
1

Considering Rendering Algorithms for In Situ Visualization

Matthew Larsen
Department of Information and Computer Science, University of Oregon

Keywords—Rendering, In Situ, Scientific Visualization

Abstract— A diverse set of goals drive rendering algo-
rithm research. The gaming industry, hardware manu-
facturers, and the film industry all contribute to this re-
search. The field of scientific visualization uses methods
from both as well developing its own. However, a por-
tion of these algorithms may no longer be applicable as
we move to exascale. The I/O gap is forcing scientific vi-
sualization to in situ based systems, and the in situ envi-
ronment, at scale, is one of limited resources (i.e., time and
memory). As a result, design decisions for different ren-
dering algorithm implementations that were appropriate
today may not be for in situ systems. In this paper, we
survey the current research in rendering, then present a
qualitative analysis based on in situ exascale use cases.

1 INTRODUCTION

Rendering research is driven by diverse goals. The
rendering environments targeted by the gaming indus-
try, hardware manufacturers, and the film industry all
differ, but each contribute to rendering’s body of re-
search. Some algorithms use more memory to achieve
higher performance, and other algorithms use more
memory to renderer higher quality images. Scientific
visualization uses a subset of rendering research, in ad-
dition to contributing its own, to explore and analyze
data from physical simulations. Traditionally, using ren-
dering algorithms from all sources has worked well for
scientific visualization, but the computing environment
will change as we move to exascale.

Scientific visualization has traditionally been a post-
hoc process. Scientists ran simulations and saved the
data to disk, where they would analyze the results. How-
ever, the growth in computational power enables simu-
lations to produce data at rates far exceeding our ability
to save it, forcing us to save data at ever sparser inter-
vals. Coarse temporal resolution hampers a scientist’s
ability to analyze and explore the results of a costly sim-
ulation, and the gap between the amount of data simu-
lations generate and our ability to save it is pushing the
development of in situ visualization systems, which an-

mlarsen@cs.uoregon.edu

alyze data and render images while the simulations are
running.

The current set of production visualization systems
(e.g., VisIt and ParaView) have been retrofitted for in
situ, but they still use algorithms developed for post-
hoc analysis. At exascale, memory will become a con-
strained resource as architectural trends continue to re-
duce the memory per core. Additionally, there is a ten-
sion between the time and frequency of visualization.
Simulations have a fixed time budget, and performing
visualization reduces the amount of time steps a simu-
lation can execute. Since both memory and time will
be limited resources in an exascale environment, algo-
rithms designed for post-hoc analysis may no longer be
appropriate. Consequently, we need to re-examine ren-
dering in terms of exascale in situ; figure 1 illustrates
the unknown subset of current algorithms that will be
viable in an exascale environment.

In this paper, we examine several classes of rendering
techniques in the context of limited resources. These
classes are summarized in table I. If we are given a
time and memory budget, then can we render one im-
age? We currently cannot answer this question. As
a first step, we survey current rendering research, and
present a qualitative analysis of rendering methods by
discussing each with regards to in situ use cases repre-
sentative of a three axis spectrum defined by time, mem-
ory, and image quality.

Organization

In section 2, we provide background on topics nec-
essary to discuss our central rendering questions: high-
performance computing, in situ visualization, parallel
programming models, and basic rendering methods.

Rendering algorithms loop over pixels (i.e., image
order) or objects (i.e., object order). Within these al-
gorithms, the techniques can be placed two categories:
surface rendering and volume rendering. Section 3 cov-
ers images order algorithms and section 4 covers object
order algorithms.

In section 5, we discuss distributed-memory parallel
considerations for rendering. In section 6, we conclude



2

Name Order Rendering Type Mesh Type Section Described
Ray Tracing Image Surface Unstructured 3.2.1
Ray Casting Image Volume Structured/Unstructured 3.3, 3.4
Rasterization Object Surface Unstructured 4.1.1

Sampling Object Volume Structured/Unstructured 4.2, 4.3.2
Splatting Object Volume Unstructured 4.3.1

TABLE I
The rendering techniques surveyed in this paper.

Fig. 1: The outer circle represents all rendering re-
search, the middle circle represents the portion of ren-
dering used by visualization, and the inner circle rep-
resents the rendering techniques that are viable at exas-
cale. Which techniques belong in the inner circle is still
an open question. With this survey, we are trying to in-
form which techniques belong in the inner circle, i.e.,
which are suitable for an environment where resources
are limited.

by discussing the algorithms from section 3 and 4 in the
context of three factors: render time, image quality, and
memory usage.

2 BACKGROUND: RENDERING ON TOMORROW’S

SUPERCOMPUTERS

The current HPC environment is moving to exascale,
and the increase in computing power is exacerbating
the I/O gap. Current in situ visualization solutions are
working on todays machines, but the push to exascale
may stress the current systems to the breaking point as
memory and time become scarce resources. In this sec-
tion, we cover the relevant background related to render-
ing on the next generation of supercomputers. Addition-
ally, we define the two parallel programming models of
the future machines, and finally, we discuss aspects of
rendering that apply to all types of surface and volume

rendering algorithms.

2.1 HPC Environment

Exascale

Todays supercomputers are capable of 1015 (.i.e,
Petascale) floating point operations per second (FLOPS)
and, at Exascale, computers will be capable of compu-
tation on the order of 1018 FLOPS. The diverse set of
current computer architectures are a result of the ex-
plosive growth in computation power as we move from
Petascale to Exascale computing, and the next step on
the way to Exascale are machines like Summit (Oak
Ridge National Laboratory) and Aurora (Argonne Na-
tional Laboratory), scheduled to be deployed in 2018 at
DOE leadership class computing facilities. These ma-
chines will have approximately an order of magnitude
increase in FLOPS over the supercomputers we use to-
day. However, I/O systems are not keeping pace with
computational power, and, we cannot save all the data
generated by simulations running on these machines.

I/O Bottleneck

In the past, the standard scientific work flow was to
run a simulation and save out the data. The data would
then be analyzed as a post-process with scientific vi-
sualization tools. Today, simulation code can run for
100,000s of time steps [1], and they generate more data
than can possibly be saved. To mitigate the storage lim-
itations, only sparse intervals of time steps are saved
out to disk, making the temporal resolution coarse [2].
Simulation “hero” runs, which use all the resources of
a supercomputer, are even more problematic. In fact, it
would take 53 minutes to write out all available memory
on Sequoia [3], a supercomputer at Lawrence Livermore
National Laboratory.

As writable FLOPs continue to decline with every
generation of supercomputer, the temporal resolution of



3

the time steps will continue to decrease. This is a major
problem because scientists miss all of the information
between time steps, which possibly limit the effective-
ness of the simulations themselves. In situ visualization
techniques are a solution to this problem. In this work
flow, visualization runs along with the simulation code.

2.2 In Situ Visualization

By coupling simulation and visualization code, sci-
entists have access to all time steps of the simulation by
bypassing the I/O bottleneck. With in situ techniques,
we can visualize data while the simulation is running, or
we can perform analysis and save a subset of the original
data. In situ analysis is not a new concept [4], but simu-
lation designers were reluctant to use it until the I/O bot-
tleneck became a serious consideration. Not only would
the visualization code consume compute resources oth-
erwise meant for the simulation, but the visualization
would have to be integrated into the simulation, intro-
ducing more complexity into an already intricate sys-
tem [1]. However, the ever growing gap between com-
putation and I/O has drawn major attention to in situ
visualization.

There are two types of in situ paradigms: tightly cou-
pled and loosely coupled. Tightly coupled in situ runs
concurrently with a simulation on the same resources. A
simulation will stop at regular intervals within the main
loop and turn over control of the program to the visu-
alization infrastructure. At this point, the visualization
algorithms have direct access to simulation memory, by-
passing the I/O bottleneck.

Loosely coupled in situ visualization runs with the
simulation code but on a different set of nodes. Data is
sent over the network to the nodes where visualization
processing takes place. While the speed at which data
can be sent is limited by network bandwidth, supercom-
puter interconnects have throughput higher than that of
the I/O systems.

Despite the choices, there is no one-size-fits-all so-
lution to in situ visualization. The choice of how to
perform visualization depends on the constraints of the
simulation and the available resources. Further, there
are many open questions on the best way to perform this
task. In this section, we detail some important solutions
to date. For a comprehensive survey of in situ, see the
recent paper by Bauer[5] et al.

2.2.1 Tightly Coupled In Situ

Tightly coupled methods run on the same compute
nodes as the simulation code, and they have direct ac-
cess to simulation memory. While the visualization has
full access to the simulation data, there are some draw-
backs. First, the simulation must stop while the visual-
ization is processed. Second, the visualization can con-
sume a large amount of memory, and the compute node
must have enough memory for both [6]. Finally, simula-
tions often decompose data across compute resources in
ways that are not ideal for visualization algorithms [1].
Despite these drawbacks, there are several successful
approaches including Catalyst [7] and Libsim [3].

2.2.1.1 ParaView Catalyst

The ParaView Catalyst library, also known as the Par-
aView co-processing library, runs in conjunction with
simulation [7]. Catalyst is a general visualization frame-
work, based on ParaView, that is designed to work with
any simulation. At each time step, the simulation code
relinquishes control of the program to the library, where
it checks to see if any visualization task needs to be per-
formed. If there are no tasks, Catalyst will immediately
return control of the program back to the simulation.
Both a memory adapter and visualization pipeline must
be created in order to couple the two systems.

The memory adapter bridges the gap between the
simulation code data representation and the VTK data
objects used by the visualization pipeline. It is possi-
ble to provide direct pointers to memory if the data rep-
resentation is already in VTK format. Direct memory
access greatly reduces the memory footprint, but this is
rare since the simulation is optimized for its own algo-
rithms. When the data layout is incompatible, the data
must be copied into VTK format, increasing the mem-
ory footprint [7][2]. However, the computational cost
of the copy outweighs the cost of saving the data to
disk. With the memory adapter in place, the visualiza-
tion pipeline proceeds.

With Catalyst, pipelines must be created in advance
of the simulation. This requires domain knowledge of
the simulation to decide what kind of operations need to
be performed (e.g., isosurfacing, slicing, etc), values for
those operations, visualization frequency, and the subre-
gions of the data set to visualize [7]. The pipeline setup
can be done in two different ways. First, the pipeline
can be created programatically in the simulation code
with all of the above mentioned knowledge. The other



4

way is to run the simulation for a brief period of time
and save a small output file containing a representative
snapshot of the data [2]. With this information, the user
generates and exports an appropriate pipeline using the
ParaView client.

There are many visualization filters that will scale
along with the simulation, but there are some that will
not scale. In this case, the Catalyst client-server infras-
tructure can send the data to a separate visualization
cluster where it can be processed [7]. The trade-off is
that the data must be sent over the network, but this cost
is still less than the cost of I/O.

2.2.1.2 VisIt and Libsim

The Libsim library interfaces simulations with
VisIt [8], providing a general visualization framework
to the simulation code. Libsim offers two features that
make it distinct from Catalyst. First, the Libsim code
contains two separate components that enables demand
driven visualization. That is to say, once the Libsim
code has been integrated into the simulation code main
loop, scientists can connect to the simulation with a
VisIt client at any point or not at all. Second, visualiza-
tion pipelines do not have to be known in advance [3].

Libsim contains two components: the “front-end-
library” and the “runtime” library. The front-end-library
is the main interface into the simulation, and it is com-
piled with the simulation. In this code, metadata objects
are populated that tell Libsim what data the simulation
contains. For example, the simulation registers meshes,
variables, and other information that it wants to have
available to visualize[6]. By creating data callbacks,
Libsim loads only the data it needs for the visualiza-
tion. Additionally, the front-end-library has a listener
that waits for incoming connections from a VisIt client,
and, when a client connects during execution, the sec-
ond runtime library containing the VisIt server is loaded.
By separating the two components, the Libsim has a
minimal impact on the simulation code when the in situ
capabilities are not used.

When the VisIt client connects to the server, the
server sends the metadata to the client, exposing the
variables and meshes it has access to, and, with this in-
formation, the user can define a visualization pipeline
on-the-fly. Using the client, the pipeline is created and
sent to the servers to be executed. As with Catalyst,
Libsim will use the data directly if it is in a compatible
layout or copy the data into VTK format when neces-

sary [3]. Then, the results are finally sent back to the
client.

2.2.1.3 Imaged-Based Approaches

Recently, imaged-based approaches have been devel-
oped as a data reduction strategy. The idea is that two-
dimensional images require many orders of magnitudes
less data than the entire simulation data [9]. Many im-
ages, which require far less memory than simulation
data, are rendered and saved to disk. The results can
then be analyzed after the simulation finishes.

One notable implementation is the work by Ahrens et
al. [9] called Cinema. They believe that a petabyte is
a reasonable amount of data to save from a simulation
running at extreme scale, and with that space budget,
they can produce a billion images. Each image contains
RGB pixel data, a depth buffer, camera parameters, and
other metadata describing the content of the image. The
collection of all images are stored in a database that can
be interacted with via a client.

As with Catalyst, the types of filters that create the
images must be known in advance. In the user interface,
a domain scientist defines what kinds of visualizations
will take place, the range of parameters for those visu-
alizations, at what time intervals the images are gener-
ated, and how many camera positions to render from. To
make the scientists aware of the impact of their choices,
the interface provides a rudimentary cost estimate (e.g.,
total data size and render time), so they can manage
the trade offs. Next, the simulation runs and the image
database is created.

Cinema allows the user to interactively explore the
database. The viewer achieves simulated camera move-
ment by loading a stream of images from the database
with an interactive response rate of 12 FPS. The user
can move through time steps or change isosurface val-
ues. Additionally, the user can query the metadata as-
sociated with the images to search for specific values or
camera positions. The main contribution of the work is
the ability to create new visualizations by compositing
together multiple images from different filters.

2.2.2 Loosely Coupled In Situ

Loosely coupled in situ systems run on a subset of
nodes while the simulation is running. Data is transfered
over the network to the visualization nodes. While the
content is limited to data sent over the network, visu-
alization cannot crash the simulation and does not have



5

to share the memory space. Loosely coupled solutions
generally act as middle-ware.

