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Abstract—Routing is a key component for building
an interconnected network architecture. There are inter-
domain and intra-domain routing protocols. The inter-
domain routing protocol has experienced increasingly
frequent anomalies, such as IP prefix hijackings, route
leaks, or impact from large-scale disruptive routing events.
The intra-domain routing also suffers from various attacks
originated from within an autonomous system, such as
topology manipulation and host-based flooding attack.
Security upgrades to the existing protocols and accurate
detection mechanisms have therefore been proposed and
experienced. In this study, we conduct a comprehensive
survey on the existing security mechanisms for both inter-
domain and intra-domain routing protocols. For inter-
domain routing protocol, we study the de facto protocol –
Border Gateway Protocol (BGP). For intra-domain routing
protocol, we investigate the recent software-domain net-
working paradigm and the OpenFlow protocol. For each
routing protocol, we investigate both attack prevention
solutions and attack detection solutions. We summarize
the strengths and weaknesses of every existing solution,
and discuss the missing gaps that need further research.

I. INTRODUCTION

The Internet consists of many domains, each of which
has autonomous control over its own networking in-
frastructure. Such domains are also called Autonomous
Systems (ASes). People designed routing protocols to
connect hosts and routers within one domain and ex-
change information between domains. The routing pro-
tocols can be categorized into inter-domain and intra-
domain protocols. The inter-domain routing protocols
aim to exchange routing information between domains,
allowing each domain to decide the routes toward any
destinations on the Internet. The de facto routing proto-
col for inter-domain routing is Border Gateway Protocol
(BGP) [1]. The intra-domain protocols exchange reach-
ability between different networking devices within one
domain (AS). Traditional intra-domain routing protocols
include RIP [2], OSPF [3], IS-IS [4], EIGRP [5], etc. The
recently emerged new routing paradigm, the software-
defined networking (SDN) [6] and OpenFlow [7] are

Fig. 1: An example of inter-domain and intra-domain
routing.

quickly getting adopted due to their features such as
programmability, unified interface, and centralized con-
trol mechanisms. Network operators can also implement
traditional routing protocols on a SDN platform. Such
features make SDN and OpenFlow more preferable to
the traditional protocols. Fig. 1 shows an example of
inter-domain and intra-domain routing, where machine
A talks to machine B, and the traffic travels through a
set of routers. The routing from router 1 to 4 is within
AS1 and is intra-domain routing; while the routing from
router 4 to 7 is inter-domain routing.

As the Internet relies on the routing protocols for
its normal operations, it is very important to ensure
the routing protocols are secure against security threats.
Unfortunately, neither intra-domain nor inter-domain
routing protocols are bulletproof against various threats.
In this report, we closely examine the security properties
and the existing security solutions of both protocols.
Specifically, we examine BGP as the main inter-domain
routing protocol, and examine SDN and OpenFlow as
the representative of the intra-domain routing protocol.

Regarding the security for inter-domain routing, orig-
inally BGP was not designed to carry many security
properties. The Internet experienced a number of inter-
domain anomalies such as IP prefix hijackings, large-
scale route leaks, or Internet “earthquakes” caused by
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various reasons. BGP is designed with the assumption
that everyone on the Internet does not act maliciously,
and it lacks sufficient verification mechanisms for the
update messages. However, such an assumption does
not hold anymore in today’s Internet. Numerous routing
incidents show that even some Internet providers at
national level conduct malicious activities on the Internet
and pose severe security and privacy threats to Internet
users [8], [9], [10], [11].

Regarding the security for intra-domain routing, SDN
also suffers from severe security problems. SDN archi-
tecture consists of the end-hosts, switches, controllers,
and applications, and each component could suffer from
security attacks. The applications running on top of the
controllers may encompass security loopholes or mali-
cious exploits; the controllers can be made unavailable
to legitimate needs when receiving a large number of
fake requests; the switches can be compromised to act
maliciously when forwarding traffic; and the end-hosts
can also exploit the loophole in OpenFlow and disrupt
the SDN controllers.

In investigating BGP and SDN security solutions, we
focus on analyzing their strengths and weaknesses, as
well as their deployment status on the Internet. We cate-
gorize the security solutions into two general categories:
the attack prevention solutions and the attack detection
solutions (Fig. 2). The attack prevention solutions aim
to proactively stop potential attacks through security
upgrade of either the protocol design or the protocol
operations. Meanwhile, the attack detection solutions
aim to reactively detect abnormal events regarding the
operation of the protocols, providing triggers for timely
reaction to such events. The attack prevention mecha-
nisms for BGP have been heavily studied for a long time.
However, none of these mechanisms has been largely
deployed to date, leaving the Internet still vulnerable to
the inter-domain routing attacks. On the contrary, since
SDN is still young, the majority of the SDN security
work look at attack prevention, with the attack detection
for SDN less explored.

This report is organized as follows. We survey the
existing BGP attack prevention solutions in section III,
and review the main BGP attack detection mechanisms
in section IV. In section V, we look at the solutions
that try to secure the SDN architecture and operations.
Section VI is then focused on how SDN can be applied
to solve other security problems. At last, in section VII
we summarize the survey and discuss some related issues
about the security of Internet routing.

Fig. 2: Internet routing security taxonomy.

II. BACKGROUND

Internet routing security has been a hot research topics
since late 1990s. There are many related projects that try
to improve the security of the Internet routing, from the
inter-domain (BGP) and intra-domain (SDN) perspec-
tives. In this section, we provide some background of
the BGP and SDN security research in general.

A. BGP Security

The Internet started with only a few connected net-
works for research and military purposes. Until late
1980s, there was no clear definition of the autonomous
systems (ASes). This lack of domain-level hierarchy
hindered the scalability of the Internet. In 1989, the
first version of Border Gateway Protocol (BGP) was
proposed. BGP clearly defines the concept of AS and
the operations between ASes for exchanging routing in-
formation. Since then, the Internet started the exponential
expansion.

However, the BGP is not perfectly secure. In 1998,
Labvotiz et al. first studied the instability of the Internet
routing. This paper is one of the earliest papers that
studied the vulnerabilities of the Internet. Researchers
also discovered two major attacks that can severely dis-
rupt the Internet: prefix hijacking and AS path spoofing.
Fig. 3 shows the examples of these two attacks. Since
2000, there were many projects focused on preventing
such attacks on BGP (Fig. 4): S-BGP [12] in 2000,
soBGP [13] in 2002, IRV [14] in 2003, SPV [15] in
2004, psBGP [16] in 2005. These projects showed that
BGP operations can be secured with upgrades of the
protocol and the operations.

However, all of these projects relied on certain infras-
tructure to distribute the routing information securely. It
was not until the establishment of Resource Public Key
Infrastructure (RPKI) in early 2010s do the BGP security
projects have such a reliable infrastructure to submit and
access verifiable routing information. With the deploy-
ment of RPKI, BGPsec was then proposed and quickly
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(a) An example of a BGP prefix hijacking attack (b) An example of a BGP AS path spoofing attack

Fig. 3: Examples of BGP prefix hijacking and AS path spoofing attacks
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Fig. 4: Timeline of the major BGP attack prevention
projects.

being deployed. Unfortunately, the deployment rate of
RPKI and BGPsec is still far from sufficient to date.
With the low deployment rate, the aforementioned BGP
attack prevention solutions cannot effectively prevent the
stop the attacks on BGP. As a result, it is very important
for people to be able to detect and react to the attacks
quickly and accurately.

B. SDN Security

Software-defined networking is a very new networking
technology, and has not yet been recognized as the de
facto approach for intra-domain routing. However, we
believe SDN is the future of the intra-domain routing.
First, it is fully compatible with all the traditional intra-
domain routing protocols. Using the centralized approach
for controlling the network, a network operator can im-
plement any existing or new routing protocols as appli-
cations running on the controller. Second, the separation
of the control logic and forwarding actions makes SDN
can not only achieve the goal of the traditional routing
protocols but also many other new tasks. These features
make SDN very popular among the large networks,
where the operators require maximum flexibilities of
the networking functionalities as well as the centralized
management over the entire network.

In terms of security, researchers have discovered sev-
eral new attacks on SDN. In section V, we examine
the main security solutions against the attacks. However,

there are also many security aspects that are yet to be
studied. Instead of securing SDN itself, there are several
projects that use SDN for securing the Internet, such
as conducting anomaly detection or defending against
DDoS attacks. In section VI, we also investigates the
applications of SDN on solving other security problems
of the Internet.

III. BGP ATTACK PREVENTION

The design of Border Gateway Protocol (BGP) was
based on the assumption that all the autonomous systems
(ASes) are trustworthy. The assumption no longer holds
as we have seen an increasing frequent appearance of
the malicious attacks on the Internet carried out by ASes
that exploit the loopholes in BGP. The current version of
BGP allows ASes to announce origination of any prefixes
without authentication (Fig. 3a), propagate routes with
manipulated path information(Fig. 3b), or even send out
entirely forged routing information. Due to the lack
of verifiable global routing information, an AS cannot
effectively verify the information received from other
ASes, and can only rely on its own knowledge about
the legitimacy of the updates, which has proven to be
ineffective by the repeated occurrences of the malicious
attacks and misconfigurations.

Researchers have proposed multiple solutions rang-
ing from cryptographic to multi-party collaborative ap-
proaches to securing the BGP operations and preventing
the attacks entirely. In the following subsections, we in-
troduce the design and core ideas of the majority options
of attack prevention mechanisms. For each mechanism,
we also discuss its essential drawbacks and its deploya-
bility. At last, we discuss the overall future of the attack
prevention mechanisms.

A. Overview

From the main technology used, the main attack
prevention system can be categorized into three types:
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method control-plane crypto-based overhead data source path origin deployment
BGPSec [9], [12], [17] X X high PKI X X X
soBGP [13] X X high peer X X
psBGP [16] X X high peer X
SPV [15] X X low registry X
Listen & Whisper [18] X X medium peer X X
RAVS [19] X X low peer X X
IRR X low registry X X
IRV [14] X medium peer X X
GTSM [20] low N/A X
TCP MD5 Sig. [21] low N/A X
IPSEC [22] medium N/A X

TABLE I: BGP Attack Prevention Mechanisms

1) control-plane cryptographic approaches,
2) control-plane non-cryptographic approaches, and
3) data-plane-based approaches.

