is significantly limited in its inability to support
higher-order reasoning. The traditional solution when it comes to TLA is to incorporate
a separate math language as part of the logic such as set theory, yet it seems concerning
that this is forced on us. Further, even ZF set theory is not finitely axiomatizable in single
sorted first order logic.

A higher-order logic is also appealing as a tool for improved modularity. In this work
we have considered two classes of techniques for scalable specification engineering. But
beyond refinement and composition, there are other approaches to modular development.
One which is particularly important is the ability to design specifications which are parame-
terized by other specifications. For example, we might want to parameterize a specification
of a vending machine by a specification of the products it vends or the currency system it
accepts. Systems like ML modules put higher-order quantification to great use [39] and it
would be desirable to be able to use such higher-order modular techniques with TLA as
well.

Beyond modularity of specification, though, digital systems are often inherently higher-
order. For example, specifying a function which receives and invokes a function pointer
seems to require higher order quantification to abstract over the specification of the argu-
ment [9]. In this way, the lack of higher-order features fundamentally limits the problem
domains to which TLA is currently applicable. We would like to be able to view an im-
plementation of a specification as a refinement: along these lines recent work ha looked
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at translating imperative programs into TLA to check them against more abstract specifi-
cations [29]. However, these techniques are currently limited in that they can not handle
the pervasive higher-order features of programming languages such as function pointers.
It is for this reason that order extensions of temporal logic—but not stuttering invariant
TLA—have in the past been developed for handling object oriented software [18].
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