2.2.2.1 ADIOS

The Adaptable IO System (ADIOS) is an I/O middle-
ware layer for simulations [10]. The API allows simu-
lation code to perform I/O functions with a number of
back-ends without being aware of the final representa-
tion. ADIOS uses metadata to describe the contents of
the data, and the metadata allows an easy interface be-
tween simulation code and I/O systems.

One of the back-ends to ADIOS is a data staging
area, known as ActiveSpaces, where the data can be pro-
cessed [11]. The idea is to have a number of nodes that
can hold the data where consumers of the data can fur-
ther process it separately from the simulation code, also
know as hybrid in situ [12]. Saying it another way, we
must "bring the code to the data." On these dedicate I/O
nodes, data can be reduced through visualization oper-
ations or data compression techniques. The staging ar-
eas have shown scalability up to hundreds of nodes, and
each node can hold on the order of 20 time steps [13].

On the staging nodes, the ADIOS metadata contains
descriptions of the data that are compatible with VTK
data requirements. As such, both VisIt and ParaView
have ADIOS file format readers that allow visualization
to occur on the staging nodes [13][12]. The data can be
visualized via traditional post-processing work flows.

2.2.2.2 ICARUS

ICARUS is a ParaView plug-in that uses the HDF5
I/O library to share data between the simulation and
visualization [6]. The simulation sends data to HDF5
and then to Paraview, through the use of the Distributed
Shared Memory (DSM) file driver. Basically, both ap-
plications communicate by accessing a shared virtual
file. The simulation sends a message through the file
to indicate that there is new data that can be visualized.
When ICARUS reads this message, it processes the new
data in the file.

Limited Resources

Simulations use problem sizes that consume almost
all available memory on a machine. Sharing the re-
sources of a supercomputer between simulation and vi-
sualization means memory is limited for both tightly
coupled and loosely coupled in situ methods. In a tightly
coupled use case, either the simulation must give up

memory, which is unlikely, or visualization algorithms
must execute with less memory than they accustomed
to. In the loosely coupled use case, the visualization
nodes must process the data from the entire simulation,
pushing the memory limits. Thus, memory usage for
rendering, along with all other algorithms, is a major
concern in the in situ setting.

Time is also limited resource. Simulations must
pause to turn over control of the node for visualization
in the tightly coupled use case, and holding up the sim-
ulation limits advance of the simulation. In the loosely
couple use case, visualization must be able to keep pace
with the incoming data, otherwise, important informa-
tion could be lost. If execution time is limited, render-
ing algorithms must ensure that they can execute within
a given time allotment.

Image quality is also a point of tension between time
and memory. Poor image quality hampers the commu-
nication and exploration value of the images. In some
cases, the image quality of an algorithm has a relatively
fixed value, and in other cases, we can produce higher
quality images by using more time and memory. These
tensions create a complex space full of trade-offs.

2.3 Parallel Execution Models

In this section, we examine the two main parallel ex-
ecution models used by rendering algorithms on mod-
ern architectures: single instruction multiple threads
(SIMT) and single instruction multiple data (SIMD).
Both SIMT and SIMD perform the same instruction on
multiple data elements, but they contain subtle differ-
ences that influence algorithm implementations target-
ing specific architectures.

2.3.1 SIMT

The SIMT model performs the same instruction on
multiple data elements in different hardware threads.
GPU threads are organized into groups, called warps
or wavefronts, that operate in lockstep, and the typical
sizes are 32 (NVIDIA) and 64 (AMD). For clarity, we
will refer to these groups of threads only as warps. Each
thread in a warp has access to a set of dedicated registers
and instruction addresses [14]. Depending on the data a
thread operates on, SIMT allows each thread to take dif-
ferent branching paths through the code. When branch
divergence occurs within a warp, all threads execute the
instructions of all branches and throw away the results



6

of the irrelevant paths. Saying it another way, branch
divergence reduces efficiency.

SIMT architectures oversubscribe processors with
warps to hide the latency of memory requests. When
threads request memory not already in the cache, the
thread’s warp must wait until the memory arrives before
continuing execution, and, by having many warps as-
signed to a processor, the scheduler can swap in a warp
that is ready to continue executing, keeping the proces-
sor busy. Additionally, SIMT hardware coalesces mem-
ory accesses. If all threads in a warp load or store con-
tiguous aligned memory, then the hardware can fulfill
the operation in a minimal number of transactions, oth-
erwise, the instruction must be replayed until all threads
are serviced.

2.3.2 SIMD

The SIMD model operates by performing the same
instruction on multiple data elements in vector regis-
ters. Each thread of execution loads n data elements
from memory into the vector registers of a single pro-
cessing core. The processor simultaneously performs
the same instruction on all data elements, until the cal-
culation is complete, and the path each data elements
takes through the vector registers is called a vector lane.
Unlike SIMT where each thread has dedicated registers,
each vector lane contains no state other than the current
value in the vector register.

The vector widths of modern processors have been
steadily increasing, and current CPUs have vector
widths of 2, 4, and 8, depending on the instruction set
architecture (ISA). The most common ISAs are Stream-
ing SIMD Extensions (SSE) and Advance Vector Ex-
tensions (AVX), and there are multiple version of both
SSE and AVX (e.g., SSE2, SSE4, and AVX2) which
support different vector widths. While not all problems
map well to the SIMD programming model, most ren-
dering algorithms are embarrassingly parallel and can
take advantage of the vector units.

There are two main ways to take advantage of the
vector units. First, compilers using aggressive optimiza-
tions will attempt to auto-vectorize loops whenever pos-
sible, but the programmer must be aware that pointer
aliasing, memory alignment, and branching can prevent
the compiler from vectorizing the code. Second, pro-
grammers can explicitly vectorize code though com-
piler intrinsics, which allow low-level access to vector
instructions. Intrinsics, however, are inherently non-

portable, and algorithms require separate implementa-
tions for each ISA.

Recently, ISPC, an open source compiler supported
by Intel, was released to make vectorization more ac-
cessible to programmers [15]. ISPC vectorizes code
containing branching by masking off vector lanes, es-
sentially implementing SIMT in software on top of the
SIMD hardware. Using ISPC, each vector lane behaves
as a thread. Additionally, ISPC allows programs to be
compiled for all modern ISAs. While divergent code
suffers from the same penalties as in SIMT (i.e., throw-
ing away results from the vector lanes not in the branch),
ISCP allows a wider range of problems to be mapped to
vector hardware, and a number of rendering frameworks
are using ISCP to maximize performance.

2.4 Rendering Methods

Rendering methods fall into two categories: surface
rendering and volume rendering. Here we give an
overview of the different methods to provide the foun-
dations for a more detailed discussion in sections 3 and
4.

2.4.1 Surface Rendering

In scientific visualization, surfaces are created from
scalar fields through analytical operations. For exam-
ple, an isosurface creates continuous surface where the
field evaluates to a single value. There are two main al-
gorithms for rendering images of surfaces: rasterization
and ray tracing.

2.4.2 Volume Rendering

Volume rendering algorithms visualize participating
media (e.g., fog and haze). Light attenuates as it travels
through participating media, dimming to differing de-
grees depending on the material absorption properties.
In scientific visualization, volume rendering is used to
visualize scalar fields such as temperature, density, or
pressure. Since scalar fields have no inherent color, a
mapping called a transfer function determines a specific
color for each scalar value, and colors are composited
together into a final pixel value. Figure 2 is an example
of a volume rendering of a density scalar field from a
cosmological simulation.

Levoy [16] created the first CPU ray caster for vol-
ume rendering, but it was far from interactive. Until re-
cently, interactive volume rendering was limited to GPU



7

implementations that perform ray casting or exploit ras-
terization hardware, but modern CPU architectures with
wide SIMD vector widths opened the door for interac-
tive CPU volume rendering. Now, algorithms exist for
both CPUs and GPUs, operating on structured and un-
structured data.

Both rasterization and ray tracing methods are used to
render volumetric data. With rasterization, transparency
is supported, but objects must be sorted in a view depen-
dent order, since compositing must take place in depth
order. A ray tracing variant called ray casting is well
suited for volume rendering, and rays are cast from the
camera into the volume. As the ray marches through the
volume, ray casting samples the scalar field at regular
intervals in front-to-back order. Additionally, there are
sample based approaches that fill buffers with samples,
then use rasterization or implicit ray casting methods for
compositing.

Fig. 2: A volume rendering of a cosmological data set
from the Enzo simulation code.

Volume rendering is used to visualize both struc-
tured (e.g., regular grids) and unstructured meshes (e.g.,
tetrahedral meshes), and current volume rendering algo-
rithms fall into one of these two categories. Structured
volume renderers exploit the regular nature of the grid
to sample the volume, and each cell is easily located
in memory. Conversely for unstructured data, there is
no implicit location in memory for any given cell, and
either acceleration structures like BVHs or cell-to-cell
connectivity information must be used to locate sam-
pling points. In this survey, we will examine both struc-
tured and unstructured volume rendering algorithms.
There are several concepts that apply to all types of vol-

ume rendering: lighting and pre-integration.

2.4.2.1 Lighting

For better image quality, volume rendering performs
shading calculations at each sample. Traditional surface
shading models use the normal of the surface, camera
direction, and light direction to adjust the color of the
sample. However, there is no surface in a volume, so
the scalar gradient is used as the normal in shading cal-
culations. The gradient can either be pre-computed or
calculated on-the-fly. If sampled at every point, a pre-
computed gradient takes up three times the space of the
original scalar field. Alternatively, calculating the gra-
dient on-the-fly can be expensive and causes redundant
memory loads.

For the CPU based implementations, caching meth-
ods exist for more efficient on-the-fly gradient calcu-
lations. On the GPU, implementations load stencils
into shared memory since multiple rays access the same
memory locations more than once. Shared memory low-
ers the time needed for threads to access shared stencil
locations and reduces register usage [17], with the great-
est benefit coming from larger stencil sizes.

2.4.2.2 Pre-Integration Tables

Sampling at regular intervals can generate visual ar-
tifacts. These artifacts look like ridges on an elevation
map, where the ridge lines identify areas of the same el-
evation. This can be mitigated by changing the transfer
function, but this might not be possible since they are
designed to identify specific features in the data.

Max [18] et al. created pre-integration tables to min-
imize this issue and create high quality volume visu-
alizations. The idea is to create a table that contains
the pre-computed integral between all possible sample
points based on the transfer function [19]. More re-
cently Lum [20] et al. showed a more compact repre-
sentation and included pre-calculated lighting tables as
well. Pre-integration tables create a trade-off between
higher quality images and memory usage for all volume
rendering variants.

3 IMAGE ORDER TECHNIQUES

Image order techniques loop over pixels in the image.
With image order algorithms, each pixel can be thought
of a ray starting that starts from the camera and extends
into the scene through the image plane at a some (i,j)
location. Any object in the scene that intersects with



8

the ray can contribute to the color of the pixel. In this
section, we cover image order algorithms.

3.1 Bounding Volume Hierarchies

Image order techniques involve a search problem. A
renderer must find a cell (e.g., surfaces) or list of cells
(e.g, volumes) that contribute to the color of each pixel.
In scientific visualization, data sets consist of millions
to billions of cells, and iterating over all cells in the
data set is far too costly. Thus, renders use acceleration
structures to make the search cost reasonable. Conse-
quently, the performance of image order rendering tech-
niques is tightly coupled to acceleration structures, since
total frame time is the sum of the acceleration structure
construction and the time to render.

Octrees [21], kd-trees [22], and BVHs are all used as
acceleration structures for interactive rendering In the
past, octrees and kd-tress had been favored because they
can be constructed quickly, and while the time to locate
cells in a BVH is lower, BVH construction time out-
weighed the benefits. However, recent research has sig-
nificantly decreased BVH construction time, and today
BVHs are the preferred acceleration structure since they
are fast, flexible, and memory efficient.

A BHVs is a object partitioning of geometric prim-
itives, and typical BHVs have a branching factor of 2,
although some BVHs have branching factors of 4, 8,
and 16. In the tree, the inner nodes contain the axis-
aligned bounding boxes (AABBs) of each child along
with pointers to each of its children Leaf nodes contain
a variable number of primitives, usually in the form of
pointers to vertex data. The AABB in the tree root con-
tains the bounds of the entire data set. To traverse a
BVH, rays are intersected with the child nodes AABB
stored by each parent. If the ray intersects more than
one child’s AABB, then the closest subtree is traversed
first, even though the closest primitive intersection may
actual be contained in the another subtree.

BVH’s are an object partitioning, and much re-
search has been performed to determine the best way
to partition these objects. The surface area heuristic
(SAH) [24] [25] was first introduced by Goldsmith and
Salmon, and SAH is a means for evaluating the best ob-
ject partitioning during construction. The SAH says that
for a given set of objects and some split point, the cost
of that node is relative to the surface area of the AABBs
and the number of object for each side of the split. Fig-
ure 4 shows the equation for the SAH. The total cost of

Fig. 3: This image shows the AABBs of all BVH nodes
over a triangle mesh [23].

Fig. 4: The equation for the SAH where SA(L) and
SA(R) are the surface area of the left and right nodes,
and Nl and Nr are the number of objects in the left and
right nodes. Ci and Ct are implementation specific con-
stants that represent the cost of intersection and the cost
traversal.

the tree is the sum of the cost of all nodes. Trees with a
lower cost are traversed faster than those with a higher
cost. Thus, it is not possible to know the true cost of
a tree until all other splits are made, but the heuristic
provides a effective guide for making split decisions. In
general, considering a larger set of possible partitions
results in a lower cost tree, but ultimately, there is a
speed versus quality trade off for BVH construction.

BVHs types can be categorized by their construction
methods:
• Top-Down
• Bottom-Up
• Hybrid
In this section, we consider these various construction
methods and their applicability to in situ rendering.
When we refer to the quality of a particular BVH type,
we are making an approximate assertion about how ef-



9

ficiently the tree can be traversed. The absolute quality
of a BVH depends on the objects in the scene.

3.1.1 Top-Down

3.1.1.1 Median

A median BVH builds a tree from the top-down
by splitting each level of the hierarchy at some me-
dian [26][27]. At each level, all the primitives are sorted
along some axis and split according to the middle ele-
ment or the spacial median. Leaves are created when
the number of elements in each subtree reaches some
threshold. Median builders can create trees quickly be-
cause of their simplicity, but the low quality of the trees
makes tracing a large number of rays through them un-
desirable.