The control-plane approaches aim to secure the control-
plane information exchanged among ASes, while the
data-plane approaches focus on securing the communi-
cation channel between the BGP routers. The control-
plane-based solutions can also be coarsely categorized
into cryptographic and non-cryptographic approaches.
Table I lists the current main BGP attack prevention
systems. The method column represents the name of
every attack prevention mechanism; the control-plane
column indicates if the method mainly operates on
the control-plane; the crypto-based column shows if a
method applies cryptographic approaches or not; the
overhead column represents the operational cost of each
mechanism, ranging from low to high; the data source
column indicates the type of data sources used by these
methods; the path and origin columns show that whether
the approach can secure the AS paths and prefix origin
of the BGP updates respectively; and the deployment
column shows if the method is currently being deployed,
regardless of the deployment ratio.

B. Prevention Without Cryptography from the Control
Plane

We start our survey for BGP attack prevention meth-
ods by investigating the prevention mechanisms that do
not heavily depend on cryptographic methods. Specif-
ically, we examine two main methods in this area: the
Internet Routing Registry (IRR), and Inter-domain Route
Validation (IRV). IRR uses centralized trusted databases
to maintain and offer access of correct routing informa-
tion; IRV enables active queries for the correctness of
BGP updates, trusting each AS to provide the accurate
routing information about itself. In this following sub-
section, we closely investigate theses two methods and
analyze their strengths and weaknesses.

1) Internet Routing Registry (IRR): People first built
the Internet Routing Registry (IRR) to serve as general
repositories of routing information, connectivity, and
routing policies. IRR consists of several databases where
network operators publish their routing policies and an-
nouncements so that other network operators can utilize
the data. The information includes ASes’ relationships
with other ASes, the routes learned and propagated from
other ASes, the preferences if multiple routes exist, etc.
Such information is structured into data objects using
the Routing Policy Specification Language (RPSL) [23],
[24]. Network operators can verify each BGP update
against the known routing information obtained from
IRR databases.

However, IRR suffers from out-of-date information.
The information in IRR databases may be accurate at
the time of submission, but this may not be true by the
time users access the information. The organizations do
not have enough motivation to keep their IRR records
up to date, especially for those ASes that update routing
information frequently. Users of IRR information thus
cannot confidently decide if the suspicious BGP updates
contains anomalous information or simply newer legiti-
mate information. Despite the weakness, researchers still
use IRR on various topics [25], [26], [27], [28]. Signaos
et al. even evaluated the efficacy of using the inaccurate
IRR and claimed that it is still very helpful [29]. How-
ever, such weakness makes IRR less reliable in terms
of verifying BGP information. As a result, people have
to seek other approaches to obtaining authentic BGP
information.

2) Inter-domain Route Validation (IRV): In the global
registry model used by IRR, ASes do not have enough
motivation to update a third-party registry of regarding
their routing information. To address this shortcoming,
Goodell et al. proposed the Inter-domain Route Vali-
dation (IRV) [14] architecture that extends the existing
model into per-AS routing registry. IRV provides out-
of-band verification information using a query-based ap-
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proach. It defines an information distribution protocol for
ASes to exchange routing data with each other without
the involvement of a third party. Each IRV-enabled AS
implements an IRV server that stores all local routing
information. The routers that receive BGP updates can
query the IRV servers of the ASes on the path to validate
the information. Upon receiving a query, the IRV server
will respond based on its local policy. Since every IRV
server resides within each AS, the information can be
kept up-to-date with minimum cost.

IRV also has a set of issues that were not specified in
the paper. First, the discovery of an IRV server within
an AS is not clear. A querying AS does not necessarily
know every IRV servers’ IP addresses. However, the
authors did not introduce any mechanism for an AS to
discover the IP addresses of other ASes’ IRV servers,
Second, the message authentication of the IRV query and
reply was not specified, leaving it possible for attackers
to forge illegitimate IRV messages. Third, in partial
deployment scenarios where only a set of ASes on the
Internet enables IRV, a querying AS can only verify a
portion of the AS path.

C. Prevention with Cryptography from the Control Plane

The majority of the BGP attack prevention systems try
to secure the assets (prefix origin and AS paths) through
cryptographic approaches. The main argument behind
this is that there are hardly any trustworthy verification
sources that an AS could refer to, leaving fewer options
but to establish and use cryptographically-secured data
sources. In this subsection, we survey the main attack
prevention solutions that use cryptographic approaches.
To date, BGPsec is the only BGP security upgrade
that has been deployed on the Internet. Though the
deployment rate is still bleak, we could foresee a better
scenario in near the future. In the rest of this subsection,
we look at other attack prevention solutions proposed
prior to BGPsec, but not deployed on the Internet.

1) RAVS: Kim et al. proposed a solution with veri-
fiable search called Identity-based Registry with Au-
thorized and Verifiable Search (RAVS) [19]. RAVS
features the following capabilities that out-performs the
IRR method. First, it enables public key exchange cryp-
tographically transform the AS number to the public key
of each AS. This allows every AS to easily authenticate
itself to the RAVS system without requiring a globally
deployed public-key infrastructure. Second, RAVS uses
Search Permission Generator to control search permis-
sions based on AS credentials. Only the authorized ASes
can query the registry. Third, every search result can
be verified cryptographically. All entries in the RAVS

Fig. 5: An example of querying RPKI for prefix
ownership information.

database are signed with the private key of the owner
ASes, allowing other ASes to verify them with the public
key of the owner ASes. Such scheme allows RAVS
to provide verifiable routing information to the ASes.
Unfortunately, RAVS has never been adopted on the
Internet.

2) RPKI: As another attempt to construct a trustwor-
thy database for routing information, people proposed
and built Resource Public Key Infrastructure (RPKI).
The main purpose of RPKI is to provide a centralized
repository for all resource-related information with cryp-
tographic protection. One of the main types of resource
is the ownership information of IP prefixes.

As discussed in section III-A, one of the main threats
toward the Internet routing is prefix hijacking (Fig. 3a).
Exploiting the lack of verification mechanism in BGP
protocol design, the attackers can send announcements
to claim the ownership of any prefixes, or to change the
AS-level path toward a target prefix. In an ideal scenario
where every AS on the Internet knows the legitimate
owner of every IP prefix, forged announcements from
the attackers will not be propagated. However, in real
world scenarios, it is hard, if not impossible, to obtain the
correct and up-to-date prefixes ownership information.

RPKI is a public key infrastructure specifically de-
signed to store and provide information of the resources
(or assets of ASes) on the Internet. RPKI is not intended
to replace the current IRR system, but to provide extra
security property for the information. For example, when
an BGP router received an announcement of a prefix
B originated from AS X , the router can query RPKI
repository (or a local cache) for the ownership informa-
tion of this prefix, and then verify the correctness of the
information (Fig. 5). The result could be valid, invalid,
or unknown. Based on the verification result and local
security policy, the receiving router can then make the
routing decision. Wahlisch et al. [30], [31] described
the procedure of detecting suspicious prefix ownership
changes, and Huston et al. [9] also provided a more
comprehensive description of RPKI architecture and its
usage.

However, RPKI is also facing a number of problems.
The first problem is the scaling issue. To date, RPKI
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Fig. 6: An BGPsec AS path protection example.

only covers less than 10% of the IP space. Through a
set of calculation, Osterweil et al. estimated that the size
of RPKI with full deployment will consist of 650,000
encrypted objects [32], which will incur a more than 4
day time overhead for a full synchronization. If consider
the key rollover cases, the overhead would be even
higher. The second problem is that RPKI system itself
can also be abused to take down prefixes. The revocation
of any objects does not need any acknowledgement from
the current prefix owner [33]. In [34], Heilman et al.
proposed a set of countermeasures to maintain countable
RPKI operations with explicit acknowledge responses for
every potential damaging operations. Nonetheless, RPKI
is still considered to be the best information source for
BGP security mechanisms.

3) BGPsec: With RPKI protecting the prefix origin
information, BGPsec (originally S-BGP) is proposed to
further ensure that the path toward any prefixes is also
protected [9], [12], [17]. First, in every BGP update
announcing a new AS path to a prefix, the path segments
in the AS path are protected with a signature from
each hop along the path that the update propagated. A
router receiving a BGP update can check the signature-
packed “BGPsec Path” attribute. Each signature any
hop appends also contains a “Subject Key Identifier”
that uniquely represents a router or AS’s identity in
the RPKI, which the receiving party can use to verify
the signature. Fig. 61 shows an example where AS1
originates an update for prefix 10.0.1.0/24, propagates
the update to AS2, and AS2 propagates it to AS3. On
each propagation, the AS in question will sign the AS
path content. The receiving AS (AS3) can validate all
the signatures from every AS on the path and validate
the entire AS path.

BGPsec is considered the best and most practical

1http://www.cisco.com/web/about/ac123/ac147/archived issues/
ipj 14-2/142 bgp.html

solutions toward securing BGP; however, it still faces
several challenges. Lychev et al. argued that with the un-
avoidable stage of partial deployment, BGPsec provides
“only meagre benefits over origin authentication when
these popular policies are used” [35]. To accommodate
its legacy next-hop routers, a router running BGPsec
has to downgrade its protocol to legacy BGP, and thus
lose all the cryptographic protections provided by the
previous hops. Once the downgrade happened at one
hop along the propagation, previous signed signatures
will no longer be available to the downstream ASes,
neither can the downstream entities continue to use
BGPsec to partially sign the path. In [36], Li et al.
presented two types of attacks that work even when
BGPsec fully deployed: the wormhole attack and the
mole attack. The wormhole attack shows that BGPsec
cannot tell or defend fake BGP links created by tunneled
BGP sessions. With the help from the others, an attacker
can effectively announce a totally legitimate path to the
target victim with shorter path length. The mole attack
exploits the fact that some ISP would rent IP prefixes
from its provider and not utilize them with a default
forwarding path in place. An attack could exploit such
situations by simply sending traffic to the unutilized
prefixes to generate a loop of traffic. Such loop of traffic
can eventually saturate the link between the victim AS
and its provider.

4) Other Cryptographic Solutions: As discussed pre-
viously, the only BGP security upgrade that has been
deployed to date is BGPsec. There are several other
solutions proposed before BGPsec that have not been
adopted, including soBGP [37], psBGP [16], and
SPV [15]. Unfortunately, none of these approaches have
been widely deployed to date. We investigate these
methods and in the rest of this section.

