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Abstract— The future of computing will be driven by
constraints on power consumption. Achieving an exaflop
will be limited to no more than 20 MW of power, forc-
ing co-design innovations in both hardware and software
to improve overall efficiency. On the hardware side, pro-
cessor designs are shifting to many-core architectures to
increase the ratio of computational power to power con-
sumption. Research and development efforts of other
hardware components, such as the memory and inter-
connect, further enhance energy efficiency and overall
reliability. On the software side, simulation codes and
parallel programming models will need modifications to
adapt to the increased concurrency and other new fea-
tures of future architectures. Developing power-aware
runtime systems is key to fully utilizing the limited re-
sources. In this paper, we survey the current research
in energy-efficient and power-constrained techniques in
software, then present an analysis of these techniques as
they apply to a specific high-performance computing use
case.

Keywords— High-performance computing, HPC, dy-
namic voltage and frequency scaling, dynamic volt-
age scaling, dynamic concurrency throttling, DVFS,
DVS, DCT, energy-efficient, power-efficient, power-
aware, power-constrained

I. INTRODUCTION

Power is a key challenge for achieving the next gen-
eration of computing. Simply scaling current technolo-
gies to exascale will produce a machine that consumes
over a staggering 100 MW of power. Such a power-
hungry machine results in unsustainable energy utility
costs. The U.S. Department of Energy (DOE) has set a
challenging goal of reaching an exaflop at 20 MW, re-
quiring supercomputers to stay at or below the power
bound for cost feasibility [1], [2], [3]. Said another way,
transitioning a present system to exascale requires com-
putational power be increased by a factor of 10, while
power requirements be increased by only a factor of
1. The future of computing will challenge the commu-
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nity to innovate all system domains, including hardware,
parallel programming models, runtime infrastructures,
and simulation codes.

Addressing the power challenge will require co-
design solutions in both hardware and software com-
puting aspects. Processor designs are shifting to-
wards many-core and accelerator-based architectures to
achieve higher performance at a lower power consump-
tion. Similarly, more power-efficient subcomponents —
memory, interconnect, etc. — are being considered in
support of the overall power goal. The entire software
stack is also being reconsidered with power in mind.
Simulation codes and parallel programming models are
being modified to fully leverage the features of upcom-
ing hardware architectures, such as increased concur-
rency and reduced memory per core. Power-aware run-
time systems are under development to dynamically re-
allocate scarce resources such that performance is opti-
mized.

Additional solutions to reaching exascale are soft-
ware techniques for savings in energy and power in
HPC. Traditionally, energy-efficient techniques are used
to evaluate the trade-offs between performance, power
savings, and energy savings. Lower processor operat-
ing frequencies and voltages result in reduced power
consumption, but the impacts on performance and sav-
ings in power and energy are highly volatile. At ex-
ascale, power is the limited resource, necessitating ef-
fective power management. Future research in power-
constrained HPC will need to understand the trade-offs
between the complex measures of performance — time-
to-solution, power consumption, energy usage, accuracy
of results, etc. — such that the ultimate goal of maxi-
mizing performance under a power bound is met.

In this paper, we survey several energy-efficient and
power-constrained approaches in the context of HPC.
This paper presents a qualitative analysis of such ap-
proaches in order to understand what opportunities exist
for designing a power-aware visualization framework.
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Terminology Symbol Definition
High-performance
computing

HPC
Technology leveraging high computational capacity of parallel
processing.

HPC system —
Computing system containing parallel compute resources to pro-
vide high computational capacity.

Supercomputer —
Specific class of HPC system containing a large number of com-
pute nodes.

Floating-point
operations per second

FLOPS
Standard metric for measuring performance of supercomputers.
Used to rank the top 500 supercomputers in the world.

Energy — In physics, energy is defined as the capacity to do work.

Power —
In physics, power is the rate at which work is applied. It is the
derivative of energy usage over time.

Power bound,
Power cap

—
Upper limit on power consumption for a particular domain. Power
bounds are imposed hierarchically from the supercomputing facil-
ity down to the individual processors.

Power-constrained — Configuration where power is the limited resource.
Energy-constrained — Configuration where energy is the limited resource.
Dynamic voltage and
frequency scaling

DVFS Dynamically change voltage and CPU frequency to reduce power.

Dynamic voltage
scaling

DVS Dynamically change voltage, keeping CPU frequency constant.

Dynamic frequency
scaling

DFS Dynamically change CPU frequency, keeping voltage constant.

Dynamic concurrency
throttling

DCT
Dynamically change the number of threads used in a parallel re-
gion.

Peak power — Maximum power a component can consume.
Thermal design
power

TDP
Manufacturer-specified maximum power consumption given a typ-
ical application. Often used interchangeably with peak power.

Worst-case
provisioned

—
Traditional approach in HPC where all components in the system
are able to consume peak power.

Hardware
overprovisioning

Overprovisioning
Possible solution for future systems, whereby more components
exist than can be simultaneously executing at peak power without
exceeding specified power bounds.

Power-aware —
Objective focused on maximizing performance under a power
bound.

Temporal granularity —
Power monitoring objective specifying the (time) frequency of
measurement samples.

Spatial granularity —
Power monitoring objective specifying the resolution of per-
component measurement samples.

Bulk-synchronous
applications

—

Massively distributed parallel applications with global synchro-
nization points at key milestones in the computation. The compu-
tation cannot move forward until all compute units have reached
the synchronization point.

Phase —
Particular region in an application with uniform execution charac-
teristics.

In situ —
Scientific visualization model where the data exploration and anal-
ysis occurs alongside the simulation.

TABLE I
SUMMARY OF TERMINOLOGY USED IN THIS PAPER.
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The rest of this paper is organized as follows:
• Section II provides the necessary foundation for un-
derstanding the material in this survey paper, such as
challenges at exascale and the differences between en-
ergy and power.
• Section III discusses the different classifications of
computing and their overarching goals to be energy-
efficient or power-aware.
• Section IV provides a comprehensive overview of of-
fline and online DVFS approaches used to reduce energy
usage.
• Section V discusses current research endeavors tar-
geted at the power-constrained environment at exascale.
• Section VI discusses present efforts looking at scien-
tific visualization with power consumption in mind.
• Section VII reviews the findings of this survey paper
and discusses future work.

II. BACKGROUND

A. High-Performance Computing

High-performance computing (HPC) is an enabling
technology allowing domain scientists to solve a wide
variety of complex scientific problems through simula-
tions. Simulations are a compelling alternative to con-
structing physical experiments as it may be infeasible to
build the actual system due to safety or cost reasons, for
example. Applications codes facilitate a mechanism for
simulating complex real-world phenomenon, often re-
quiring high computational throughput. Typically, these
codes require more than one order of magnitude more
computational resources than are available on a desktop
or workstation, so we look to HPC systems to satisfy
computational demands. A specific class of HPC sys-
tems are supercomputers, which are large machines con-
sisting of tens of thousands of interconnected compute
nodes providing high computational capacity to collec-
tive solve the problem at hand.

The performance of supercomputers is often mea-
sured by the number of floating-point operations com-
pleted in a single second (FLOPS). The IBM Roadrun-
ner transitioned the community from teraflop to petaflop
in 2008, capable of completing 1015 (or 1 quadrillion)
operations per second. The next generation of super-
computers, expected in 2023, will be three orders of
magnitude more powerful than Roadrunner, and will ex-
pose new challenges related to power consumption.

