
Oral Comprehensive Exam
Position Paper

Performance Analysis of Many-Task Runtimes

NIᴄHᴏᴌᴀS A. CHᴀIᴍᴏᴠ
nchaimov@cs.uoregon.edu
University of Oregon
January 27, 2016

1 Introduction

Parallel programming is difficult. Switching from sequential to parallel program-
ming introduces entire new classes of errors for the programmer to make, such as
deadlock and race conditions, which are difficult to debug and complicate testing
and correctness proofs [80]. Yet there are entire classes of programs with compu-
tational demands so great that sequential solutions are infeasible. We do parallel
programming because we care about performance.

How do we know if we are getting good performance? We must observe the
execution of our programs to determine if they are making good use of the resources
available to them. Once we have made observations, how can we use those obser-
vations to improve performance? We can use autotuning to identify variants and
parameters that give better performance than others, but this process itself is slow,
so we can attempt to synthesize performance data into empirical models to guide
the process. Alternately, we may ask not simply for better performance, but for an
explanation of performance: automated performance diagnosis. These techniques
are all well-developed for the current high-performance computing environment,
but the advent of exascale computers will be a disruptive change which will require
new techniques for performance monitoring and analysis.

In this paper, I first introduce the models of parallel programming which are
currently in wide use. I then discuss how existing systems collect performance in-
formation. I then discuss automated systems which make use of performance data
once it has been collected: autotuning systems, which measure the performance of
many implementations of a code to identify good-performing variants; automated
modeling systems, which construct models from performance data by which the
performance of code can be predicted without running it; and performance diag-
nosis systems, which reason about performance data to arrive at hypotheses about
the causes of bad performance. I then discuss the challenges of the coming exascale
era of high-performance computing, and discuss new parallel programming mod-
els which are emerging to meet those challenges. Finally, I discuss problems with
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existing systems for collecting and making use of performance data in the exascale
era and describe the features necessary for future such systems.

2 Current Programming Models

All current supercomputers consist of many nodes, each of which contain many
individual processors, which are often supplemented by accelerator devices such as
GPUs; the two fastest such systems, Tianhe-2 and Titan, contain 3.12 million spread
across 16,000 nodes and 560,640 cores spread across 18,688 nodes, respectively, with
the former equipped with Intel Xeon Phi accelerators and the latter with NVIDIA
K20 GPUs [115]. Thus we need ways of exploiting available parallelism both on-
node and between nodes. By far the most popular solutions for this are OpenMP
and MPI [87].

2.1 Shared Memory: OpenMP
OpenMP [91] is the most common method of exploiting on-node parallelism.

It uses the fork-join model: programs begin executing sequentially, eventually fork
into multiple threads of execution which operate in parallel before joining back into
a single, sequential thread of execution (Figure 1). It uses a shared memorymodel: all
threads of execution within a program share the same address space and access the
same memory. It is directive-based: parallelism is expressed by taking what would
otherwise be an ordinary, purely sequential program and annotating it with direc-
tives indicating which parts of the program should be executed in parallel and how
access to shared memory should be managed. Thus the code

do_work();

can be made to run multiple times in parallel by adding an annotation
#pragma omp parallel
do_work();

causing multiple threads to be spawned, each of which execute the function do_work
before joining, with the main flow of program execution continuing sequentially
once all the threads have finished do_work.

When running several instances of do_work in parallel, it may happen that the
separate instances attempt to use the same memory. OpenMP provides several an-
notations for controlling access to memory: #pragma omp criticalmarks sections
of code which only one thread should be allowed to execute at a time. #pragma omp
single marks sections which only one thread should execute at all, while #pragma
omp mastermarks sections which a specific thread – the one which existed when the
program started and will continue to exist after leaving the parallel region – should
execute. shared and private clauses indicate whether threads should share one copy
of a variable or should each operate on a local copy, while reduction clauses specify
how per-thread local variables should be reduced to a single value which persists in
the master thread after the end of a parallel region.
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Parallel Region Parallel Region

Figure 1: The Fork-Join model as used in OpenMP. There is ordinarily one thread
of execution, which forks to become multiple threads in parallel regions. When
exiting a parallel region, the threads join back into a single thread of execution.

In the above example, every thread executes the exact same code, which is al-
most certainly not what we want – different threads should process different data.
Threads can be distinguished by a thread number which can be retrieved with a
call to omp_get_thread_num, so that threads can identify which data they should be
processing, but the more common usage is to use work-sharing constructs which
automatically distribute work to threads, so that if we have a loop

for(int i = 0; i < 1000; ++i) {
do_work(x[i]);

}

we can add a directive
#pragma omp parallel for shared(x)
for(int i = 0; i < 1000; ++i) {

do_work(x[i]);
}

which causes the iterations of the loop to be automatically distributed across the
threads. Several clauses are provided which allow the programmer to customize this
distribution.

2.2 Distributed Memory: MPI
MPI [35] is the most common method of exploiting between-node parallelism.

It uses the communicating sequential processes model: multiple instances of a program
begin executing simultaneously, but each instance executes sequentially. These pro-
cesses coordinate by sending messages to one another (Figure 2). It uses a distributed
memorymodel: every process has its own address space, so every process has its own
copy of each variable and changing a variable in one process does not change the
value in any other process. A process may change the state of another process only
by sending it a message. It provides a low-level API: unlike OpenMP, which pro-
vides directives which modify execution of an otherwise sequential program, MPI
programs contain explicit API calls which carry out communication.
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MPI processes all execute the same code. Processes can distinguish themselves
by calling MPI_Comm_rank to obtain their rank. Unlike OpenMP, this is the only
way that processes can determine that they should process different data: there is
no equivalent to OpenMP’s loop constructs, so the programmer is responsible for
explicitly partitioning work.

Messages can be point-to-point or collective. Point-to-point messages are sent
by a process through a call to MPI_Send, whose arguments specify the source, size,
type and tag of the data to be sent. A corresponding MPI_Recv call must be exe-
cuted on the destination to receive the message. Both calls are blocking; neither the
sender nor the receiver will continue executing until the communication has com-
pleted. This limits the possibility for overlapping communication and computation
and creates the potential for deadlock when communication is cyclic, so nonblock-
ing MPI_ISend and MPI_IRecv versions are also provided. A set of collectives are also
provided for efficient communication between multiple ranks.

MPI also supports one-sided communication, in which data can be sent to (put)
or retrieved from (get) without an explicit call on the remote rank, using Remote
Direct Memory Access (RDMA). In this mode, memory must be pre-registered
(MPI_Win_create) to make it a valid target of subsequent MPI_Put and MPI_Get calls.
These calls are always nonblocking, and explicit synchronization (MPI_Win_fence)
is required to ensure that the operations have completed before using the values sent
or retrieved through one-sided communication.

2.3 Partitioned Global Address Space: UPC
A disadvantage to MPI is lack of orthogonality: local communication occurs

through direct access to the local memory, using ordinary features built in to the
language, while remote communication occurs through API calls. The Partitioned
Global Address Space – or PGAS – approach uses a common syntax for local and re-
mote communication [131]. The address space is global – every process can access
memory in every process – but is also partitioned: every address is owned by a par-
ticular process, and a pointer consists not only of an address but also a tag indicating
who the owner is. When a process reads or writes through a pointer to locally-
owned memory, this is translated into a local memory address as normal. When a
process reads or writes through a pointer to remotely-owned memory, this is trans-
lated into a message sent over the network which triggers a read or write of the

Figure 2: The Communicating Sequential Processes model as used in MPI. There
are multiple threads of execution (black), each of which runs sequentially. They
communicate with one another by sending messages (green).
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address in its owning process and, in the case of a read, a reply message containing
the value stored at the address.

Unified Parallel C [116] is a language which extends C99 [59] with support for
shared pointers to a partitioned global address space and a variety of work-sharing
constructs similar to those provided by OpenMP. As in MPI, multiple copies of the
same executable are launched, and these execute the same code. In UPC, pointers
and arrays can be declared shared, making them globally available. For example,

shared double a[3*THREADS];

declares an array a of doubles with three elements per thread (a UPC thread cor-
responds to an MPI rank) which is globally accessible. By default, ownership – or
affinity – of memory in an array is assigned cyclically, so that the memory located
at the address a + i is physically located on thread i % THREADS. Arrays can also be
divided into blocks of elements which are distributed cyclically, or each thread can
be assigned a contiguous block of the array.

UnlikeMPI, UPC provides built-in support for partitioning work across threads.
The upc_forall loop, when encountered by a thread, runs only those loop iterations
which have affinity to the thread that encountered the loop. For example,

shared double x[N], y[N], z[N];
// initialize x and y
int main() {

upc_forall(int i=0; i < N; ++i; i) {
z[i] = x[i] + y[i];

}
}

resembles an ordinary C for loop with the exception of an additional parameter to
the loop. This parameter specifies the affinity, and the value of i here means that
a thread encountering the loop will run all iterations for which i % THREADS ==
MYTHREAD. LikeMPI, UPC provides synchronization primitives such as UPC_barrier
and a variety of collective communication operations.

2.4 Accelerators
As noted above, the current generation of top supercomputers feature accelera-

tors, as will the next generation of supercomputers which will be installed in 2017
and 2018. Accelerators generally feature a larger number of cores than general pur-
pose CPUs, but each core is less capable than those in a CPU.

2.4.1 CUDA

NVIDIA GPUs are available with up to 4,096 cores, but these cores do not have
all features typical of a CPU core: notably, cores are not capable of independently
fetching and scheduling instructions. Rather, a group of cores share fetch and sched-
ule hardware and always execute identical instructions during the same clock cycle,
differing only in the memory addresses read and written by those instructions. Fig-
ure 3 shows the NVIDIA architecture: all of the cores share L2 cache and access to
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the memory and PCIe buses, while sets of 32 cores share L1 cache, fetch and dis-
patch units, registers, load-store units and Special Function Units, while each core
has its own floating point and integer arithmetic units. AMD GPUs (Figure 4) use
a similar architecture.

To allow programming NVIDIA GPUs, NVIDA developed CUDA [89], C
language extensions and APIs for writing code which will execute on a GPU and for
transferring data between host and GPU memories. CUDA kernels are C functions
which are annotated __global__, indicating that they will run on a GPU but can
be invoked from the host. A kernel function differs from an ordinary function in
that many copies of the function will execute simultaneously. A given instance of
the function must examine its local copies of the blockIdx and threadIdx variables
to determine which portions of the input data it should process.

CUDAmaintains separatememory spaces for the host and each device. Running
a kernel on a device then involves the host explicitly allocating memory on the
device (cudaMalloc), copying input data to the device (cudaMemcpy), specifying how
the input data is to be partitioned into blocks, launching the kernel, and copying
output data back onto the host.

2.4.2 Xeon Phi

The Intel Xeon Phi accelerator architecture features fewer cores than are found
in GPUs (61 cores and 244 hardware threads) which are considerably more com-
plex than GPU cores but which are still simpler than the cores typically found in a
host processor [97]. The cores are connected together by a bidirectional ring bus,
which they share with a distributed, globally coherent L2 cache (Figure 5). Each
core features four hardware threads, can dispatch two instructions per cycle, and is
required to switch between hardware threads once per cycle, which results in the
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Figure 3: The architecture of the NVIDIA Fermi GPU family.
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superscalar in that execution resources can issue memory access, arithmetic and
other operations from threads running on the same core, but not necessarily the same
thread and in this sense they are throughput architectures optimizing for the through-
put of a set of threads over the latency of one.

Like the mobile GPUs on the market, the high-end AMD and NVIDIA models
comprise multiple cores. Defining a core as the closest reasonable mapping to the
equivalent in a CPU, the HD7970 has 32 cores (each with 4 vector units) and the
NVIDIA design has 16 (with two vector units and clocked at double rate). Each core
has a scratchpad memory buffer known as local memory in OpenCL which is allo-
cated on a per-workgroup basis.

In Figure 3.9 we see a rough comparison of state usage in different styles of de-
vice. It should be clear that the high-end GPU design is heavily weighted towards
thread state: allowing fast switching between multiple program instances and high
throughput.

FIGURE 3.11

The AMDHD7970 architecture. The device has 32 cores in 8 clusters. Each core consists of a
scalar execution unit, that handles branches and basic integer operations, and four SIMD
ALUs. Each of the four SIMD units may have an instruction issued per cycle and the schedule
selects a single instruction from one of the active hardware threads, or “wavefronts” to issue to
the SIMD unit, as well as a scalar operation and a memory operation.

60 CHAPTER 3 OpenCL device architectures

Figure 4: The architecture of the AMD Radeon 7000 GPU family.

requirement that enough work be available that instructions can actually be issued
every cycle – if an insufficient number of threads are used, the issuing hardware will
remain idle every other cycle. The cores use in-order execution but feature SIMD
units with twice the width of current x86-64 chips.

Xeon Phi accelerators themselves run Linux and can be programmed through
several mechanisms, including a nativemode using traditionalMPI and/orOpenMP,
as well as an offload mode [88] which uses pragma annotations and/or language
keywords to specify work which should be executed on the accelerator, from which
the compiler will automatically synthesize the necessary memory copy and kernel
launch code.

2.4.3 Cross-architecture Programming Models

There are several projects aimed at providing programming models which allow
a single code to target multiple types of accelerators. OpenCL [107], an industry
standard maintained by the Khronos group, is one such model. Its structure and
syntax are similar to those of CUDA, but with additional abstractions for devices,
compute units, processing elements, and private, local and global memories which a
driver for a device maps onto physical hardware. Drivers are available for many de-
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! Power management capabilities.
! Performance monitoring capabilities for tools like Intel VTunet Amplifier XE 2013.