In 2003, White et al. [37], [13] proposed soBGP that
uses cryptographic certificates to prevent forged prefix
origin announcements and invalid AS path updates. Ev-
ery AS that deploys soBGP should obtain an “EntityC-
ert” certificate to authenticate its own identity to others.
To secure the prefix origin information, soBGP uses
cryptographic certificates, “AuthCert”s, to provide ver-
ifiable announcement of prefix ownerships. To announce
the ownership of a prefix, an AS needs to obtain an
“AuthCert” from a trusted third party. The AS can then
announce the prefix with the corresponding “AuthCert”
attached to the update, and sign the announcement with
its own private key. A receiving router can verify the
announcement by validating the signatures of the update
and the “AuthCert” attached. To enable the validation of
the AS path updates, soBGP requires all enabled ASes
to broadcast AS relationship information using another
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certificate, “ASPolicyCert”. The relationship information
of an AS includes the identities of neighbor ASes, and
the policy for each neighbor AS. An “ASpolicyCert”
essentially asserts the feasibility of an AS to forward
traffic to other ASes. Each soBGP enabled AS will build
its own Internet topology based on the “ASPolicyCert”
obtained from the broadcast, and then validate the AS
path updates against this topology. For example, AS
A must first announce that it connects to AS B using
“ASPolicyCert” before it can propagate any BGP updates
containing the link between A and B..

Comparing to BGPsec or BGPsec, the advantage of
soBGP is the relatively low overhead. After building the
topology and the prefix ownership information, an AS
can then validate all BGP updates using its own data
without active query even during partial deployment.
However, the solution relies on the assumption that
ASes can reliably distribute (or broadcast) the policy
information as well as the identity information of the
ASes (such as the public keys of the ASes). Without a
reliable information distribution mechanism like RPKI,
soBGP is not able to deploy on the Internet.

In 2005, Wan et al. introduced Pretty Secure BGP
(psBGP) [16] that utilizes a decentralized trust model
for verifying IP prefix ownership. To announce the
ownership of a prefix, an AS needs to send out an
ownership assertion signed with its own public key
and distribute to its neighbor ASes. When receiving an
assertion, an AS will decide whether to propagate such
assertion to its neighbors based on its own judgment.
The number of assertions from the prefix owner and
its peers indicates its level of authenticity. Similar to
BGPsec, the path verification is done by validating a set
of signatures attached by the ASes along the propagation
paths. Different from BGPsec, psBGP allows partial path
signatures using a confidence value for the validation,
which reflects how likely a path is valid.

psBGP is essentially built upon a AS-level reputation
system, which assumes the infeasibility of construct-
ing a hierarchical PKI system for resource assertions.
However, the reputation system would result in inde-
terministic decisions in many cases. The verification of
the AS paths in BGP updates is also dependent on the
decision logic of the confidence system, and potentially
could be manipulated by the resourceful attackers. Thus,
psBGP could be applied as a secondary route verification
mechanism, but not a reliable method preventing the
routing attacks.

In 2004, Hu and Sirbu introduced Secure Path Vector
(SPV) [15], proposing to use symmetric cryptography
to secure the BGP updates. The main goal of SPV is
to secure BGP updates against AS path fabrications, in-

cluding forging whole AS paths or modifying partial AS
path segments. SPV uses tree-authenticated hash values
for AS path validation. First, the prefix owners needs
to have the knowledge of the private key associate with
the prefix. The distribution of the prefixes’ public/private
keys is proposed to done in places like ICANN. Then,
the prefix originator announces the prefixes with a set of
one-time signatures together with the private keys for
them. During each propagation, the sending AS sign
itself into the ASPATH using the private key for the
signature. The receiving AS can verify the ASPATH
with all the one-time signatures through a hash-tree
style authentication. Since the private keys was used and
removed, the attacker cannot recreate the key and thus
cannot replace a previous AS number with its own. To
ensure the security of the constructed verification tree,
SPV requires the originator periodically re-announce the
prefixes.

Comparing to the BGPsec, the authors claim that
SPV achieves significantly performance improvement
by changing nested digital signature authentication with
hash-tree-authentication. The performance improvement
comes from the computational complexity difference
between symmetric and asymmetric cryptography used
in SPV and BGPsec. Though with some performance
improvement against BGPsec, SPV still suffers some
severe problems. First, the re-announcement frequency
could greatly affect the overall traffic and computational
load on the BGP routers, which was not taken into
consideration in their evaluation. Second, the “epochs”
of verification trees require a higher level of time-
synchronization. Also, as discovered in [38], SPV cannot
fully protect BGP against route forgery and eavesdrop-
ping.

D. Prevention from the Data Plane

There are some other methods that prevent attacks
from data-plane level, including IPSEC, TCP MD5 field,
and Generalized TTL Security Mechanism (GTSM).
These methods focus on protecting the data-plane com-
munications between different routers, and are BGP
content agnostic.

TCP MD5 Signature Option [21] is a light-weight
method to protect the integrity of the packets. In the case
of BGP operations, TCP MD5 signature could prevent
Each communication will start with a generation of
secrets between the two parties. Then they will send
the TCP packets with a MD5 signature of the packet
using the secret. When receives a packet, the router will
calculate the MD5 signature and compare it with the
one attached in the packet. Without the correct secret,
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the signatures will not match. Therefore, an attacker
cannot easily impersonate another router using forged
BGP packets.

IPSEC [22] is a suite of protocols that operate at
the IP level to secure the communications between end-
hosts. It is a relatively heavy-weight toolkit comparing
to the MD5 option. The suites include the cryptographic
protection on both the packet header and the packet
content. Using IPSEC, a router could talk with the peers
without being vulnerable to eavesdropping or packet
manipulation. However, the processing overhead of using
IPSEC to detect malicious packets is much higher than
MD5 [39]. This high computational overhead could be
exploited for conducting denial of service attack. An
attacker can send a large volume of forged IPSEC
packets to overload a BGP router, and thus downgrade
or even disrupt the normal operations of the router.

The Generalized TTL Security Mechanism
(GTSM) [20] is another type of security method
that protects the communication from topological
perspective. Knowing the distance of a BGP peer router,
GTSM configures each BGP packet with TTL to be
255. Any inbound packets with TTL less than specific
threshold will be discarded. In the case of directly
peered BGP routers, any incoming packets with TTL of
254 or less should be discarded. This method effectively
protects the BGP session from the potential intrusions.
However, in the case of remote peering, the BGP routers
are not directly connected and forcing TTL restriction
could affect the legitimate connections if any routing
changes happen.

IV. BGP ATTACK DETECTION

Ideally, with full deployment of some aforementioned
methods such as BGPsec, the inter-domain routing could
be fully secured. However, it has been shown that none
of the security solutions is bulletproof against attacks.
Besides, the cost of operations, the uncertainty about the
effectiveness, and the lack of motivation also hindered
the overall deployment progress. Before a more secure
BGP security solution is widely deployed on the Internet,
network operators and users have to keep fighting with
the existing and new security concerns of BGP. In
particular, it is important to be able to detect all kinds
of attacks and react to them timely. Table II presents a
taxonomy of the current solutions on BGP attack detec-
tion. From their data sources, we categorize the solutions
into three types: control-plane-based mechanisms, data-
plane-based mechanisms, and hybrid mechanisms where
both control-plane and data-plane information is utilized
to obtain a higher detection accuracy.

The majority of the solutions are control-plane based
in that they obtain the input data from the control-plane
message collectors or through querying on third-party
repositories. We define the passive monitoring solutions
as the methods that detect attacks by passively collecting
and processing the control-plane information. On the
contrary, the active monitoring solutions require active
queries to third-party registries and construct knowledge
databases from different data sources.

In this section, we survey the major inter-domain
routing attack detection methods, including the control-
plane, data-plane, hybrid methods and a number of attack
verification mechanisms as well. We summarize each
method and describe their key idea, strength, weakness,
performance, and their relationship with other methods.

A. Passive Monitoring from the Control-Plane

Most BGP attack detection solutions monitor and
detect attacks by passively listening to the control-plane
information. Based on the types of attacks they try to
detect, these attack detection solutions can further be
categorized into prefix hijacking detection solutions and
BGP dynamics attack detection solutions. The prefix
hijacking detection solutions examine each individual
prefix path updates and detect suspicious changes of
paths toward or origination of specific prefixes. On the
other hand, rather than focusing on each individual
prefix, the BGP dynamics anomaly detection solutions
detect unusual changes of routing dynamics on the
Internet. Such changes may indicate the impact from
large-scale disruptive events for Internet routing. In this
subsection, we will look at the detection solutions on
both types.

1) Prefix Hijacking Detection: Lad et al. introduced
the prefix hijack alert system [53], i.e., PHAS. The
authors argue that the prefix owner is the only one who
can accurately distinguish between legitimate changes
and prefix hijackings. Thus, PHAS was designed to
provide the prefix owners the quick notifications on any
suspicious prefix origin changes. PHAS uses a registra-
tion system that allows the prefix owners to obtain the
information about any changes to the prefix origins. The
authors use the concept of origin set to accommodate the
traffic engineering needs for the users. Each origin set
consists of a set of origins observed from the monitors
within a time window t. Any changes to the origin set
will trigger alerts to the users. The authors also men-
tioned several modifications to the algorithm to reduce
the total amount of the notifications to the subscribers.
Overall, PHAS is a simple solution to detect AS origin
changes and relies on the prefix owners to determine the
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method control-plane data-plane anomaly
active passive active passive verification

NeighborWatch [29] X X
TERRAIN [40] X X
subMOAS [25] X X
Kruegel et al. 2003 [41] X X X
Buddyguard [42] X
I-Seismograph [43] X
Geo-location [44] X
Argus [45], [46] X X X
Wavelet [47], [48] X
BGP-lens [49] X
BGPeye [50] X
Concurrency-based [51] X
Machine-learning-based [52] X
PHAS [53] X
PGBGP [54] X
rcc [55] X X
Topology-based [56] X
TAMP [57] X
Listen and Whisper [18] X X X
Host-signature based [58] X X X
Hop-distance based [59] X
iSPY [60] X
Crowd-based [61] X
LDC [62] X
PurgePromote [63]

TABLE II: Taxonomy of the attack detection methods

natures of the changes. Though easy to implement and
deploy, the notification could be only useful and verified
by the prefix owners. This method also fails to detect any
malicious AS path segment changes other than the prefix
origin changes. For example, any AS path shortening
attempts by the attacker will not be detected by PHAS,
allowing the attackers to “steal” the traffic to the prefixes
without changing the originating ASes.