Twice a year, the Top500 [4] ranks the most powerful

systems in the world by the performance achieved on a
standardized benchmark known as Linpack [5]. Linpack
is a dense solver of linear equations that has been heav-
ily optimized to stress all system components from the
processor to the memory subsystem to the interconnect.
As of June 2016, the most powerful system in the world
is the Sunway TaihuLight located at the National Su-
percomputing Center in Wuxi, which achieves just over
93 petaflops and consumes 15 MW of power [4]. Scal-
ing current technologies from 93 petaflops to an exaflop
will require just one more order of magnitude increase
in computational power.

There are several challenges in achieving an exaflop,
such as reduced memory per processor, increased mem-
ory latency, and higher failure rates to name a few [6].
In 2010, the DOE projected the first exascale system to
arrive in 2018. Table II summarizes the expected design
changes from a petascale system in 2010 to an exascale
system. Due to power consumption limitations, previ-
ous supercomputing design trends cannot be applied to
transition from petascale to exascale. We discuss this
power challenge in more detail in the following subsec-
tion.

A.1 Power Challenges

Historically, HPC has largely focused on building the
fastest system to achieve the highest job throughput.
As a result, computer architecture trends show higher
clock frequencies and increased hardware parallelism
in the form of transistors, cores, and nodes (Moore’s
Law [7]). While this trend continues to dominate the
chip industry, as of late, it has brought rise to some
critical problems. Higher clock frequencies and more
hardware parallelism increase the amount of heat gen-
erated due to transistor switching. This heat must be
dissipated to keep components at a reasonable temper-
ature and to avoid hardware failure. This translates to
a high power consumption, as power is directly corre-
lated to the amount of heat generated. The higher the
power consumption, the higher the energy usage, and
the more expensive the annual operational cost to the su-
percomputing center. At high power consumption rates,
the operational cost becomes expensive and unsustain-
able for a supercomputing center to afford. The U.S.
DOE imposed a maximum power consumption rate of
20 MW for a first-generation exascale system [1], [2],
[3]. Assuming 1 MW of power costs a supercomput-
ing center $1M annually in energy bills, the U.S. DOE
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Parameter 2010 2018 Ratio
System
Peak

2 PF 1 EF 500

Power
Consumption

6 MW 20 MW 3

System
Memory

0.3 PB 10 PB 33

Node
Performance

0.125 GF 10 TF 80

Node Memory
Bandwidth

25 GB/s 400 GB/s 16

Node
Concurrency

12 CPUs 1K CPUs 83

Interconnect
Bandwidth

1.5 GB/s 50 GB/s 33

System
Size (Nodes)

20K 1M 50

Total
Concurrency

225K 1B 4,444

Storage 15 PB 300 PB 20
I/O
Bandwidth

0.2 TB/s 20 TB/s 100

TABLE II
PREDICTED EXASCALE DESIGN TARGETED FOR 2018

(NOW TARGETED FOR 2023), AND THE RESULTING

CHANGE FROM A PETASCALE SYSTEM IN 2010. THE

LARGE IMBALANCE BETWEEN PERFORMANCE AND

POWER AT EXASCALE IS HIGHLIGHTED IN RED [1].

has essentially imposed an annual budget of $20M on
power consumption. Comparing a petascale machine in
2010 to an exascale machine in 2023, this means power
consumption must only increase by one order of mag-
nitude, while performance will increase by three. Thus,
solutions will need to be 100X more power-efficient at
exascale than petascale.

In 2007, the Green500 list [8] was created to com-
plement the Top500 list. It ranks supercomputers on
the metric of performance-per-watt (i.e., FLOPS/W) in-
stead of performance (i.e., FLOPS). The complemen-
tary list promotes new metrics of performance, such
as performance-per-watt and energy-efficiency for im-
proved system reliability. With the system-wide power
cap implemented by the U.S. DOE, research will need to
look into more sophisticated power management strate-
gies at all levels of the system.

Looking forward to the next generation of comput-
ing, power consumption will drive the operation and de-
sign decisions of these systems from hardware architec-
ture and system design to application development. The
challenge will be how to maximize performance of the
system while operating under a system-wide power bud-
get.

B. Energy vs. Power

Energy and power are two (often misused) terms re-
lated to how much work has been done. We explore the
subtle differences in the following subsections.

B.1 Energy

Energy, commonly expressed in Joules, quantifies the
amount of work done. It can also be expressed in Watt-
hours or more commonly, kiloWatt-hours (1 kWh = 3.6
MJ). An electric company charges consumers for the
amount of energy used in a given month. As an ex-
ample, say a consumer used 910 kWh in the month
of July. The electric company charges $0.12/kWh, so
the total charge to the consumer would be 910 kWh ×
$0.12/kWh = $109.20.

Calculating the energy usage from a time-power
curve by is done by taking the integral of the power con-
sumption over time, or equivalently, by calculating the
area under the curve as shown in Equation 1 and Fig. 1
(shaded in red), respectively.

E =

∫ ∞
0

Pdt (1)

B.2 Power

Power, on the other hand, is a rate expressed in Joules
per second (J/s). This quantity represents how much
work is done in a given interval of time. Calculating the
power consumption from a time-energy curve is done
by taking the derivative of energy over time as shown in
Equation 2:

P =
dE

dt
(2)

At the hardware level, the total power consumption
of a device is composed of leakage and dynamic power,
shown in Equation 3:

Ptotal = Pleakage + Pdynamic, (3)
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Fig. 1
POWER PROFILE FOR LINPACK EXECUTING ON A SINGLE

NODE. THE ENERGY USAGE OF THIS EXPERIMENT IS

DETERMINED BY CALCULATING THE AREA UNDER THE

POWER VS. TIME CURVE.

where the leakage power is power lost while the device
is in steady-state (i.e., idle state), and the dynamic power
is attributed to the switching of transistors. Pdynamic is
the dominating factor in Equation 3, and is dependent on
the given application and current thermal environment.
Fig. 1 shows a real-world power profile for the Linpack
benchmark running on a single node. For the first 50
seconds of the experiment, the power consumption is at
40W. This is the minimum power necessary to run the
system in its idle state. Once the application begins,
more system components become engaged, such as the
cache, cooling infrastructures, and arithmetic units, and
the power consumption rises to 110W. Once the applica-
tion has completed, the system returns to the idle power
of 40W.

Song et al. [9] further break down the components in
Equation 3 as:

P = IleakageVdd +ACV 2
ddf, (4)

where AC is the capacitance of the device, Vdd is the
supply voltage, and f is the clock frequency. Equation 4
implies that the total power consumption can be man-
aged by adjusting the clock frequency and/or the supply
voltage, which are directly proportional to one another.

C. Power Monitoring Tools

There are a wide range of hardware and software tools
for power monitoring. More commonly, these tools
are capable of monitoring power rather than control-
ling power. As such, there is an increasingly high de-
mand for tools that enable power control at fine-grained
temporal and spatial granularities in moving forward to
exascale, where power will be a severely constrained
resource and will need to be allocated wisely. In the
following subsections, we will discuss a small subset
of these tools at a high-level to provide an overview of
the available infrastructures. For more details, see Ap-
pendix A. We summarize the different power monitor-
ing solutions in Table III.

C.1 Coarse-Grained Monitoring

Coarse-grained monitoring tools, such as WattsUp?
Pro and Cray XC30 measure power consumption with
low spatial granularity. The WattsUp? Pro [10] is an ex-
ternal monitor connected between the power supply at
the wall and the component. While such a device ben-
eficially provides physical power measurements rather
than modeled ones, it has some pitfalls. The first being
that it reports the power consumption of the entire sys-
tem, which does not reveal how the power is being con-
sumed across different components, such as the proces-
sor and memory infrastructure. Similarly, Cray XC30
systems have the same shortcomings in that it reports
power usage per-node, but does not indicate how power
is being consumed by node subcomponents. Measuring
power consumption of a large-scale HPC system would
render this solution cost-ineffective as multiple meters
would need to be purchased. An additional problem is
the frequency update rate of twice per second, which
will be too coarse-grained to attribute power consump-
tion to particular phases in the application.