3.1.1.2 Full Sweep

SAH builders find spacial subdivisions based on the
SAH cost function, and they are the best known methods
for high quality BVHs. The cost function creates higher
quality trees at the cost of longer build times. The al-
gorithm uses a greedy top-down approach to build the
BVH by evaluating the cost of dividing primitives into
two groups. A full sweep SAH builder sorts all primi-
tives according to one coordinate (e.g., x, y, or z) of the
object’s AABB centroid, then the buikder sweeps from
one side to the other, considering every split point by
calculating the SAH of the current partition. The pro-
cess is repeated for all three coordinates axes, and the
lowest cost split is performed. Splits are performed re-
cursively, until a specific threshold is reached.

3.1.1.3 Binner

SAH binners use the same concept as full sweep
builder but consider far less potential split points. The
number of possible splits is large, and to reduce the
number of splits considered, SAH binning builders ran-
domly consider split planes or choose split planes at reg-
ular intervals (i.e., binning). This reduces build time
dramatically, and the trees still maintain good quality.
Popov et al. [28], noted that sampling the split positions
at regular intervals on each axis, in their case 1024 sam-
ples per axix, provided a "very good approximation of
the best spit position," and each every primitive falls into
one of the spatial bins. While Popov et al. used this
method for k-d tree construction, the method is appli-
cable to BVHs as well. They also noted that adaptive
sampling could be used to create more bins in places

where the SAH cost is low, but in practice, SAH binners
discretized the space at regular intervals, often using as
little as 16 or 32 bins [29][30]. SAH binners produce
trees close to the quality of a full sweep builder and
with lower build times. Consequently, SAH binners are
an active area of research with variants for all modern
architectures.

Wald [29] adapted the binning construction algorithm
to take advantage of task-based parallelism. He ob-
served that there were not a sufficient number of tasks
at the top level of the hierarchy to take full advantage
of the available parallelism, so Wald proposed a system
that used all threads to process large tasks at the top of
the tree. When the number of tasks matched the amount
of available parallelism, they switched to one task per
thread. Using this approach, Wald eliminated the lack
of parallelism at the top of the tree.

On the GPU, Lauterbach et al. [31] used a similar
tasked-based system where large and small tasks are
treated differently. For large tasks, they use k bins and
use 3k threads to calculate the SAH of all the bins.
Smaller tasks use a single warp to process the each sub-
tree, and all data for each subtree is loaded into shared
memory to enable fast access to the data and minimize
memory bandwidth.

Later, Wald [32] adapted the SAH binned builder
for an early MIC architecture which ran 128 concur-
rent threads and had 512-bit wide vector lanes. For
SIMD friendly memory alignment, the builder trans-
formed each primitive into an AABB and packed it into
a hybrid structure-of-arrays format. That is, an array-
of-structures (AoS) in which each element represents
groups of 16 AABBs are stored in a structure-of-arrays
(SoA) format. Further, most data structures were in a
16-wide (i.e., 16 32-bit floating point values fit into a
512-bit vector registers) SoA packets to match the vec-
tor register width, including the number of bins. In this
format, the builder loaded all 16 AABBs into the SIMD
registers and binned all 16 AABBs in parallel. Sim-
ilarly, SAH evaluation of the bins were computed in
SIMD registers.

The Embree ray tracing framework includes a num-
ber of SAH binners for both the CPU and the Xeon
Phi [33], and they achieve impressive build times. Rates
of millions to hundreds of millions of triangles per sec-
ond are achieved on desktop CPUs and Xeon Phis re-
spectively. The Xeon Phi builders are similar to [32]
where the number of bins corresponds to the width of



10

the SIMD vector registers, however the MIC architec-
ture has evolved since the work in 2012. At the top lev-
els of the hierarchy, both the CPU and Xeon Phi use
all threads to build each level of the tree until the task
size reaches a threshold value. Once the threshold is
reached, the Xeon Phi builder maps each medium-sized
task to four threads per core, and once tasks become
small enough, tasks map to a single thread. On the
CPU, medium-sized and small-sized tasks map to a sin-
gle thread.

Building on SIMD parallelism, Wald implemented a
general tasking system with priority, dependency, and
sub-tasking features. Sub-tasking allowed for a task to
contain multiple jobs that could execute concurrently,
and using sub-tasking, larger jobs at the top of the hier-
archy were broken up in many smaller parts to fill the
MIC with work. To remove the overhead of context
switching from the task system, the worker pool mapped
only one thread per core, so there were a total of 128
threads drawing from the task queue. The algorithm for
SAH binning was highly tuned to the specific architec-
ture to maximize device utilization.

3.1.1.4 Spatial Splits

A split BVH considers object splitting to decrease the
total cost of the BVH. Large objects can produce signif-
icant overlap in the AABBs of neighboring bins, and
overlap leads to additional computation since both sub-
trees are potentially traversed to find the nearest object.
To minimize the overlap, split BVHs create two refer-
ences to the same object by splitting the object’s AABB
along the plane that separates two neighboring bins. In
terms of the SAH formula in figure 4, the number of
objects in each partition are increased while the surface
area of the two partitions are possibly decreased, which
would lead to a lower SAH cost (i.e., higher quality
tree).

The splitting references to object was first proposed
by Ernst and Greiner [34]. In there work, they defined
the technique of Early Split Clipping (ESC) in which
AABBs were subdivided before the BVH is constructed,
until the surface area was below a user defined thresh-
old. In there study, they found that their methods led to
two a three fold increase in performance over traditional
methods in scenes with large triangles. Similar to Ernst,
Dammertz [35] et al. proposed an algorithm for sub-
dividing the objects themselves in order to reduce the
empty space in the AABB.

Stich [36] et al. created a hybrid method using
both reference splitting and object partitioning called
the Split BVH (SBVH). The first phase of their method
performs a full SAH sweep of object partitioning, then
performs a chopped spacial binning. During the bin-
ning phase, references that straddle two spacial bins are
chopped at the spacial boundary, creating two references
in each bin. Finally, the best split is performed based on
the lowest SAH found from either phase. Stich et al.
also created a mechanism for controlling the number of
spacial splits by only considering splits where the ratio
of the surface area of the overlap between the two parti-
tions and that of total surface area of the scene’s AABB
was beyond a user-defined constant. This constant as-
sured that only meaningful splits are considered. The
final representation can consume more memory, but it
produces a high quality tree.

Embree [33] uses a similar technique, but only con-
siders one spacial split at the object center of each axis,
reducing both quality and build time. The Embree
builders also use fine-grained SAH binning at the top
levels of the hierarchy, then coarsen the binning grain at
the lower levels. Additionally, Embree enforces a limit
to the number of spacial splits that can be preformed by
creating a fixed splitting budget, and once the budget is
exhausted, the builder no longer considers spacial splits.
This altered method uses the best of both techniques and
is both fast and creates high quality trees, while not in-
creasing memory usage beyond a pre-configured bound.

3.1.1.5 Linear BVH

The linear bounding volume hierarchy (LBVH) is a
fast parallel construction method. The algorithm was in-
troduced by Lauterbach et al. [31] in 2009, and the con-
struction method demonstrates impressive build times
on the GPU. The LBVH works by sorting the primitives
by their centroid along a space filling Morton curve into
a linear list. Morton codes work by interleaving the bits
of the centroid coordinates into a singe value, and the
length of the shared prefix bits between two codes de-
termine how close the two primitives are to each other
along the space filling curve. The key observation was
that the Morton codes contain all of the spacial subdivi-
sion information needed to construct the BVH. Since no
SAH is used to determine the spacial splits, the resulting
BVH quality is less that optimal, but the loss of quality
is offset by fast build times.

Each Morton code can be generated in parallel inde-



11

pendently, exposing significant parallelism. After the
calculation of the Morton codes, the keys are sorted us-
ing a parallel radix sort which is capable of sorting 1
billions keys per second on modern GPUs, 100s of mil-
lions keys per second on the CPU, and 800 million keys
per second on the Xeon Phi (MIC) [33] [37]. Between
two Morton codes, the first differing bit determines the
existence of a split, and the LBVH builder proceeds to
sort all bits of the morton code in parallel. The method
proceeds from the first bit (i.e., the root node) where all
codes with bits of zero are on one side of the split and
one bits on the other side.

On the CPU and Xeon Phi, the Embree ray tracing
framework also uses fast BVH builders leveraging Mor-
ton codes. All threads cooperate to generate Morton
codes in parallel. Then using a task based system, all
threads cooperate to build levels of the tree, until a suf-
ficient number of tasks exist for individual threads to
process the tasks on their own [33]. Finally, subtrees
terminate at leaves of four primitives each.

3.1.1.6 Hierachical Linear BVH (HLBVH)

The Hierachical Linear BVH was first introduced by
Lauterbach [31] et al. by combining the strengths of
both the LBVH and SAH binning algorithms. They
used the LBVH method to construct the first several lev-
els of the tree, since the top-down SAH binning algo-
rithm lacked sufficient parallelism upper levels of the
hierarchy. After the top levels of the hierarchy are cre-
ated, the SAH binning algorithm is used to create the
lower levels. Garanzha [38] simplified the hierarchy
generation and implemented a GPU builder that used
work queues. During the LBVH phase of the algorithm,
they mapped individual threads to tasks, and, instead of
looping through all primitives in the task to find the split
plane, they used a simple binary search. Other versions
of the HLBVH use SAH binning at the top levels since
more branches can be ruled out at the top of the tree.

3.1.2 Bottom-Up Builders

3.1.2.1 Fully Parallel LBVH (FP-LBVH)

Expanding on the original LBVH, Karras [39] ob-
served that LBVH could be viewed as a binary radix
tree. In a binary radix tree, each shared prefix is repre-
sented by an inner node and each Morton code is a leaf
node. Additionally, for n leaf nodes, there are always
n − 1 inner nodes [39]. Karras found that by repre-
senting the leaf nodes and inner nodes in two separate

Fig. 5: An example node layout containing common
prefix ranges for each inner node in a binary radix
tree [39].

arrays, an implicit hierarchal structure exists. Basically,
the entire hierarchy is generated in a single data-parallel
step.

For example, each inner node at index i corresponds
to a shared prefix beginning, or ending, at a leaf node
with the same index i, and each inner node can find the
index of its child pointers by performing a binary search
on the Morton codes in the leaves. Figure 5 demon-
strates an example of the node layout structure. Since
all inner nodes can be calculated at the same time, the
amount of parallelism exposed for n primitives is n− 1.
The final step is to calculate the AABBs using a bottom
up traversal, where the amount of available parallelism
is limited by the number of nodes on the current level of
the tree.

Apetrei [40] recently improved on the Karras method
by combining the hierarchy generation and bottom-up
AABB propagation. Instead of looking for the length of
the largest common prefix in neighboring Morton codes,
they look for the index of the first differing bit which
represents the distance between two Morton codes. This
observation simplifies the hierarchy generation logic
and produces an equivalent tree in a reduced amount of
time.

3.1.3 Hybrid Builders

3.1.3.1 Treelet Restructuring BVH (TRBVH)

The treelet restructuring BVH adds several post pro-
cessing steps after constructing an initial LBVH. The
idea is to build a fully parallel LBVH quickly, then, us-



12

ing the SAH, optimize the hierarchy in place by restruc-
turing small neighborhoods of nodes. By performing
several optimization passes in succession, the quality
of the tree can be improved up to 90-95% of the gold
standard, and the BVH can be constructed at interactive
rates [41]. However, the optimization takes a significant
amount of computational power and the only published
implementation is on the GPU.

After the LBVH is built, the TRBVH traverses the
tree from the bottom up using atomic counters. The
first worker to reach a node increments the node counter,
then the worker exits. By traversing the tree in this fash-
ion, each worker is assured that there are no other work-
ers currently executing below them in the tree, and the
worker can freely modify the treelet rooted at the cur-
rent node. To limit the GPU utilization bottleneck in the
top levels of the tree, Karras and Aila use an entire warp
as the basic working unit.

Fig. 6: Left: the initial treelet with seven leaf nodes.
Right: the SAH optimized restructured treelet [41].

Each warp processes a treelet to find the optimal or-
ganization. Starting from an inner node in the tree,
the warp expands the treelet by adding the leaf node
with the largest surface area, until the treelet contains 7
leafs nodes. Figure 6 shows an example treelet formed
by the expansion. Next, Karras and Alia use dynamic
programming to find the optimal SAH configuration of
nodes by solving all the subproblems contributing to the
solution. Each thread in the warp solves a specific sub-
problem using a precomputed schedule. To keep mem-
ory usage down and GPU occupancy at full capacity,
some values are stored as bitmasks and compiler intrin-
sics are used to share registers between threads. After
several passes of treelet restructuring completes, a final
pass merges each primitive in the leaf nodes into four
primitives per leaf. To our knowledge, there only exists
GPU implementations of the TRBVH, since solving the
optimal treelet problem is computationally expensive.

3.1.3.2 Approximate Agglomerative Clustering (AAC)

Approximate agglomerative clustering is a method
introduced by Gu [42] et al. that refines an initial LBVH
structure. ACC uses the LBVH method to generate a set
of local clusters at the bottom of the hierarchy. Then,
AAC rebuilds the tree by clustering nodes at the bot-
tom and proceeds up to the root node. Each cluster per-
forms a constrained greedy search to find the best clus-
ter to merge with, where the merged cluster represents
the parent node. When two suitable clusters merge, the
algorithm uses the SAH to determine if flattening the
current subtree into a leaf would improve tree quality.
ACC moves from the bottom-up and terminates at the
root node. The resulting tree is constructed quickly and
has better quality than the original LBVH.

3.1.4 Alternative Construction Methods

There are several alternatives to building a complete
BVH for every time step. In this section, we briefly
consider the two alternative methods.

3.1.4.1 BVH Restructuring

In animation or simulations that deform a mesh over
time, the BVH is typically rebuilt each time step. If the
coordinates of the primitives change over time, then re-
fitting the BVH can be quickly calculated by updating
the node’s AABB, but doing so steadily decreases the
quality of the BVH with each refit. One approach is to
use a heuristic to determine when to rebuild the BVH
once the quality has dropped below a threshold. An-
other approach is to restructure the BVH to maintain the
quality.