Pretty Good BGP (PGBGP) solution in [54]
was another attempt to detect suspicious prefix origin
changes by building and utilizing a prefix-origin binding
database. During the training phase of consecutive h
days, the system learns from a router’s routing table
for all existing prefixes and their originating ASes. All
the prefix-origin pairs will be accepted by PGBGP and
logged into a database. During the operational phase, all
the new prefix-origin pairs unseen before will be labeled
as suspicious for a period of s. If the route stays in
the RIB after a period of s, the route will be labeled
as normal and logged into the database. A suspicious
path should have the lowest priority in the path selection
of a PGBGP-enabled router. Thus, a suspicious path’s
propagation will be delayed for at least a period of s.
Comparing to PHAS, PGBGP further protects BGP by
delaying suspicious updates rather than just generating
notifications. Similar to PHAS, this solution does not

consider the AS path forgery attacks. The quarantine
mechanism also potentially poses a long delay for any
legitimate change of prefix origin. Considering the chain
of delay along the propagation, the overhead is not negli-
gible, making this method less favorable for deployment.

Qiu et al. proposed a control-plane-only detection
mechanism that looks further beyond the prefix-AS
binding, and consider AS-AS pairs as another important
metric [56]. The basic observation is that the prefix
and origin AS bindings and the peering ASes bindings
are relatively stable over time. The authors believe that
the prefix ownership and topological information learned
from the BGP RIB table can be applied to identify bogus
routes. For each path change, the system will look at
the prefix-origin pair and the directional AS-AS pairs.
Only when both types of bindings have been seen before
can this change be valid. Similarly, the Argus system
proposed by Xiang et al. also uses the prefix-AS and
AS-AS bindings to detect suspicious BGP updates.

There are two main problems for both methods. First,
both methods rely on the assumption that there are no
attacks during training period. However, there is no reli-
able way to identify training period without any attacks.
If there are attack updates during the training period,
these updates will not be identified as suspicious during
monitoring periods. Second, it requires a long training
period for the methods to build a relatively complete
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database for prefix-AS and AS-AS bindings. Study by
Rexford et al. shows that the vast majority of prefixes of
the popular websites have the update interval of five or
more days on average [64]. To capture the BGP updates
of such prefixes, the systems need to have training period
for weeks or even month. This significantly increases the
time overhead of running these detection systems.

Li et al. [42] introduced a system called Buddyguard,
applying the “buddies” concept in detecting malicious
prefix origin changes. Instead of looking at the prefix-AS
relationship, Buddyguard tries to search for connections
between prefixes. The main observation is that whenever
there is a path update of a prefix, there are some other
prefixes that will also have new paths around the similar
time. They call these prefixes the “buddies” of the target
prefix, and found that there are fate-sharing proper-
ties among theses prefixes. By using the best “buddy”
candidates, Buddyguard can detect unusual changes of
the path toward the target prefix if the changes do
not come with the changes to the buddies. Buddyguard
system is resilient against intelligent adversaries that
try countermeasures to avoid detection. To counter the
detection from Buddyguard, a prefix hijacker needs to
simultaneously hijack the majority of the buddies of the
target prefixes, which would be impractical given that
any prefix would have at least hundreds of buddies from
different ASes.

Khare et al. in [51] described a mechanism that detects
anomalies that involve hijacking of multiple prefixes
simultaneously. Their basic observation is that “simul-
taneously originating prefixes of many other networks
is highly likely to be a real hijack.” They developed
a scheme that detects “concurrent” hijacks by compar-
ing the previous knowledge of prefix origins with the
simultaneous announcements. The system first collects
some basic knowledge about the prefix ownerships using
RouteViews [65], then look for the ASes that offending
the ownerships within a small time window. They dis-
covered about 5 to 20 such events each year from 2003
to 2010, and confirmed overall 53 events from 2008 to
2010 through direct emails with the network operators.
However, this method is limited to detect only the events
with multiple simultaneous hijackings. An attacker can
avoid the detection by targeting only a small amount
of prefixes at a time. This method also assume that the
training period is clean from any attacks, which could be
false in many cases. Besides, this method also does not
consider the AS path manipulation, where the attackers
can hijack traffic by announcing forged shorter AS paths
toward the target prefix. These limitations greatly narrow
the application scenarios of this method.

2) Routing Dynamics Anomaly Detection:
Researchers also look at the dynamics of BGP and try
to detect abnormal changes from a global perspective.
Zhang et al. [47] applies wavelet transformation to
capture the normal status of BGP dynamics. Wavelet
transformation can reveal the temporal structures in
signals carried by the dynamics of BGP streams: the
individual updates could be viewed as high-frequency
signals, and the group (or bursty) updates could be
viewed as low-frequency signals. By using clustering
algorithms on top of the wavelet representation, the
proposed system can reveal different categories of the
BGP dynamics. Using the learned clusters, the system
could detect any outliers that does not fit into the
normal clusters and thus detect the anomalies. Similarly,
Yuan et al. [48] applied the same wavelet-based
approach for BGP dynamics anomaly detection. They
assigned deviation score to indicate local noisy levels
and the outliers. Prakash et al. [49] used wavelet
transformation to create the “tornado” and “clothline”
figures to visually represent the BGP dynamics and
detect anomalies.

In [43], Li et al. introduced an Internet monitoring sys-
tem, I-seismograph, that goes beyond hijackings and in-
clude all different kinds of events. The system collects all
prefixes updates and look for various attributes of BGP
updates such as withdrawal-announcement-duplicates
(WAs), announcement-announcement-duplicates (AAs)
for prefixes. The attributes are then aggregated to
databins for each minute during training and monitoring
periods, each represented by a 10-dimension data vector.
To train the normality model, the system uses all the
vectors collected during the training phase and derive the
majority cluster from a hierarchical clustering procedure.
Databins in the cluster collectively represent the normal
values for the ten attributes. During monitoring phase,
the system will compare databins of very minute during
the phase with the trained normality model and calculate
the deviation vector of each database. This mechanism
detects large-scale anomalies that generate a global im-
pact on BGP.

B. Active Monitoring from the Control Plane

In this subsection, we survey a set of monitoring
mechanisms that apply active monitoring for attack de-
tection. The active monitoring approaches require active
queries to third-party registries and construct knowledge
databases from different data sources. Different from
passive monitoring approaches, active monitoring ap-
proaches do not need to process BGP information from
the past for training.
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Siganos et al. [29] argued that the IRR information
can still be a good data source to use, despite its
negative reputation in information correctness and update
frequency. The authors systematically examined all the
IRR databases, and used them as the main data source
their proposed attack detection system (Neighborhood
Watch). The experiment revealed 0 to 3 flags per hour,
infrequent enough for administrators to act on them when
they show up. With careful processing, the information
obtained from the IRR registries is enough for detection.
The authors also observed that with more attention to
improve the registry information, the security of BGP
routing can be greatly enhanced with the existing registry
based algorithms. As another observation, the authors
also found that the reaction time for a large-scale event
is as long as hours.

Schlamp et al. proposed to use IRR data and end-hosts
information in the target IP blocks to detect subprefix
hijacking attacks [25]. A subprefix hijacking is more
complicated to detect since usually there is no BGP
announcement for that specific prefix before. In this
paper, the authors utilized IRR data to obtain prefix
ownership information and construct AS-level topology.
Both the ownership information and topology can be
used to determine illegitimate sub-prefix path changes.
To further confirm the sub-prefix hijackings, the authors
compares the fingerprints of the machines within the sub-
prefix obtained from different periods. An inconsistent
comparison result shows the changes of the physical ma-
chines within the network. The authors assume that the
web-servers’ IP addresses are stable, and the SSL/TLS
certificates could be used as the fingerprints to identify
the servers. During the training period, system obtain
the public keys of a set of HTTPS web servers reside in
the target sub-prefix. When suspicious changes detected,
the system will probe HTTPS servers within the prefix
and compare the obtained certificates. An inconsistent
comparison results indicates an ongoing prefix hijacking.
The methodology proposed by the authors, especially
the certificate comparison metric is novel in the attack
detection field. However, running such a system requires
a constant Internet-wide traffic scanning, which would be
rather hard if not impossible in real-world cases. The
web-server operators also conduct certificate rollovers
from time to time for security reasons, which would
result in false positive of the detection results.

Kruegel et al. [41] proposed to validate AS path
updates based on topological and geographical informa-
tion. The method classifies the ASes into “core” and
“periphery” nodes based on their degree of connectivity
in the AS topology. By removing the core nodes in
the topology, the methods can generate a topology with

Fig. 7: An example of detecting BGP anomalous paths
with topological and geographical information.

clusters of periphery nodes. The authors claimed that
the geographical distances between ASes within a single
cluster are small. The author proposed that a valid AS
path must satisfy the following two requirements. First,
the AS path may only contain one single subsequence
of core ASes, conforming to the valley-free routing
principle from Gao et al. [66]. Second, the periphery
ASes must be either in one cluster or on the edge
that connects two clusters. This means for an AS to
reach another AS in a different cluster, this AS has to
travel through a set of ASes that connects the clusters.
The AS link jumps across multiple clusters would look
suspicious, and thus will not be automatically accepted.

In [40] Sriram et al. proposed a comprehensive eval-
uation framework, TERRAIN (Testing and Evaluation
of Routing Robustness in Assurable Inter-domain Net-
working), that compares the existing algorithms for BGP
attack detection. TERRAIN investigates the performance
of both active and passive monitoring attack detection
methods. The authors proposed to enhance the active
monitoring algorithms by validating the consistency of
the data objects in the registry. They assigned the fol-
lowing four labels onto the registry entries based on
the information consistency across data objects: fully
consistent, only prefix information consistent, only prefix
origination consistent, or not consistent. Based on each
domain’s security policy, the operators can then decide
how to use the labeled information entries.