C.2 Vendor-Specific Component-Level Monitoring

Processor manufacturers, such as Intel, AMD, and
IBM, have released software technologies for measur-
ing, monitoring, and controlling power consumption of
the processor and peripherals. Intel’s Running Average
Power Limit (RAPL) technology [12] was first intro-
duced with Sandy Bridge processors. RAPL provides
privileged access to a wide variety of 64-bit model-
specific registers (MSRs) to monitor and control vari-
ous power and thermal features of the processor and pe-
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Power Monitoring
Tool Type Sample Freq Scope Power

Capping? Cost Ref

WattsUp? Pro Coarse-Grained 0.5 sec AC outlet No $$$ [10]
Cray Coarse-Grained 100 ms Server, Node No — [11]

Intel RAPL Vendor-Specific 1 ms
Core,

DRAM per socket
Yes — [12]

AMD APM
TDP Power Cap

Vendor-Specific 10 ms Socket Yes — [13]

IBM EnergyScale Vendor-Specific 10 ms Server Yes — [14]
NVIDIA NVML Vendor-Specific 16 ms GPU No — [15]
PowerPack Fine-Grained 1 sec DC components No $$ [16]
Penguin PowerInsight Fine-Grained 1 ms DC components No $ [17]
PowerMon
PowerMon2

Fine-Grained 0.3 ms-20 ms DC components No $ [18]

Ilsche et al. Fine-Grained 1 ms DC components No $$$ [19]
HDEEM Fine-Grained 1 ms DC components No $$ [20]

TABLE III
SUMMARY OF SOME AVAILABLE POWER MONITORING TOOLS.

ripherals. One of these features is predicting the power
consumption with internal models based on counters in
order to make decisions on how to spend any avail-
able power headroom wisely. With the introduction of
Haswell processors, fully integrated voltage regulators
enabled actual power measurements to vastly improve
the accuracy of RAPL energy measurements [21].

Fig. 14 highlights four RAPL power domains, which
can vary across architectures:
• Package (PKG): All components on the processor
• Power Plane 0 (PP0): Cores and local private caches
• Power Plane 1 (PP1): Uncore devices, such as graph-
ics cards on client processors or QuickPath Interconnect
(QPI) on server processors
• DRAM: Memory subsystem
Traditionally, the client processors support the PKG,
PP0, and PP1 domains, while the server processor sup-
ports PKG, PP0, and DRAM domains.

Each RAPL domain has registers for the following
parameters:
• Power Limit and associated Time Window for enforc-
ing a power cap
• Energy Status for monitoring energy usage (and de-
riving power consumption)
• Perf Status for monitoring the performance impact of
the enforced power cap
• RAPL Info defines the minimum and maximum

Fig. 2
RAPL DOMAINS FOR A GIVEN PROCESSOR.

power supported by the given domain, the max time
window, and the thermal design power (TDP)

Each MSR bit field is expressed in terms of power,
energy, or time units, which are fused into a read-only
register called MSR_RAPL_POWER_UNITS. For most
architectures, the power unit is expressed in 1

8W , the
energy unit is expressed in 15.3µJ , and the time unit
is expressed in 976µs. MSRs in any domain can be
accessed with rdmsr and wrmsr, assuming the msr
kernel confirms the presence of and appropriate permis-
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sions for the /dev/cpu/X/msr file.
AMD Application Power Management [13] provides

similar functionality to Intel’s SpeedStep, TurboBoost,
and RAPL technologies. Starting with Bulldozer, AMD
introduced TDP Power Cap technology, enabling soft-
ware to limit power consumption of the processor by en-
forcing a desired TDP limit. IBM EnergyScale [14] also
enables software to monitor and control the power con-
sumption starting with POWER6 systems. One notable
feature is processor folding, whereby tasks are migrated
among cores to maximize energy usage. For example,
if the application demands resources, migrate tasks to a
larger number of cores. When the demand decreases, re-
duce the number of working cores, putting superfluous
cores to idle or sleep.

With the growing demand for fine-grained power
measurement capabilities, other vendors are releasing
software-based solutions to monitor power of targeted
components. NVIDIA’s Management Library (NVML)
provides GPU core temperature, current effective fre-
quency of the GPU, and real-time power consumption
measurements [15]. This library is limited in scope,
only targeting the server processors, such as the Tesla
and Quadro lines. Power readings in milliWatt granu-
larity are gathered with a simple API call.

C.3 Fine-Grained Infrastructures

To overcome the limited information provided by
vendors about their respective power management in-
frastructures, several tools have been created to physi-
cally instrument compute nodes and individual compo-
nents irrespective of the underlying architecture. Power-
Pack [16] is a hardware and software co-design solution
to automate collection of power data from component-
level sensors.

Penguin PowerInsight [17] is a commercially-
available hardware and software solution designed in
close collaboration with Sandia National Laboratory.
The hardware sensor modules integrate onto the mother-
board by attaching to the voltage rail between the power
supply and the motherboard components, such as the
CPU or memory.

PowerMon and PowerMon2 [18] are very similar so-
lutions to Penguin’s PowerInsight discussed previously.
It is a low cost — at most $150 per device — fine-
grained power monitoring device for commodity sys-
tems capable of collecting data from eight channels si-
multaneously at a rate of 1000 samples per second.

The PowerMon2 was a more optimized solution to its
predecessor, the PowerMon, which had six measure-
ment channels and a sample collection frequency of
20 ms. This optimized device provided eight measure-
ment channels to sample additional peripherals, such as
GPUs, and a maximum collection rate of 3000 samples
per second.

There is a complex relationship between several de-
sign goals — scalability, fine-grained per-component
measurements, fine-grained power attribution to appli-
cations behaviors, and accuracy. Each solution dis-
cussed in this section has its benefits and drawbacks,
and no one monitoring infrastructure satisfies all of de-
sign goals.

III. SYSTEM OBJECTIVES

In this paper, we define two specific types of design
constraints: energy-efficient and power-aware. These
two constraints are similar, but aim to satisfy two differ-
ent objectives based on the target domain. This section
details the constraints and explains how they impact the
design of various computing domains in more detail in
the following subsections. The different classifications
of computing and their respective design constraints are
summarized in Table IV.

A. Energy Efficiency

Designing for energy efficiency has dominated the
computing world for several decades. It has been the
driving factor behind mobile and desktop computing,
where energy efficiency translates into longer battery
life (mobile computing) and lower monthly energy bills
(desktop computing). In particular, energy efficiency is
of concern to areas of computing where the amount of
energy is finite. The goal of mobile computing is to ex-
tend battery life, so the user does not have to recharge
the device in the middle of the day. Energy-efficient
techniques to maximize battery life include putting the
processor and other components to different levels of
deep sleep when not in use [22], [23], [24], [25], [26],
[27], [28], [29]. On the software side, mobile applica-
tion developers are finding intelligent ways of minimiz-
ing energy usage, further extending the battery life of
the device.