Keeping the “Ninja Gap” under control
On the premise that parallel programming can require Ninja (expert) programmers, the gaps in
knowledge and experience needed between expert programmers and the rest of us have been
referred to as the “ninja gap.” Optimization for performance is never easy on any machine, but it is
possible to control the level of complexity to manageable levels to avoid a high ninja gap. To
understand more about how this ninja gap can be quantified, you might read “Can Traditional
Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?” (Satish
et al. 2012). The paper shares measurements of the challenges and shows how Intel Xeon Phi
coprocessors offer the advantage of controlling the ninja gap to levels akin to general-purpose pro-
cessors. This approach is able to rely on the same industry standard methods as general-purpose
processors and the paper helps show how that benefit can be measured and shown to be similar to
general-purpose processors.

PCIe
Client
Logic

TDTD

Core

L2

Core

L2

Core

L2

Core

L2

G
D

D
R

 M
C

G
D

D
R

 M
C

G
D

D
R

 M
C

G
D

D
R

 M
C

TD TD

TD
TD

C
ore

L2

C
ore

L2

GDDR MC

GDDR MC
TD

TDC
or

e

L2

C
or

e

L2

GDDR MC

GDDR MC

FIGURE 1.9

Microarchitecture of the Entire Coprocessor.

9Keeping the “Ninja Gap” under control

microarchitecture. In practice, use of at least two threads per core is nearly always
beneficial. As such, it is much more important that applications use these multiple hardware
threads on Intel Xeon Phi coprocessors than they use hyper-threads on Intel Xeon
processors.

! Cores interconnected by a high-speed bidirectional ring.
! Cores clocked at 1 GHz or more.
! Cache coherent across the entire coprocessor.
! Each core has a 512-KB L2 cache locally with high-speed access to all other L2 caches

(making the collective L2 cache size over 25 MB).
! Caches deliver highly efficient power utilization while offering high bandwidth memory.

• Special instructions in addition to 64-bit x86:
! Uniquely wide SIMD capability via 512-bit wide vectors instead of the narrower MMXt,

Intels SSE, or Intels AVX capabilities.
! High performance support for reciprocal, square root, power, and exponent operations.
! Scatter/gather and streaming store capabilities to achieve higher effective memory

bandwidth.
• Special features:

! On package memory controller supports up to 8 GB GDDR5 (varies based on part).
! PCIe connect logic is on-chip.

x86 specific logic < 2% of core + L2 area
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FIGURE 1.8

Architecture of a Single Intels Xeon Phit Coprocessor Core.
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Figure 5: The architecture of the Intel Xeon Phi Knights Corner family. Images
provided by Intel.

vices, including NVIDIA and AMD GPUs, Intel Xeon Phis, Intel and AMD CPUs,
as well as FPGAs [30, 25]. Since the target hardware is not necessarily known at
compile time, kernel code is stored as a string and is provided to the device driver
for compilation just prior to kernel invocation.

In addition to low-level approaches to portability, higher-level approaches also
exist. OpenACC [47] is a pragma-based model for device programming, similar to
OpenMP, in which loops are annotated to indicate that their iterations should exe-
cute in parallel on accelerator devices. As accelerator devices have separate memory
spaces from the host, additional data directives are added to specify data to be copied
and allocated on the device. OpenMP itself is also being extended with device sup-
port through target directives [74].

3 Capturing Performance Data

Oncewe have a parallel program –most likely written using one of the program-
ming models discussed in Section 2 – how can we determine whether it performs
well? To do this, we must first determine when events occur during execution of
the program by means of instrumentation [85].

To instrument code, we cause additional instructions to be executed which
record events and facts about those events, such as the time or number of cycles
elapsed between two events. There are several ways to accomplish this. We can
use source code instrumentation, where we modify the source code, inserting function
calls at the beginning and end of functions or around loops. In order for facts about
events to be useful, we must be able to map events back onto the source code so
that we know where changes should be made to address any performance problems
found. Directly modifying the source code allows us to most easily map events back
onto source, since each event generated by inserted code can be given a unique
name. However, source code instrumentation requires that we have the original
source available, and that we are able to parse the source code in order to modify
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it. Source code instrumentation is supported by systems such as TAU [103] and
VampirTrace [68].

Alternately, we can modify the binary, either through rewriting prior to exe-
cution or dynamically at runtime, through libraries such as Dyninst [96] as used
by TAU, or through performance analysis tools which directly implement binary
analysis, such as HPCToolkit [2]. Such systems analyze the binary, identifying entry
and exit points for functions and inserting calls to log events. This type of approach
makes it straightforward to dynamically adjust instrumentation points at runtime
through self-modifying code, allows instrumentation of binaries for which the orig-
inal source is not available or which is written in a language for which automated
source instrumentation tools are not available, and eliminates overhead for runs in
which instrumentation is not desired (in which case the binary is run unmodified).
However, it is more difficult to map events back onto the source code, as compiler
optimizations applied in creating the binary may disrupt the relation between in-
structions and the source line which caused them to be emitted.

For systems such as MPI, OpenMP, and UPC which feature runtime libraries,
instrumentation can be performed at the runtime level rather than the application
level. This can be accomplished by preloading a library which exposes the same
interface as the actual runtime which logs events before forwarding function calls
to the actual runtime. Such interposed libraries include mpiP for MPI [117] and
ompP for OpenMP [37]. Runtimes can also expose callback interfaces through
which a performance monitoring tool can register functions which will be called by
the runtime when certain events occur, such as OMPT for OpenMP [32], CUPTI
for CUDA [90, 76], and the OpenCL event profiling interface [58] and GPUPer-
fAPI [3] for OpenCL.

Finally, we can use sampling, where we request that an interrupt be called peri-
odically or when a hardware performance counter reaches a certain value or over-
flows. The interrupt transfers control to the performance monitoring tool, which
can record the address which was being executed prior to the interrupt. Sampling
allows fine control over the tradeoff between overhead and error: by increasing
the sampling rate, we get a more precise picture of what the program is doing and
are less likely to miss events which occur infrequently, while at the same time we
increase the proportion of time spent running the monitoring routines instead of
program code. By decreasing the sampling rate, we reduce overhead at the cost of
increased likelihood of missing infrequent events.

Any of these techniques – source-level instrumentation, binary instrumentation,
library interposition, runtime instrumentation and sampling – can be used to gen-
erate events. When events are generated, what should the performance monitoring
system do with them? Generally, they will be used to generate either a profile or a
trace [85]. In profiling, events mapped to a particular code region are used to create
an aggregate measure of performance for that code region [44]. If function-level
instrumentation is used, then, the profile might record the number of calls to the
function and the time spent in that function aggregated across all calls to it. There
are different choices to be made as to the level at which aggregation occurs. For
example, in call-path profiling [50], the performance monitoring system stores sepa-
rate profiles for a function depending on the call path through which the function
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was reached, so that if A() calls Z() and B() calls Z() we would see two separate
profiles for Z(). This can help account for input-dependent behavior, as different
uses of a function may use different data and thus exhibit different performance char-
acteristics. In phase-based profiling [75], separate profiles are stored for phases of an
application, such as particular algorithms or iterations of iterative algorithms.

In tracing, events are simply separately recorded along with a timestamp [44].
In a distributed system, traces collected on separate nodes must be merged so as to
maintain ordering on systems which do not have synchronized clocks. Traces pro-
vide a large amount of information with which to diagnose performance problems
and allow phases of program execution to be automatically discovered: given the
full list of events, we can infer causality between events. However, the volume of
data generated can be exceptionally large, particularly for runs using large portions
of a supercomputer. Traces grow both with the number of processes used (more
processes each generating events) and with the runtime of the application.

4 Autotuning

Once we have a mechanism to acquire performance data, how can we use that
data to improve performance? One approach is automatic performance tuning, or au-
totuning [9]. Autotuning arises from the idea that the best-performing implementa-
tion of some code is not the same everywhere: it depends on the architecture of the
processors on which the code will execute, the operating system, networking infra-
structure, and other system parameters [125], on properties of the input data such
as size [105] or the number and distribution of nonzero elements in a sparse ma-
trix [104], and on the interaction between system parameters and input data. Many
runtimes, such as MPI and OpenMP, also have parameters which can be set to con-
trol scheduling of work or use of network resources [18]. In an autotuning system,
we generate code variants and/or modify runtime parameters and perform instru-
mented runs, which we use to determine which variants and parameters result in
the best performance. The space of possible variants and parameters is very large for
all but trivial problems, so heuristic search algorithms are used to avoid exhaustive
enumeration and testing of the entire space.

Basu et al. [9] identify three categories of autotuning systems: self-tuning libraries,
in which autotuning support is built directly in to a library and is run at install time or
runtime; programmer-directed autotuning, in which the programmer of a piece of soft-
ware exposes runtime parameters to a search system; and compiler-directed autotuning,
in which a library of code variants are generated by a compiler or source-to-source
translator. They envision a system in which all of these techniques can be combined
through the use of a centralized search engine and performance database (Figure 6).

4.1 ATLAS
One approach to autotuning is to build autotuning support directly into a library.

An early and widely-used such library is the linear algebra library ATLAS [122] (Au-
tomatically Tuned Linear Algebra Software). Traditionally, hardware, operating
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expressing code variants and optimization parameters
directly in the application, directing the compiler’s optimiza-
tion and translation process, or even developing compiler
decision algorithms and new high-level transformations. An
average user can use the power of self-tuning libraries and the
compiler-directed process to tune applications. Users can also
benefit from feedback from the autotuning system, indicating
why the compiler failed to perform specific optimizations, or
feedback from the search to further guide pruning.

The following sections expand on our view of a unified
autotuning framework. Section 3 focuses on improving
generality. In Section 4 we discuss various techniques to
manage the autotuning related overheads, and in Section
5 we describe methods to improve useability of autotuning.

3. Expanding generality

A mainstream autotuning tool should be performance por-
table across a large number of popular hardware platforms,
and also compatible with common programming lan-
guages. It needs to support programmer-directed (libraries
and applications) and compiler-directed autotuning in a
seamless way. We should expand the compiler’s capability
as much as possible; for example, to support applications
with irregular and data-dependent memory access patterns.
To provide a seamless integration, there should be mechan-
isms for the programmer to interface with the autotuning
system and guide its efforts. Although there exist a multi-
tude of autotuning systems with demonstrated success, a
unified autotuning framework that integrates all of these

features does not yet exist. In this section, we describe the
current state of the art and what sort of technological
advances are needed to achieve these goals.

3.1. State of the art: Express autotuning search space

For both programmer-directed and compiler-directed
autotuning, a key feature of a system is the manner in
which the search space is described using mechanisms for
expressing or deriving code variants and optimization
parameters. Many different approaches are used for this
purpose.

3.1.1. Library-specific and kernel-specific autotuners. The earli-
est autotuning work in PhiPAC and ATLAS focused on
deriving tuned versions of widely used dense linear algebra
library functions for different architectures (Bilmes et al.,
1997; Whaley and Whalley, 2005). Dense linear algebra
had already been retargeted by expert performance pro-
grammers to a variety of architectures for over a decade.
Using the knowledge of effective optimization strategies,
these mappings were encapsulated into kernel-specific
code generators, typically implemented in scripting lan-
guages. Subsequently, domain-specific autotuners for signal
processing, FFTW and SPIRAL, employ mathematical
transforms and autotuning to optimize for particular archi-
tectures (Frigo, 1999; Püschel et al., 2005). STAPL (Buss
et al., 2010) provides a number of parallel algorithms which
are adaptively tuned for the underlying architecture and
input data set using machine learning techniques (Thomas
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Figure 1. Unified autotuning system.
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Figure 6: A hypothetical architecture for a unified autotuning system, in which
multiple types of autotuning are present in a single application and share a search
engine and performance database. From [9]

system and compiler vendors have generated hand-tuned linear algebra routines for
developers using their products. ATLAS represents a different approach, shipping a
variety of parameterized function implementations which are tested during compi-
lation. The developers of ATLAS identify four requirements for the application of
empirical optimization [121]:

• Isolation of performance-critical routines.

• A method of adapting software to differing environments.

• Robust, context-sensitive timers.

• Appropriate search heuristics.

ATLAS performs its tuning at compile time. This is beneficial in that it does
not introduce any delays at runtime due to the need to select an implementation at
that time, but this also limits the ability of ATLAS to adapt to a changing execution
environment or to the input data, which is only known at runtime (for example, to
adapt to different sizes of input matrices, if a given program tends to use matrices of
one of a few fixed sizes.)
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4.2 FFTW
Another approach is that used in FFTW3 [36], a Fast Fourier Transform library.

In FFTW, the user of the library invokes the library with a description of the prob-
lem to be solved (e.g., which discrete transform is to be calculated) and the sizes and
memory layouts of the input arrays. FFTW includes code, called the planner, which
will then test many different functions for calculating the desired transform on prob-
lems of the indicated size and layout, and select and return the best-performing one.

This technique allows FFTW to adapt to changes to its execution environment
(such as in the case of migration) and to properties of the input data. However, if
only a small number of transforms of a particular type and for particular input types
are performed, then the cost of performing the tests will outweigh the increased
performance from using tuned variants, and overall program execution time will be
slower.