The authors also proposed an enhanced passive mon-
itoring algorithm. The algorithm classifies prefixes into
stable and unstable types based on the frequency of up-
dates observed during training period. When suspicious
changes to the prefixes are detected, the algorithm will
decide the quarantine period length for the suspicious
updates based on the type of the prefixes, assigning
longer quarantine time to the changes for stable prefixes.
To achieve the best accuracy, the authors propose to
combine the enhanced passive and active monitoring
approaches as a hybrid solution.
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C. Passive Monitoring from the Data Plane

We have discussed plenty of mechanisms that utilize
different types of control-plane information to detect
anomalies of inter-domain routing. There are also a
number of solutions that use only the data-plane infor-
mation to detect inter-domain routing anomalies. One
type of these data-plane-based solutions is the passive
monitoring solutions. A passive monitoring solution uti-
lizes data-plane information obtained through passive
monitoring to detect routing anomalies, which does not
need to send any query or probing packets during the
procedure. In the following subsection, we survey the
state-of-the-art passive monitoring solutions.

Liu et al. proposed a system [62] that detects prefix
hijackings by traffic load distribution changes (LDC).
LDC monitors the data-plane traffic load distribution
from any sources on the Internet to the target prefix
and detect unusual load shifts. The load distribution is
defined as the ratio between the total number of AS
paths that pass through any specific node and the total
number of AS paths available toward target prefix. The
authors used a clustering algorithm to define the normal
load patterns for each prefix at each AS. Any significant
deviation of the traffic load on any AS will trigger alert
to notify a potential prefix hijacking. LDC requires at
least one monitor to be deployed at the provider of the
target prefix to be able to detect anomalies of the prefix,
which limits the deployability of this method.

Subramanian et al. designed the Listen algorithm [18]
to detect routing anomalies using prefix reachability in-
formation obtained through passive monitoring from the
data plane. It passively listens to all the TCP flows, and
cherry-picks the segments that are specifically related
to the establishment of a TCP connection. If Listen
observes more than N incomplete TCP flows within any
specific prefix, and within a predefined time period T ,
then it will alert the operators of the prefix (Fig. 8a). A
flow is incomplete if it begins with a TCP SYN packet
but never receives any SYN-ACK responses. To further
reduce the amount of false positives, Listens applies two
additional actions to verify the aliveness of any TCP
flow. First, it can actively drop random packets from
a specific TCP flow, and observe the retransmission of
those dropped packets. If no retransmission is observed,
it will raise alarm. Second, it can also passively sample
the traffic for a specific flow and observe the ratio of
the retransmission. If more than 50% of the packets are
retransmitted, it will also raise alarm. The two extra steps
prevent adversary from faking a TCP flow. However, this
approach relies on a main assumption that the detection
system is able to listen to the traffic of the monitored

prefix. This assumption requires that the system has to
be deployed at an AS (or ASes) where it carries a large
portion of the traffic toward the monitored traffic. This
requirement significantly hurts the deployability of this
method.

Hiran et al. in [61] proposed a passive data-plane
anomaly detection system that applies crowd-sourcing
approach for information gathering. Each end-host that
participate in the detection framework will collect round-
trip time (RTT) information about all the IPs it interacts
with. The information will be shared with other hosts
to create a larger picture of the RTTs from and to
different parts of the Internet. Using the aggregated
RTT information, the system can visualize and detect
suspicious RTT changes of any IPs over time. The
problem with this method is that RTT is highly sensitive
to any network changes and the nature of the detected
anomalies could be non-malicious. The authors also
acknowledged that this method should only be used
as a supplementary evidence for the attack detection
methods. Another problem is that the system requires
participations from many end-hosts, which could be very
hard to achieve. There is no clear motivation for end-
hosts to participate, and the overhead would go up when
the nodes become larger.

D. Active Monitoring from the Data Plane

Other than passively monitoring the traffic from the
data plane, there are other BGP attack detection methods
that apply active probing from the data plane to detect
anomalies. Comparing to passive monitoring approaches,
the active monitoring approaches only need to conduct
active probing at a number of external vantage points,
and do not need to have access to the traffic information
of the monitored prefix.

Zheng et al. proposed a distance-based attack detec-
tion system from the data plane [59]. The authors define
the distance between two networks as the count of hops
(or routers) a packet travels from one network to the
other. The system detects the suspicious changes of the
distances from a set of vantage points to the monitored
prefix. For every prefix, the system selects a set of
the best vantage points that are topologically dispersed
from each other. The system continuously monitors the
distance from every vantage point to the target prefix.
When a suspicious network distance change is detected,
the system will then further verify the detection results.
During the training phase, the system selects a set of
“reference points” of the target prefix, which are different
prefixes that are topologically close to the target prefix.
The data-plane path from the vantage points to the
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reference points should be similar to the path toward the
target prefix. Upon a potential hijacking is detected, the
system probes the target prefix as well as the reference
points of the prefix. If the paths to the prefix and to
its reference points deviate significantly, then the system
confirms the hijacking and alert the users. The authors
suggest that the system can use the prefixes for the direct
provider of the monitored prefix as reference points.
However, an adversary can also hijack the reference
points as well to avoid detection. The authors did not
further investigate how the system should properly locate
the reference points.

iSPY [60] is another data-plane based attack detection
system proposed by Zhang et al. that detects the prefix
hijackings that reduce the reachability of the victim
prefixes. An iSPY system runs within the monitored
prefix, and sends probing messages (such as ping mes-
sages) from the monitored prefix to a number of external
networks. When there is no attack, iSPY expects to
receive all the return messages of the probes it sends.
During an prefix hijacking event, if a external is affected
by the attack, the reply to the iSPY’s probing message
will arrive at the attacker’s network, thus iSPY will not
be able to receive it (Fig. reffig:bgp-detection-ispy). If
the loss of return messages exceeds a threshold, iSPY
will alert the prefix owner of a potential prefix hijacking.

However, there are three problems of this method.
First, the unreachability from external network does not
necessarily indicate prefix hijacking. There are many
other types of events can also cause the reply of a iSPY
probing cannot return, such as routing disruption, link
failure, packet loss, etc. Second, to protect one prefix,
the iSPY system for this prefix needs to send probes
to about 3000 external networks, which leads to high
network overhead. Moreover, iSPY fails to detect prefix
interception attack, where the attacker hijacks the prefix
and then continue to forward all the traffic to the victim.
In this type of attack, the victim prefix does not lose
reachability from any external network, and the iSPY
probing packets will return as usual. As a result, iSPY
will not be able to detect such an attack.

Xiang et al. proposed Argus [46], an active data-
plane probing system that can verify detected routing
anomalies. As discussed in section IV-A1, Argus applies
a simple approach that alerts users of unseen origin
or AS path segments for the monitored prefix. Argus
then proposed a data-plane-based active probing system
to verify the detection results (Fig. reffig:bgp-detection-
argus). The verification system consists of multiple view
points deployed across the Internet, and the view points
are divided into the ones that see the “anomalous”
updates, and the one that do not for specific event. Argus

(a) An example of Listen detecting
loss of reachability through passive

listening to TCP messages.

(b) An example of iSPY detecting
loss of reachability from within the

victim AS.

(c) An example of Argus detecting
loss of reachability from external

ASes.

Fig. 8: Example of the prefix hijacking detection
method for Listen, iSPY, and Argus.

sends out ping messages to the monitored prefix from all
the view points, collects the probing replies from both
types of view points, and gathers the results into two
vectors. Argus then calculates the correlation coefficient
between the two vectors, the value of which ranges from
-1 and 1. If the result is close to 1, it means most
view points that see the updates cannot successfully
ping the prefix, while the ones that do not see the
updates can still get ping responses back. This case
shows a strong evidence of a blackhole prefix hijacking.
On the contrary, if the result is close to -1, it means
most view points that do not see the update cannot get
the response back. This indicates that the updates were



14

most likely related to route migration, and should not be
malicious. The verification mechanism of Argus takes a
big step on differentiating the legitimate changes from
malicious ones. However, this could still only applies to
the blackhole attacks where the attackers would drop the
hijacked packets. In case of intercepting attack, where
the attacker will eventually forward the hijacked traffic
to the victim prefix, Argus cannot detect any changes in
the probing results due to the fact that the reachability
to the prefix remains the same.

Similarly, Hu et al. designed an active fingerprinting
mechanism to verify attack detection results [58]. Upon
the detection of a potential hijacking, the system will
actively probe a set of end-hosts within the target prefix
from multiple vantage points. The probing procedure will
obtain the fingerprint information such as host OS prop-
erties, IP identifiers, TCP timestamps, ICMP timestamps,
etc. The system then compares the fingerprints of the
same set of end-hosts from different vantage points. If
results between different vantage points are different, it
is very likely that the prefix was hijacked. To obtain
high accuracy, this system needs deploy a large number
of vantage points from different ASes, avoiding the
situation where all the vantage points are affected by the
hijack. This requirement puts high deployment overhead
on this system. The other problem of this method is
that the probing messages may not get through to the
target prefix from certain vantage points. Some ASes
put restrictions on the probing messages and sometimes
filter out such messages. This could also cause inconsis-
tencies in the probing results, which does not necessarily
indicate a prefix hijacking.

V. SECURITY OF SOFTWARE-DEFINED NETWORKING

Software-defined networking (SDN) is a recent
paradigm for intra-domain networking. Traditionally,
each domain (or AS) runs its own set of routing algo-
rithms on top of a number of devices from different ven-
dors with different implementation. The heterogeneous
nature of the devices and their software complicates
the management of the intra-domain networking. For
example, a network operator has to communicate with
routing devices using different vendor-specific interfaces.
To unify the control of networking devices, SDN sepa-
rates the control plane and the data plane. The SDN
controller processes control-plane messages and makes
routing decisions based on local routing policies, and
the switches forward the traffic based on the forwarding
rules decided by the controller. The separation simplifies
the design of the data-plane devices, i.e., the switches,
and provides more flexibilities for control-plane policies.

Fig. 9: Software-defined networking basic architecture.

There are several proposed protocols to unify the com-
munication between a controller and switches, such as
OpenFlow[7], OVSDB[67], ForCES[68], and POF[69].
These protocols define the messages between a controller
and switches and provide implementation specifications
for SDN switch manufacturers. Among these protocols,
OpenFlow [7] is the most popular and widely deployed.
We will use OpenFlow as the default SDN control-plane
protocol in the following sections.