Desktop computing architects have adapted tech-
niques from the mobile world, such as putting the pro-
cessor to sleep when not in use, and have implemented
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Computing
Classification

Energy- vs. Power-
Constrained Driver System

Scale
Response

Time
Perf Degradation

Allowed?
HPC Power-constrained Organization Large Long Yes
Data Center Energy-constrained User Large Short No
Mobile Energy-constrained User Small Short No
Desktop Energy-constrained User Small Short No
Workstation Energy-constrained Organization Medium Long Yes

TABLE IV
COMPUTING TAXONOMY AND THEIR ASSOCIATED ENERGY-CONSTRAINED OR POWER-CONSTRAINED OBJECTIVES.

energy saving heuristics to save energy during compu-
tation. DVFS enables dynamic reduction of the cur-
rent operating frequency and voltage, in order to con-
serve power or reduce the amount of heat being gen-
erated by the chip. Lower frequencies result in per-
formance degradation particularly to CPU-bound ap-
plications, since the rate of instruction completion is
proportional to the operating frequency of the proces-
sor. Workstations provide higher computational capac-
ity than desktop computers, and are driven to be energy-
efficient to reduce energy utility costs. As such, slow-
down to applications are acceptable.

Data centers, such as those housed by Amazon and
Google, are another class of computing distinct from
those targeted for HPC. The goal of a data center is to
provide users with cheap, scalable solutions. Data cen-
ter applications are transactional — users submit a re-
quest to the data center, and the data center is expected
to provide an immediate answer. In several cases, data
centers are constrained by an energy budget, so mea-
sures need to be taken to minimize energy usage [30],
[31], [32], [33]. Performance slowdown is not accept-
able in this case, as the user can satisfy their demands
by submitting their request to another data center.

In an HPC setting, minimizing energy usage on a per-
job basis is necessary for maximizing job throughput of
the machine under power limitations. The central goal
of energy-efficient computing is to reduce energy usage,
while incurring some slowdown in performance. The
slowdown is often acceptable because it reduces energy
costs. Lots of research has been dedicated to analyzing
the trade-offs between energy and performance in the
HPC domain. Jitter [34] and CPU MISER [35] are two
algorithms designed to save energy with some impact to
performance by leveraging DVFS to exploit application
imbalances. Most algorithms are particularly focused

on phases where the CPU may be memory-bound and
lacking computational work, while others focus on com-
pute resources with less work assigned, as consequently,
they will spend time idling at a global barrier waiting for
other compute resources to finish. Adagio [36] was the
first dynamic runtime system developed to increase en-
ergy savings without impacting performance by using
previous task performance and energy usage behaviors
to influence the subsequent execution of this same task.

With the impending challenges of next generation su-
percomputers, using solely energy-efficient approaches
will not satisfy the overall power bound goals at exas-
cale. That is to say, meeting an energy target will not
necessarily guarantee a specific sustained power. Inno-
vations are needed for all components of the HPC sys-
tem with power in mind.

B. Power-Aware

Power-aware computing is mostly targeted towards
the HPC domain, where power constraints will pose a
large challenge in achieving the next generation of com-
puting. Up until now, nodes have been the primary
scarce resource shared among various jobs in order to
increase throughput, and power consumption and en-
ergy usage were a secondary concern to performance.
At exascale, the U.S. DOE has enforced a 20 MW power
cap, bringing power to the forefront as the primary con-
cern.

In order to meet the specified power bound, all com-
ponents of the HPC system will need to be re-assessed
with power in mind. Hardware architectures are be-
ing redesigned with power efficiency in mind, paving
the way for many-core architectures, such as NVIDIA’s
GPU and Intel’s Xeon Phi. Power measurement tools,
such as Intel’s Running Average Power Limit, are im-
proving their accuracy and temporal and spatial mea-
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surement granularity to monitor the current power con-
sumption of various system components from the socket
to the individual cores to the memory subsystem.

Understanding and optimizing HPC application per-
formance under a power bound is a research area that
needs continued exploration. Rountree et al. [37] were
the first to look at the implications to performance while
under a power bound enforced on a per-processor ba-
sis. Their work highlights the notable impact of pro-
cessor manufacturing variations on overall performance
when under a power bound, noting that variations in
power will no longer be acceptable given a system-
wide power bound. In the past, applications have been
power-oblivious, and power has been allocated based
on maximum capacity. However, this strategy does
not always lead to the best performance and research
has shown better performance can be achieved with a
smaller power allocation [38], [39], [40], [41]. Since
power will be a limited resource at exascale, it will
be necessary to allocate the available power wisely.
Algorithms will need to be re-designed to be power-
aware, such that they can dynamically adapt to the avail-
able power, though resulting performance will degrade.
More specifically, applications will need to understand
instances when more power is required to achieve end
goals and instances when power and performance could
be reduced without impacting accuracy.

A tractable solution to achieving an exaflop under
a power bound is hardware overprovisioning, where a
system cannot run all components at peak power si-
multaneously without exceeding the power bound [38],
[37], [40], [42], [43]. Patki et al. [39] found that an
average 50% speedup can be achieved with an overpro-
visioned system.

C. Energy and Power Management Technologies

Typically, the CPU is the dominating factor in overall
power consumption of the system (see Fig. 3). By ap-
plying energy and power reduction techniques, such as
DVFS, DCT, and power capping to applications, signif-
icant savings can result. We detail these different tech-
niques in more detail in the following subsections.

C.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is
the generic name for the technology to adjust the clock
frequency and supply voltage to control power con-
sumption and energy usage. In other words, a lower

Fig. 3
THE CPU IS A LARGE POWER CONSUMER IN A SYSTEM.
THE MAGNITUDE OF POWER IT CONSUMES WILL VARY

DEPENDING ON THE APPLICATION BEHAVIORS [44].

frequency reduces power consumption, since the pro-
cessor is operating at a lower speed and is consequently
generating less heat. Assuming DVFS does not degrade
the performance to a large degree, this technology has
also resulted in a savings in energy usage, which is
cost-effective to the supercomputing center. However,
it can take several thousand clock cycles for the change
in voltage and frequency to take effect, so the time step
in which the DVFS is being applied needs to be long
enough to amortize this change [45].

Up until now, DVFS has been the primary method
for reducing energy usage and operational costs. At ex-
ascale, where power is the scarce resource, DVFS will
not be sufficient in meeting power goals. DVFS guar-
antees a specific frequency and voltage, which are dis-
crete pairs fused into the processor during the manu-
facturing process. But, DVFS does not guarantee a spe-
cific power consumption, which is impacted by a myriad
of factors including the current temperature of the sys-
tem and the number of components currently engaged
(i.e., application-dependent). In order to meet power
constraints, tools are needed to enforce a strict power
bound, with the underlying firmware managing the volt-
age and frequency to guarantee a specific power con-
sumption.
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Fig. 4
SAMPLE POWER-EFFICIENT VOLTAGE-FREQUENCY

CURVE FOR A CPU. FREQUENCIES BETWEEN 1.0 GHZ

AND 1.4 GHZ CAN BE ACHIEVED AT A CONSTANT

VOLTAGE VALUE. THE FREQUENCIES BETWEEN 1.6 GHZ

AND 2.9 GHZ ARE THE TYPICAL VOLTAGE-FREQUENCY

RANGE EXPOSED TO SOFTWARE. FREQUENCIES ABOVE

2.9 GHZ ARE CONSIDERED TURBO RANGE, WHERE

EFFECTIVE FREQUENCIES WILL VARY BASED ON THE

APPLICATION AND THERMAL CONSTRAINTS.