4.3 SPIRAL
Spiral [94] is a general-purpose digital signal processing library in which DSP al-

gorithms are expressed in a domain specific language, SPL, which is ultimately trans-
lated into C or Fortran. Optimizations can be applied at both the DSL and target
language levels and can take into consideration properties of the domain that enable
optimizations that are not generally applicable to all domains. Some optimizations
use a static cost model to determine whether they should be applied, while others use
search algorithms to explore the space of optimizations, for which exhaustive and
random search, dynamic programming, evolutionary algorithms and hill-climbing
search algorithms are provided.

The evolutionary algorithm mode is particularly interesting: genes are repre-
sented as ruletrees, which specify the recursive structure of a transform with leaf
nodes representing particular implementations. Mutations are made by swapping
an implementation for another, while cross-breeding occurs by swapping subtrees.
Additionally, SPIRAL uses empirically-generated models by timing subtrees within
a ruletree.

4.3.1 OSKI

Oski [118] is a sparse linear algebra kernel library which uses a similar approach
to FFTW, performing tuning at runtime based upon known input parameters. The
library provides a set of functions for specifying hints about input sizes, coefficient
values, data formats, and the number of times different operations are expected to be
performed. The tuning process can then generate specialized variants, and, because
the estimated frequency of operations is provided, OSKI can determine how much
time should be spent on tuning particular operations based on whether it is likely to
be executed enough times to amortize the cost of tuning.

pOSKI [16], a system for generating optimized sparse matrix-vector multipli-
cation routines, combines offline autotuning with model-driven online autotuning
combined with a history database. The offline tuning, which happens when the
library is initially installed, tests combinations of storage format (CSR or BCSR),
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size of register blocks, prefetching policy, and SIMDization policy for a set of likely
block sizes. At runtime, when the actual matrix is available and its sparsity therefore
known, a simple model is used to select a block size, and therefore an implementa-
tion from among the pre-generated set of optimized implementations.

4.3.2 Orio

Orio [51] is an autotuning system providing pluggable code generators and
search algorithms and using an annotation-based approach to specifying code trans-
formations. Input code in a language such as C or Fortran is annotated with special
comments indicating that the annotated code should be replaced with code gener-
ated by Orio according to specified transformation. A loop, then, can be annotated
with a Loop transformation specifying that a version of the loop written in a re-
stricted subset of C or a domain-specific language should be unrolled by some factor
and tiled by some factor.

These annotations can be left with parameters (such as tile factor) unspecified and
be wrapped in a tuning specification, which specifies the range of values valid for each
parameter, what search algorithm should be used, and how the kernel can be tested
in isolation: how input data can be generated, and the sizes of input data which
should be tested. Each such tuning specification then describes a set of experiments,
the output of which are tuned variants which are inserted into the source code,
replacing the original implementation. As the tuning specifications and annotations
are comments, the original source code can also be compiled unmodified to give the
original implementation. Transformations are also available to generate CUDA [77]
and OpenCL [19] code for use on accelerators.

4.3.3 CHiLL + Active Harmony

Active Harmony [114] is a general purpose search engine capable of rapidly ex-
ploring the parameter search space by testing multiple hypotheses in parallel, using
the Parallel RankOrdering algorithm to evaluate potential parameters, which is used
both for online tuning of application and runtime parameters and for offline tuning
by providing parameters to an external code generator. The user can specify param-
eters, ranges for the parameters, and constraints restricting the values parameters can
take on. Active Harmony runs using a client-server architecture, in which a cen-
tralized Harmony server communicates with, and provides parameters to, multiple
clients running on different nodes in a cluster. Using Parallel Rank Ordering, the
system can provide different parameter values to different nodes in the cluster, al-
lowing it to evaluate the search space in parallel. When used with a code generator,
code servers can also be configured, which perform compilation of code variants
and distribute compiled object files to the execution nodes [52].

Active Harmony has been used with CHiLL [23], a code variant generator
which uses a “recipe” of high-level loop transformations which are applied together
to generate variants of a loop. CHiLL uses the ROSE compiler [95] internally to
parse code and applies transformations by making modifications to the ROSE AST.
It uses a polyhedral model of loop transformations, in which the order of opera-

13



Code (e.g., C, Fortran) with 
Embedded DSL Annotations

DSL 
Parser

Code 
Transformations

Sequence of (Nested) 
Annotated Regions

Code 
Generator

Optimized Application
CUDAFortranC OpenCL

Tuning 
Specification

best performing version

Run generated code versions

TAU HW 
CountersTransformed 

Code Search Engine

Figure 7: The architecture of Orio. From [19].

tions within nested loops are viewed as points inside a polyhedron, from which
semantically-equivalent loops evaluating nests in different orders can be generated
by applying geometric transformations to the polyhedron representing loop itera-
tions [46]. CHiLL recipes can be parameterized, and autotuning can be performed
by searching the space of parameters to available recipes. Transformations are avail-
able for generation of CUDA code through CUDA-CHiLL [100]. The combina-
tion of CHiLL and Active Harmony has also been used with the ROSE outliner, a
system which extracts regions of code within a function into independent functions
which can be separately tuned [113].
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code transformation parameters supplied by the Active Harmony server. The code
generated on-demand is compiled into a shared library. Once the new code is ready,
the application is run on the target machine. The application dynamically loads
the transformed kernel by using the dlopen/dlsym mechanism. Once the execution
is complete, the driver collects performance measurement and sends them to the
Active Harmony server. The process continues for a specified number of iterations
or until the search algorithm converges to a point in the search space. For parallel
search algorithm, we run multiple copies of the driver. The number of copies is
determined by the number of tunable parameters and the simplex size (which is, in
turn, determined by the available resources). The use of the shared library mecha-

Figure 8: The architecture of an autotuning system using ROSE to outline functions,
CHiLL to generate code variants, and Active Harmony to direct the search process.
From [113].

4.4 Periscope
The AutoTune project [83] is developing the Periscope Tuning Framework,

an extension to the earlier Periscope [11] performance analysis and diagnosis tool,
described in more detail in Section 6.1. The architecture of PTF is shown in Fig-
ure 9. In PTF, tuning plugins are registered which interact with a set of scenario
pools. Plugins can insert new scenarios into the created scenario pool; can pull created
scenarios, process them, and insert the result into the prepared scenario pool; can cre-
ate experiments from prepared scenarios, inserting them into the experiment scenario
pool; and, once the execution engine has run an experiment from that pool andmade
it available in the finished scenario pool, can pull the results and process them to create
a human-readable report.

15



332 R. Miceli et al.

Fig. 1. Simplified work flow of a tuning plugin

The predefined sequence has to cover all possible scenarios given the program-
ming models and parallel patterns supported for tuning, besides any preparation
steps required by the system (software and hardware) where the tool is running.
As a consequence, the full state machine is relatively complex. For illustration
purposes, a simplified version of PTF’s flow is presented in Figure 1.

All steps are involved in the creation and processing of the scenarios to be
experimented. Scenarios are stored in pools accessible by all plugins as well as
the frontend. These pools are:

– Created Scenario Pool (CSP): Scenarios created by a search algorithm;
– Prepared Scenario Pool (PSP): Scenarios already prepared for execution;
– Experiment Scenario Pool (ESP): Scenarios selected for the next experiment;
– Finished Scenario Pool (FSP): Scenarios executed.

All steps in a plugin’s workflow relate to the Tuning Plugin Interface (TPI). All
methods in this interface must be implemented by all plugins; PTF checks their
conformance at loading time. The TPI’s major methods are the following:

Initialize: This method is called when the frontend instantiates the plugin.
The plugin’s internal data structures, tuning space and search algorithms
are initialized and the tuning parameters are established.

Create Scenarios: From the defined variant space, the plugin generates the
scenarios using a search algorithm and inserts them into the CSP, so the
frontend can access them. The plugin combines the region, a variant, and
the objectives (e.g. execution time and energy consumption) to generate the
scenarios, using either a generic search algorithm (like exhaustive search)

Figure 9: Architecture of the Periscope Tuning Framework. From [83].

4.5 Insieme: Multi-Objective Optimization
The Insieme framework [49], unlike most auto-tuning frameworks, is designed

specifically for multi-objective optimization, which allows for objectives such as “min-
imize execution time used subject to constraints on the number of cores and the
amount of energy used”. When multiple objectives are present, the solution found
is not a single best-performing configuration but rather a Pareto frontier, a set of
points for which no objective can be improved without degrading some other ob-
jective. The best configuration given some particular set of tradeoffs is then always
found on the Pareto frontier. Genetic algorithms map well onto the problem of
finding the Pareto set [31], particularly differential evolution techniques in which
the rate of evolution for different parameters itself evolves.

4.6 Collective Tuning
An alternate approach is used by Fursin et al. in theirCollective Mind project [38].

Rather than enforcing a strict schema, they allow the user to encode measured char-
acteristics, choices, features and system state in JSON format [14], which can be used
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without requiring that a schema be provided. When in the course of a project a
schema becomes necessary, it can be provided, also in JSON format. The user can
provide modules which mediate between Collective Mind data and external tool.
These modules are gradually composed into a workflow which specifies the overall
experiments to be done. Collective Mind encompasses the earlier Crowdtuning [81]
and Collective Tuning [39] projects, which made available a more restrictive cen-
tral repository for performance data from the MILEPOST GCC compiler. The
compiler generates a library of compiled versions of functions with different opti-
mizations applied. At runtime, when a function of interest is executed, either the
currently known best version or a different, proposed version is randomly selected
and profiled, with the timings being sent to the central repository.

4.7 Online Adaptation
TheAbstract Data andCommunication Library [40] (ADCL) is used for runtime

tuning MPI applications. A library of variant implementations of a communication
routine, called a function set, is defined either by the library designer or the developer
of the application. ADCL then uses either brute-force search or parameter-at-a-time
search to evaluate the variants. In one case study [41], it was used to select from a set
of neighborhood communication routines (in which each rank communicates with
six neighbors in each iteration), which varied along three axes: the number of si-
multaneous communication partners (e.g., pair-at-a-time or all-to-all), mechanism
for handling messages with contents not contiguous in memory (e.g., by packing
the data into a contiguous array before communicating, or by defining a custom
data type), and the underlying data transfer routines used (e.g, blocking vs non-
blocking communication, two sided vs. one sided communication, etc.). Different
variants were selected for different architectures, network hardware, and problem
sizes. Interestingly, the best-performing variant for some configurations was the
worst-performing variant for another, demonstrating the importance of autotuning
in this case. The library includes pre-defined function sets for the standard MPI
collectives [12].

A later version of ADCL adds the ability to focus the search process using data
from previous runs [33]. The authors identify two primary obstacles to the use of his-
torical data: that the system may not have stored performance results for the particu-
lar execution environment and problem now being encountered, and that changing
conditions (such as degree of congestion on the network, or the physical location of
ranks as assigned by a batch scheduler) mean that even if the system is encountering
a problem which has been encountered before, the best performing variant as deter-
mined in the past may not be the best performing variant now. To work around
these problems, ADCL uses a distance metric to select good-performing variants
from history which are, according to that metric, most similar to the variant now
being encountered, and requires that performance be within a user-specifiable tol-
erance of that recorded in the history file. If not, search is repeated.

The Open Tool for Parameter Optimization [18] (OTPO) uses search algo-
rithms from ADCL to tune parameters exposed by the OpenMPI runtime. In Open-
MPI, many runtime tasks are delegated to modules, which implement different ver-
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sions of communication algorithms (such as collectives) and map MPI operations
onto lower-level network operations (such as for TCP, InfiniBand, Cray Gemi-
ni/Aries, etc.). These modules expose a set of tunable parameters, called MCA pa-
rameters, of which a typical installation will have several hundred. Using search al-
gorithms from ADCL, OTPO searches for parameters giving the best performance,
as measured by latency or bandwidth of network operations.

OTPO finds good MCA parameter values, but requires a large number of eval-
uations to do so. To reduce the number of evaluations needed, Pellegrini et al. [92]
evaluate the effect of different parameters on performance at compile-time and use
this data at runtime to tune only those parameters most likely to have large perfor-
mance effects. During installation of OpenMPI, a set of kernels, chosen to approx-
imate the communication patterns of typical applications, are run with randomly-
chosen parameter values. ANOVA is then used to identify which parameters have
the greatest impact on performance.

5 Performance Modeling

We can also use performance data to attempt to construct empirical modelswhich
allow us to predict performance of the code on other systems or datasets. Such
models can then be used to guide autotuning or performance diagnosis.

Prophesy [111, 110, 129] is an integrated system for automatically generating
analytical performance models, comprising a source-code instrumentation compo-
nent [129], a database component [110], and a model builder component [111].
Performance data is collected at the basic block level and stored in the performance
database as a hierarchy, in which applications are made of modules, modules are
made of functions, and functions are made of basic blocks, allowing for measure-
ments to be viewed at an appropriate level of abstraction for the current task. The
database stores information on applications (name, version, etc.), executables for ap-
plications (how it is compiled, what libraries it uses, and static analysis results such
as control flow data), run information for particular runs of applications (machine
and input information), and hierarchical performance measurements.

Prophesy then implements three modeling techniques: curve fitting, parameter-
ization, and composition. Curve fitting is fully automated, while parameterization
and composition require additional input from the user. Curve fitting attempts to
model the performance of the application or functions of the application in terms
of input parameters (such as size), but does not incorporate system-specific features
and therefore can only be used to evaluate intra-system scalability and not to predict
performance across systems. Parameterization incorporates coefficients representing
system-specific parameters, but requires manual annotation of kernels to identify
and count operations. Composition combines models stored in the database to al-
low application performance to be represented as the composition of models for the
application’s constituent kernels. Pairs of kernels are evaluated to determine the ef-
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fect of running one kernel after another¹, resulting in an coupling coefficient Cij, the
effect on the performance of kernel j when it runs after kernel i. Cij equals 1 when
there is no interaction, is less than 1 when performance of j improves (such as when
running i has resulted in data used by j being loaded into the cache), and is greater
than 1 when performance of j is degraded.