Some early work on BVH restructuring was done by
Larsson [43] et al. and Teschner [44] et al. in the context
of collision detection, another use for BVHs. However,
these methods focused on restructuring the entire BVH
or large subtrees, but restructuring can be computation-
ally expensive for large scenes and not cost effective for
ray tracing. Then, Larsson [45] et al. applied the meth-
ods to ray tracing with an emphasis on making the algo-
rithm as fast as possible.

Lauterbach [46] et al. considers the effects of a dy-
namic scene by comparing the surface area of a node
to the surface area of its children. If the ratio becomes
too high (i.e., the distance between the two children be-
comes too high), then the subtree is restructured. Al-
ternatively, Yoon [47] used two metrics to selectively



13

identify a small set of subtrees that needed to be restruc-
tured. The first metric is based on the SAH, and the sec-
ond method uses a probabilistic model to evaluate the
possible gains from restructuring the subtree.

Garanzha [48] et al. use several methods to find
the cheapest possible action that has the largest perfor-
mance increase. They look at three possible actions: re-
fit the subtree, relocate it somewhere else in the tree,
or rebuild the subtree using a SAH binning approach.
Their algorithm uses a set of heuristics to determine
which is the most beneficial. Another approach was
proposed by Kopta [49] et al. that uses tree rotations
to perform local optimizations that incrementally im-
proves the quality of the BVH. This approach is simi-
lar to the TRBVH builder except that tree quality has
been degraded due to deformation of the mesh and the
number of potential rotations is much smaller than the
TRBVH.

3.1.4.2 Lazy Building

The idea of a lazy BVH is to build the acceleration
structure on-demand. Initially with no BVH built, a ray
is tested against the AABB of the scene, and if it misses,
then nothing else is computed. On the other hand, if the
ray does hit the AABB, then the first two nodes are con-
structed at that moment. By building the hierarchy on-
demand, it is possible that the tree contains many unfin-
ished subtrees. No specific build type is associated with
a lazy BVH, and it can be built by using any method.

The idea was first proposed by Hook et al. [50] by
annotating the nodes of the tree to indicate their state.
Nodes could be marked as an inner node, leaf node, or as
a split-table node, and when the a split-table node is en-
countered, the node is further partitioned. Watcher [51]
et al. used a similar scheme for a bounding interval hi-
erarchy (BIH), which is a simple tree split at planes and
does not contain AABBs. In their scheme, a node sim-
ply contains a flag indicating it is unfinished.

More recently, Vinkler [52] et al. demonstrated a
GPU ray tracer system that utilizes a lazy BVH builder.
In their system, a task-based system is used to pro-
cess both ray tracing and BVH building simultaneously.
When a ray encounters an unfinished portion of the
BVH, the kernel adds a build task to the queue and sus-
pends itself, and when the dependent task finishes, it re-
launches the ray. Additionally, Vinkler uses speculative
construction of nodes in the tree to keep the GPU filled
with work– thus, a node may already be constructed

when visited for the first time.

3.2 Surface Rendering

3.2.1 Ray Tracing

Ray tracing simulates light transport by tracing rays
from the camera into the scene. Rays intersect with ge-
ometry and reflect in new directions, and the fundamen-
tal task in a ray tracer is finding ray triangle intersec-
tions. Rendering shadows, depth of field, and refrac-
tion maps more naturally to ray tracing than rasteriza-
tion. While achieving these effects are possible with ras-
terization, they often require multiple rendering passes
and add complexity to the rendering algorithm. Impres-
sive degrees of realism (see figure 7) can be achieved
through ray tracing variants such as path tracing, which
uses Monte Carlo methods to evaluate the outgoing and
incoming radiance at every intersection point. Realism
makes ray tracing the preferred rendering method of the
film industry, but the high degree of realism comes at
the expense of real-time rendering.

In general, one or more rays are created for each pixel
in the screen, and they have an initial direction defined
by the camera parameters. Once created, the rays in-
teract with the geometry they hit by accumulating the
color along the path of the ray. If a ray misses all geom-
etry in the scene, then it terminates. Otherwise, the ray
can continue bouncing off other surfaces until it misses
or some other termination criteria is met. With each
change of direction, a ray tracer finds the nearest inter-
section point by checking the ray origin and direction
against all scene geometry. The idea behind ray tracing
is conceptually simple, but computationally intensive.

For years, ray tracing has been extensively used in the
movie industry, and more recently ray tracing has made
headway into the field of scientific visualization. Thus,
finding efficient ray tracing techniques is an active area
of research in both industry and academia.

Using acceleration structures, intersection tests are
only performed on a small number of primitives rela-
tive to the total number in the scene. The most per-
formant ray tracers use BVHs (see section 3.1) to re-
duce the number of ray-triangle intersection tests. By
using acceleration structures, ray tracers are bound by
the number of rays per frame (i.e., image order), unlike
rasterization which is bound by the number of objects
(i.e., object order).



14

Fig. 7: An image created using path tracing.

Traversal and Intersection

Ray tracers perform two main calculations: traversal
and intersection. Most ray tracing kernels are structured
as a loop that alternates between testing the AABBs of
the BVH nodes and intersecting primitives referenced
in the leaf nodes. Of the two types of calculations, the
latter dominates.

Each inner node of the BVH contains the AABBs of
all of its children, and the ray is tested against each one
of the AABBs. If the ray misses an AABB, that subtree
is not traversed. Otherwise, nodes are traversed from the
nearest to the furthest. Once a leaf node is encountered,
the kernel performs intersection tests with all primitives
the leaf contains.

All rays are not created equal. Primary rays proceed
from the camera through each pixel in the image plane,
and since primary rays have similar origins and direc-
tions, tracing primary rays exhibits coherent memory
access patterns as they proceed through the scene. If
an image is rendered using only primary rays then the
resulting image would be equivalent to a rasterized im-
age.

Secondary rays add more realistic effects to the im-
age and have different memory access patterns. Af-
ter the primary rays reflect off surfaces, they no longer
have similar directions and exhibit incoherent memory
accesses during traversal. Diffuse reflections are essen-
tially random and have the worst memory access pat-
terns. Another example of a secondary ray is a shadow
ray, where a ray is cast towards the light source for every
ray intersection.

There are several different algorithmic variants that
take into account the memory access patterns of primary
rays and secondary rays. Single ray traversal is best at
handling secondary rays, and packet traversal is best for
tracing primary rays. Additionally, hybrid variants at-

tempt to use the strengths of both traversal methods.

3.2.2 Single Ray Traversal

Single ray traversal traces a single ray through the
BVH. Each ray moves though the BVH independently
by performing a stack-based traversal. To trace rays in
parallel, each thread traces a single ray until an inter-
section is found, but achieving maximum performance
is difficult. Between CPUs, GPUs, and Xeon Phis there
exist subtle hardware differences that force architecture
specific implementations to vary.

In the ray tracing world, there are two clear perfor-
mance leaders on their respective platforms. On the
GPU, the leader is NVIDIA’s Optix Prime [53], and on
the CPU and MIC, the leader is Intel’s Embree [33] [54].
Both frameworks contain ray tracing kernels that are
highly optimized for their target architectures.

GPU Variants

The OptiX ray tracing framework provides a ro-
bust infrastructure that enables programmers to build
full rendering engines around it. Additionally, OptiX
provides access to a low-level interface, OptiX Prime,
which is specifically geared towards performance. Al-
though the source code is not public, the kernels are
based on public research by Alia and Laine [55] [56].
Alia and Laine were the first to publish thorough results
examining the efficiency of ray tracing on GPUs. They
observed that existing methods were around 2x slower
than the theoretical upper-bound on performance, and
that the limiting factor was work distribution not mem-
ory bandwidth. That is to say, tracing rays is a hetero-
geneous workload, and a single long running ray will
make the entire warp unavailable for reassignment until
that one ray has completed.

To combat the problem of long running threads, a
global task pool was also implemented to further in-
crease traversal efficiency. The idea is to launch enough
threads to fill the GPU with work, then replace termi-
nated rays from a global work pool. The highest bene-
fits are received by replacing rays when the number of
active rays drops below 60% [56]. Persistent threads
further increases the performance of secondary rays.

To maximize the warp efficiency (i.e., reduce diver-
gence), Aila and Laine implemented speculative traver-
sal [55]. Threads in a warp coordinate their actions so
that threads are all processing inner nodes or all pro-
cessing leaf nodes by using a compiler intrinsic to poll a



15

boolean value in each warp. If some threads are ready to
proceed to the leaf nodes but the others are not, then they
keep traversing the tree accumulating more leaf nodes to
process once the warp votes to do so. By increasing the
SIMT efficiency, this method boosts performance for in-
coherent rays. Gupta [57] et al. showed that using work
queues on the GPU can be beneficial to other types of
workloads.

On the GPU, there are a finite number of registers
available to each thread, and if kernels take up too many
registers, then fewer warps can execute simultaneously.
The OptiX Prime kernels uses a ray-triangle intersection
test specifically to keep register usage to a minimum.
The Woop unit triangle intersection test [58] stores an
affine transform which converts a triangle into the unit
triangle. Instead of loading the vertices of the triangle,
OptiX loads the transform and converts the ray into unit
triangle coordinate space. This method takes up more
space but offers better performance.

CPU/MIC Variants

Until recently, many perceived the CPU as an off-line
rendering target [59], but in the last several years, real-
time ray tracers and volume renderers are emerging for
CPUs and MICs. Embree adapted the traversal algo-
rithm for vector instruction sets, yielding an impressive
amount of performance. By creating an intrinsics frame-
work, Embree compiles for SSE2, SSE4, AVX, AVX-2,
and AVX-512. The broad ISA support enables Embree
to use SIMD widths of 4, 8, and 16, allowing Embree
to execute on desktop workstations and Xeon Phi co-
processors.

Unlike the OptiX, Embree uses BVH branching fac-
tors higher than 2. Embree creates branching factors of
4, 8, and 16 to match the SIMD vector register width.
When processing an inner node, the AABBs of all chil-
dren are loaded into the vector registers and tested in
parallel. By storing node data in packets of AoS format,
Embree uses vector load instructions to fetch node data
efficiently while minimizing cache misses. Since the
BVH is created and used exclusively by the ray tracer,
customizing the memory layout does not increase the
memory overhead.

Embree includes two ray-triangle intersection meth-
ods [60][61] for different use cases, one that is water-
tight (i.e., rays will not miss when hitting the border
between two triangles) and one that is not. Both tri-
angle intersection variants are vectorized. Similar to the

BVH implementations, the triangle intersectors simulta-
neously test a number of triangles at once. For the Xeon
Phi, only four triangles [62] are tested at once, and up to
eight at once on the CPU.

3.2.3 Packet Traversal

Packet traversal is a traversal variant that uses packets
of rays instead of a single ray. When an inner node is
fetched, the AABBs are tested against all rays at once in
the SIMD registers, moving the parallelism from mul-
tiple AABBs per ray to multiple rays per AABB. In-
stead of maintaining one stack per ray, a single stack is
used for all rays in the packet. Packet traversal enables a
significant performance enhancement for primary rays,
which tend to have similar paths through the BVH, but
the same is not true for incoherent rays. Wald[63] et
al. first proposed packet tracing as a way to increase
performance. In Wald’s system, one thread traced four
rays at once using SSE vector instructions, and he ob-
served that the overhead of packet tracing was small for
primary rays. Additionally, the memory bandwidth was
significantly reduced.

On the GPU, Garanzha [64] et al. created a system
that uses packet tracing for both primary and secondary
rays. They use a frustum to represent the collective
directions with the packet instead of testing individual
rays against AABBs. After the rays are reflected, they
create a four-dimensional hash (i.e., the rays origin and
direction) for each ray, then a radix sort groups rays
together into packets. This method was shown to be
effective for primary rays and area light sampling, but
their results did not include any tests using global il-
lumination workloads. NVIDIAs production ray tracer
has likely not adopted this approach since it adds addi-
tional code complexity and is unproven for the types of
rendering workloads they target.

As previously mentioned, CPU and MIC packet trac-
ing methods map rays to vector registers, and the size of
packets are determined by the width of the vector reg-
isters. Frustum based methods can map more rays per
thread, but they tend to suffer performance hits for inco-
herent secondary rays [65][66]. Embree includes packet
tracing kernels all common vector withs on modern ar-
chitectures [33].

Hybrid Traversal

Hybrid ray traversal uses both single ray and packet
traversal to get the benefits of both. Bethin [62] et at.



16

successfully demonstrated a hybrid method on the Xeon
Phi. Since then, Embree adopted the same approach
that switches between packet traversal and single ray
traversal once efficiency drops below a specific thresh-
old, giving Embree a throughput 50% higher than the
other methods alone [33]. While we are not aware of
any GPU systems using this approach, it seems likely
that the GPU would also benefit.

3.3 Structured Volume Rendering (Ray Casting)

Structured grids are either regular or rectilinear. Reg-
ular grids have equal spacing of field data on each axis,
and rectilinear grids can have variable spacing on each
axis. Due to the inherent structure of the data in mem-
ory, volume rendering algorithms can easily find the
sample points by location alone, significantly simplify-
ing the algorithms. Ray casting is used by state-of-the-
art CPU and GPU renderers.

The method is straight-forward. Cast a ray from the
camera, and sample the scalar field at regular intervals.
For each interpolated sample value, look up the associ-
ated scalar value in a color map, and composite the sam-
ple colors from front-to-back order. The ray terminates
when the next sample point is outside the mesh, the
number of samples per ray is met, or the color reaches
full opacity (i.e., early ray termination).

Structured ray casting is a well studied area. Since the
technique is straight-forward, most work centers around
methods to increase memory efficiency, and this leads
to trade-offs between quality, time, and memory. The
majority of these techniques are applicable to both CPU
and GPU variants, but generally GPU ray casters are
more sensitive to memory usage issues.