In the literature, this technology has also been re-
ferred to as dynamic frequency scaling (DFS) [46] and
dynamic voltage scaling (DVS) [34], [36], [47], [48],
[49], [50], [51]. In reality, dynamically increasing volt-
age in DVS (while keeping a constant frequency) is not
useful to HPC, but is more a technology found in desk-
top computing (overvolting). DFS implies a change in
frequency without a change in voltage as demonstrated
in Fig. 4, but does not necessarily provide any energy
or power savings. In this paper, we will refer to this
energy- and power-saving technology as DVFS, where
both voltage and frequency need to change to result in
savings.

Discrete voltage-frequency pairs are known as per-
formance states or p-states. The default frequency or
nominal frequency of the processor is known as P1, and
results in the best performance, maximum power. The
lowest frequency available to software is known as Pn.
There are, however, frequencies lower than Pn avail-
able to firmware as a protection mechanism in case of
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Fig. 5
APPLICATIONS WITH VARYING DEGREES OF COMPUTE

AND MEMORY INSTRUCTIONS WILL BE IMPACTED TO

DIFFERENT LEVELS BY FREQUENCY [52].

thermal events. The impact of different frequencies to
performance is heavily dependent on the application as
shown in Fig. 5. Reducing the CPU frequency from P1
to Pn for a compute-bound application produces a neg-
ative linear correlation between frequency and perfor-
mance. In the case of the black curve in Fig. 5, a re-
duction in the CPU clock frequency by two causes a 2X
increase in runtime. The remaining curves experience
roughly no change in runtime as the frequency changes
as these applications were waiting on data to return from
memory.

Every processor manufacturer has branded their own
version of this technology. On Intel processors, this
CPU throttling technology is known as SpeedStep. In-
tel processors also have a technology known as Turbo-
Boost, whereby additional performance can be gained
by subsequently running the processor at higher than the
normal frequency range when thermal limits allow and
when there is a demand for high computational capacity.
On AMD processors, it is known as Application Power
Management (APM) [13] and TurboCore. On IBM pro-
cessors, this technology is known EnergyScale [14].
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C.2 Dynamic Concurrency Throttling

The number of cores in a processor is increasing ex-
ponentially, however, most applications are unlikely to
make effective use of the available cores. Dynamic
concurrency throttling (DCT) is a software knob for
adapting the concurrency level based on application ex-
ecution behaviors in multi-core processors [53], [54].
DCT can be a better solution to DVFS within a node as
some DVFS implementations affect all cores the same
(e.g., Intel Ivy Bridge), and they have high overhead
in switching from one voltage and frequency to an-
other [55]. While advanced processors have made great
strides in providing tools for finer-grained energy effi-
ciency, such as enabling each core to run at a different
frequency (e.g., Intel Haswell) and reducing the over-
head, DCT provides a throttling mechanism with less
overhead.

Combining the techniques of DVFS and DCT into a
prediction model is shown to be beneficial in maximiz-
ing performance and energy savings [56], [57]. DCT
will be another key component in reaching an exaflop at
20 MW. In particular, it will enable future power-aware
resource managers to dynamically reconfigure the num-
ber of active threads within the job to fit within the avail-
able power budget.

C.3 Power Capping

At exascale, systems will be severely power limited,
so techniques are needed to manage power consumption
across all components in the system. Power capping
provides fine-grained software control over the power
consumption of the processor, and the underlying hard-
ware uses DVFS to manage the specific voltage and
frequency to guarantee the specified power. In 2011,
the first component with power capping capabilities ap-
peared on the market. Currently, power capping mech-
anisms target the CPU, which is typically the dominat-
ing factor in node-level power consumption. Processor
manufacturers, such as Intel, AMD, and IBM, have pro-
vided capabilities to enforce a cap on the power con-
sumption of the processor, and Intel also enables con-
trol over the power consumption of the DRAM. Re-
search in power-aware HPC is shifting away from us-
ing DVFS to using power capping to manage power us-
age under a hard power constraint. While understanding
performance due to DVFS has been extensively stud-
ied, understanding performance under a power cap ex-

poses new challenges concerning the relationship be-
tween performance and power consumption.

IV. ENERGY-EFFICIENT HPC

Research in power-aware HPC has been dominated
by trading performance for a savings in energy. Solu-
tions have leveraged DVFS to minimize performance
degradation by targeting specific application character-
istics, such as communication barriers, I/O delays, load
imbalance, or iterative behaviors. While saving energy
is necessary to reaching power goals, they will be insuf-
ficient as the overarching goal at exascale will be man-
aging power consumption, not energy usage. Initially,
offline approaches were proposed, serving as a basis for
evaluating future online approaches. Online approaches
are challenging, since making decisions requires accu-
rate models and predictions of the impact of different
CPU frequencies on application phases without any a
priori knowledge of the application. This section will
provide an in-depth overview of the previous and cur-
rent research endeavors of energy-efficient techniques
for HPC. First, we discuss various metrics used to
characterize applications as compute-bound, memory-
bound, or I/O-bound, which identify good candidates
for energy savings.

A. Characterizing Applications

Traditionally, applications are categorized into one of
three classifications – compute-bound, memory-bound,
or I/O-bound — indicating the bottleneck resource. For
most processors, a reduction in frequency on a compute-
bound workload is inversely proportional to the overall
execution time, and for memory-bound and I/O-bound
applications, a change in frequency should result in no
change to the execution time. For this reason, DVFS al-
gorithms tend to target the latter types of applications,
since they provide the most energy-saving opportuni-
ties without a time penalty. Predicting the energy-time
trade-offs of DVFS can be done by collecting perfor-
mance metrics to classify each application.

One common metric is instructions per cycle (IPC),
or inversely cycles per instruction (CPI), which indi-
cates the CPU-boundedness of an application. The
higher the IPC, the more dependent the application is
on the CPU, and the more impacted it will be by a
change in frequency. As such, IPC varies greatly with
frequency, making it a non-ideal candidate for predict-
ing the energy-time trade-off. A more reliable metric is
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DVFS Algorithm DVFS Classification(s) Scope Mod Src
Code? Ref

Freeh et al. Offline Intra-Node No [58], [59]
Cameron et al. Offline Intra-Node No [48]
Linear Programming Offline, Slack Inter-Node Yes [60]
Minimization Solution Offline Inter-Node Yes [49]
Springer et al. Offline Inter-Node Yes [61]
Green Queue Offline Inter-/Intra-Node No [62]
Jitter Regular Iterations Inter-Node Yes [34]
Laurenzano et al. Regular Iterations Inter-Node Yes [63]
Energy Aware MPI Non-Regular Iterations, Slack Inter-Node No [64]
CPUFreq Fixed Intervals Intra-Node No [65]
CPU MISER Fixed Intervals Intra-Node No [35]
Ge et al. Fixed Intervals Intra-Node No [51]
Criticality-Aware Governor Fixed Intervals Intra-Node No [66]
β-Adaptation Fixed Intervals Intra-Node No [50], [67]
Adagio Slack Inter-Node No [36]
Thrifty Barrier Slack Intra-Node No [68]
Lim et al. Slack Inter-Node No [69]
ORA Slack Intra-Node No [70]

TABLE V
SUMMARY OF ENERGY EFFICIENCY ALGORITHMS.

misses per operation (MPO), derived from number of in-
structions retired and last-level cache misses [59], [71].
MPO is indicative of the memory pressure of a given
application — as the MPO value increases, the applica-
tion becomes more memory-bound because the number
of memory accesses per operation is increased. Unlike
IPC, MPO remains constant with varying frequencies.
Executing the same application with different frequen-
cies results in a maximum 1% difference in MPO.