An early comparison of empirical autotuning with model-based parameter se-
lection was performed by Yotov et al. [132]. Looking specifically at matrix-matrix
multiplication codes as generated by ATLAS, described in Section 4.1, they develop
a simplified model of how cache behavior is affected by parameters to the matrix
multiplication code generator and substitute the search module of ATLAS with the
model. On two systems (SGI and Intel) their model yields performance within 1%
of that produced by the full ATLAS search, but reduces installation time to 35%
of its original value. On a third system (Sun) the model-predicted variant has 20%
worse performance than the empirically-determined version. This demonstrates the
promise of model-driven approaches, but also its limitations: much effort went into
developing the models, which are specific to only one ATLAS routine.

Modeling can also be used in combination with autotuning, rather than strictly
as a replacement. One of the major uses of modeling in combination with em-
pirical autotuning is to avoid evaluating variants which a model predicts will have
poor performance, thereby focusing the search on variants expected to perform well.
Balaprakash et al. [8] used an active learning [102] technique customized for auto-
tuning on HPC systems. They observed that a major problem with existing parallel
active learning techniques was that when such an algorithm suggests multiple points
to evaluate, the result for one such point can dramatically reduce the information
gained from evaluating the remaining points in the proposed set, resulting in wasted
effort evaluating code variants corresponding to such points. They modify the al-
gorithm to attempt to avoid suggesting such points by 1) selecting an initial point
xi, 2) retraining the classifier assuming that the prediction for xi was correct, and 3)
selecting another point only from among those points whose informativeness was
not substantially reduced by retraining.

Sarangkar and Qasem [101] describe MATS (Model-driven Adaptive Tuning
System), an autotuning system which uses simple architectural models to constrain
the set of transformation parameters to consider. Based on static code analysis to cal-
culate reuse distance andmodels of effective data and instruction cache capacity, reg-
ister set, and TLB size, parameter values for loop tiling, fusion, fission, interchange,
and unroll are selected so as not to violate a user-specified tolerance value, which
express, for example, that number of cache misses in considered variants should be
no more than some percentage worse than the optimal value.

GROPHECY [82] predicts whether a CPU code is amenable to implementation
on GPUs using an analytical model to determine whether the code is compute-
bound or memory-bound. To do this, the user must first manually convert the
CPU code into a code skeleton which lists only loops, memory loads and stores, and

¹This is the formulation in the paper, although the same concept could also be used for two kernels
running simultaneously, such as in a task based system. Scaling the technique to many simultaneous
kernels may present problems, however.
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Figure 1. Prophesy framework 

      In this paper we focus on the data analysis component, 
in particular the model builder. Specifically, we focus on 
the automation of the development of analytical models.  
The modeling concepts include the automation of some 
well-established techniques, such as curve fitting, and a 
new technique that develops models as a composition of 
other models of the core components or kernels of an 
application. We present examples illustrating these 
different techniques.  By having the modeling process 
automated, one can explore different models with ease. 
     The remainder of this paper is organized as follows.  In 
Section 2 we discuss related work in the area of 
automated models.  Section 3 presents some background 
of Prophesy as it relates to the automated modeling 
component followed by the details of this component  in 
Section 4 along with examples in Section 5.  The paper is 
summarized in Section 6. 

2. RELATED WORK 
Significant work has been done in the area of automated 
performance analysis, but very little work with 
automating the process of developing models.   While 
there is a very rich body of work related to prediction 
techniques, we focus on the automated methodologies for 
parallel and distributed applications.  Dimemas  [HS99] is 
a trace driven simulation that predicts the performance of 
message passing programs.  Dimemas uses traces 
generated by VAMPIRtrace, an instrumented MPI library 
and API.  The target architecture is characterized by a few 
parameters: the relative processor speed, linear 

communication model, and a simple model of network 
contention.  In contrast, our focus is on the analytical 
models. 
     Liang and Tripathi [LT00] have developed a prediction 
method that is applicable to parallel applications.  The 
method is based on a modified mean value analysis using 
iterative approach.  Farhinger [FA96] also focuses on 
prediction of parallel program, with a focus on loops.  His 
method, P3T, counts the number of loop iterations as a 
basis for estimating performance; the problem is 
generalized as computing the number of integer solutions 
to a set of inequalities.  Davidson et. al. [AD98] have 
developed a modeling technique called MACS, which 
gives a lower bound on the computation time on a given 
machine. The technique uses the peak floating-point 
performance of a machine (M) independent of the 
application, the essential operation in the compiler-
generated schedule of the application workload.  One can 
combine the MACS bounds with linear communication 
models to derive an overall performance bound for the 
application executed on a target machine.  Mak and 
Lundtrom [ML90] developed  a method for which the 
parallel computation is modeled as a directed acyclic task 
graph and the system is modeled as service center in a 
queuing network.  Using these two models, the method 
uses an iterative algorithm to develop a performance 
prediction. Saavedra-Barrera and Smith [SS89] use the 
time required for a set of abstract operations on a given 
machine and the frequency counts of these operations in a 
program to estimate performance.  All of these methods 
focus on predicting performance in contrast to automated 
model development, which is the focus of Prophesy. 

Performance analysis environments, in particular 
PACE [KH96] and POEMS [PO], are being developed. 
These environments focus on performance predication. 
PACE represents the application, computational resource 
requirement and communication patterns in their CHIP3 
language. The CHIP3 scripts are compiled and evaluated 
to generate a performance prediction very quickly. 
POEMS evaluates the end-to-end performance of a 
problem solving environment, consisting of application 
software, runtime and operating system software and 
hardware architecture. The analytical models with 
POEMS include deterministic task graph analysis, LogP 
[CK93] and LoGPC [MF98] models. These models are 
generally coarse grain, representing asymptotic 
performance. In contrast, the focus of our work is on 
detailed, analytical model development.  Further, 
Prophesy complements the PACE and POEMS 
environments by providing a framework for developing 
models that can be added to their various libraries.  

 
3. PROPHESY:  BACKGROUND  
 
In this section we present some details about Prophesy as 
it relates to the model builder component. See [TX01, 
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Figure 10: Architecture of Prophesy, from [111].

generic compute instructions. The skeleton is then converted into a set of possible
GPU skeletons parameterized by many of the same parameters used in GPU code
generation by autotuning frameworks. Instead of generating and running code, the
model is used to estimate memory usage patterns.

Models need not attempt to determine the absolute performance of a code. In
autotuning and runtime adaptivity, determining the expected performance of one
code relative to another is useful. Models need not be based on performance at all.
For example, Tang et al. [109] develop an empirical model of contentiousness and
sensitivity when jobs are co-scheduled on a system and thus share resources. Con-
tentiousness is the capacity of a program to degrade the performance of programs
with which it is co-scheduled, while sensitivity is the propensity of a program to have
its performance degraded when co-scheduled with a program of high contentious-
ness. These properties are distinct because contentiousness results from mere use
of a shared resource, while sensitivity depends on a program benefiting from its use
of shared resources. A program which reads large amounts of data from memory,
processes it once, and never reuses data will make use of the caches, but will not
gain a performance benefit from cache use due to lack of reuse. Such a program is
nonetheless contentious. A program which reads a small amount of data and pro-
cesses it repeatedly benefits greatly from cache use, and is therefore highly sensitive
to other programs’ use of the cache, whether or not those other programs benefit
themselves from using the cache. The authors identify hardware performance coun-
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ters (L2 and L3 cache lines input rate) and use regression to construct architecture
and application-specific models which give relative contentiousness and sensitivity
of applications. A scheduler can then use these to schedule high-contentiousness
applications only with low-sensitivity applications.

Brainy [61] constructs architecture- and input-sensitive models for selecting the
best C++ STL data structure for a given workload. For each architecture, a set of
input programs are generated, instrumented, and tested, with each input program
parameterized by the number of calls to each STL container interface function (e.g,
i insertions, j finds, k in-order traversals, etc.) This allows the training set to include
entries representative of a wide range of use cases. Timing and hardware perfor-
mance counter data are collected for each call. These data are then used to train an
artificial neural network which is used to predict the best-performing data structure
for new applications based on the number of calls each makes to the various API
functions. The architecture of Brainy is shown in Figure 11.

Rather than training a classifier based on program and system features, an alter-
native approach is to use clustering to identify programs with similar variation in
performance across systems or systems with similar variation across programs. Such
an approach was used by Cammarota et al. [17], who consider only program execu-
tion time, stored in a matrixM such thatMi,j is the execution time of program i on
system j. Having collected times for many programs on many systems, hierarchical
clustering is used to group programs and systems according to similarity.

A major challenge with machine learning-based technique is in the selection of
features. Leather et al. [73] automatically generate and test features using a genetic
algorithm approach. A set of mathematical operators and functions operating on
the compiler’s intermediate representation are provided, together with a grammar
describing how expressions using them can be formed. Every expression yields a
real number. Genetic algorithms are then used to create new expressions from the
existing population. Each proposed expression is tested by training a classifier using
it as a feature and determining whether, and by how much, the addition of the
feature improved the performance of the classifier. The degree of improvement is
used as fitness. To evaluate this technique, the authors considered loop unrolling,
exhaustively searching the space for a set of benchmark applications to determine the
optimal value, and using the technique to create features, which performed better
than human-selected features.

Figure 3. The framework of the data structure selection.

brary (STL) so that profiling data structures are used instead of the
original ones. The profiling data structures are inherited from the
original STL data structure, and their interface functions contain
code which records the behaviors including hardware performance
counters, and then calls the original interfaces. All the profiling
features are recorded in trace files, which are post-processed and
sorted by data structure. This sorting takes both relative execution
time and calling context into consideration, in order to provide de-
velopers with a prioritized list of which data structures are most
important to change. Once the data is sorted, the machine-learning-
based cost model provides a suggestion of what data structures
should be replaced with alternate implementations. Optionally, this
output could be fed into a code refactoring tool [18], which could
automate the implementation replacements. This type of optimiza-
tion tool can have a significant impact on the performance of real-
world applications.

4. Model Construction
Accurate model construction is essential for effective data struc-
ture selection. Brainy leverages machine learning to construct the
model for predicting the best data structure implementations. The
model must satisfy three properties to be successful. First, the
model should be accurate across many different data structure be-
haviors and usage patterns. Second, the model should be aware of
microarchitectural characteristics of the underlying system. Third,
the methodology for characterizing the performance of data struc-
tures should be automated and repeatable so that it is easy to con-
struct new models for new microarchitectures.

If these properties are not satisfied by the model, architectural
variations would easily make the predicting performance of the
model inaccurate. In this case, improving the accuracy of the model
requires re-training the model on the new microarchitecture. A
more serious problem is that the training applications/examples1

painfully-collected to cover the huge design space on the original
microarchitecture might not provide abundant learning capabilities
any longer on the new microarchitecture (See Figure 1). That is,
due to the architectural change, the original training applications
could not produce the broad spectrum of the best data structures
as before, thus failing to model various data structure behaviors.
Therefore, new training applications should be collected again to
cover the missing portion of the design space. This is extremely
time-consuming and requires enormous effort without the help of
the automated and repeatable methodology. This section describes
how these issues are addressed. It must be noted that just using
machine learning itself cannot satisfy the issues. These issues are
rather the prerequisites for the success of machine learning.

Formally, the description of the data structure selection model is
as follows: given a set of input features X and a set of data structure
implementations Y as output, the model is to find a function f: X !

1 This paper uses the terms ”training applications” and ”training examples”
interchangeably.

Y such that the predicted result y = f(x), where y 2 Y and x is a set of
features for a data structure in an application, matches the best data
structure (BestDS) of the application. The training set of the model
is comprised of many pairs of the feature set and the best data struc-
ture, i.e., (x1, BestDS1), (x2, BestDS2), ..., etc. The features include
both software features such as the number of interface invocations
and hardware features such as cache misses (Section 5.1 discusses
the both features in more detail). Thus, features capture various as-
pects of the data structure usage when an application is running.
In collecting the training set, Brainy uses an application generator
to prepare a significant quantity of applications and executes each
application through two phases of data collection: first to measure
the runtime and second to record the detailed performance metrics.
This section describes why so many applications are required, the
details of the application generator, and how it is used in the two
phases of data collection.

4.1 Training Set and Overfitting
Creating an accurate model using machine learning that represents
a vast array of different data structure behaviors requires having
a large and thorough set of training examples. If the training ex-
amples are not representative of the many varied behaviors of real
world applications, then the resulting model cannot yield accurate
predictions. Therefore, training should provide the machine learn-
ing algorithm with all critical patterns of data structures’ behaviors
in which one implementation performs much better than another.
Unfortunately, constructing such a training set is a very difficult
problem.

The main difficulty of constructing effective training example
sets is the very large design space. For example, an application
may use only a subset of interface functions, or use them with
a consistent frequency distribution (e.g., always performing twice
as many lookups as insertions). On top of that, there are many
hardware-specific characteristics, such as the size of data elements
in relation to cache-block size, that make the training example sets
constructed for one architecture potentially irrelevant for another.