There are four types of components in an SDN en-
vironment (Fig.9): end-hosts, switches, controllers, and
applications running on the controllers. The end-hosts
are the machines and servers connected to the SDN
switches. The SDN switches forward the traffic to and
from their connected end-hosts. Every SDN switch is
connected to one SDN controller, from which the switch
can learn the forwarding rules for each traffic flow.
When an incoming flow does not match any forwarding
rule of a switch, the switch will send a query to its
controller and ask for the actions on this flow. A SDN
controller is a centralized network management entity
that runs the SDN applications and communicates with
the switches. When receiving a flow query from a switch,
a controller will respond to the switch with one or more
forwarding rules that match the flow and contain a set
of actions on the flow, such as dropping the packets or
forwarding the traffic to a specific port on the switch. The
responses are decided by the SDN applications running
on the controller. SDN applications are the control-plane
software that contain all the routing policies and generate
forwarding rules for the switches of an SDN network.

Unfortunately, all the four types of components could
be compromised and used for launching attacks. The
SDN applications may encompass security loopholes
or malicious exploits from outside the network; the
controller could be compromised by malicious operators
to degrade the performance of the network; the switches
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Fig. 10: Security solutions taxonomy for
software-defined networking.

can be compromised to act maliciously when forwarding
traffic; and malicious end-hosts can also exploit the loop-
holes in OpenFlow and disrupt the SDN controllers. The
majority of the efforts on securing SDN focus on dis-
covering security loopholes and designing mechanisms
to prevent them from happening. We can categorize
the security mechanisms for SDN by the types of the
attacks to prevent, i.e., the solutions against end-host-
based, switch-based, controller-based, or application-
based attacks. In the following subsections, we discuss
the threats that come from each type of the components,
and survey the existing solutions toward the threats.

A. Securing SDN against Malicious Controllers

An SDN controller is the brain of an SDN network
and hosts the applications and communicates with the
switches. Whereas people focused more on the appli-
cations that run on the controller, the controller itself
could also be compromised. A malicious controller could
essentially take over the control of the entire network,
thus requiring serious attention from the research and
industry communities.

Matsumoto et al. described a system called Fleet
that defends SDN networks against compromised con-
trollers [70]. The authors define the compromised con-
trollers as the ones that are controlled by malicious
administrators. The authors state that malicious ad-
ministrators can apply erroneous configurations on the
controllers, the misconfigurations can then degrade the
performance of a network or even disrupt the normal
operation of the network. To defend against this attack,
the authors assume that there are multiple controllers
in the SDN network, and in order for a controller to
install a new rule on an SDN switch, it needs to obtain
acknowledgements from the other controllers. Fleet uses
Shamir’s secret sharing scheme [71] to ensure that at
least k out of n controllers need to validate the rule
(Fig. 11). An SDN switch in this system needs to verify
the rule before installing it. On the other hand, an

Fig. 11: An example of Fleet preventing malicious
controller from sending out SDN rules.

attacker needs to compromise at least k controllers to
modify forwarding rules in an SDN network. However,
the requirement of multiple controllers in the SDN net-
work makes Fleet impractical in many networks. There
are many SDN controller software that only support
single controller setup for a network, such as NOX [72],
POX [73], Floodlight [74], or Ryu [75]. The authors
also assume that all the controllers share the same set of
configurations and policies, which makes the multiple-
controller setup less cost-effective.

B. Securing SDN against Malicious Applications

The threats can also come from the applications
running on the controllers. There are increasingly more
applications designed and shipped to various SDN con-
trollers. However, the qualities and the management of
the applications are still in question. Different appli-
cations may generate the rules that overlap with each
other or even with conflicting forwarding actions. Similar
to software security, it is not easy to implement and
enforce strong security policies during the design of
SDN applications. Thus, the controller or third-party
security auditors needs to monitor the operations of the
SDN applications to ensure that these applications do not
produce conflicting forwarding rules.

Canini et al. proposed a tool called NICE to uncover
bugs in OpenFlow programs through modeling checking
and symbolic execution [76]. The authors showed that
an OpenFlow application that works correctly most of
the time can misbehave under certain states. To uncover
bugs in OpenFlow applications, NICE applies modeling
checking [77] to explore system execution paths, and
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apply symbolic execution to reduce the space of inputs.
Through model checking, NICE is able to locate erro-
neous states and find out the root causes. Combining
with symbolic execution, the computational overhead of
exploring all possible states is largely reduced. Based
on the exploration results, NICE further provides a set
of APIs for users to express their desired correctness
properties of the programs. Verifying the states with
the correctness properties, NICE can produce verifica-
tion results for any given OpenFlow application. Sim-
ilarly, ConfigChecker [78] and FlowCheker [79] en-
code OpenFlow flow tables into binary decision diagram
(BDD) and use model checking to verify the security
properties. They convert the forwarding rules on switches
into boolean expressions to build the binary decision
diagram. With the constructed BDD, the system runs
queries using computation tree logic to detect conflicts
among rules.

Porras et al. proposed FortNOX, a security enforce-
ment kernel for the NOX controller [72], to proactively
detect application conflicts [80]. Instead of looking at
each flow rule individually, FortNOX converts the similar
rules into alias set according to their inter-dependency.
The FortNOX then detects conflicting alias sets rather
than individual rules. With this level of abstraction, Fort-
NOX is able to largely reduce the overhead for detecting
conflicts, and is able to detect conflicts for 1000 rules
in less than 10 ms. To resolve the conflicts, FortNOX
prioritizes different applications with the concept of
authorization level. The rules generated by applications
with a higher authorization level will be applied when
there is a conflict.

FlowVisor [81] provides a way to split a physical
network into multiple virtual networks, each with a ded-
icated controller. By splitting the network into smaller
slices, each controller may only control a subset of
devices based on the topology design. Each slice of
the network is a logically independent virtual network,
and operators utilize any previously mentioned security
mechanisms to further secure this virtual network. The
slicing of networks provides extra scalability and security
features for the SDN controllers and applications.

FlowGuard [82] is a firewall framework for SDN
networks that can detect and resolve firewall policy
violations in real time. The authors categorize the se-
curity policy violations into two types: entire violation
and partial violation. If all possible flows covered by a
flow rule were against a firewall policy, the flow rule
is an entire violation; otherwise it is a partial violation.
Based on different types of violation, FlowGuard defined
multiple methods, as opposed to a simple pass/drop
decision, including dependency breaking for resolving

legitimate but overlapping rules; update rejecting for
resolving entire violations rules; and packet blocking
for resolving partial violation rules. Unlike FortNOX’s
proactive verification approach, FlowGuard is able to
verify new flows in real time. Evaluation showed that
FlowGuard can check tens of thousands of new flows in
milliseconds.

NetPlumber [83] detects policy violations from a
graph perspective. It applies header space analysis (HSA)
to construct rule dependency graph called “plumbing
graph.” In this graph, a node represents a forwarding
rule, and an edge represents the dependency between the
rules. NetPlumber maintains an up-to-date dependency
graph and uses it to determine security policy violations.
NetPlumber incrementally updates the graph on each
relevant change of the network, such as adding a new
rule, deleting rules, link status changes, or modification
of forwarding tables. The incremental updating scheme
enables NetPlumber to conduct violation detection in real
time. NetPlumber also includes a high-level descriptive
language for users to express their security policies.
NetPlumber translates the policies from the descriptive
language into forwarding rules for deployment. Overall,
NetPlumber extends the original HSA method, and en-
ables real-time detection and descriptive languages for
expressing policies.

VeriFlow [84] verifies the OpenFlow rules against
the security policies using a graph approach. VeriFlow
summarize the forwarding flows into equivalence classes
which represent sets of flows with identical forwarding
actions. Utilizing the equivalence classes, VeriFlow can
effectively confine the search space for conflicting rules.
VeriFlow generates a forwarding graph for each equiva-
lence class, showing how packets matched by this class
will be forwarded throughout the network. Based on the
forwarding graphs, VeriFlow further provides interfaces
for the users to query about the reachability, loop-
freeness, rule consistencies of the network. The content
of the queries depends on the specific applications or
tasks. Similar to NetPlumber, VeriFlow also adopts the
incremental updating mechanism for the graphs to en-
able real-time verifications. The authors assume that the
existing rules are benign during the equivalence classes
building phase. The policy violations could thus stay
undetected if they exist before VeriFlow starts running.

C. Securing SDN against Malicious Switches

SDN switches are responsible for forwarding all the
traffic in an SDN network. It is thus important to make
sure that the switches operate correctly and consistently.
However, due to the differences in implementations,
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SDN switches from different vendors may behave dif-
ferently on the same input. Switches can also be com-
promised and conduct various malicious actions.

Kuzniar et al. presented a testing framework for SDN
switches called SOFT that can detect inconsistencies
between different OpenFlow implementations [85]. The
authors proposed to use symbolic execution [86], [87],
[88], [89] to explore input spaces systematically across
multiple OpenFlow switches. SOFT can construct se-
quences of test inputs that cover all possible execu-
tions for each OpenFlow switch. The system will then
compare the running results from different agents to
identify inconsistencies. This paper is the first to present
a systematical and comprehensive method for verifying
SDN switch software.

Chi et al. proposed a system to detect compromised
switches [90]. The authors first defined the following
four types of misbehaviors of a compromised switch:

• incorrect forwarding that forwards traffic flows to
incorrect ports;

• duplicate forwarding that duplicates traffic flows to
multiple ports;

• packet manipulating that modifies content of the
packets;

• traffic weight adjusting that alters traffic priorities.

This paper introduced two algorithms that detect for-
warding anomalies and weight adjusting anomalies. The
two algorithms use the same “active probing” idea.
The controller constructs special flow rules (or “honey
rules”), installs them on SDN switches, and sends out
probing packets that match the rules. The switch can then
detect the switches on the forwarding path that behave
differently than the expected correct forwarding behav-
ior. The system can apply these two algorithms to detect
incorrect forwarding and weight adjusting. However, the
duplicate forwarding and packet manipulation were not
discussed in the paper.

D. Securing SDN against Malicious End-hosts

In software-defined networking environment, the end-
hosts could also be malicious. The hosts can either
exploit the switch-controller communication mechanism
to flood the controller, or forge control-plane messages
to deceive the controllers and influence the network
topology. In this subsection, we will look at both angles
and review the related works.