CPU Variants

Most CPU volume rendering focuses on using SIMD
vector registers, and this can be characterized in the
works by Peterka [67] and Knoll [68]. Knoll et al.
created a ray casting volume renderer, inspired by the
lessons of SIMD ray tracing, which used SSE intrinsics.
The authors are able to highly optimize all of the code
through clever uses of SSE intrinsics. Interpolation of a
sample points is optimized by using SSE register swiz-
zling to re-use values, resulting in a 15% performance
increase. Further, SSE-specific optimizations increase
performance on almost every operation including gradi-
ent, shading, and compositing. Knoll’s resulting code is
compact, under 200 lines of code, but almost completely

written in SSE intrinsics, and thus requires expertise to
understand, not to mention extend.

Even on a modest 8-core Intel CPU, the implemen-
tation reaches interactive frame rates (i.e., grater than
10 frames per second) on large data sets (e.g, 7 GB)
and could achieve even better performance on machines
with higher core counts such as those found on super-
computers. Additionally, the CPU-based approach does
not suffer the memory limitations of GPUs, where data
sets that exceed physical memory would have to be pro-
cessed by an out-of-core renderer.

GPU Variants

Ray casting in CUDA is straight-forward, and addi-
tionally, the CUDA API exposes hardware features that
are not available in the OpenGL pipeline, namely shared
memory. CUDA volume renderers have three main ker-
nels: ray generation, intersection, and ray marching.
Ray generation outputs origins and directions based on
the camera parameters, and it orders rays along a space-
filling curve to improve cache usage [69]. Then, the rays
are intersected with the volume’s bounding box, find-
ing the entry and exit points, and finally, the ray march-
ing kernel samples and composites. The scalar field is
stored in a texture to use the spacial caching hardware
with the dedicated texture units.

GPU ray casting has access to GPU hardware that
provides some advantages over CPU variants. The first
is shared memory, which allows blocks to efficiently
share (e.g., gradient calculations) data across threads
within a block. The second is texture memory. The en-
tire scalar field can be loaded into a texture, which is
optimized for three-dimensional spatial access and in-
cludes access to hardware interpolation.

Wang et al. [70] introduced a ray casting method that
moves away from the one thread per ray paralleliza-
tion strategy. Instead, they use the combined power of
a warp to process a single ray to provide an algorithm
that uses a cache-aware sampling strategy called "warp
marching." Each warp gathers the next 32 samples along
the ray to maximize data locality. To maintain high warp
efficiency, warp polling is used to determine if all 32
samples are empty space (i.e., transfer function opacity
is zero), skipping the rest of the calculations. Otherwise
a warp-wide reduction is calculated to find the compos-
ited color value of all the samples. Instead of using
shared memory for intra-warp communication, register
shuffling intrinsics are used to share memory between



17

warp members. By leveraging the hardware specific
techniques not available in OpenGL, Wang et at. cre-
ated a memory efficient ray casting variant that exhibits
constant texture cache hit rates.

3.3.1 Acceleration Structures

Transfer functions impact rendering performance be-
cause they are designed to highlight specific features in
the data. For example, doctors may only be interested
in viewing parts of a CT scan with a specific range of
densities, so the transfer function may only have a small
range of values that map to any color. In this case, the
majority of samples are wasted since they do not con-
tribute to the final image. To minimize wasted sam-
pling, ray casters use acceleration structures to ensure
that samples contribute to the final image.

Octrees [71], kd trees [72], and more recently,
BVHs [68], have been used to classify the scalar ranges
of spacial regions. These acceleration structures, called
min-max trees, store the minimum and maximum scalar
ranges for each subtree. Combined with the transfer
function, a sample point can easily be skipped if there is
no contribution. Using an acceleration structure costs
more memory (e.g., 10% [71]), but can be a perfor-
mance boost if the transfer function is sparse.

3.4 Unstructured Volume Rendering (Ray Casting)

Unstructured data consists of cells that are polyhe-
dral (e.g., tetrahedrons and hexahedrons). Volume ren-
dering of unstructured data involves additional calcu-
lations since the cell containing a sample point cannot
be implicitly found from the sample coordinates. For
unstructured data, every sample point must be located
which makes it more complicated than ray casting struc-
tured data. There are two main methods for image order
unstructured volume rendering: connectivity-based and
point location-based methods.

3.4.1 Connectivity

Compact data set representations store cells in two
different arrays. There is an array of all the points in the
data set and an array of cell indices. Adjacent cells share
faces, and shared faces contain the same indices into
the coordinate arrays. Thus, many unstructured volume
renderers use mesh connectivity to traverse through the
cells. The face-to-face connectivity must be calculated
and stored, but this is a one time cost.

Garrity [73] first introduced this method in 1990, and
he used an acceleration structure to keep track mesh
entry. The connectivity method has been incremen-
tally improved over the years, including GPU adapta-
tions [74]. Additionally, compacting the connectivity
has been a more recent area of research [75][76].

3.4.1.1 Location

Location-based methods maintain an acceleration
structure to locate sample points along a ray. As with
many algorithms that require spatial data structures,
there are several options. The two most popular choices
are BVHs and kd trees. BVHs require less memory, but
they do not guarantee that nodes will be traversed in an
absolute front to back order.

Rathke et al. [77] recently introduced a fast CPU un-
structured volume renderer based on the Embree ray
tracing framework [33]. The ray caster renders gen-
eral polyhedral meshes by providing Embree shape in-
tersectors for each supported type. Additionally, they
replaced Embree’s BVH builder with a custom min-max
BVH [68], where each node contains the range of scalar
values in the sub-tree. The main contribution of the
work is providing a SIMD travseral method using the
Intel ISPC compiler [15]. The ISPC traveral method
uses packet traversal since all the rays are cast in a uni-
form manner from the camera. Since a BVH is used,
they buffer out-of-order samples until there are enough
to composite together in vector registers.

4 OBJECT ORDER TECHNIQUES

Object order algorithms loop over objects in the
scene. For each object, an algorithm finds the pixels
that it contributes to by sampling the object, and object
order algorithms must keep track of visibility ordering
to produce the correct image.

4.1 Surface Rendering

4.1.1 Rasterization

Rasterization is the process of converting the vertices
of geometric primitives, most commonly triangles, into
a two-dimensional array of pixels. Rasterization can be
performed on either a GPU or a CPU [78]. In mod-
ern computer graphics, the most prevalent rasterization
method is the scanline algorithm. The scanline algo-
rithm operates on triangle vertices that have been trans-
formed into a coordinate system defined by the camera



18

position, view direction, and up direction. The triangle
is sampled at pixel locations, each of which is given a
color and a depth value. Rasterization maintains both
the image buffer and the z-buffer. The z-buffer contains
the depth of the nearest pixel to the camera, and each
incoming pixel must be compared with the depth value
in the z-buffer to determine visibility. That is, we either
throw away the pixel or update the z-buffer and image
color.

Fig. 8: An example of the scanline algorithm rasterizing
a traingle into pixels [79].

While rasterization could be performed on the CPU,
GPUs were developed to perform rasterization in hard-
ware using a fixed function pipeline. The OpenGL API
was created in 1992 as an interface to vendor specific
hardware implementations, and in 2001, hardware ven-
dors began exposing parts of the pipeline with an API
The full featured API allowed programmers to build al-
gorithms using rasterization hardware. There are sev-
eral different algorithms that perform rasterization, and
we briefly cover them here.

4.1.1.1 Scan Line

The scan line algorithm was the first rasterization al-
gorithm created in the 1960s [80]. The idea is to trans-
form each primitive into screen space and calculate the
pixels that they cover. For a triangle, the scan line algo-
rithm finds the y-intercepts of each row of pixels, and it
interpolates the vertex colors and depth values. Then,
the algorithm interpolates in the x direction for each
covered pixel. This method is efficient for triangles that
cover a large amount of pixels.

4.1.1.2 Barycentric

The barycentric algorithms calculate the barycentric
coordinate system of an object, which is most often a
triangle. Then, each pixel in the screen space AABB is
tested to see if it is inside the triangle by simply check-
ing if the sum of the barycentric coordinates is greater

than or equal to zero and less than or equal to one.
With this method, interpolation is virtually free since the
barycentric coordinates represent the distance from each
of the three vertices. One drawback to this approach is
that it tests many samples that are outside large and de-
generate triangles.

Pineda [81] created a parallel rasterization algorithm
based on this method. Since the barycentric coordinates
change linearly in each direction, it is trivial to paral-
lelize it. CPU implementations can use integer only rep-
resentations to speed up calculations.

The typical rasterizer is implemented as a pipeline.
The first phase transforms the vertices into screen space
and removes triangles that are outside the camera view.
Next, the triangles are binned into tiles that segment the
screen. After that, each thread serially rasterizes tiles.
The resulting fragments are shaded to produce the final
image.

OS Mesa [78] is an example of a software based ras-
terizer. Currently, it is being modernized to use thread-
ing and SIMD registers to rasterize multiple triangles at
once. Intel is leading the effort with OpenSWR [82],
which can render at interactive rates. Additionally,
CUDA-base rasterizers have been created to explore the
algorithm on programmable GPUs [83].

4.2 Structured Volume Rendering

The only object order structured volume rendering
technique we are aware of was recently published by
Schroots [84] and Ma. Schroots adapted Larsen [?] et.
al’s unstructured volume rendering methods for struc-
tured data.

Conceptually, a large buffer is created. The size of
the buffer is the image’s dimensions multiplied by the
number of samples. With a large buffer, each object is
processes and the contributing samples are deposited in
the buffer. To reduce the memory usage, the buffer is
broken up into several passes which process the volume
from front-to-back.

4.3 Unstructured Volume Rendering

4.3.1 Splatting

Projected tetrahedra (PT) is a clever method of vol-
ume rendering unstructured tetrahedral meshes. The
idea of PT is to decompose the tetrahedron into a num-
ber of semi-transparent triangles and rasterize, or splat,
them onto the screen, but the triangles must be rendered



19

in a view dependent ordering. Triangle decomposition
takes place inside a programmable stage of the graph-
ics hardware pipeline called a geometry shader, and, de-
pending on the view direction, the shader classifies each
tetrahedron into one of several cases (see figure 9 for an
example). Geometry shaders take a single input, in this
case tetrahedons, and can output an arbitrary number of
shapes into the parallel pipeline. Early implementations
of PT sorted tetrahedrons by their centroid to determine
visibility ordering, however, this was an approximation
and led to inaccurate images. Two modifications to PT
— hardware-assisted visibility (HAVS) [85] and later
hardware-assisted projected tetrahedra (HAPT) [86] —
implement versions of PT that partially and fully cor-
rected the errors produced by the sorting order.

Fig. 9: An example projected tetrahedra triangle decom-
position case [85].

HAVS sorts tetrahedrons by centroid but partially cor-
rects the ordering on-the-fly in a hardware buffer ex-
posed by OpenGL. Sorting is performed by an initial
rendering pass that uses OpenGL draw calls, and the
second pass renders the triangles to the screen. As tri-
angles are rasterized, pixel fragments are deposited into
the k-buffer which has a configurable size. As frag-
ments are inserted into the buffer, the partial ordering
is corrected based on the fragment depth values before
the hardware compositing stage. Using the k-buffer im-
proved fragment ordering but did not completely correct
it.

HAPT uses both OpenGL and CUDA to order the
cells correctly at the cost of greater sorting time. The
HAPT implementation includes faster sorting methods

that do not completely correct the visibility ordering.
By using CUDA, HAPT renders the volume in a sin-
gle pass, leading to increased frame rates. The meshed
polyhedra visibility ordering [87] method produces the
correct ordering for rasterization but requires data struc-
tures that cannot be implemented in OpenGL.

4.3.2 Sample-Based

Sample-based volume rendering creates a large sam-
ple buffer, and by using a buffer, it trades a larger mem-
ory footprint for the ability to process cells in an ar-
bitrary order, eliminating the need for any pre-process.
Further, the algorithm maps naturally to both structured
and unstructured data sets, since the buffer frees it from
the constraints of other volume rending methods. The
execution consists of several phases. First, tetrahedra
vertex coordinates are transformed into screen space, a
coordinate system defined by the camera position and
view direction. In screen space, each integer coordinate
corresponds to a location in the sample buffer. Then,
the renderer iterates, in parallel, over each tetrahedron
and deposits the contributing samples the buffer. Fi-
nally, samples in the buffer are composited to produce
the final image.

Using a large buffer creates a large memory footprint.
For example, a 10242 image with a 1000 samples per
pixel will result in a billion samples (i.e., 4GB of mem-
ory). However, when used in a distributed memory en-
vironment, the algorithm scales well since the buffer is
spread out across a number of nodes and cells can be
sampled independently.

Childs et al. [88] introduced the sample-based volume
renderer which was targeted for CPUs, the dominate su-
percomputing architecture in 2006. The algorithm used
the Message Passing Interface (MPI) library to imple-
ment the renderer in VisIt, a popular open source visu-
alization tool. Since 2006, supercomputing architecture
has become increasingly varied, and current architec-
tures use CPUs, GPUs, and MICs for computation.

Larsen et al. [89] extended the algorithm to use the
available node-level parallelism. They implemented a
variant of the sampling volume rendering algorithm in
EAVL [90], a library providing abstract data-parallelism
over both CPU and GPU architectures. The new algo-
rithm breaks the buffer up into multiple passes along the
viewing direction, then samples sections of the buffer
at a time. This method not only reduces the memory
footprint of the buffer, but also supports early ray termi-



20

nation which can drastically lower the number of sam-
ples per frame. Using EAVL, the algorithm uses both
OpenMP and CUDA for thread-level parallelism on a
compute node. Further, the inner sampling loop uses
auto-vectorization to further speed up execution on the
CPU.

5 PARALLEL CONSIDERATIONS

The research discussed in sections 3 and 4 focuses
on single node performance. In this section, we shift to
discuss distribute-memory considerations for rendering

Image Compositing

In distributed-memory rendering, each node has a
subset of the data but renders an image at full resolution,
and each pixel contains depth value. For surface render-
ing, image compositing finds the smallest depth value
for each pixel, For volume rendering, values for each
pixel are sorted from front-to-back and composited to-
gether. Scalable image compositing is an important part
of distributed-memory rendering.