Hsu et al. proposed the β metric to indicate the inten-
sity level of off-chip (i.e., memory) accesses [50], [67].
β is a value between 0 and 1, where 1 indicates that
the overall execution time will scale with a reduction in
frequency, and 0 indicates that the execution time is in-
dependent of the frequency. Computing this coefficient
is done at runtime, and is based on the rate of instruc-
tion completion (in millions) per second (MIPS) at each
CPU frequency:

β =

∑
i(
fmax

fi
− 1)(mips(fmax)

mips(fi)
− 1)∑

i(
fmax

fi
− 1)2

(5)

Here, the total number of instructions in a given applica-
tion is assumed constant irrespective of frequency, and
thus the MIPS value will be proportional to the CPU
frequency.

Rountree et al. [72] survey current hardware perfor-
mance counters to predict application performance sen-
sitivity to frequency. They advocate for an additional
counter to track the number of cycles spent executing
leading loads. A load is a non-speculative read that re-
sults in a last-level cache miss. The leading load dis-
tinction identifies the first load. It is assumed that the
results of the load will be needed for future instructions,
but these are not tracked. To implement the additional
counter, an extra bit is added to the load instruction reg-
ister. The bit is set to 1 when the leading load occurs.
The counter is incremented for every cycle that this bit
is high. The bit is cleared once the load instruction com-
pletes. Leading loads expresses a new relationship be-
tween clock frequency, memory accesses, and perfor-
mance, irrespective of independent application charac-
teristics.

There are several performance metrics that can be
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used to form better predictions of the energy-time trade-
offs, but at some point the overhead of collecting an ex-
haustive set of metrics can outweigh the energy savings.

B. Classifications of DVFS Approaches

This section will define the different classes of DVFS
approaches, which we summarize in Table V.

B.1 Offline

Offline approaches are a good first step in determin-
ing the potential for energy and power savings with
DVFS, though are not ideal for production due to high
costs. They are particularly useful as a baseline to com-
pare future DVFS algorithms to as they become more
advanced. The large downside of offline approaches is
the huge overhead in executing an application at each
available voltage-frequency pair for a particular hard-
ware architecture in order to generate a profile of execu-
tion time and energy usage for a particular architecture.
This section will detail the offline DVFS approaches.

Freeh et al. [58] performed an extensive study on the
cross-product of all available CPU frequencies and par-
allel benchmarks with varying behaviors to understand
the energy and performance trade-offs. They ran the
NAS parallel benchmark suite [73] at all frequencies
on varying number of nodes — the single node results
highlight the influence of the memory bottleneck on en-
ergy and time, while the multiple node results highlight
the influence of the communication bottleneck. For each
execution, the power consumption of the entire system
is recorded at frequent intervals on external meters, and
energy usage is derived by integrating this measurement
over the interval time. In addition, the total execu-
tion time is recorded. The NAS parallel benchmarks,
which vary in terms of communication and computation
phases, showcase differences in power and execution
time at scale. Communication phases stress different
components of the processor than computation phases,
resulting in different power distributions. The execu-
tion time for computation phases, i.e., the CPU is the
bottleneck, scales at a different rate than communica-
tion phases when varying the number of nodes. In some
cases, energy and time can be reduced by executing the
application at a lower frequency on more nodes than ex-
ecuting at a higher frequency on fewer nodes. This is
because of delays in the processor due to memory stalls
or synchronization points. Executing at a higher fre-
quency during phases with processor delays does not de-

crease the execution time since the processor is not the
bottleneck, but does waste energy. Unfortunately, this
approach is very coarse-grained, limiting the amount of
energy savings that can be achieved.

Freeh et al. extended on their findings and demon-
strated higher energy savings when applying multiple
energy gears per phase [59]. Here, an energy gear is
simply another term for a discrete voltage and frequency
pair, i.e., available CPU frequency. While showing that
energy savings could result without degrading perfor-
mance, there is a large effort up front to collect trace
data from each application, then manually instrumented
each application into phases. A solution that automati-
cally detects phase changes within the application (from
hardware performance counters) and changes frequency
appropriately would be better suited for exascale.

Hsu et al. [49] found an optimal frequency schedule
per phase that solves the following minimization prob-
lem: given an application, identify a phase and a fre-
quency such that if the phase is executed at the speci-
fied frequency and the rest of the application is executed
at the nominal frequency, the total execution time and
the overhead in changing frequencies does not degrade
overall performance by the specified threshold. The so-
lution is derived from an offline trace, and the resulting
per-phase frequencies are implemented into the appli-
cation. While the findings are useful, the scope of this
study was limited in scale.

PowerPack (see Section II-C.3) is a power framework
used to profile, analyze, and control energy usage of an
application [48]. The PowerPack software can apply
DVFS schemes during slack time in distributed appli-
cations to conserve energy, but profiling needs to occur
first to determine the potential energy savings. Slack
time is defined as the time spent waiting for an MPI
communication call to complete due to dependencies,
such as receiving data or running a collective. These de-
pendencies may include waiting for data to arrive from
another process in an MPI communication call or wait-
ing for the last process to arrive in an MPI collective
call. In order to see energy savings, phases need to be
long enough to outweigh the overhead of changing fre-
quencies.

Rountree et al. [60] proposed a solution that deter-
mines the maximum energy savings for an application.
By determining an upper bound, future DVFS solutions
can be quantified in terms of proximity to the optimum.

Total energy savings is determined after the comple-
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Fig. 6
A TASK IS IDENTIFIED AS A REGION BETWEEN TWO MPI

COMMUNICATION CALLS. IN THIS FIGURE, A TASK IS

DEFINED BEFORE AN MPI RECEIVE AND MPI SEND

CALL [60].

tion of the application, so this solution maximizes its en-
ergy savings by reclaiming slack time across all proces-
sors, particularly during memory- or communication-
bound phases. This approach includes three steps. The
first step generates a communication trace for an appli-
cation at all available CPU frequencies. These traces
provide the execution time and power consumption of
each task at every available frequency, which are often
application-dependent. Here, a task is defined as the re-
gion between two MPI communication calls, such as a
receive and send call, shown in Fig. 6. At the nominal
or highest frequency available, the per-processor times-
tamp, source, and destination for every MPI communi-
cation call are recorded.

The second step in this approach combines all the re-
sulting traces into a system-wide task graph and trans-
forms the graph into a linear programming (LP) matrix.
Using the LP matrix, the maximum execution time for
the application, and the execution time for each task at
each frequency as input, a frequency schedule for each
task is outputted. The schedule defines how long each
task should run at a given frequency in order to mini-
mize overall energy usage. For tasks with a very short
execution time, the default solution is to run it at the
nominal frequency as there is a penalty for changing fre-
quencies, which in turn, can negatively impact overall
application performance. The third and final step is to
validate the resulting frequency schedule by re-running
the same application using this schedule, and changing

the frequency for each task.
One obvious limitation of this approach, and com-

mon to all offline approaches, is the high overhead of
executing the applications at each frequency to generate
a profile of various information to determine an opti-
mal energy savings solution. The number of application
executions scales linearly with the number of available
CPU frequencies, which can result in a long first step.
This high up-front cost keeps this solution from being
used in production environments, but is a useful solution
in quantitatively evaluating the effectiveness of a DVFS
solution. Further energy savings could be achieved by
instrumenting tasks within each MPI call.

Springer et al. [61] seek to find a schedule of CPU al-
location and CPU frequencies satisfying a maximum en-
ergy usage, while minimizing execution time. Because
communication and computation phases differ in their
corresponding power consumption and execution time,
their model separate execution time and energy usage
into these components:

Time = Tcomp + Tcomm (6)

Energy = TcompPcomp + TcommPcomm (7)

First, the power consumption due to the computation
component of the application is determined at each fre-
quency, executing on a single node. A single node is
used here to avoid power consumption being impacted
by communication overhead. Power is derived by divid-
ing energy usage by execution time. Power usage due to
computation will vary across applications due to intrin-
sic behavioral differences.