1) Host-based Flooding Attack: Shin et al. introduced
the AVANT-GUARD system that protects the SDN
controller from end-host-based control-plane saturation
attack [91]. As previously discussed, the SDN switches

information to the control plane with a specific command. The con-
trol plane then decides whether to allow migration of this session.
If so, the connection is transitioned to the migration stage.

Migration Stage: During the migration stage, the CM module
initiates a TCP connection handshake with the connection’s desti-
nation host. If the host responds with a TCP SYN/ACK packet,
the data plane finalizes this session by sending a TCP ACK packet
to the host. The data plane also reports this information (i.e., es-
tablishment of a TCP session with a real target host) to the control
plane. If the data plane fails to establish the TCP session with des-
tination hosts (due to an unavailable host or closed port), this result
will also be reported to the control plane.

Relay Stage: After the data plane successfully establishes a TCP
session with a real target host, it enters the relay stage where it re-
lays all TCP data packets between a connection source and desti-
nation as occurs during normal TCP sessions.

Example Connection Migration Scenario: To illustrate con-
nection migration, consider the interaction shown in Figure 5. If
the data plane receives a TCP SYN packet from the host A (1) and
this packet does not match an existing flow rule in the device, it au-
tomatically responds with a TCP SYN/ACK packet to host A (2).
Then, if host A sends a TCP ACK packet to complete this TCP
session (3), the switch knows that a TCP session is successfully es-
tablished, and it reports this event to the control plane. Then, the
control plane decides whether to allow the connection to migrate
on to the real destination host (i.e., host B). Assuming the connec-
tion is allowed, the control plane activates a flow rule with what we
propose as the Migrate action. When a migrate action rule is re-
ceived by the data plane it initiates a TCP connection to host B (6)
and completes the connection (7, 8). If the migration is successful,
the device notifies the control plane of this event (9). Finally, the
control plane inserts a Relay action into the data plane, causing it
to relay all packets between host A and B. At this time, the device
need not add a new rule; rather, it only needs to change the action
field of the existing flow rule. Hence, the rule will be changed from
(A-1) to (A-2). Operations 1-3 represent the classification stage;
4-5 and 9-10 denote the reporting stages, 6-8 refer to the migration
stage, and 11-12 refer to the relay stage.

(1) TCP SYN
(2) TCP SYN/ACK

(3) TCP ACK

(6) TCP SYN
(7) TCP SYN/ACK

(8) TCP ACK

(4) (5) (9) (10)

(11) TCP ACK
TCP DATA

(12) TCP ACK
TCP DATA

A-1: A --> B: Migrate 

A-2: A --> B: Relay 

Data Plane

Classification Stage

Relay Stage Relay Stage

Migration Stage

Report StageReport Stage

Control Plane

A B

Figure 5: Example connection migration scenario

Impact on Control Plane Saturation: Connection migration
offers an immediate benefit for maintaining control operations in
the presence of well-known adversarial models that engage in both
spoofed and non-spoofed attacks against an OpenFlow network. In
the context of spoofed flooding attacks (e.g., spoofed TCP SYN
floods that may saturate the control plane with bogus connection
requests), all such flow requests are nullified at the classification
stage. For non-spoofed connection floods (e.g., those that may
arise from an aggressive scanner), connection migration converts

the OpenFlow network into a whitehole network [9]. From the
source’s perspective, all probes to the ports and IP address ranges
of the OpenFlow network appear to produce a TCP handshake re-
sponse, hindering the source from knowing which IP and port com-
binations are actually alive.

In the case of the flow-rule-flooding problem in the data plane,
connection migration addresses this concern through its adoption of
stateless TCP handshaking with SYN cookies. Because the SYN
cookie algorithm does not require any state management, a device
does not need to store any flow rules for failed or malicious TCP
connection attempts. It can reduce the effect of flow-rule-flooding
problem. Because of this, connection migration enhances an Open-
Flow network’s resilience and scalability to network flooding at-
tacks.

Collecting TCP Session Information: Based on information
from access tables in the data plane, the control plane acquires two
important attributes from each source that contacts the network:
(i) the number of all connection attempts, captured in the access
table (defined as A1) and (ii) the number of established connections
recorded within the connection migration report (defined as A2).
Analysis of the ratio of failed TCP connections of a peer (A1 - A2)
and the number of established TCP connections (A2) can often be
used to detect various flooding and probing behavior.

3.2.1 Delayed Connection Migration
Knowledgeable adversaries may infer the use of connection mi-

gration and attempt to produce flooding packets by establishing
many real TCP sessions. They can use multiple processes, threads,
or many zombie PCs to generate fake TCP connections. However,
for some protocols, such as HTTP, in which the client is expected
to send the first data packet, we can extend connection migration to
incorporate delayed connection migration. Here, we operate a vari-
ant of connection migration in which the key difference is that the
classifying stage will delay the transition to the reporting stage un-
til it receives the client’s TCP data packet. This scenario is shown
in Figure 6. As shown in Figure 6, the data plane delays the report-
ing time (5) until it receives more evidence (i.e., data packet) from
a TCP session initiator (4).

(1) TCP SYN
(2) TCP SYN/ACK

(3) TCP ACK

(7) TCP SYN
(8) TCP SYN/ACK

(9) TCP ACK

(5) (6) (10)(11)

(4) TCP ACK
TCP DATA (12) TCP ACK

TCP DATA

A-1: A --> B: Migrate 

A-2: A --> B: Relay 

Data Plane

Report Stage Report Stage

Classification Stage Migration Stage

Relay Stage

A B

Control Plane

Figure 6: Example delayed connection migration scenario

3.3 Actuating Triggers
We propose to extend OpenFlow with actuating triggers which

enable the data plane to asynchronously report network status and
payload information to the control plane. In addition, actuating
triggers can be used to activate a flow rule under some predefined
conditions to help the control plane manage network flows with-
out delays. The actuating trigger consists of four main operations.
First, the control plane needs to define a traffic statistic condition
under which notification is warranted. Second, the control plane

Fig. 12: Example connection migration scenario of
AVANT-GUARD (figure from [91])

send any unmatched packets to the controller for han-
dling. The control-plane saturation attack exploits this
mechanism to generate a large amount of query messages
using TCP SYN flood mechanism. First, an attacker
floods the SDN switches with unique and unmatched
TCP SYN packets. Each packet will trigger the switch
to generate a query message to the controller. As a
result, a large volume of query messages will arrive
at and eventually overload the controller. To stop the
flood, AVANT-GUARD acts as a proxy between switch
and the controller, and reply the TCP SYN packets
on behalf of the destination end-hosts. Only when the
TCP connection is fully established (i.e., the sender
and receiver both acknowledged the connection) will
AVANT-GUARD forward the query to the controller
and then migrate the connection to the true destination
machines. Fig. 12 shows an example of this procedure
where machine A tries to initiate a TCP connection with
machine B. AVANT-GUARD first establishes the con-
nection with machine A and then migrate the connection
to B when the TCP handshakes are complete.

However, AVANT-GUARD suffers from the follow-
ing problems. First, the proxy-style behavior requires a
switch to have a large memory space to cache the con-
nection status for every flow before the TCP connection
is complete. The overhead of caching connections under
flooding attack could be prohibitive. Second, the solution
only deals with the TCP SYN flood attacks and the other
types of attack are still not handled.

Wang et al. introduced FloodGuard to solve
the control-plane saturation attacks in a proactive
manor [92]. The authors proposed a static program
analyzer to proactively generate flow rules to ensure
the major functionality of the network work. If attack
traffic manages to bypass the proactive rules, the pack-
ets will again trigger control-plane message floods. In
this case, FloodGuard will generate rules to forward
packets to a data-plane cache server and limit the rate
of PACKET IN messages. The FloodGuard provides



18

a more generic protection against various attacks with
the proactive rule generation. However, the rate-limiting
approach of processing traffic will significantly slow
down the overall traffic speed, and trigger high memory
and storage overhead to cache the data-plane flooding
traffic.

2) Host-based Control Message Forgery Attack:
Hong et al. in [93] presented two types of new network
topology poisoning attacks, and proposed a system, To-
poGuard, to secure the SDN control plane against such
attacks. The first type of attack is host-location hijacking
attack, where the hijacker forges packets to deceive the
controller to believe that the victim has relocated to the
hijacker’s location, and thus hijacks all the traffic toward
the victim. Specifically, the controller uses Host Tracking
Service (HTS) to keep track of the hosts in the network,
and identifies the hosts using a set of known identifiers
(MAC, IP, VLAN ID, etc.). An attacker can forge packets
with the same identifiers of the victim, and convince the
HTS that the host is now in a new location. To stop
such attacks, TopoGuard forces the controller to verify
the change of location from the connected switch. For a
change of location to be valid, the controller must first
receive a Port Down packet from the switch previously
connected to the host. TopoGuard also actively probes
the host’s previous location to ensure that the original
location is indeed not being used.

The second type of attack is host-based link fab-
rication attack. The controller dynamically discovers
the topology of the network using LLDP (Link Layer
Discovery Protocol) packets sent from the switches. The
attacker exploits two facts here to conduct a link fab-
rication attack. First, the switch will forward the whole
packet to controller as a query message when a new flow
does not match any rule. Second, the controller does
not have authentication for accepting the LLDP packets.
The attacker then could forge a LLDP packets with fake
topology information and send it to the switch. With a
carefully designed packet header, the forged packets will
be forwarded to the controller, and the controller will
accept the LLDP packets. TopoGuard proposes to stop
this type of attack by dropping all the LLDP packets
from end-hosts. The end-hosts can be identified by the
traffic types. However, this method cannot handle the
cases where the attacker stays “quiet” before the attack,
in which case the TopoGuard does not know whether the
port is connected to a host or a switch. The assumption
of the lack of authentication for LLDP packets also
does not hold for many modern controller software (e.g.,
OpenDaylight [94]).

Dhawan et al. proposed SPHINX that also tries to
secure the topological information on the controller [95].

SPHINX is an attack detection application that sits
between the SDN controller and SDN switches. It aims
to construct a trust-worthy topology graph, or “flow
graph”, by using only messages from the controller,
and detect anomalous messages from the SDN switches.
The authors believe that only the OpenFlow messages
sent from the controller are trustworthy. Thus, SPHINX
constructs the flow graph using only the “FLOW MOD”
messages sent from the controller. Any changes caused
by untrusted entities, or changes that violate administra-
tive policies will trigger alerts to the users.