The direct send [91] was one of the first algorithm
created for image compositing. Direct send assigns a
set of pixels to one node, and all other nodes sends their
pixels to the assigned location. Binary swap [92] created
a compositing algorithm that repeatably pairs up nodes
and exchanges pixels. After the rounds are complete,
each node has a complete subset of the image, then they
stitch the image together. Binary swap requires less
communication than direct send and is more scalable,
but binary swap requires that the number of nodes par-
ticipating in the exchange be a power of two. Yu [93] et
al. generalized binary swap to use any number of pro-
cessors, called binary 2-3 swap. More recently, radix-
k [94] combined the best of both strategies.

All of the previous research was packaged into a sin-
gle solution called IceT [95]. IceT provides implemen-
tations of direct send, binay swap, and radix-k, along
with a number of optimizations. This solution is scal-
able to hundreds of thousands of cores and is in wide
use within the visualization community.

Ray Tracing

Ray tracing with primary rays is equivalent to raster-
ization. If the shading model only considers the inter-
section point, then each node can render the scene, and,
with each nodes data, compositing constructs the final
image. Ray tracing offers photo-realistic image qual-

ity, but, render photo-realistic rendering requires that a
ray be allowed to bounce around the entire scene. The
movie industry handles this by distributing the whole
scene to each node. However, the entire mesh of a
physics simulation cannot fit in the memory of a single
node, so we have to send the rays to the data.

Navratil [96][97] et al. described a dynamic ray
scheduling system to ray trace data in a distributed-
memory setting. As a ray travels through the data set,
the system sends rays via MPI to the nodes contain-
ing the data for the ray’s current location. Sending
rays to the data eliminates the need for image composit-
ing strategies. This work has grown into larger system
called GraviT, which is an open source effort led by the
Texas Advanced Computing Center. This research is in
its infancy and is a open area of research.

Volume Rendering

Childs [98] et al. conducted a series of massive scale
experiments to exposed the bottlenecks of current visu-
alization systems. Their main goal was to identify the
main problems that were likely to occur when concur-
rency and data sizes increase on the coming generations
of supercomputers. Volume rendering was an area that
they identified as a bottleneck, using current algorithms,
for simulations at scale. The visualization system they
tested used the traditional model of parallelism of one
MPI task per core.

Howison [69][99][100] explored hybrid parallelism
for structured volume rendering (ray casting) on both
CPU and GPU supercomputers. They found the hybrid
parallelism reduces both the communication and mem-
ory overhead that lead to better scalability and faster
run times. Unstructured volume rendering is especially
challenging since the run times are higher and produce
more data for the parallel compositing phase. As the
machines get larger and more powerful, we will push
the limits of current algorithms, and this will continue
to be an active area of research.

6 CONCLUSION

In this section, we discuss the current space of ren-
dering algorithms presented in the previous sections,
highlighting their trade-offs. To motivate the discussion
about rendering and in situ, we will define three cate-
gories of use cases by its most important consideration:
• Time
• Image Quality



21

• Memory Usage
Each of these categories represents the “best” end of a
three axis spectrum shown in figure 10.

Fig. 10: The three axis spectrum representing the ten-
sion between render time, image quality, and memory
usage.

Time

There are two main use cases in this grouping. First,
image based in situ solutions, like Cinema [9], need to
render a large number of images to create an explorable
database, so minimizing render time is the most im-
portant factor. Creating more images means that the
database will be more explorable. Second, this cate-
gory represents a case where simulation can only spare
a small amount of time to perform visualization. In this
case, the in situ visualization system must be able to
complete rendering within the given time budget.

Image Quality

In this category, image quality is the most important
aspect. A visualization of a data set that contains com-
plex features needs to be high quality, so that domain
scientists can extract all of the information contained in
the visualization. Low quality images are difficult to in-
terpret and hamper understanding. Another example of
this use case is when the visualization is meant to com-
municate the results of the simulation to a broad audi-
ence.

Memory Usage

Some simulations use almost all available memory. In
these cases, in situ rendering needs to operate on a strict
memory budget, so it is important that these rendering
algorithms can work within this budget.

6.1 Table Metrics

The tables in this section represent the summary of
metrics (i.e., time, quality, and memory) for each cate-
gory of rendering methods. Each metric has three pos-
sible values: W (worst), A (average), and B (Best). If
there is a range of values (e.g., A-B), this indicates the
presence of a trade-off with one or more of the other
metrics. For example if the metric is quality, A-B (T)
means that we can achieve higher quality images at the
cost of render time.

In sections 3 and 4, the top-level organization was
image order and object order. In this section, the top-
level ordering is grouped by surface rendering and vol-
ume rendering. For example, if we are making a choice
between methods for surface rendering, then we will
choose ray tracing or rasterization.

6.2 Bounding Volume Hierarchies

BVHs are the acceleration structure of choice for im-
age order rendering. We separate the discussion on ac-
celeration structures to simplify the rendering compar-
isons since there is a significant amount of research on
BVHs. In terms of the use cases, build time corresponds
to renderer time, and BVH quality corresponds to both
image quality and memory usage.

For in situ, there are many choices for BVHs, each
with benefits and drawbacks. In table II, we have sum-
marized the relative build times and qualities for all of
the BVH types covered in this paper, and these metrics
are based on comparisons presented in the surveyed pa-
pers. In terms of build time and quality, figure 11 shows
the spectrum of where the respective BVHs fall. While
actual values may vary based on implementation and ar-
chitecture, they provide a guide for selecting the best
method for a given use case.

The time use case needs a BVH on the higher end
of the quality spectrum. The number of rays traced for
volume rendering or ray tracing would be high, and ef-
ficient traversal would trump the extra cost of the build
time. Alternatively, one high quality image may needed,
and with image order techniques, higher quality trans-
lates to more queries into the acceleration structure.

On the other end of the spectrum for build time, the
images could be used to monitor a simulation for cor-
rectness and render must complete with a time limit.
Since we only need a single image, we would want fast
rendering and low build times. The linear BVH or the



22

Metrics Median Sweep Binner SBVH LBVH HLBVH FP-BVH TRBVH ACC
Build Time Best Worst Ave Worst Best Ave Best Best Best

Quality Worst Best Best Best Worst Best Worst Best Ave
Time-Quality

Trade-off
No No Yes Yes No Yes No Yes Yes

TABLE II
Summary of BVH build times and qualities. Some BVH types have the ability to adjust the build time at the cost

of quality which is indicated in the fourth row.

Fig. 11: A table of the relative metrics for the BVH
types reviewed. The TRBVH has an astrix since the
only implementation we are aware of is on the GPU.

fully parallel BVH are good candidates.
The amount of memory the BVHs take up is also

an issue. Top-down builders tend to be higher qual-
ity, and they produce shallower hierarchies that take up
less memory. With a top-down builder, they have more
choices on primitives groupings in leaves, and a linear
BVH builder has fewer opportunities to make grouping
choices during construction. To make the representation
more compact would take additional time. For exam-
ple, Embree reports that the SAH builders take an or-
der of magnitude more memory than the Morton-based
builders. Thus, memory budget would also play a large
roll in selecting the right BVH for the in situ use case.
Lazy building may mitigate some of the memory issues,
but this adds code complexity because lazy building re-
quires increased coupling between builders and render-
ers.

There are a spectrum of uses cases for in situ visu-
alization that fall in between all three use cases. To
have the all the types available in a renderer would in-
volve a significant amount of effort and could add addi-

Metrics Time Quality Memory
Ray Tracing (AS) W-B (Q) W-B (T) A

Rasterization B W B

TABLE III
Surface rendering metrics. Image order algorithms are
on top and object orders algorithms are on the bottom.

(AS) denotes the use of an acceleration structure.

tional complexity to a visualization system. Some of the
builders have tunable knobs that can change its charac-
teristics for a given situation, so having only a few tun-
able builder may be desirable. For example, we could
reduce the number of bins for an SAH binner to increase
build time. Alternatively, using more bins takes longer,
but produces a higher quality tree.

All of these issues are important to an in situ visual-
ization systems, and there is no research into exploring
this space. Currently, there are many missing memory
statistics from the research results presented in papers.
For example, we may know how much memory the final
tree consumes but not the peak memory usage during
construction, making difficult to evaluate for the mem-
ory use case. If we run out of memory, then the whole
system will fail.

6.3 Rendering Discussion

6.3.1 Surface Rendering

Table III shows the metrics for our in situ use cases.
For surface rendering, there are only two choices: ray
tracing and rasterization.

6.3.1.1 Image Order

Rendering time for ray tracing has made significant
improvements over the last several years, making it a
real-time rendering option. If we assume an exascale
machine will have a Xeon Phi architecture comparable



23

to the current architecture, then we can render at rates
of 200-400 million rays per second on each node. For
primary rays only, 200 million rays per second means
that we could render 200 images at a resolution of 10242

or around 100 images at a 1920x1080 (i.e., 1080P).
For GPU ray tracing, the rendering speed is even

higher at around 400-600 million rays per second on
GPUs typically found on supercomputers. It is thought
that the next generations of machines will have multiple
GPUs per node, which would only increase the number
of images per second or decrease the time to create a
single image.

The image quality of ray tracing can is highly tunable
between render time and image quality. On one end of
the spectrum, primary rays with shading is equivalent
to rasterization with the same shading model, and this
would likely be the choice for fast render times. On
the other end, the image quality use case would need
a smaller number of images and allow longer render
times. Then, ray tracing can start to add effects such as
soft shadows or ambient occlusion. Global illumination
algorithms like path tracing can be used for physically
based effects if there is an large time budget. Ultimately,
there is a tension between the image quality and render
time, and these are decisions domain scientist will make
on a case-by-case basis.

Considering the memory usage use case, most of the
memory usage in a ray tracer is bound to the number of
pixels in the image. Each ray minimally uses 56 bytes
of memory to store the direction, origin, and index of
the primitive that was hit, but several more fields are
common. However, we have concerns about the mem-
ory usage of ray tracers like Embree and OptiX in an in
situ setting.

OptiX uses the unit triangle intersection test, which
stores an affine transform maps the ray to the unit trian-
gle. This simplifies the intersection code and increases
performance, but doubles the memory overhead of the
geometry. With GPU memory already small compared
to the size of main memory on a node, OptiX is unlikely
to be an acceptable option for the memory use case.

Embree has more options to choose form that impact
memory usage. To maximize memory throughput in a
SIMD setting, Embree can re-organize the data layout,
which doubles memory usage. But for reduced perfor-
mance, Embree can use the original data layout.

Ray tracers produced by Intel and NVIDIA target the
movie and animation industries as a means to convince

studios to invest in their hardware. Render farms dis-
tribute data very differently than simulations do in a dis-
tributed memory setting. In render farms, each node has
a copy of the entire scene and is responsible for render-
ing a small part of the image, but in large scale simu-
lations, the data is too large to fit into the memory of
a single node and is distributed across the entire super-
computer. Further, Embree and OptiX cannot currently
render data sets directly, and translation between data
layouts must occur. Creating a performant ray tracer
that uses minimal memory should be goal for the in situ
visualization community.

Object Order

Rasterization has been the traditional rendering algo-
rithm of visualization, and there is not any active re-
search other than optimizing rasterization for specific
architectures. Rendering times are the fastest of all
methods, which makes it attractive for the render time
use case, but ray tracing is gaining ground. As more
compute power is packed into nodes of a supercom-
puter, simulations are increasing the numbers of cells
per node. More objects means more overhead for pro-
cessing objects that do not contribute to the final image.

For the image quality use case, quality for rasteriza-
tion is low and hard to improve. Creating physically
accurate effects is complicated but possible. The video
game industry trades additional effects at the cost of ren-
der time, but these effects are not used in scientific visu-
alization. Thus, there no trade-off for image quality in
terms of visualization.

Memory usage is implementation dependent, but it is
generally low, supporting memory use case. If all ver-
tices of the data set are transformed into screen space,
this doubles the memory footprint of a rasterizer. How-
ever, rasterizers are implemented as a pipeline, so mem-
ory usage is tied to the width of the pipeline which is
relatively low.

6.3.2 Structured Volume Rendering

For structure volume rendering, we have several
choices summarized in table IV. Image order algorithms
are located above the bold horizontal line. All of the
structured volume rendering methods have a compli-
cated set of trade-offs effecting multiple metrics. For
structured ray casting, we have the option of using an
acceleration structure, which can be beneficial in cer-
tain cases. Ray casting methods have trade-offs between



24

Metrics Time Quality Memory
Ray Casting

(AS)
W-A (Q) A-B (MT) A-B (Q)

Sampling W-A (MQ) A-B (MT) W-B (QT)

TABLE IV
Structured volume rendering algorithm comparison.
Image order algorithms are on top and object orders

algorithms are on the bottom. (AS) denotes the use of
an acceleration structure.

render time versus quality and quality versus memory
usage.

For the sample-based, the object order algorithm has
three sets of trade-offs that effect all metrics.

Image Order

Structured volume rendering is high quality and fast
since the data layout is regular and sample location is
not necessary, which supports the render time use case.
Faster rendering times are also possible when the trans-
fer function is sparse by using an acceleration structure
to skip sampling areas of the volume that do not con-
tribute to the final image. As with all ray casting meth-
ods, there is a speed versus quality trade-off. We could
increase the sampling rate to render higher quality im-
ages but at the cost increased rendering time.

Additionally, there is a tension between quality and
memory usage. Pre-integration tables reduce the num-
ber of visual artifacts, and increasing the resolution of
the integration table increases the quality of the image
but uses more memory.

Structured ray casting has three points of tension be-
tween render time, image quality, and memory usage,
but on the whole, memory usage is much lower than
image order unstructured volume rendering and object
order techniques. In an in situ setting, the memory over-
head is well suited for environments where memory is
limited, and since the points of tension are easily ad-
justed, the algorithmic settings can be explored for a
particular in situ use case without much effort.

Object Order

The object order sampling algorithm offers a complex
set of trade-offs. Thus, it is flexible for our uses cases,
but difficult to assess for the entire spectrum of use cases
that fall in between the three use cases.