Compounding the problem, each portion of the design space
must be fully represented in order to avoid overfitting the model.
Overfitting is a well-documented problem where machine learning
algorithms adjust to random features (i.e., noise) of the training
examples. Since such random features have no causal relation to
the prediction function, the resulting prediction performance on
unseen data becomes poorer while the performance on the training
examples improves [5]. Thus, overfitting misleads the resulting
model away from the optimum. This is most likely to become a
severe problem for insufficient amount of training examples, since
the noises are much more outstanding in that case, i.e., the model
is inevitably inaccurate.

Because of the immense search space and the problems from
overfitting, sample benchmarks cannot effectively train a machine
learning model for data structure selection.
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Figure 11: Architecture of the Brainy data structure selection system, from [61]

21



6 Performance Diagnosis

Autotuning, as described above, involves trying many variants or parameters,
measuring their performance, and identifying variants and/or parameters that lead
to good performance. Another approach to improving performance is automatic
performance diagnosis, in which, rather than simply test a large number of variants,
we analyze performance data from one run or a smaller set of runs and attempt to
identify the specific causes of performance problems, so that we can develop targeted
solutions to those problems.

6.1 Online Performance Diagnosis
Online performance diagnosis is the process of identifying performance prob-

lems during the run of a program. It is most useful for large-scale and/or long-
running jobs in which collecting and making use of traces is not feasible.

Paradyn [84] is an early online performance diagnosis system designed to iden-
tify performance problems within a single run of a program, while minimizing the
disruption it itself causes. It is based on a process of iterative search through a search
engine called the Performance Consultant, which refines hypotheses, and on dy-
namic instrumentation: instrumentation is added at runtime when a hypothesis is
being evaluated and, when the evaluation is done, the instrumentation is removed.

Search proceeds along three axes - “why”, “where”, and “when”. Along the
“why” axis, the system attempts to refine hypotheses; an example of a hypothesis
hierarchy is shown in Figure 12. In that example, the system will first insert instru-
mentation to determine if a synchronization bottleneck is present. If not, it moves
to a sibling hypothesis. If so, it will insert more specific instrumentation to test
causes of the overall problem – are synchronization operations too frequent, or do
synchronization operations take too long, etc.. Along the “where” axis, hypotheses
are localized to resources, such as places in the program’s code, nodes, particular syn-
chronization objects, etc.. Search initially occurs at a high level in these hierarchies –
such as, “does the entire program suffer from synchronization bottlenecks?” If so, the
search is refined to locate parts of the program which suffer from synchronization
bottlenecks and those which do not. Along the “when” axis, the system considers
phases of execution, as performance problems may exist during some phases but not
others.

Paradyn can use information from previous runs to focus future searches on the
same code [66]. Inserting instrumentation for bottlenecks which are unlikely to
exist unnecessarily perturbs performance, so hypotheses which have been disproved
in many prior runs can be pruned from the hypothesis tree. Similarly, hypotheses
which have proved true inmany prior runs can be promoted so that they are searched
earlier during program execution, allowing the most likely hypotheses to be tested
even in short runs.

The original implementation of Paradyn is somewhat limited in scalability be-
cause the search process is centrally directed: one node is responsible for initiating
instrumentation on all the nodes in the system, for processingmeasurements from all
the nodes, evaluating hypotheses, and selecting new hypotheses to test. To increase
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scalability, a Distributed Performance Consultant was developed [99]. Rather than
one central search agent, each node runs its own agent which can communicate
with other agents as necessary. In order to determine whether a hypothesis holds
for the whole application, neighboring nodes communicate to determine whether a
property holds for a local neighborhood. Graph clustering is used to identify neigh-
borhoods with similarly properties, and these summarized data are propagated to
other nodes, in order to eventually give an approximate representation of global
behavior.

PERISCOPE [11] is an extensible performance diagnosis system based on a set
of interacting agents. Its architecture is shown in Figure 13. Agents consist of
several parts: the search strategy takes input from source code analysis and previous
experiments and produces candidate properties, which are properties that would hold
if the performance problem detected by the agent exists. These candidate properties
are used to formulate experiments, which, when run, result in measurement requests
being sent to the measurement system, describing what is to be measured (e.g., a
set of of PAPI counters for a particular loop). When the results of the measurement
request are available, they are stored in a performance database and the candidate
property is evaluated in light of the new data. If the property holds, it is added to a set
of proven properties, which are available to the search engine for its use in formulating
new candidates. When no more candidates can be generated, the proven properties
are analyzed to determine whether the performance problem is present or not.

6.2 Trace Based Systems
Wolf et al. [126] developed a system, KOJACK, to automatically diagnose per-

formance problems in MPI and OpenMP codes. Programs are instrumented so that
each process writes events to a process-specific log which are merged at program
termination. Events which are logged include MPI sends, receives, and collectives,
entry into and exit from OpenMP regions, and acquisition and release of OpenMP
locks. A library of rules is constructed specifying patterns which indicate potential
causes of performance problems. For example, one rule specifies that when a re-
ceive event is encountered while processing the event log, the corresponding send
event should be located and the time between send and receive calculated to deter-
mine whether a “late sender” problem occurred, where an MPI_Recv call was made
prior to the corresponding MPI_Send, resulting in the receiving process unnecessar-
ily waiting. These rules are applied to the merged event log.

Scalasca [43, 42] is derived from KOJACK and addresses two problems: first,
that creating a merged log is time consuming and can result in a file too large for
some filesystems, and second, that serially scanning a merged log scales poorly as
the number of processors in the traced application increases. In Scalasca, no merg-
ing is done; rather, each process writes its own local event log. The log is then
processed in parallel, using the same number of processors as the application being
analyzed. Rather than reducing all data to one node, the communication patterns
of the original application are replayed, so that, for example, an MPI_Send in the
original application becomes an MPI_Send in the replay with a payload indicating
the parent events of the send.
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to a specific program component or machine resource. 
(We use the term “resource” to mean either a machine 
resource or a program component-for example, a disk 
system, a synchronization variable, or a procedure.) To 
identify“when” a problem occurs, we try to isolate a prob- 
lem to a specific time interval during the program’s exe- 
cution. Isolating a performance problem is an iterative 
process of refining our answers to these three questions. 
Our model treats the three questions as orthogonal axes of 
a multidimensional search space. 

“WHY” AXIS. The first performance question pro- 
grammers ask is often “Why is my application running so 
slowly?” The “why” axis represents broad problems that 
can cause slow execution. Potential performance prob- 
lems are represented by hypotheses and tests. Because our 
model decouples the type of problem (“why”) from its 
location (“where”), hypotheses encode general types of 
performance problems. One hypothesis, for example, 
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Figure 3. A portion of the “why” axis representing 
several types of synchronization bottlenecks. The 
shaded node shows the hypothesis currently being 
considered. 

might be that a program is synchronization bound. Since 
hypotheses represent activities universal to all parallel 
computation, they are independent of the program being 
studied and the algorithms it uses. Hence, a small set of 
hypotheses (a couple dozen), provided by the tool builder, 
can cover most types of performance problems. 

Hypotheses can be refined into more precise hypothe- 
ses. The dependence relationships between hypotheses 
define the search hierarchy for the “why” axis. These 
dependencies form a directed acyclic graph, and axis 
searching involves traversing this graph. Figure 3 shows 
a partial “why” axis hierarchy; the current hypothesis is 
HighSyncBlockingTime. This hypothesis was reached 
after first concluding that a SyncBottleneck exists. 

Tests are Boolean functions that evaluate the validity of 
a hypothesis. Tests are expressed in terms of a threshold 
and one or more metrics (for example, synchronization 
blocking time is greater than 20 percent of the execution 
time). 

“WHERE” AXIS. The second performance question 
most programmers ask is “What part of my application is 
running slowly?” The “where” axis represents the differ- 
ent program components and machine resources that can 
be used to isolate a problem source. Searching along the 
“why” axis classifies the problem, while searching along 
the “where” axis pinpoints its location. For example, a 
“why” search may show that a program is synchroniza- 
tion bound, and a subsequent “where” search may isolate 
one hot synchronization object among many thousands 
in the program. 

The “where” axis represents the different foci that can 
be measured. Each axis hierarchy has multiple levels, with 
the leaf nodes being the instances of the resources used 
by the application. Isolating a performance problem to a 
leaf node indicates that a specific resource instance is 
responsible for the problem. Higher level nodes represent 
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cation, and the rectangles represent dynamically (runtime) identified entities. The shaded nodes indicate 
the current focus (all SpinLocks on CPU #I, in any procedure). The Paradyn resource hierarchies include sev- 
eral other classes, such as 110, memory, and process, which are not shown. 
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to a specific program component or machine resource. 
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lem to a specific time interval during the program’s exe- 
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a multidimensional search space. 
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slowly?” The “why” axis represents broad problems that 
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might be that a program is synchronization bound. Since 
hypotheses represent activities universal to all parallel 
computation, they are independent of the program being 
studied and the algorithms it uses. Hence, a small set of 
hypotheses (a couple dozen), provided by the tool builder, 
can cover most types of performance problems. 

Hypotheses can be refined into more precise hypothe- 
ses. The dependence relationships between hypotheses 
define the search hierarchy for the “why” axis. These 
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searching involves traversing this graph. Figure 3 shows 
a partial “why” axis hierarchy; the current hypothesis is 
HighSyncBlockingTime. This hypothesis was reached 
after first concluding that a SyncBottleneck exists. 

Tests are Boolean functions that evaluate the validity of 
a hypothesis. Tests are expressed in terms of a threshold 
and one or more metrics (for example, synchronization 
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time). 
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running slowly?” The “where” axis represents the differ- 
ent program components and machine resources that can 
be used to isolate a problem source. Searching along the 
“why” axis classifies the problem, while searching along 
the “where” axis pinpoints its location. For example, a 
“why” search may show that a program is synchroniza- 
tion bound, and a subsequent “where” search may isolate 
one hot synchronization object among many thousands 
in the program. 

The “where” axis represents the different foci that can 
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by the application. Isolating a performance problem to a 
leaf node indicates that a specific resource instance is 
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Figure 12: Examples of the Paradyn “why” and “when” hierarchies, from [84].

Scalasca has been subsequently extended with new analyses. One such analysis,
described by Böhme et al. [13], aims to automatically determine the causes of load
imbalance in MPI applications. A wait state can be either direct if it is caused by a
process blocking on communication from another process because that other process
has not yet completed a computation, or it can be indirect if it is waiting on a receive
because the other process is in turn waiting on a communication. The authors
extend Scalasca with a backwards replay, allowing wait states to be attributed to other
wait states or to delays in computation, thereby building a graph showing the root
cause of the delays.

6.3 Automatically Fixing Performance Problems
Of particular interest are systems which not only automatically diagnose perfor-

mance problems, but also can suggest solutions to the problem or even automatically
modify source code. Cong et al. [24] describe a system with a structure similar to
KOJACK, described above, but which is closely integrated with IBM compilers, tak-
ing as input reports on what optimizations were applied to blocks of input code, and
able to provide optimization settings to the compiler in response to diagnosed prob-
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2 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

measurements of the program’s performance and locate various bottlenecks. Bottle-
necks are places in the execution path where execution time is lost due to inefficient
resource usage. Based on the identified bottlenecks, users can do modifications to
improve the application’s runtime behavior. Since measuring performance data and
storing those data for further analysis is often done in a not very scalable approach,
most tools are limited to experiments with a small number of processors.

The traditional way of conducting performance analysis and tuning for high
performance computing has been an off-line search approach requiring strong in-
volvement of the user. This search has a potential problem with large performance
datasets and long analysis times for large-scale scientific applications. It remains a
challenge for application developers to analyze the bottlenecks of their applications
when scaling to larger parallel machines. To investigate the runtime behavior of
large experiments, performance analysis has to be done online in a distributed fash-
ion, eliminating the need to transport huge amounts of performance data through
the parallel machine’s network and to store those data in files for further analysis.

An online-based performance analysis system using expert knowledge for iden-
tifying bottlenecks in the applications, in general, follows four steps for capturing
performance properties (Fig. 1.1). As shown, the application is instrumented based

Fig. 1.1: Cyclic representation of performance analysis

on the initial hypotheses of potential performance properties. During an experiment
executing the application on the parallel system, appropriate performance data are
collected. These data are then inspected to prove which of the hypotheses hold. In
the refinement step, the found properties might be refined to identify more specific
performance problems. All four steps are executed in a cyclic fashion until no more
precise properties can be found. This cyclic approach can of course be automated
and executed in an online fashion.

Although, there are numerous performance analysis tools on the market, they
face challenges in usabiliy, scalability, and single node performance analysis.
Periscope [5] is a distributed online performance analysis tool currently under de-
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sibling agents and forward only the combined properties. The analysis agents
are responsible for performing the automated search for performance properties.
During the search they access the monitor linked to the application processes via
the Monitoring Request Interface (MRI).

4. The MRI monitors provide an application control interface. They deal more with
hardware and software sensors to measure the performance data.

1.3.2 Agent’s Data Capture Mechanism

The agents play a vital role in the search for performance properties in the processes
or threads of the application. The agent design consists of two main parts, namely,
the agent and the monitor. The main components of the agents are the agent control,
the search strategy, and the experiment control. Figure 1.3 presents the agent design
and the sequence of operations involved in capturing performance data. In general,

Fig. 1.3: Sequence of operations performed by agents to capture performance data

any scientific application would have computational intensive iterations. The user
can mark those regions as user-region or phase-region, so that, it can be used to
perform a multistep search. In order to perform such search autonomously, agents
are involved in the following phases of the performance data capturing mechanism
in Periscope:

1. initialization phase
2. execution phase
3. data collection phase
4. evaluation phase

Figure 13: Architecture of the PERISCOPE, from [83].

lems, as well as transformation recipes to a polyhedral code optimization framework.
Modeling or empirical testing are used to determine whether the proposed solution
actually addresses the detected problem. Problems which cannot be addresses auto-
matically result in suggestions to the user.