VI. SECURITY USING SOFTWARE-DEFINED

NETWORKING

Via the separation of control-plane and data-plane,
SDN provides flexibilities for the operators or appli-
cations to fully control the packet forwarding in a
centralized way. This new routing management paradigm
enables a set of new security applications using SDN.
In particular, there are two major directions where using
SDN can help the existing security practices: traffic mon-
itoring and traffic filtering. SDN enables easier traffic
monitoring over the entire network, and can improve
the effectiveness of the current traffic anomaly detection
systems. With a unified control-plane protocol, SDN
also boosts traffic filtering capability within one AS or
across multiple ASes, which is specifically beneficial in
the defense against distributed denial-of-service (DDoS)
attacks. In this section, we investigate security mecha-
nisms that use SDN on both traffic anomaly detection
and DDoS defense.

A. SDN for Anomaly Detection

The basic idea for software-defined networking, or
programmable networking, has been discussed long
before the development of OpenFlow. Casado et al.
proposed a centralized traffic management architecture
called Ethane [96] that can conduct fine-grained flow
level policy enforcement. Similar to the current SDN
architecture, Ethane’s architecture consists of end-hosts,
Ethane switches, and an Ethane controller (Fig. 13). The
controller accepts the policy inputs from the operators
and translates high-level policies to switch-level rules
and enforces the rules at the Ethane switches. To initiate
a flow from within an Ethane network, a user needs to
first authenticate itself to the controller. On detecting a
new flow, an Ethane switch asks the controller to decide
the forwarding actions, then installs a flow rule based
on the reply from the controller. Despite its innovative
architecture, Ethane is limited to only addressing the
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Fig. 13: Architecture of Ethane (figure from [96])

problems of user authentication and forwarding rule
generation.

Mehdi et al. studied the feasibility of porting the
existing anomaly detection systems into SDN environ-
ment [97]. Traditionally, the anomaly detection systems
(ADS) are designed to run on dedicated machines and
have no direct influence on networking. As the net-
working devices become more intelligent, the authors
proposed to study whether the traditional ADS could
be ported onto the SDN environment. In this work, the
authors mainly focused on comparing the performance
of deploying SDN-based ADS at different locations:
home, small office home office (SOHO), or ISP. Specif-
ically, they studied four different popular algorithms:
threshold random walk with credit based rate limit-
ing [98], regular rate limiting [99], [100], maximum
entropy detector [101], and NETAD [102]. The authors
first showed the feasibility of running all four algorithms
in an SDN environment. The authors then collected data
from real networks and compared the performance of
these algorithms at different locations. The evaluations
showed that deploying the solutions at home environ-
ment would have the highest detection rate and the fastest
processing speed. However, this work does not compare
the performance with the same solutions deployed on
the traditional network environments, thus weakening the
motivation of this work. This work also did not take into
consideration the deployment cost at home environment.

To enable SDN for more general network security
applications, Shin et al. proposed FRESCO [103], a
programming framework for security applications in
SDN environment. It provides a set of reusable modules
as a library and enables developers to create security
functions quickly and easily. The security functions
include firewalls, scan detectors, intrusion detection sys-
tems, etc. FRESCO also provides APIs to enable legacy
applications to trigger the security modules. This capa-
bility allows FRESCO to work with existing security

applications such as deep packet inspection (DPI) boxes
with minimum changes of the code. The authors demon-
strated several applications generated using FRESCO
and showed that FRESCO introduces reasonable over-
head. However, FRESCO itself does not directly address
any existing security problems.

B. SDN for DDoS Defense

The distributed denial-of-service (DDoS) attacks have
been troubling the Internet for more than a decade
now. With the fast development of SDN technology,
researchers started to develop DDoS defense solutions
for the SDN environments. Compared to using the
traditional networking scheme, using SDN for DDoS
defense has many benefits. First, SDN allows operators
to describe the DDoS defense logics in a standard way
using OpenFlow [7] with no vendor-specific interfaces
required. Using unified communication protocol allows
operators to deploy DDoS defense rules on any Open-
Flow enabled devices with little compatibility concern.
Second, the centralized control of SDN architecture en-
ables operators to quickly modify the network topologies
and forwarding rules of the entire network with mini-
mum efforts. Third, multiple DDoS defense solutions can
easily work together with the help of SDN. For example,
SDN can enforce traffic flow to go through specific paths
or equipments, and enable different defense components
to process the traffic in a specific order. For example,
a solution could require the traffic first flow through a
generic traffic filter, then a deep-packet-inspection box,
then a rate-limiting cache, and finally the destination.
Overall, the SDN technology allows network operators
to have much more flexibility without sacrificing the
forwarding speed. In this section, we look at several
DDoS defense solutions that utilize SDN as their main
networking architecture.

Giotis et al. introduced a system that utilizes
SDN to enhance the traditional DDoS defense solu-
tions [104]. Traditionally, the Remote Triggered Black-
Hole (RTBH) [105] method is used to automatically
propagate blacklist flow rules for stopping unwanted traf-
fic. RTBH uses BGP to exchange filtering information,
and alters the next hop address of a matched prefix to
achieve the black-holing goal. Because RTBH relies on
BGP, it can only filter traffic on per-prefix level. RTBH
is also limited to only dropping the matched traffic.
To address the problems and utilizing the capability
of SDN network, the authors proposed to modify the
RTBH behavior, forwarding the matched traffic to a
SDN network instead of dropping, and letting the SDN
network to further process the traffic. By doing so, the
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system separates the traffic steering and traffic filtering
procedures, and enables the usages of SDN without
largely changing the existing protocols. There are three
components in the system: an anomaly detection system
that triggers RTBH function, the RTBH function that
forwards the traffic to a SDN network, and the miti-
gation functions used in the SDN network for filtering
unwanted traffic. The system differentiate DDoS traffic
from benign traffic using a bidirectional count sketch
algorithm. The algorithm counts the packets and detects
the highly asymmetric communication patterns, which
the DDoS traffic usually has. Overall, the system is able
to utilize SDN for filtering unwanted traffic with the help
of BGP RTBH.

Lim et al. presented a system that can mitigate the
DDoS attack and protect the desired services through
resource migration [106]. When a DDoS is detected, the
system provides new IPs for the servers under protection
and redirects legitimate traffic to the new addresses. The
system applies CAPTCHA [107] (or RECAPTCHA) to
prevent the bots from knowing the new IPs. In the mean
time, the system measures the frequency of accessing
the protected resources for each client, and marks the
clients with high access frequency as bots. All the
traffic from the clients marked as bots will be dropped.
However, there are several problems that this solution
did not address. First, the system can only work with
HTTP server scenario, where the redirection can be done
automatically with explicit HTTP redirecting command.
For other types of applications, such as FTP or SSH, the
redirection of traffic will require modification of code
on all clients. Second, the CAPTCHA methods cannot
effectively stop bots from knowing the new addresses of
the protected server. It requires only one manual access
to learn the new addresses, and the attackers can quickly
reconfigure the bots to attack the new addresses.

To provide a more proactive defense solution against
DDoS attack, Jafarian et al. proposed a moving target
technique called OpenFlow Random Host Mutation
(OF-RHM) [108]. OF-RHM randomly and frequently
mutates the IP addresses of the end-hosts to prevent at-
tackers from learning the IP assignments of the network.
To enable the transparent mutation, OF-RHM system
keeps the original IP of the end-hosts and associates each
host with a random virtual IP. When a flow enters the
network, OF-RHM translates the destination IP from the
real IP to the virtual IP. When a flow leaves the network,
OF-RHM also translates the source IP from the virtual
IP to the real IP. Moreover, the system ensures high
mutation rate and randomness on virtual IP assignments.
However, this system implicitly assumes that the network
has a large range of unused IP addresses to use, which

could be impractical in real-world cases, especially under
the IPv4 address depletion situation.

VII. CONCLUSION

In this report, we examined the security problems
for the inter-domain and intra-domain routing protocols,
and surveyed the existing solutions. Specifically, we
focused on Border Gateway Protocol (BGP) for inter-
domain routing, and software-defined networking (SDN)
for intra-domain routing. We investigate both BGP and
SDN security solutions, with a focus on their strengths
and weaknesses as well as their deployment status on
the Internet.

We categorized the security solutions into two general
categories: the attack prevention solutions and the attack
detection solutions. The attack prevention solutions aim
to proactively stop potential attacks through security
upgrades of the protocol design or operations. Mean-
while, the attack detection solutions aim to reactively
detect abnormal events regarding the operation of the
protocols in order to trigger timely reaction to such
events. The attack prevention mechanisms for BGP have
been heavily studied [8], [9], [10], [11]. To date, none
of these mechanisms has been largely deployed to date,
leaving the Internet still vulnerable to the inter-domain
routing attacks. We focused on examining the attack
detection mechanisms for BGP, which most of the recent
BGP security work have concentrated on. On the other
hand, since SDN is still young, the majority of the SDN
security work look at attack prevention, with less on
attack detection.

For inter-domain routing (i.e., BGP), we surveyed
attack preventions solutions of three types: the control-
plane-based cryptographic approaches, the control-plane-
based non-cryptographic approaches, and the data-plane-
based approaches. However, the majority of the these
solutions have not been adopted on the Internet, mak-
ing the accurate detection of attacks more important.
For existing attack detection mechanisms for BGP, we
categorize them by their main methods: some detection
systems use active probing to acquire information, while
the others rely on passive monitoring. Based on the
information source, the attack detection systems can
be also categorized into control-plane-based, data-plane-
based, or hybrid mechanisms. Compared to the attack
prevention mechanisms, the attack detection systems
usually incur much less overhead and easier to deploy,
making them more preferable in real-world deployment
scenarios.

For intra-domain routing (i.e., SDN), we mainly exam-
ined the security mechanisms from two perspectives: the
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methods that secure the SDN itself, and the applications
of SDN on solving other network security problems.
Based on the types of attacks, we investigated the secu-
rity solutions that protect SDN against attacks originated
from SDN controllers, applications, switches and end-
hosts. We also reviewed how researchers have utilized
SDN to defend against other network security problems.
However, because SDN is a new development in intra-
domain routing, the overall security of SDN or using
SDN is still at its early stage and many works remain to
be done. Especially, while there are plenty of work on
anomaly detection of BGP, little has been investigated
on SDN anomaly detection.
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