Render time is slightly higher than image order al-

Metrics Time Quality Memory
Ray Casting

(AS)
W-A (Q) A-B (T) A

Splatting B A A
Sampling W-A (MQ) A-B (MT) W-B (QT)

TABLE V
Unstructured Volume Rendering algorithm

comparison. Image order algorithms are on top and
object orders algorithms are on the bottom. (AS)

denotes the use of an acceleration structure.

gorithms. Since every object must be sampled, there is
overhead for loading each object, but sampling values
inside a cell is fast. Render time is also impacted by the
number of samples per cell, which corresponds to image
quality. Additionally, memory is reduced by processing
chunks of the sample buffer at a time, but the overhead
of each chunk increases render time.

Sample based rendering has the same image quality
range as the image order methods, since they all sam-
ple the volume at regular intervals. Like the other meth-
ods, more samples raises the image quality but increases
render time. We can increase quality even further using
pre-integration, negatively impacting the two other met-
rics.

Memory usage is where sampling based methods are
is most flexible because of the three-way trade-off. On
a single node, a conceptually large sample buffer can be
broken up to match a memory budget, which is more
difficult for the image order methods to achieve. This
is not saying that creating versions of other volume ren-
dering algorithms that adhere to a memory budget is im-
possible, but it is just naturally part of the sample based
algorithm. In a distributed memory setting, the size of
the buffer is proportional the number of pixels the node
contributes to, so the more nodes in a simulation, then
the smaller the memory usage.

6.3.3 Unstructured Volume Rendering

Image Order

The render times between these methods depend on
the number of samples per pixel. Ray casting for un-
structured meshed can either use connectivity-based or
location-based traversal methods. Location-based algo-
rithms must traverse the acceleration structure for ev-
ery sample. Connectivity-based methods only traverse



25

the acceleration structure to find the entry points into
the mesh, otherwise they determine the next cell via
a lookup. For a low number of samples per pixel,
location-based methods are the fastest since connectiv-
ity methods must keep moving through cells when the
next sample point is far away. Alternatively when the
number of samples per pixel is high, the overhead of the
acceleration structure traversal is higher than the next
cell lookup. Thus, sampling frequency dictates which
method work best for the rendering time use case.

The quality use case, sampling frequency also im-
pacts image quality. The more sample taken translates
to a higher quality image. As with structured volume
rendering, a low sampling rate can miss important fea-
tures in the data. On the other hand, using connectivity
with pre-integration does not miss any features and re-
sults in the high image quality.

The choice of between ray casting variants also de-
pends on the amount of available memory and the data
set. The connectivity table consumes less memory than
a BVH. The degenerate case is where each cell has no
neighbors, and in this case, connectivity is equivalent to
location based methods. Finally, pre-integration tables
increase memory usage but raises image quality.

Object Order

For a moderate number of cells, render times for
splatting are fast which supports the render time use
case. The algorithm leverages GPU hardware to ren-
der images quickly, and on a CPU, rasterization tends
to be slightly faster than ray casting methods. In cases
where there are a large number of objects and equal im-
age quality settings, sampling render time are faster be-
cause sampling does not need to sort the objects based
on camera position.

Sampling is well suited for the image quality use case,
and sampling offers a familiar trade-off. By increas-
ing the number of samples, image quality is enhanced
at the cost of render times. With splatting, the gradi-
ent would have to be pre-calculated each time the data
set changed. The image quality of splatting is limited
since the algorithm cannot increase the effective sam-
pling rate beyond the number of cells that project onto
a pixel. Additionally, artifacts from the approximate
view-dependent sort negatively impacts image quality.
Splatting and sampling can improve image quality by
using pre-integration tables.

For the memory usage use case, splatting’s memory

usage is a constant factor relative to the number of ob-
jects in the scene, and splatting does not offer any trade-
offs. Sampling can reduce memory usage by break-
ing the buffer into segments, but there is a runtime cost
for each segment. The sampling approach is also well
suited for distributed-memory settings since the mem-
ory usage is tied to the number of samples each node it
is responsible for.

6.4 Future Work

This section discussed the current space of rendering
algorithms in terms three in situ use cases. The use
cases represent far ends of a three axis spectrum, al-
though the entire set of use cases will fall somewhere
inside these extremes. Additionally, current rendering
algorithms offer a variety of trade-offs that can push an
algorithm from one side of the space to the other. The
intersection of our current rendering algorithm’s tunable
parameters and the three axis spectrum is unknown and
needs exploration.

Further, the intersection may not overlap all three
use cases, meaning we cannot render any images under
some of the constraints. In this case, either simulation
codes would have to relax the constraints, potentially
sacrificing science, or the visualization community will
have to revisit current algorithms in order to pull them
into the three axis spectrum.

To answer these questions, the community needs to
define a reasonable set of constraints that can be ex-
pected in the exascale in situ environment. Then we
must perform a quantitative analysis to establish if our
current algorithms will remain viable, or determine if
we need new implementations.

REFERENCES

[1] Kwan-Liu Ma, “In situ visualization at extreme scale: Chal-
lenges and opportunities,” Computer Graphics and Applica-
tions, IEEE, vol. 29, no. 6, pp. 14–19, 2009.

[2] Benjamin Lorendeau, Yvan Fournier, and Alejandro Ribes,
“In-situ visualization in fluid mechanics using catalyst: A
case study for code saturne,” in Large-Scale Data Analysis
and Visualization (LDAV), 2013 IEEE Symposium on. IEEE,
2013, pp. 53–57.

[3] B Whitlock, J Favre, and J Meredith, “Parallel in situ cou-
pling of simulation with a fully featured visualization sys-
tem,” 2011.

[4] Christopher Johnson, Steven G Parker, Charles Hansen, Gor-
don L Kindlmann, and Yarden Livnat, “Interactive simula-
tion and visualization,” Computer, vol. 32, no. 12, pp. 59–65,
1999.



26

[5] Andrew C. Bauer, Hasan Abbasi, James Ahrens, Hank
Childs, Berk Geveci, Scott Klasky, Kenneth Moreland,
Patrick O’Leary, Venkatram Vishwanath, Brad Whitlock, and
E. Wes Bethel, “In Situ Methods, Infrastructures, and Appli-
cations on High Performance Computing Platforms, a State-
of-the-art (STAR) Report,” Computer Graphics Forum, Pro-
ceedings of Eurovis 2016, vol. 35, no. 3, June 2016, LBNL-
1005709.

[6] Marzia Rivi, Luigi Calori, Giuseppa Muscianisi, and
Vladimir Slavnic, “In-situ visualization: State-of-the-art and
some use cases,” PRACE White Paper, 2012.

[7] Nathan Fabian, Kenneth Moreland, David Thompson, An-
drew C Bauer, Pat Marion, Berk Geveci, Michel Rasquin, and
Kenneth E Jan, “The paraview coprocessing library: A scal-
able, general purpose in situ visualization library,” in Large
Data Analysis and Visualization (LDAV), 2011 IEEE Sympo-
sium on. IEEE, 2011, pp. 89–96.

[8] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Mered-
ith, Sean Ahern, Kathleen Bonnell, Mark Miller, Gun-
ther H. Weber, Cyrus Harrison, David Pugmire, Thomas
Fogal, Christoph Garth, Allen Sanderson, E. Wes Bethel,
Marc Durant, David Camp, Jean M. Favre, Oliver Rübel,
Paul Navrátil, Matthew Wheeler, Paul Selby, and Fabien
Vivodtzev, “VisIt: An End-User Tool For Visualizing and An-
alyzing Very Large Data,” in Proceedings of SciDAC 2011,
Denver, CO, July 2011.

[9] James Ahrens, Sébastien Jourdain, Patrick O’Leary, John
Patchett, David H Rogers, and Mark Petersen, “An image-
based approach to extreme scale in situ visualization and
analysis,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis. IEEE Press, 2014, pp. 424–434.

[10] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Pod-
horszki, and Chen Jin, “Flexible io and integration for scien-
tific codes through the adaptable io system (adios),” in Pro-
ceedings of the 6th international workshop on Challenges of
large applications in distributed environments. ACM, 2008,
pp. 15–24.

[11] Ciprian Docan, Manish Parashar, Julian Cummings, and
Scott Klasky, “Moving the code to the data-dynamic code
deployment using activespaces,” in Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International.
IEEE, 2011, pp. 758–769.

[12] Hank Childs, Kwan-Lui Ma, Yu Hingfeng, Brad Whitlock,
Jeremy Meredith, Jean Favre, Scott Klasky, and Fan Zhang,
“In situ processing,” 2012.

[13] Kenneth Moreland, Ron Oldfield, Pat Marion, Sebastien
Jourdain, Norbert Podhorszki, Venkatram Vishwanath,
Nathan Fabian, Ciprian Docan, Manish Parashar, Mark
Hereld, et al., “Examples of in transit visualization,” in Pro-
ceedings of the 2nd international workshop on Petascal data
analytics: challenges and opportunities. ACM, 2011, pp. 1–
6.

[14] Erik Lindholm, John Nickolls, Stuart Oberman, and John
Montrym, “Nvidia tesla: A unified graphics and computing
architecture,” Ieee Micro, vol. 28, no. 2, pp. 39–55, 2008.

[15] Matt Pharr and William R Mark, “ispc: A spmd compiler for
high-performance cpu programming,” in Innovative Parallel
Computing (InPar), 2012. IEEE, 2012, pp. 1–13.

[16] Marc Levoy, “Display of surfaces from volume data,” Com-
puter Graphics and Applications, IEEE, vol. 8, no. 3, pp. 29–
37, 1988.

[17] Jörg Mensmann, Timo Ropinski, and Klaus Hinrichs, “An
advanced volume raycasting technique using gpu stream pro-
cessing,” in Computer Graphics Theory and Applications,
GRAPP 2010, 2010, pp. 190–198.

[18] Nelson Max, Pat Hanrahan, and Roger Crawfis, Area and vol-
ume coherence for efficient visualization of 3D scalar func-
tions, vol. 24, ACM, 1990.

[19] Klaus Engel, Martin Kraus, and Thomas Ertl, “High-
quality pre-integrated volume rendering using hardware-
accelerated pixel shading,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-
ware. ACM, 2001, pp. 9–16.

[20] Eric B Lum, Brett Wilson, and Kwan-Liu Ma, “High-quality
lighting and efficient pre-integration for volume rendering,”
in Proceedings of the Sixth Joint Eurographics-IEEE TCVG
conference on Visualization. Eurographics Association, 2004,
pp. 25–34.

[21] Aaron Knoll, “A survey of octree volume rendering meth-
ods,” Scientific Computing and Imaging Institute, University
of Utah, 2006.

[22] Michal Hapala and Vlastimil Havran, “Review: Kd-tree
traversal algorithms for ray tracing,” in Computer Graphics
Forum. Wiley Online Library, 2011, vol. 30, pp. 199–213.

[23] “Space partitioning: Octree vs. bvh,” Dec. 2015.
[24] Jeffrey Goldsmith and John Salmon, “Automatic creation of

object hierarchies for ray tracing,” Computer Graphics and
Applications, IEEE, vol. 7, no. 5, pp. 14–20, 1987.

[25] J David MacDonald and Kellogg S Booth, “Heuristics for ray
tracing using space subdivision,” The Visual Computer, vol.
6, no. 3, pp. 153–166, 1990.

[26] Brian Smits, “Efficiency issues for ray tracing,” 1999.
[27] Timothy L Kay and James T Kajiya, “Ray tracing com-

plex scenes,” in ACM SIGGRAPH computer graphics. ACM,
1986, vol. 20, pp. 269–278.

[28] Stefan Popov, Johannes Gunther, Hans-Peter Seidel, and
Philipp Slusallek, “Experiences with streaming construction
of sah kd-trees,” in Interactive Ray Tracing 2006, IEEE Sym-
posium on. IEEE, 2006, pp. 89–94.

[29] Ingo Wald, “On fast construction of sah-based bounding vol-
ume hierarchies,” in Interactive Ray Tracing, 2007. RT’07.
IEEE Symposium on. IEEE, 2007, pp. 33–40.

[30] Dmitry Sopin, Denis Bogolepov, and Danila Ulyanov, “Real-
time sah bvh construction for ray tracing dynamic scenes,”
in 21th International Conference on Computer Graphics and
Vision (GraphiCon), 2011, pp. 74–77.

[31] Christian Lauterbach, Michael Garland, Shubhabrata Sen-
gupta, David Luebke, and Dinesh Manocha, “Fast bvh con-
struction on gpus,” in Computer Graphics Forum. Wiley On-
line Library, 2009, vol. 28, pp. 375–384.

[32] Ingo Wald, “Fast construction of sah bvhs on the intel many
integrated core (mic) architecture,” Visualization and Com-
puter Graphics, IEEE Transactions on, vol. 18, no. 1, pp.
47–57, 2012.

[33] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S John-
son, and Manfred Ernst, “Embree: a kernel framework for



27

efficient cpu ray tracing,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, pp. 143, 2014.

[34] Manfred Ernst and Günther Greiner, “Early split clipping for
bounding volume hierarchies,” in Interactive Ray Tracing,
2007. RT’07. IEEE Symposium on. IEEE, 2007, pp. 73–78.

[35] H. Dammertz and A. Keller, “The edge volume heuristic -
robust triangle subdivision for improved bvh performance,”
in Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium
on, Aug 2008, pp. 155–158.

[36] Martin Stich, Heiko Friedrich, and Andreas Dietrich, “Spatial
splits in bounding volume hierarchies,” in Proceedings of
the Conference on High Performance Graphics 2009. ACM,
2009, pp. 7–13.

[37] Nadathur Satish, Mark Harris, and Michael Garland, “De-
signing efficient sorting algorithms for manycore gpus,” in
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on. IEEE, 2009, pp. 1–10.

[38] Kirill Garanzha, Jacopo Pantaleoni, and David McAllister,
“Simpler and faster hlbvh with work queues,” in Proceedings
of the ACM SIGGRAPH Symposium on High Performance
Graphics. ACM, 2011, pp. 59–64.

[39] Tero Karras, “Maximizing parallelism in the construction
of bvhs, octrees, and k-d trees,” in Proceedings of the
Fourth ACM SIGGRAPH/Eurographics conference on High-
Performance Graphics. Eurographics Association, 2012, pp.
33–37.

[40] Ciprian Apetrei, “Fast and simple agglomerative lbvh con-
struction,” 2014.