Recent versions of the PerfExpert system also implement automatic optimiza-
tion [34], incorporating a central database which a set of modules access. Compila-
tion modules encapsulate procedures for compiling and running input code. Mea-
surement modules perform code instrumentation (which may entail cooperation
with a compilation module), binary instrumentation, or monitoring through op-
erating system facilities, and write measurements into the database. In this frame-
work, measurements are distinct from metrics: a measurement is raw data collected
during execution, while a metric has been further processed and rendered into a
standard form. Analysis modules convert measurements into metrics, storing these
into the database as well. Recommendation modules query the database, evaluating
rules expressed as SQL queries. Each row returned by the query identifies a recom-
mendation for an optimization and gives a ranking to that recommendation. The
top-ranking recommendation is then applied using an optimization module, which
first checks to verify that the recommendation actually applies and is valid given
constraints inferred through static analysis of the input code. The recommenda-
tion, having been applied, results in new code which starts the process anew with a
compilation module. This process continues until no more valid recommendations
remain.

Wert et al. [120] perform automated performance diagnosis in the context of
enterprise Java applications. In their system, a hierarchy of symptoms is specified,
with each symptom in turn referring to a hierarchy of causes. An example of such a
hierarchy is shown in Figure 14. For each symptom and cause, a detection strategy
is provided, providing steps by which an automated experiment can be performed
which will trigger the problem if the cause under consideration exists in the ap-
plication being tested. The detection strategies specify a workload to apply to the
application, measurements to be made, and a procedure for deciding whether the
measurements support the hypothesized cause.
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formance engineering expertise is required for its usage. PPD
combines search techniques that narrow down the scope of
the problem based on a decision tree [12] with systematic
experiments. The combination of both allows efficiently un-
covering performance problems and their root causes that are
otherwise hard to tackle. In its current state, PPD is tailored
for the diagnosis of performance problems in Java-based three-
tier enterprise applications. For this purpose, PPD requires a
representative usage profile of the system (i.e., a load driver)
and test system that resembles the actual setup.

To validate PPD, we applied it to an established imple-
mentation of the TPC-W industry benchmark [19], a Java-
based three-tier enterprise application. We deployed the bench-
mark in two different test environments. PPD identified four
performance problems in the benchmark implementation, the
web server, the database, and the infrastructure. Solving these
problems increased the maximal throughput of the benchmark
from 1800 requests per second to more than 3500.

Overall, we make the following contributions:

1) We introduce a novel approach for performance problem
detection and root cause analysis called Performance
Problem Diagnostics. PPD systematically searches for
known performance problems (cf. [13]–[18]) in three-
tier enterprise applications. Once a problem has been
found, PPD isolates its root causes as far as possible.

2) We structure a large set of known performance prob-
lems [13]–[18] in a novel Performance Problem Hier-
archy. To guide PPD’s search, the hierarchy starts from
very general problems (or symptoms). Each further level
refines the problems down to root causes. The hierarchy
allows systematically excluding classes of problems and
focusing on the most relevant ones.

3) We define detection strategies for twelve performance
problems in the hierarchy. The strategies are based on
goal-oriented experiments tailored to trigger a specific
problem. Based on the results, heuristics can decide
if a problem is assumed to be present and refine the
search. For each performance problem, we investigated
and compared different heuristics for detecting the prob-
lems (see Section III). We chose those heuristics that
minimize false positives and false negatives.

4) We evaluated our approach in two steps. First, we
determined the detection strategies that are most likely to
find a performance problem (see Section III). For this
purpose, we evaluated the accuracy of each detection
strategy based on ten reference scenarios. Each scenario
contains different performance problems which have
been injected into a test application.
Second, we evaluated if PPD can detect performance
problems in real enterprise applications (see Sec-
tion IV). PPD successfully identified four performance
problems in the TPC-W benchmark, which significantly
limited the maximal throughput.

In the following section, we introduce the main concepts of
our approach.

II. AUTOMATIC PERFORMANCE PROBLEM DIAGNOSTICS

The core idea of our Performance Problem Diagnostics
(PPD) is based on the observations that i) particular per-
formance problems share common symptoms and ii) many
performance problems described in the literature [13]–[18]
are defined by a particular set of root causes. Based on these
observations, we create a hierarchical structure of performance
problems, their symptoms, and their root causes that simplifies
the detection and diagnostics significantly (Section II-A). The
hierarchy is based on performance antipatterns known in
the literature [13]–[18]. To detect performance problems and
diagnose their root cause, we execute a series of systematic
experiments that first test for symptoms and then search for
more specific performance problems and their root cause
(Section II-B). In the following, we introduce the idea of both
concepts. A detailed description follows in Section III.

A. Performance Problem Hierarchy
Figure 1 shows an excerpt of the hierarchical structure of

performance problems. An extended version of our perfor-
mance problem hierarchy can be found in [20]. The hierarchy
is structured in categories, symptoms, performance problems,
and root causes. The category Occurrences of High Response
Times in Figure 1(a) groups common symptoms for the per-
formance problems High Overhead, Varying Response Times,
Unbalanced Processing [13], and Dispensable Computations.
Symptoms represent the starting point for the performance
problem diagnostics. They combine common characteristics
of a set of performance problems. Each symptom is refined
by more specific performance problems that further limit the
set of possible root causes.

Occurrences of
High Response Times

High Overhead

Varying Response
Times

Unbalanced
Processing

Dispensable
Computations

(a) Symptoms of known
performance problems.

Varying Response Times

The Ramp

Dormant References

Specific Data Structure

Sisyphus DB Retrieval

Specific Methods

Traffic Jam

One Lane Bridge

Synchronization Points

Database Locks

Pools

Bottleneck Resource

(b) Performance problems causing Vary-
ing Response Times.

Fig. 1. Excerpt of our performance problem hierarchy.

Figure 1(b) shows the performance problem hierarchy for
Varying Response Times. We identified the performance an-
tipatterns The Ramp [13] and Traffic Jam [16] as potential
causes of Varying Response Times. The Ramp occurs if re-
sponse times of an application increase during operation. For
example, a request to an online shop takes 10 ms when the
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Figure 14: Symptom and cause hierarchies as used by Wert et al., from [120]

6.4 Differential Analysis
Differential, or decremental, analysis is a technique for automated diagnosis of

performance bottlenecks, with attribution to specific lines or operations in the orig-
inal source code. First, binary analysis is performed using MAQAO [28], which
produces a series of reports on degree of vectorization, utilization of execution units,
and a series of performance estimates assuming that all memory requests are served
from L1, that all memory requests are served from L2, that all memory requests are
served from RAM, and finally a projection of performance for a fully-vectorized
code. These reports are used to determine code regions for further analysis [69]. Se-
lected loops are instrumented and run, with hardware performance counters related
to the memory system being recorded. This generates hypotheses about the cause
of performance bottlenecks. Finally, DECAN [70] performs differential analysis
to determine the specific instructions causing the bottleneck. Given a binary exe-
cutable, the instructions representing loops of interest are deleted or replaced with
other instructions so as to suppress the effect of the instructions. This is done sev-
eral times, yielding modified binaries in which certain classes of instructions are
suppressed, such as one version suppressing load/store instructions and another sup-
pressing floating-point instructions. These versions are then run with performance
instrumentation, and the versions are compared to determine, for example, whether
load/store (memory) or floating-point (compute) instructions are the performance
bottleneck for the loop of interest.
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Figure 15: Methodology of DECAN, from [70]

7 Exascale Computing and Future Programming Models

All of the work described up to this point in the paper applies to existing super-
computers running existing codes written with traditional programming models
such an MPI and OpenMP. The move to exascale, however, is likely to necessitate
moves to other programming models [5]. An exascale system is one with peak per-
formance of one exaflop (1018 floating point operations per second), about 30 times
greater than the peak performance of Tianhe-2, currently the world’s fastest super-
computer [115]. Yet in order for system deployment to be feasible, total power con-
sumption of the system must be kept below about 20 megawatts. Tianhe-2 uses 17
megawatts, so to reach exascale we must increase performance by 30 times while
holding power consumption basically constant. This will require adding substan-
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tially more concurrency at every level of the system: nodes must have more cores,
cores must have more hardware threads, hardware threads must process SIMD in-
structions over more data at a time, all of which will result in the number of threads
required to saturate the system growing from hundreds of thousands in current sys-
tems to tens to hundreds of billions in exascale systems. Providing enough work to
generate these threads will require a different approach to programming [26].

Programming models that have been proposed for exascale systems tend to be
task based. Rather than strictly dividing work across things like loop iterations, or
partitioning work across nodes and running the same algorithms on every node on
different parts of the data, task parallelism divides work into discrete chunks which
carry dependency information. This dependency information can be expressed as
a directed acyclic graph, allowing a runtime scheduler to proceed with executing a
task as soon as its dependencies have been met. This allows task-parallel programs to
spend less time idle compared to those using fork-join parallelism and communicat-
ing sequential processes, as shown in Figure 16. They also allow for easier adaptation
to system variability by allowing work to migrate to address load imbalance caused
by node variability; to do this, units of work are virtualized relative to hardware.
Data is often also virtualized, so that data can be moved to work, or work can be
moved to data, depending upon whichever is cheaper. Finally, by generating a very
large number of tasks, latency can be hidden by swapping out a task waiting on a
resource for another task [106].

In this section, I will review a number of task-based programmingmodels. These
differ by granularity (whether tasks are lightweight, at the level of loop iterations;
medium-weight, at the level of functions; or heavy-weight, at the level of phases
or steps in a workflow); by whether parallelism is explicit or implicit; by underly-
ing source of parallelism (e.g, user-level threads, pthreads, systems built on top of
MPI, etc.); by technology used by communication; by whether tasks may yield; by
whether scheduling decisions are centralized or distributed; and by whether sched-
uling decisions are made statically or dynamically.

There are a number of node-local task based systems. While these could be
combined with some other mechanism for inter-node parallelism, exascale systems

Figure 2.1: Fork-join execution (top) versus asynchronous execution (bottom) of the same
task based linear algebra algorithm. The trace shows the execution of di↵erent tasks on
di↵erent threads as tiles of di↵erent colors, with white space meaning that a thread is idle.

provide any needed parallelism. The result of this design decision was a fork-join style

of parallelism, where single core work may be followed by highly parallel Level-3 BLAS

routines, which is then followed by a synchronization point and another serial section of

the code. When there were just a few cores available, the loss of performance due to the

synchronization was minimal. However, as the number of available cores has increased, this

opportunity cost has become substantial. Fig. 2.1 shows both the trace of a fork-join style

execution and the data driven asynchronous execution of the same task based algorithm;

the di↵erence between the execution time for the two implementations can be substantial.

Here we review the software design behind the LAPACK library for shared-memory. In

particular, we focus on three widely used factorizations used in scientific computing, i.e.,

QR, LU and Cholesky. These factorizations will be used throughout this dissertation to

guide and evaluate our research.

LAPACK provides a broad set of linear algebra operations aimed at achieving high

performance on systems equipped with memory hierarchies. The algorithms implemented

in LAPACK leverage the idea of algorithmic blocking to localize the operations to smaller

chunks of data which can be held in the faster, smaller levels of the memory hierarchy. This

limits the amount of memory bus tra�c in favor of high data reuse from the faster, higher

level memories such as L1 and L2 cache memories.

The idea of blocking revolves around an important property of Level-3 BLAS operations

(matrix-matrix operations), the surface-to-volume property, which means that for Level-3

13

Figure 16: Execution trace of the same algorithm implemented using fork-join par-
allelism (top) and task-based parallelism (bottom). The bottom version executes in
less time because worker threads can continue executing tasks as soon as the tasks’
dependencies have been satisfied. From [130].
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will likely require that intra- and inter- node parallelism be expressed using the same
model. Therefore I will not describe node-local systems in detail. These systems
include OpenMP Tasks [7], Intel Threading Building Blocks [93], Qthreads [123],
StarPU [6], Cilk Plus [98], and Concurrent Collections (CnC) [15].

7.1 Charm++
Charm++[1] is among the oldest adaptive asynchronous task-based runtimes,

first released in 1992. Its central abstraction is the chare, a special C++ object encap-
sulating data and methods which can be invoked remotely by receipt of a message.
Programs do not interact with the chare directly. Rather, creation of a chare yields
a proxy object through which messages are sent, invoking entry methods, which are
specially designated methods with signatures defined in a domain-specific language
from which glue code is generated by a source-to-source compiler. Entry methods
are required to run to completion; the scheduler will not interrupt them.

All messages are asynchronous: upon sending a message, the sender immediately
continues executing. Any reply to a message is implemented as an additional mes-
sage. A chare’s global ID indicates a home node for the chare; however, chares are
migratable: at any time a chare may be moved to another node, with the original
home node forwarding any messages it receives and notifying senders of the new
location of the chare, which is cached by senders for future use. Application develop-
ers are encouraged to overdecompose their applications by breaking them down into
many more tasks than there are processing units on which the tasks will run. This
helps with load balancing by keeping a pool of work available to assign to process-
ing units as they become available. Migratability provides additional opportunities
for load balancing by enabling the moving of work, along with its associated data,
to underutilized nodes [65].