B.2 Regular Iterations and Non-Regular Iterations

HPC applications tend to be iterative in nature, mean-
ing history can be a good indicator of predicting future
behaviors. Several DVFS runtime systems have been
developed to leverage this iterative nature to develop
near-optimal energy savings. An increasingly grow-
ing number of HPC applications are falling into a non-
iterative category, where repeated events over several it-
erations will differ. In the following subsections, we
discuss the different runtime systems developed for both
types of applications.

Regular Iterations. These runtime systems assume the
target application is iterative in nature, and thus history
is leveraged to predict future behaviors [34], [35], [36],
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[69]. At each iteration, the algorithm computes the total
slack per processor, and schedules an ideal frequency
for the subsequent iteration. The target here are nodes
on the critical path, exploiting their time waiting at syn-
chronization points in the computation for energy sav-
ings such that all nodes arrive at the same time.

Jitter [34] requires manual instrumentation of the ap-
plication with a special MPI_Jitter call to determine
the iteration boundary. To reduce overhead, Jitter waits
several iterations before taking any action if the itera-
tion is too short. PMPI is used to instrument MPI primi-
tives and determine slack time. It records the timestamp
when the call starts, the timestamp when the call ends,
and derives the wait time for that iteration as well as
the global wait time of the node. To determine which
nodes are ahead and which nodes are behind, the slack
of each node is compared to the global minimum slack
time, and an appropriate frequency is scheduled. Un-
fortunately, making CPU scaling decisions at each iter-
ation (or a set of multiple iterations) leaves the potential
for further energy savings. It assumes the critical node
will be constant throughout the current iteration, when
in reality, nodes are likely to move on and off the critical
path in a given iteration.

Laurenzano et al. [63] perform an extensive set of
benchmark tests for each target system, which are in-
cluded in a database. The tests provide the expected
power consumption behavior and execution time for dif-
ferent application execution patterns at various CPU fre-
quencies. Each application is instrumented at the loop-
level and is compared to loop results in the benchmark
test suite on six characteristics, hit rates for L1, L2, and
L3 cache, the ratio of the number of floating-point op-
erations to the number of memory operations, and the
average look-ahead values for floating-point and integer
computation. The resulting power consumption and ex-
ecution time behaviors for the benchmark loop are used
to predict how CPU frequency will impact the applica-
tion’s loop.

Porterfield et al. [74] highlight a further complication
when determining energy savings and designing run-
time systems to save energy — something that has been
significantly overlooked — temperature. Temperature
will affect energy usage variation across different gran-
ularities (e.g., per-iteration, per-node, per-socket, etc.)
and will need to be accounted for in future approaches.

Fig. 7
BULK SYNCHRONOUS APPLICATION DISTRIBUTED

ACROSS SEVERAL THREADS WORKING TOWARDS GLOBAL

SYNCHRONIZATION POINTS (DENOTED BY VERTICAL

BARS) IN THE COMPUTATION. DUE TO OS JITTER,
MANUFACTURING VARIATIONS, OR LOAD IMBALANCE,

THREADS MAY NOT REACH THE SYNCHRONIZATION

POINT AT THE SAME TIME. AS A RESULT, THREADS THAT

REACH THE BARRIER FIRST MUST STOP COMPUTING AND

WAIT UNTIL ALL THREADS HAVE REACHED THE

BARRIER. THE OVERALL PERFORMANCE HERE IS

DETERMINED BY THE SLOWEST THREAD TO REACH THE

SYNCHRONIZATION POINT. REDUCING THE FREQUENCY

OF THREADS WAITING AT THE SYNCHRONIZATION POINT

ARE IDEAL CANDIDATES FOR ENERGY SAVINGS.

Non-Regular Iterations. Several DVFS runtime sys-
tems have been developed assuming applications are it-
erative in nature. However, an increasing number of
HPC applications are having non-temporal communica-
tion behaviors [75], [76], [77]. Said another way, the
amount of time spent in the same MPI call across differ-
ent iterations will vary based on application parameters
for a given iteration. These differences become exac-
erbated due to intrinsic system properties, such OS jit-
ter, manufacturing variations, and network contention,
and could move an application from temporal to non-
temporal and vice versa. Energy Aware MPI (EAM)
was developed to save energy across a wider variety of
application characteristics and behaviors [64]. It uses
models of common MPI communication primitives to
predict the minimum execution time, conducts an online
assessment of slack time, and applies some frequency
correlated to the amount of slack present.

B.3 Fixed-Time Intervals

These DVFS algorithms make energy-saving deci-
sions at fixed-time intervals by predicting the upcom-



16

ing interval based on previous intervals (i.e., feedback
system). For traditional bulk-synchronous HPC appli-
cations, the overall performance of the application is
determined by the last thread to reach the synchroniza-
tion point (i.e., on the critical path). This intra-node
approach implements various heuristics to determine
which threads should receive higher frequencies for bet-
ter performance, and which threads would benefit from
lower frequencies, such that all threads arrive at the
same time (see Fig. 7). While this approach can result
in significant energy savings without any instrumenta-
tion of the application source code, it has no method for
intelligently tracking the critical path and can make an
incorrect decision and degrade overall performance. By
allocating frequencies appropriately to each thread, sig-
nificant energy savings and better performance can be
achieved.

CPUFreq is an infrastructure consisting of frequency-
scaling governors [65], which are DVFS algorithms
for energy and power savings supported by the Linux
kernel. cpuspeed, thermald, and cpupower are some
userspace utilities that make use of the CPUFreq gover-
nor to vary frequency. While most DVFS-enabled prod-
ucts on the market today are per-socket scope, these fre-
quency governors are per-core or per-thread scope. Cur-
rently, there are five available governors, three statically
schedule the frequency, and two dynamically schedule
the frequency:
• Performance: Run at the maximum allowable fre-
quency.
• Powersave: Contrary to performance, run at the low-
est allowable frequency.
• Userspace: Run at the user-specified frequency.
• Ondemand: Dynamically scale the frequency to the
current load.
• Conservative: Similar to ondemand, scale the fre-
quency to the current load dynamically, but do so at a
more gradual rate.
Traditionally, the default governor is ondemand for
desktop systems, saving the user energy costs when not
in use, while on HPC systems, the default is perfor-
mance. The dynamic algorithms, ondemand and con-
servative, make frequency decisions at regular time in-
tervals, assessing the current load of the system as a fac-
tor in its next decision.

Ge et al. [51] developed one of the earliest runtimes,
comparing the potential for energy savings of a set of
microbenchmarks exhibiting common behaviors of dis-

tributed HPC applications. Their results showed that
computation-bound applications are not good candi-
dates for energy savings since the CPU is the bottleneck,
while memory-bound and communication-bound appli-
cations exhibit high slack times, which can be leveraged
for energy savings with DVFS strategies.

In [66], Zhang et al. developed a criticality-aware
DVFS governor, showing it consumes 15% and 25%
less power than the ondemand and performance gov-
ernors currently available in the Linux kernel. Identi-
fying critical threads at runtime is a challenging prob-
lem. A simple approach is to track the progress of
each thread towards the synchronization point, using
the number of instructions completed as a metric for
progress. This basic approach assumes each thread ex-
ecutes the same number of instructions between barri-
ers, which [79] shows is not always a good indicator of
criticality as it can have low variability across threads.
As a solution to more intelligently predicting critical
threads, two heuristics were created to identify lagging
threads: Thread Criticality Predictors [79] and Critical-
ity Stacks [80], further referred to as CS and TCP, re-
spectively. TCP determines thread criticality based on
cache hierarchy statistics, namely cache misses, while
CS determines criticality based on the time each thread
is performing useful work and the number of dependent
threads. The TCP and CS predictors evaluate the cur-
rent state of the system, and the new governor uses this
information to make a better informed decision regard-
ing which threads to scale or descale in frequency. By
providing additional intelligence to the governor about
criticality, Zhang et al.’s governor results in better en-
ergy usage than dynamic Linux governors [65].