[41] Tero Karras and Timo Aila, “Fast parallel construction of
high-quality bounding volume hierarchies,” in Proceedings
of the 5th High-Performance Graphics Conference. ACM,
2013, pp. 89–99.

[42] Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch,
“Efficient bvh construction via approximate agglomerative
clustering,” in Proceedings of the 5th High-Performance
Graphics Conference. ACM, 2013, pp. 81–88.

[43] Thomas Larsson and Tomas Akenine-Möller, “Efficient colli-
sion detection for models deformed by morphing,” The Visual
Computer, vol. 19, no. 2, pp. 164–174, 2003.

[44] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger,
Gabriel Zachmann, Laks Raghupathi, Arnulph Fuhrmann,
M-P Cani, François Faure, Nadia Magnenat-Thalmann,
Wolfgang Strasser, et al., “Collision detection for deformable
objects,” in Computer graphics forum. Wiley Online Library,
2005, vol. 24, pp. 61–81.

[45] Thomas Larsson and Tomas Akenine-mÃűller, “Strategies
for bounding volume hierarchy updates for ray tracing of de-
formable models,” Tech. Rep., Centre, Maelardalen Univer-
sity, 2003.

[46] Christian Lauterbach, Sung-Eui Yoon, David Tuft, and Di-
nesh Manocha, “Rt-deform: Interactive ray tracing of dy-
namic scenes using bvhs,” in Interactive Ray Tracing 2006,
IEEE Symposium on. IEEE, 2006, pp. 39–46.

[47] Sung-Eui Yoon, Sean Curtis, and Dinesh Manocha, “Ray
tracing dynamic scenes using selective restructuring,” in Pro-
ceedings of the 18th Eurographics conference on Rendering
Techniques. Eurographics Association, 2007, pp. 73–84.

[48] Kirill Garanzha, “Efficient clustered bvh update algorithm for

highly-dynamic models,” in Interactive Ray Tracing, 2008.
RT 2008. IEEE Symposium on. IEEE, 2008, pp. 123–130.

[49] Daniel Kopta, Thiago Ize, Josef Spjut, Erik Brunvand,
Al Davis, and Andrew Kensler, “Fast, effective bvh updates
for animated scenes,” in Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. ACM,
2012, pp. 197–204.

[50] David Hook and Kevin Forward, “Using kd-trees to guide
bounding volume hierarchies for ray tracing,” AUST COM-
PUT J, vol. 27, no. 3, pp. 103–108, 1995.

[51] Carsten Wächter and Alexander Keller, “Instant ray tracing:
The bounding interval hierarchy,” Rendering Techniques, vol.
2006, pp. 139–149, 2006.

[52] M. Vinkler, V. Havran, J. Bittner, and J. Sochor, “Parallel on-
demand hierarchy construction on contemporary gpus,” Vi-
sualization and Computer Graphics, IEEE Transactions on,
vol. PP, no. 99, pp. 1–1, 2015.

[53] Steven G Parker, James Bigler, Andreas Dietrich, Heiko
Friedrich, Jared Hoberock, David Luebke, David McAllister,
Morgan McGuire, Keith Morley, Austin Robison, et al., “Op-
tix: a general purpose ray tracing engine,” ACM Transactions
on Graphics (TOG), vol. 29, no. 4, pp. 66, 2010.

[54] Manfred Ernst and Sven Woop, “Embree: Photo-realistic ray
tracing kernels,” White paper, Intel, 2011.

[55] Timo Aila and Samuli Laine, “Understanding the efficiency
of ray traversal on gpus,” in Proceedings of the conference on
high performance graphics 2009. ACM, 2009, pp. 145–149.

[56] Timo Aila, Samuli Laine, and Tero Karras, “Understanding
the efficiency of ray traversal on gpus–kepler and fermi ad-
dendum,” NVIDIA Corporation, NVIDIA Technical Report
NVR-2012-02, 2012.

[57] Kunal Gupta, Jeff A Stuart, and John D Owens, “A study of
persistent threads tsyle gpu programming for gpgpu work-
loads,” in Innovative Parallel Computing (InPar), 2012.
IEEE, 2012, pp. 1–14.

[58] Sven Woop, “A Ray Tracing Hardware Architecture for Dy-
namic Scenes,” Tech. Rep., Saarland University, 2004.

[59] Victor W Lee et al., “Debunking the 100x gpu vs. cpu myth:
an evaluation of throughput computing on cpu and gpu,” in
ACM SIGARCH Computer Architecture News. ACM, 2010,
vol. 38, pp. 451–460.

[60] Andrew Kensler and Peter Shirley, “Optimizing ray-triangle
intersection via automated search,” in Interactive Ray Trac-
ing 2006, IEEE Symposium on. IEEE, 2006, pp. 33–38.

[61] Sven Woop, Carsten Benthin, and Ingo Wald, “Watertight
ray/triangle intersection,” Journal of Computer Graphics
Techniques (JCGT), vol. 2, no. 1, pp. 65–82, 2013.

[62] Carsten Benthin, Ingo Wald, Sven Woop, Manfred Ernst, and
William R Mark, “Combining single and packet-ray trac-
ing for arbitrary ray distributions on the intel mic architec-
ture,” Visualization and Computer Graphics, IEEE Transac-
tions on, vol. 18, no. 9, pp. 1438–1448, 2012.

[63] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus
Wagner, “Interactive rendering with coherent ray tracing,” in
Computer graphics forum, 2001, vol. 20, pp. 153–165.

[64] Kirill Garanzha and Charles Loop, “Fast ray sorting and
breadth-first packet traversal for gpu ray tracing,” in Com-
puter Graphics Forum. Wiley Online Library, 2010, vol. 29,
pp. 289–298.



28

[65] Alexander Reshetov, Alexei Soupikov, and Jim Hurley,
“Multi-level ray tracing algorithm,” in ACM Transactions on
Graphics (TOG). ACM, 2005, vol. 24, pp. 1176–1185.

[66] Carsten Benthin and Ingo Wald, “Efficient ray traced soft
shadows using multi-frusta tracing,” in Proceedings of the
Conference on High Performance Graphics 2009. ACM,
2009, pp. 135–144.

[67] Tom Peterka, Hongfeng Yu, Robert B Ross, Kwan-Liu Ma,
et al., “Parallel volume rendering on the ibm blue gene/p.,”
in EGPGV. Citeseer, 2008, pp. 73–80.

[68] Aaron Knoll, Sebastian Thelen, Ingo Wald, Charles D
Hansen, Hans Hagen, and Michael E Papka, “Full-resolution
interactive cpu volume rendering with coherent bvh traver-
sal,” in Pacific Visualization Symposium (PacificVis), 2011
IEEE. IEEE, 2011, pp. 3–10.

[69] Mark Howison, E Wes Bethel, and Hank Childs, “Hybrid
parallelism for volume rendering on large-, multi-, and many-
core systems,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 18, no. 1, pp. 17–29, 2012.

[70] Junpeng Wang, Fei Yang, and Yong Cao, “Cache-aware sam-
pling strategies for texture-based ray casting on gpu,” in
Large Data Analysis and Visualization (LDAV), 2014 IEEE
4th Symposium on. IEEE, 2014, pp. 19–26.

[71] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard
Gröller, “Memory efficient acceleration structures and tech-
niques for cpu-based volume raycasting of large data,” in
Volume Visualization and Graphics, 2004 IEEE Symposium
on. IEEE, 2004, pp. 1–8.

[72] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek,
and Hans-Peter Seidel, “Faster isosurface ray tracing us-
ing implicit kd-trees,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 11, no. 5, pp. 562–572, 2005.

[73] Michael P Garrity, “Raytracing irregular volume data,” ACM
SIGGRAPH Computer Graphics, vol. 24, no. 5, pp. 35–40,
1990.

[74] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas
Ertl, “Hardware-based ray casting for tetrahedral meshes,”
in Proceedings of the 14th IEEE Visualization 2003 (VIS’03).
IEEE Computer Society, 2003, p. 44.

[75] Philipp Muigg, Markus Hadwiger, Helmut Doleisch, and Ed-
uard Gröller, “Interactive volume visualization of general
polyhedral grids,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 17, no. 12, pp. 2115–2124, 2011.

[76] Saulo Ribeiro, André Maximo, Cristiana Bentes, Antonio
Oliveira, and Ricardo Farias, “Memory-aware and efficient
ray-casting algorithm,” in Computer Graphics and Image
Processing, 2007. SIBGRAPI 2007. XX Brazilian Symposium
on. IEEE, 2007, pp. 147–154.

[77] Brad Rathke, Ingo Wald, Kenneth Chiu, and Carson Brown-
lee, “SIMD Parallel Ray Tracing of Homogeneous Polyhe-
dral Grids,” in Eurographics Symposium on Parallel Graph-
ics and Visualization, C. Dachsbacher and P. Navrátil, Eds.
2015, The Eurographics Association.

[78] “Mesa 3d graphics library,” June 2015.
[79] “Eecs 487 pa1: Rasterization,” Dec. 2015.
[80] Chris Wylie, Gordon Romney, David Evans, and Alan Er-

dahl, “Half-tone perspective drawings by computer,” in Pro-
ceedings of the November 14-16, 1967, fall joint computer
conference. ACM, 1967, pp. 49–58.

[81] Juan Pineda, “A parallel algorithm for polygon rasterization,”
SIGGRAPH Comput. Graph., vol. 22, no. 4, pp. 17–20, June
1988.

[82] Intel, “Openswr,” 1999.
[83] Samuli Laine and Tero Karras, “High-performance software

rasterization on gpus,” in Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics, New
York, NY, USA, 2011, HPG ’11, pp. 79–88, ACM.

[84] Hendrik A Schroots and Kwan-Liu Ma, “Volume rendering
with data parallel visualization frameworks for emerging high
performance computing architectures,” in SIGGRAPH Asia
2015 Visualization in High Performance Computing. ACM,
2015, p. 3.

[85] Steven P Callahan, Milan Ikits, João Luiz Dihl Comba, and
Claudio T Silva, “Hardware-assisted visibility sorting for un-
structured volume rendering,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 11, no. 3, pp. 285–295,
2005.

[86] André Maximo, Ricardo Marroquim, and Ricardo Farias,
“Hardware-assisted projected tetrahedra,” in Computer
Graphics Forum. Wiley Online Library, 2010, vol. 29, pp.
903–912.

[87] Peter L Williams, “Visibility-ordering meshed polyhedra,”
ACM Transactions on Graphics (TOG), vol. 11, no. 2, pp.
103–126, 1992.

[88] Hank Childs, Mark Duchaineau, and Kwan-Liu Ma, “A scal-
able, hybrid scheme for volume rendering massive data sets,”
in Proceedings of the 6th Eurographics Conference on Par-
allel Graphics and Visualization, Aire-la-Ville, Switzerland,
Switzerland, 2006, EGPGV ’06, pp. 153–161, Eurographics
Association.

[89] M. Larsen, S. Labasan, P. Navrátil, J. S. Meredith, and
H. Childs, “Volume rendering via data-parallel primitives,”
in Proceedings of the 15th Eurographics Symposium on Par-
allel Graphics and Visualization, Aire-la-Ville, Switzerland,
Switzerland, 2015, PGV ’15, pp. 53–62, Eurographics Asso-
ciation.

[90] Jeremy S Meredith, Sean Ahern, Dave Pugmire, and Robert
Sisneros, “Eavl: the extreme-scale analysis and visualization
library,” 2012.

[91] Ulrich Neumann, “Parallel volume-rendering algorithm per-
formance on mesh-connected multicomputers,” in Parallel
Rendering Symposium, 1993. IEEE, 1993, pp. 97–104.

[92] Kwan Liu Ma, James S Painter, Charles D Hansen, and
Michael F Krogh, “A data distributed, parallel algorithm for
ray-traced volume rendering,” in Proceedings of the 1993
symposium on Parallel rendering. ACM, 1993, pp. 15–22.

[93] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma, “Massively
parallel volume rendering using 2–3 swap image composit-
ing,” in High Performance Computing, Networking, Storage
and Analysis, 2008. SC 2008. International Conference for.
IEEE, 2008, pp. 1–11.

[94] Tom Peterka, David Goodell, Robert Ross, Han-Wei Shen,
and Rajeev Thakur, “A configurable algorithm for parallel
image-compositing applications,” in Proceedings of the Con-
ference on High Performance Computing Networking, Stor-
age and Analysis, New York, NY, USA, 2009, SC ’09, pp.
4:1–4:10, ACM.

[95] Kenneth Moreland, Wesley Kendall, Tom Peterka, and Jian



29

Huang, “An image compositing solution at scale,” in Pro-
ceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, New
York, NY, USA, 2011, SC ’11, pp. 25:1–25:10, ACM.

[96] Paul Navrátil, Donald Fussell, Calvin Lin, and Hank Childs,
“Dynamic Scheduling for Large-Scale Distributed-Memory
Ray Tracing,” in Proceedings of EuroGraphics Symposium
on Parallel Graphics and Visualization (EGPGV), Cagliari,
Italy, May 2012, pp. 61–70, Best paper award.

[97] Paul Navrátil, Hank Childs, Donald Fussell, and Calvin Lin,
“Exploring the Spectrum of Dynamic Scheduling Algorithms
for Scalable Distributed-Memory Ray Tracing,” IEEE Trans-
actions on Visualization and Computer Graphics (TVCG),
vol. 20, no. 6, pp. 893–906, June 2014.

[98] Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock,
Mark Howison, Prabhat, Gunther Weber, and E. Wes Bethel,
“Extreme Scaling of Production Visualization Software on
Diverse Architectures,” IEEE Computer Graphics and Appli-
cations (CG&A), vol. 30, no. 3, pp. 22–31, May/June 2010.

[99] Mark Howison, E. Wes Bethel, and Hank Childs, “Hybrid
Parallelism for Volume Rendering on Large-, Multi-, and
Many-Core Systems,” IEEE Transactions on Visualization
and Computer Graphics (TVCG), vol. 18, no. 1, pp. 17–29,
Jan. 2012.

[100] Mark Howison, E. Wes Bethel, and Hank Childs, “MPI-
hybrid Parallelism for Volume Rendering on Large, Multi-
core Systems,” in Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV), Norrköping, Sweden,
Apr. 2010, pp. 1–10, One of two best papers.