TheCharm++ runtime has built-in facilities for runtime adaptation. TheCharm++
Load Balancing framework, the architecture of which is shown in Figure 17, is one
such facility [135]. A Load Balance Manager runs on each node. During execution,
the Manager stores statistics on load and idleness into a database. When criteria for
rebalancing are met, the Manager invokes one or more Load Balancing Strategies,
which can query the database for information on the load of the local node and re-
mote nodes. Strategy instances are themselves chares and can communicate with
one another through message passing. Strategies inform the Load Balance Manager
of how chares should be migrated, which occurs through interaction with the Array
Managers.

Three types of load balancers are described in [135]: centralized, decentralized,
and hybrid. The centralized load balancers send all performance data to one node,
which processes all the data and distributes migration decisions. The simplest of
these are the Random strategy, which randomly assigns chares to processing units.
The Greedy strategy processes chares in order from longest-running to shortest-
running, assigning tasks to processors ordered from least-loaded to most-loaded.
The Refinement strategy swaps chares to adjust an existing distribution. More
sophisticated load balancing strategies take communication into consideration, at-
tempting to place groups of chares which communicate heavily together while still
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balancing load. These operate on the communication graph and include a Recur-
sive Bisection strategy and a METIS [67] strategy. Variants of the above strategies
are provided which consider that an application may be composed of several phases
with different performance characteristics, which require gathering and using phase-
specific load statistics.

As the size of the system increases, it becomes impractical to collect all the data
needed for load balancing onto a single node. At the same time, making good load
balancing decisions requires global information – we cannot decide to place work
on the least-loaded node unless we know which node that is. Distributed strategies
include neighborhood-based methods in which balancing occurs within a subset
of nodes. This can be combined with a work-stealing approach, in which nodes
in a neighborhood periodically send messages to one another informing them of
their load, and idle nodes send messages to nodes which according to its view are
overloaded, requesting that chares be migrated from the overloaded node to the
idle node. These messages are prioritized for immediate processing, rather than
being enqueued for later processing as with normal messages. The Hybrid strategy
involves a tree of load balancing domains, with different strategies being used at
different levels of the tree.

An adaptive runtime system called PICS [108] (Performance-analysis-based In-
trospective Control System) has been implemented, which allows Charm++ appli-
cations to register control points [29]. Control points specify what effect application
parameters have on various categories of performance-effecting properties, a library
of which are provided by the system. Control points can be registered for effect
types of Degree of Parallelism, Grain Size, Priority, Memory Consumption, Cache

6.6.1 Components

LB ManagerDatabase

Charm++ RTS

Array Manager 2Array Manager 1

Object B[2]

Object B[3]Object B[1]

Object A[1]

Object A[2]

Application

LB Strategy 1 LB Strategy 2

Figure 6.3: Components and interactions in the load balancing framework

Figure 6.3 illustrates the components of the measurement-based load balancing framework on a single

processor. At the top level of the figure are the load balancing Strategies. Strategies are implemented in

CHARM++ as Chare Groups. When informed by LB Manager to perform load balancing, strategies on

each processor may retrieve information from the local LB Manager database about the current state of the

processor and the objects currently assigned to it. Depending on a specific strategy, it may communicate with

other processors to gather state information. With all information available, strategies determine when and

where to migrate object, and provide this information to the LB Manager, which supervises the movements

of the objects, informing the strategies as objects arrive. When the moves are complete, the strategies

signal the LB Manager to resume the objects. Two types of load balancing strategies are implemented in

CHARM++. One is centralized load balancing strategy (in Chapter 7) and the other is fully distributed

strategy (in Chapter 8.2).

During execution, the LB Manager monitors the load behavior on each processor. It collects background

load and idle time statistics into the LB Database, which is used by the LB Strategies for making load

balancing decisions. The LB Manager also interacts with objects through Array Managers. Array managers

77

Figure 17: Architecture of the Charm++ Load Balancer (from [135])
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Miss Rate, Overhead, Number of Messages, and Message Size. Control points are
registered explicitly by the application developer and are not automatically discov-
ered; for example, the application can register that a variable controlling the size of
a subproblem will change the grain size and degree of parallelism. Based on run-
time performance measurement, the system selects a property to adjust and adjusts
registered control points according to a strategy shown in Figure 18.

A version of MPI, Adaptive MPI (AMPI), has been developed, which runs on
top of the Charm++ runtime [54]. In AMPI, MPI processes are implemented as fully
migratable Charm++ tasks, and MPI communications are implemented as Charm++
messages between tasks. The same load balancing strategies described above for
native Charm++ programs can also be used for AMPI programs [55].

7.2 Swift
Swift [124]² is a parallel scripting language designed for the specification of sci-

entific workflows. Unlike general-purpose languages, Swift is not intended for per-
forming mathematical operations but rather for sequencing and scheduling calls to
external functions or entire executables written in other languages, such as C, C++,
or Fortran. Swift is made aware of the types of inputs and outputs to such external
computations, but they are otherwise treated as “black boxes” of which the Swift
runtime has no knowledge.

A Swift program then consists of a series of parallel constructs, such as foreach
loops, which contain external calls with specific inputs and outputs. Executions of a
parallel construct implicitly specify tasks, so that, for example, two nested foreach
loops each over 1,000 elements result in the construction of 1,000,000 tasks. Code
such as

foreach i in [0:N-1] {
foreach j in [0:N-1] {

foreach k in [0:N-1] {
foreach m in [0:N-1] {

int r = f(i, j, k, m);

Performance
s u m m a r y

CPU Utilization

 >  9 0 %

O v e r h e a d
 > 1 0 %

Idle
> 1 0 %

Sequent ia l
pe r fo rmance?

Cache Miss 
 >  1 0 %

D e c r e a s e
grain s ize

Small
e n t r y  m e t h o d s

Small
Bytes

p e r
m e s s a g e

Increase
grain s ize

Decomposi t ion
 problem?

Mapping
problem?

Schedul ing
problem?

Others?

Longer
en t ry

 m e t h o d

Larger
s ingle
 object

Long
critical
 p a t h

Few
objec t s
per PE

Large
communica t ion
on one  objec t

D e c r e a s e
grain s ize

Load
imba lance

Large
communica t ion

on one PE

Communica t ion
 t i m e  > >

 model  t ime

Large
ex te rna l

communica t ion

Load
ba lance r

R e m a p
Compres s
m e s s a g e

Critical
t a s k s

a r e
d e l a y e d

Prioritize
t a s k s

Large
Bytes

p e r
m e s s a g e

Long
reduct ion
b roadcas t

Long
la tency

Increase
aggrega t ion

thresho ld

D e c r e a s e
aggrega t ion

 threshold
Collectives

Replicate
ob jec t s

Topology
a w a r e

m a p p i n g

Figure 2: Performance Analysis Decision Tree

Memory Consumption Scheduling tasks in di↵erent or-
ders can often impact the memory usage of the ap-
plication and/or system, which can have performance
ramifications.

Cache Miss Rate Often adjusting a knob will have some
impact in the cache miss rate. For example, making
the grainsize larger might increase cache misses and
thereby decrease performance.

Overhead This is anything related to the cost of running
the program, which is not a part of the computation
in the application.

Number of Messages and Message Size Proper message
size can both better utilize network bandwidth and
also overlap computation with communication. For
example, message aggregation by the runtime can be
important e↵ects.

2.2 Performance-Analysis-Guided Steering with
Control Points

The goal of the control system is to find the optimal con-
figuration of all the control points. Due to the complexity of
the runtime system and application, many control points will
be registered with PICS. This leads to a huge search space of
configurations. As a result, performing direct optimization
(such as hill climbing) can be time consuming. When we
examine control points closely, we notice that some control
points may have more impact than others. If we can de-
termine which control points have the most impact on the
overall performance, the process may be accelerated.

The approach we take is to perform automatic and com-
prehensive analysis to detect a performance deficiency. Since
the runtime system takes control of the application with
regard to scheduling and communication, it is easy to in-
strument, record, and track application behaviors. Based
on the instrumentation data, performance analysis can be
performed. When possible performance deficiencies are de-
tected, we can tune the control points whose e↵ects are re-
lated to these performance deficiencies instead of searching
all possible configurations. This significantly reduces the
search space. The other advantage is that based on the ef-
fect of control points and performance problems, the direc-

tion of performance steering is guided instead of proceeding
blindly.

2.3 Categories of Performance Problems
In order to determine application performance deficiencies

and then possible solutions, we need to identify the charac-
teristics of the program. We categorize the program charac-
teristics and problems into three main types: decomposition,
task mapping, and scheduling.
Problem decomposition is how a problem is decomposed

into smaller problems, which can be solved in parallel with
the appropriate dependencies. Problem decomposition di-
rectly determines the grain size of the computation and com-
munication and the degree of parallelism. E↵ective problem
decomposition is essential to achieve high performance. The
specific characteristics related to the problem of decomposi-
tion are shown in the Figure 2. When these characteristics
are identified, it signals a potential grain size problem.
Task mapping is how tasks are mapped to physical proces-

sors. Task mapping a↵ects the communication cost. There
is significant related work on how task mapping impacts
overall performance, including topology-aware mapping [10].
Task mapping also a↵ects the load balance. In addition, it
may also a↵ect memory usage and I/O usage. The char-
acteristics related to task mapping are illustrated the Fig-
ure 2. The corresponding solutions range from performing
topology-aware mapping, communication-aware load balanc-
ing, or compressing messages.
Scheduling is about the order in which the runtime exe-

cutes available tasks on processors. The main ramification
of deficient scheduling is that critical tasks may be delayed,
causing processors that depend on the critical tasks to be-
come idle. The other potential problem caused by scheduling
is running out of memory. If only the tasks that consume
memory are scheduled while the tasks that free the memory
are not scheduled, the program may cause an out of memory
error.
We represent the program characteristics and correspond-

ing solutions in the complete decision tree shown in Figure 2.
In this figure, starting from the performance summary data,
the decisions are made based on the performance charac-
teristics and the specific performance data collected from an
execution. The three diamonds represent the course-grained

Figure 18: Decision procedure by which PICS decides which control points to ad-
just (from [108])

²Unrelated to the language of the same name from Apple.
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}
}

}
}

creates N tasks which run independently, while
A[0][0] = 0;
foreach i in [1:N-1] {

A[i][0] = 0;
A[0][i] = 0;

}
foreach i in [1:N-1] {

foreach j in [1:N-1] {
A[i][j] = f(A[i-1][j-1], A[i-1][j], A[i][j-1]);

}
}

creates N-1 initialization tasks which run independently and N-1 tasks, each of
which depends on predecessor tasks.

A limitation of the original Swift is that scheduling occurs only on the node
executing the driver script, limiting the scalability of scheduling. Swift/T [128]
resolves this issue by running Swift on top of a new runtime, Turbine [127]. A
small subset of the nodes in a job are reserved as control engines, which run control
fragments, which in turn schedule leaf tasks (that is, user-defined external functions
or executables) on theworkers, which are those nodes not reserved as control engines.
Workers and control engines communicate through a global address space called
the distributed future storewhich manages write-once variables by which tasks return
results and signal completion.

Static dataflow analysis is used to determine dependencies between tasks, which
are made available to the scheduler, which does not schedule a task for execution
until all of its inputs are available. As tasks never execute that point, tasks do not
yield during execution, instead always running to completion before the scheduler
may reuse the resources consumed by the task. Because the scheduler must moni-
tor dependencies itself, scheduling overhead is higher than in dependency-unaware
runtimes. Swift is then intended for medium-granularity tasks, with fine-grained
parallelism expressed in the native language used to define leaf tasks. This is in con-
trast to lightweight tasking runtimes, which are intended to support multiple task
granularities.

7.3 X10
X10 [22] is a PGAS language based on Java, to which it adds the concepts of

places and asynchronous activities. Places contain data and activities run in a place, and
both data objects and activities are not independently migratable, unlike in Charm++.
However, places themselvesmaymove: they do not directly correspond to a node or
processor. When a place migrates, all data objects and activities in that place move
with it. Activities (equivalent to tasks in other languages and runtimes) are launched
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with the code async (p) S where p is a place and S is a code block. An asynchro-
nous activity invocation returns to the invoking process immediately. Waiting for a
code block containing asynchronous activity invocations can be accomplished with
finish S, where S is a code block. For example, in this simple implementation of
Fibonacci,

static def fib(n:Int):Int {
if(n < 2) return n;
val f1:Int;
val f2:Int;
finish {
async f1 = fib(n-1);
f2 = fib(n-2);

}
return f1 + f2;

}

the statement async f1 = fib(n-1) launches a new activity which executes fib(n-
1) (in the current place, since none is specified) and immediately continues to the
next statement, f2 = fib(n-2), which executes inside the current task. Since both
statements are located inside a finish clause, once the second statement finishes
the current task will wait for any subtasks launched within the block to complete
before proceeding. Activities can be suspended during execution, unlike in Swift
and Charm++.

As a PGAS language, X10 has support for arrays with elements resident in differ-
ent places. Arrays are specified by regions, which specify the number of dimensions
in the array and the extent of each dimension, and by distributions, which assign
points in an array’s region to a place. However, unlike traditional PGAS languages
such as UPC, in which any node can access any address in the global address space,
X10 restricts access to mutable (non-final) data to only the place in which it re-
sides. For one place to access data stored in another place, the first place must launch
an activity in the second place. If we have two arrays A and B such that A[i] and
B[j] are located in different places, and we want to carry out the assignment A[i]
= B[j], we must launch multiple activities: one in the place where B[j] resides, to
read its value, and one in the place where A[i] resides, to assign the value read from
B[j], as in this example:

finish async (B.distribution[j]) {
final int bb = B[j];
async (A.distribution[i]) {

A[i] = bb;
}

}

Here, the inner activity is able to read the value stored in bb because it is declared
final, and non-mutable values can be read from any place.

Dependencies are managed through futures or through an abstraction called
clocks, a version of a barrier in which an activity can be registered on an arbitrary
number of clocks and can simultaneously advance all clocks on which it is registered,
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which can be used to implement producer-consumer activities. The next statement
causes the current activity to suspend until all clocks on which it depends have been
advanced by calling advance on the clocks.

7.4 Chapel
Chapel [20] is a PGAS language providing abstractions which are very similar to

those in X10, as described in Section 7.3. The statement begin S causes the current
task to launch a new task which executes the code block S, while the current task
immediately continues executing; this is equivalent to the async statement in X10.
The statement sync S executes the statements in the code block S, then blocks until
all subtasks created within S have completed; this is equivalent to finish in X10.
As in X10, arrays can have arbitrary indices and customizable assignments of points
to locales through user-definable domain maps, or dmaps. The primary difference
between Chapel and X10 is that Chapel supports access to shared objects from any
locale, as in traditional PGAS languages, while X10 restricts access to the place in
which an object resides. Chapel also supports additional constructs for task creation,
such as cobegin S, which launches a separate task for every statement in S, and
coforall E in C do S, which launches a task executing the statements in S for
every element E in the iterable collection C.

7.5 UPC++
UPC++ [136] is a C++ library which implements PGAS functionality as found in

UPC along with asynchronous task support, which is not a feature of UPC. Rather
than extend C++ with new keywords and types, as UPC did with C, UPC++ adds
PGAS support purely as a library through the use of C++ templates. The UPC
shared keyword applied to value types becomes the template shared_var<underlying_-
type>, while shared pointers become the template global_ptr<underlying_type>.
Using a shared_var in a context in which the underlying type is expected is trans-
parently converted to a local or remote memory access as needed by an implicit
conversion operator. Dereferencing a global_ptr is also transparently converted
to a local or remote memory access. A local global_ptr can also be cast to a plain
pointer to reduce overhead when it is known not to be remote. Direct support is
available for allocating memory from one node which is resident in the memory of
another node, a feature not found in UPC. Multidimensional arrays are supported
similarly to X10 and Chapel.

Asynchronous tasks can be launched using future<T> f = async(place)(function,
args), where function is a callable object returning T. The returned future can be
used to retrieve the value computed by function by calling f.get(), which blocks
until the task has completed. UPC also provides a finish construct analogous to the
one in X10, and an event-based system for building a dependency DAG, in which
an async optionally takes event objects to signal completion and to hold execution
of a task until a set of events have been signaled. Unlike in Charm++ and Swift,
tasks are non-migratable. Tasks are intended to be launched only on remote nodes.
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Habanero-UPC++ [71] allows both local and remote task invocation and extends
the runtime with additional work-stealing support.

7.6 Open Community Runtime
The Open Community Runtime [79] is an asynchronous task-based runtime.

Unlike the other systems described thus far, OCR provides a runtime only; it is
not accompanied by a user-facing language or library, and is intended as a target
for third-party languages and libraries. OCR is based on three abstractions: Event-
Driven Tasks, or EDTs, asynchronous tasks which, once started, are required to run
to completion; Data Blocks, which represent globally-accessible data, and Events,
which connect EDTs, Data Blocks, and other events together. EDTs have input
slots and output slots which may connect directly to Data Blocks or to Events. An
example DAG is shown in Figure 19 for a Fibonacci program.

mainEdt

fibIterEdt

fibIterEdt

fibIterEdt

sumEdt

doneEdt

N

N-2
N-1

Fib(N-2)Fib(N-1)

Fib(N)

EDT

Datablock Data	shared	between	EDTs

A	non-blocking	 unit	of	work.		Runnable	once	
all	pre-slots	 are	satisfied.

Creation	link:	Source	EDT	creates	destination

Event/Data	link:	Source	EDT	provides	 data	to	
the	destination

Both	creation	and	event/data	link

Figure 19: DAG for an OCR Fibonacci code (from [112]). Blue rectangles are
EDTs, purple rounded rectangles are Data Blocks, and arrows are Events.

With Data Blocks, OCR makes data an explicit part of the dependency graph,
unlike most other systems. Events linking Data Blocks to other objects carry infor-
mation on how they are to be accessed, allowing the runtime additional optimization
opportunities: by default, a Data Block is in read-write mode, so that the runtime can
make no assumptions about which EDTs will access the Block. Also available are
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exclusive write, in which only one EDT may write to the block at a time; read only,
in which the Data Block provided by the event may not be written to by the target
EDT, and constant, in which no EDT may write to the Block.

7.7 Legion
Legion [10] is a task-based runtime with a unique data abstraction called Logical

Regions. As with OCR’s Data Blocks, Logical Regions represent data in a global
address space and associates with it access restrictions, namely privileges (read-only,
read/write, etc.) and coherence (exclusive access, atomic access, etc.). As with arrays
in X10 and Chapel, the assignment of ownership of array elements is separate from
declaration of the array extent. However, unlike in OCR, X10, or Chapel, Legion’s
Logical Regions do not impose any physical data layout, deferring this decision until
a task using the region is to be executed.

A Logical Region encodes what types of data are to be stored, but says nothing
about the physical representation of the data. Regions are then partitioned into sub-
regions, with partition operations being annotated as either disjoint (that is, no two
subregions of the region share data) or aliased (subregions may overlap). At runtime,
a mapper function determines the distribution of data to nodes and also the physical
layout of subregions on a node. Legion provides a default mapper with functionality
similar to distributions in X10 or domain maps in Chapel. Custom mappers can be
provided which take into account architecture-specific properties (such as choosing
structure-of-arrays vs array-of-structures depending on whether a CPU or GPU is
targeted) as well as application-specific properties (such as a graph partitioner tuned
to the properties of graphs used in an application). Different tasks can use different
mappers for the same regions, in which case the runtime will dynamically reformat
the physical representation.

7.8 Grappa
Grappa [86] is a task-based runtime and C++ library with generally similar fea-

tures to UPC++, providing a tasking model with a partitioned global address space.
As with X10, only the owner of a memory address is allowed to directly access it,
with remote access being performed through remote task invocation. In most PGAS
systems, such as UPC, UPC++, X10 and Chapel, memory partitions are associated
with nodes, so that if thread A and thread B are located on the same node, and thread
A accesses shared memory located in thread B, the access happens directly and does
not go through the remote memory subsystem. Grappa does not partition memory
in this way: ownership is associated with a core, not with a node. If worker A and
worker B are running on two cores of the same node, and worker A runs a task
which accesses memory owned by worker B’s core, then a task must be scheduled
on worker B to perform that access and return the result to the task on worker A.
Tasks whose only purpose is to access remote memory are called delegate tasks and
are not allowed to context switch or block. Full-fledged tasks may block, in which
case they will be suspended and another task scheduled in their place.
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The high-granularity memory partitioning used in Grappa enables an approach
to global data structures with low contention, known as flat combining [53]. Instead
of acquiring a lock to access the shared data structure, per-core lists of pending
requests are maintained. When a worker attempts to access a non-local part of a
global data structure, it adds the request to the list associated with the core owning
the memory to be modified and then blocks, causing another task to be scheduled
in its place. Periodically, combining workers are scheduled on each core, which
process requests in the order in which they were received.

7.9 HPX
HPX [64] is an asynchronous task-based runtime and C++ library based on the

ParalleXmodel [62]. The distinguishing feature of HPX is its adherence in design to
C++ standards. C++11 [60] added node-local tasks to the C++ standard library in the
form of std::async to launch a task, which returns an object of type std::future
which can be used for synchronization and to retrieve the value returned by the task.
HPX makes this same model available for distributed systems, so that an existing
C++11 application making use of std::async and std::future for parallelism can
be converted to an HPX application by simply replacing themwith hpx::async and
hpx::future. Remote invocation of a task is accomplished by passing an argument
to hpx::async indicating on which locality the task should run. Sending data and
work is accomplished by means of a parcel abstraction. Notably, HPX provides for
transparent task migration, meaning that tasks can migrate without stopping other
computations which are occurring on the node. During migration, any incoming
messages intended for the tasks or data being migrated will be stored for automatic
forwarding once migration is complete. The architecture of HPX is shown in Fig-
ure 20.
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HPX has recently been extended with a new mechanism for implicitly creating
tasks, known as executors [63]. With executors, parallel implementations of Standard
Template Library algorithms can allow decisions as to how to distribute work to be
deferred to external libraries such as HPX. Algorithms which support executors take
an executor object as the first argument, which in turn receives lambda functions
from which it creates tasks. The executor is free to determine how much work to
assign to a given task, and how to distribute tasks in a multi-node setting.

7.10 Spark
Spark [134] is based on a generalization of the Map-Reduce model [27] found

in systems such as Hadoop to problems expressed as general data flow graphs, relax-
ing the restriction that the graphs be acyclic. Operations are carried out on resilient
distributed datasets [133], or RDDs, which store data across nodes and which carry
sufficient information to recompute their contents. Programs are expressed in terms
of RDDs derived from transformations (of which map is only one) applied to other
RDDs and actions (of which reduce is only one). The application developer can
choose to request that certain RDDs be cached in memory or saved to disk. The
developer therefore has to make decisions based on tradeoffs between the costs of
storage (in memory and time) and recomputation (in time). RDDs are lazily eval-
uated, which can create challenges in attributing performance to particular lines or
regions of code, as they do not execute until they are needed.

RDDs are composed of blocks, which represent data. Data storage is also man-
aged by the runtime: while the runtime will attempt to keep data in memory, it is
also free to evict data frommemory, dropping it to disk instead, or to drop it entirely,
requiring that it be recomputed if needed again in the future.

8 Conclusion and Future Directions

For programs written for current-generation supercomputers and using pro-
gramming models such as MPI and OpenMP, a wide variety of performance analy-
sis tools are available for collecting profiles and traces, for analyzing and visualizing
profiles and traces, for offline tuning and online adaptation using automatic perfor-
mance tuning, for automatic diagnosis of performance problems, and for construc-
tion of models from performance data. The move to exascale, however, will require
such a large number of threads that programming using MPI and OpenMP will be-
come difficult, and runtimes being investigated for exascale use a different structure
for specifying programs: directed acyclic graphs of light-weight or medium-weight
tasks for both intra- and inter-node parallelism. Existing techniques for collecting
and making use of performance data are not suitable for analysis of systems of bil-
lions of light-weight tasks, so new techniques will need to be developed to go along
with new programming models, runtimes, and languages at exascale. It will not be
feasible, for example, to collect a trace of the start and stop times of many billions of
tasks.

Many-tasks systems have many additional layers of abstraction over systems like
MPI, and this can cause us to lose the connection between a source line and why
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it is executing, or why it is not executing. In MPI, we can observe that we are
waiting on a receive and work backwards to a cause, such as a late sender. In a DAG
based system, the cause can be far removed from its effect, or can depend instead on
scheduling policy: Why has task A not executed? Because it is waiting on data
from task B. Why has task B not executed? It is eligible to; the scheduler has simply
not scheduled it yet, as there are many tasks eligible for scheduling. What schedule
yields the best throughput? Why is this task executing instead of some other task?
Why is this worker idle now? How are hardware resources shared between worker
threads? How can hardware counter values be attributed to tasks when there are
multiple tasks and tasks can suspend and resume?

Because of the huge number of tasks in a system, we will need to answer these
questions without using post-mortem analysis, as this would require saving too large
a volume of data to disk, yet most existing studies of performance in task-based sys-
tems have used post-mortem analysis of short runs or on a small number of nodes [48,
21]. Performance monitoring at exascale will require in-situ performance analysis [72]
and online adaptation [45]. This will require both node-local performance data and
decision making as well as a global view [57] on performance through which nodes
can become aware of the state of other nodes so that they can best make local deci-
sions, as centralized control will likely be infeasible at exascale.

No in-situ system providing online adaptation for a task-based runtime through
a global view currently exists. The adaptive load balancing system used in Charm++,
described in Section 7.1 is close, but is limited to controlling migration and does
not affect other system parameters, while Charm++’s PICS system operates on a
per-node basis. Node-local adaptation based on contention for memory controller
resources has been demonstrated for OpenMP tasks [4] and HPX [78]. A prototype
in-situ performance monitoring tool providing a global view, GTI-OTFX [119],
has been developed, but only supports traditional MPI applications.

We are currently developing a system, APEX [56], with prototype implementa-
tions for HPX and OpenMP tasks and planned support for other task-based systems
such as OCR. APEX is built around the concept of a policy, which can be registered
to respond to events of interest produced by an instrumented runtime. While poli-
cies ultimately run on a single node, they run as tasks within the task-based runtime
and have access to the same communications infrastructure as any other task; thus, in
HPX, they can communicate with one another using one-sided puts and gets in the
global address space. Built-in support in HPX for efficient reductions can be used
to aggregate performance data. We envision ultimately having a system in which a
small portion of localities are reserved for performance analysis and adaptation, run-
ning analysis tasks which receive data from lighter-weight tasks which collect and
forward performance data from compute localities.
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