Another online algorithm, known as CPU MISER —
short for CPU Management Infrastructure for Energy
Reduction — identifies application behavior at fixed in-
tervals and schedules the optimal frequency for minimal
performance degradation [35]. At each interval, CPU
MISER collects a set of performance events to calculate
a metric representing CPU intensity. Prediction models
are used to estimate application behavior in the next in-
terval. To mitigate degradation from mispredictions in
the model, CPU MISER adapts the evaluation interval,
such that the interval becomes less frequent at high fre-
quencies and more frequent at lower frequencies.

The β-adaptation algorithm [50], [67] uses a user-
specified performance threshold to select a schedule of
frequencies such that the overall performance does not
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Fig. 8
ENERGY USAGE OVERHEAD OF RELIABILITY MECHANISMS FOR VARYING INCREASES TO OVERALL EXECUTION

TIME [78].

exceed the threshold. At the beginning of each inter-
val, the runtime system calculates the coefficient β de-
scribed in Section IV-A, indicating the volume of off-
chip memory access. Then, the ideal frequency for the
subsequent interval is computed based on the β and per-
formance threshold value, and the number of instruc-
tions per second is updated for computing the β value
for the following interval.

B.4 Slack-Based

Slack time can be introduced into an application if
processes are stalled at communication or collective
calls waiting on dependencies. The DVFS approaches
discussed in this section reduce energy usage with a
minimal increase in overall execution time by reducing
the frequency when slack exists at MPI communication
and collective calls. These approaches are perhaps the
simplest, as they target MPI communication calls and
reduce the frequency of nodes with high slack time (i.e.,
not on the critical path) [34], [36], [64], [69].

Rountree et al.’s solution using linear program-
ming [60] resulted in close-to-optimal energy savings
with negligible performance degradation. This ap-
proach switches between frequencies at MPI communi-
cation calls, identifying the critical path, so as not to de-
lay the overall execution time, and approximating ideal
frequencies over available frequencies. Unfortunately,
linear programming is unfeasible to solve at runtime,
making it a non-optimal approach for production.

Thrifty Barrier [68] puts non-critical threads to deep
sleep modes while waiting at barriers, which is a tech-
nology more geared towards client processors.

Adagio [36] requires no modification to the source

code and results in maximum energy savings with neg-
ligible (<1%) slowdown. Its algorithm leverages the
findings of Jitter to determine the ideal frequency for
a given task, which consists of computation, communi-
cation, and slack time as shown in Fig. 6. Here, a task
is more fine-grained than Jitter’s iteration granularity,
which likely consists of multiple tasks. In this manner,
Adagio can react better to the critical path as it moves
across nodes.

For each instance of a repeated task, Adagio records
the number of instructions and IPC for the current op-
erating frequency on the specific node. This enables the
algorithm to detect a change in execution between re-
peated tasks and to relate frequency to execution time.
To maximize its energy saving ability, Adagio imple-
mented several optimizations. Most notably, it ad-
dresses the limited number of discrete CPU frequencies
available on the platform by running tasks in nearby
frequencies to approximate the ideal frequency. Other
DVFS algorithms select the optimal frequency closest
to the discrete frequency that is available. This could
mean forgoing energy savings by running at a faster fre-
quency or suffering a performance penalty by running
at a slower frequency. Adagio uses a timer to approx-
imate the calculated ideal frequency by leveraging the
nearby discrete frequencies. For example, if the ideal
frequency is 1.5 GHz, but the processor only exposes
1.6 GHz and 1.4 GHz, then Adagio would run half the
task at 1.6 GHz and the other half at 1.4 GHz, such that
the ideal frequency is achieved. There is a penalty for
each change in frequency, so Adagio has implemented
a minimum time for the processor to stay in a constant
frequency.
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Green Queue [62] is the current largest demonstra-
tion of a DVFS runtime algorithm on a production sys-
tem with 1024 nodes. It requires an initial profile of the
application for computational (intra-node) and commu-
nication bottlenecks (inter-node). Unlike other offline
approaches, Green Queue stores the trace (and resulting
DVFS schedule) in a database. If the application is exe-
cuted again with a similar input configuration, the DVFS
schedule is pulled from the database and used to run the
application. Similar to Jitter, Green Queue assumes it-
erations at the inner-most level are homogeneous, and
phase transitions occur at each iteration of the outer
loop, which Adagio showed is too coarse-grained for
maximum energy savings.

Slack-time in OpenMP programs are the main con-
tributors to high power consumption [70]. The authors
used the OpenMP Runtime API (ORA) to collect var-
ious performance metrics at the OpenMP event-level
during runtime.

C. Efficacy Evaluation Metrics

Several DVFS approaches have been developed to
save energy in distributed HPC applications, but eval-
uating which approach is better is ambiguous, normally
answered by the user’s tolerance, which may not be ac-
ceptable to another. For example, one approach may
save 5% energy savings, but cause a 2% increase in per-
formance, and another approach may save 8% in en-
ergy, and cause a 4% increase in performance. Both
approaches satisfy the goal of saving energy, but the ac-
ceptable slowdown is largely user dependent. As such,
evaluation metrics have been used to make quantita-
tive conclusions on how beneficial the approach is when
comparing one to another. In other words, these metrics
take a two-dimensional space, energy usage and perfor-
mance, and translate it to a single metric.

Energy-delay product and energy-delay2 product,
EDP and ED2P , respectively, are common metrics
for low power circuits to quantify the trade-offs between
power and performance:

EDP = E ×D1, (8)

and
ED2P = E ×D2, (9)

where E is the energy, and D is the circuit delay. The
exponent represents the percentage increase to energy

usage (i.e., qualitative) given a 1% slowdown in the
circuit [81]. Several research endeavors leverage this
metric to evaluate the energy-performance trade-offs of
their techniques [69], [82], [83]. In [47], ED2P and
ED3P are used to determine the optimal CPU fre-
quency that results in the lowestED2P andED3P val-
ues. ED3P is more restrictive on performance degrada-
tion than ED2P , so a smaller performance loss results
when using ED3P .

In [51], a generalized version of EDP was proposed
to determine the trade-offs between performance and
energy savings, enabling the user to determine some
threshold X for performance degradation to achieve Y
savings in energy. The metric includes the percentage of
energy that must be saved given some increase to overall
execution time and a user-specified weight factor:

ED2Pgeneralized = E(1−δ) ×D2(1+δ) (10)

Here, δ is a weight value between −1 ≤ δ ≤ 1. If
−1 ≤ δ < 0, then the user favors energy savings over
performance degradation, else if 0 < δ ≤ 1, then the
user favors minimal performance degradation over en-
ergy savings, and if δ = 0, then the user favors them
equally.

A survey of evaluation metrics provided by [78]
sought to find an acceptable metric for comparing DVFS
techniques. They found shortcomings in current state-
of-the-art metrics for evaluating energy savings ap-
proaches. First, current metrics are unaware of the
energy usage spent providing reliability (e.g., cooling,
checkpoint/restart, additional backup components, etc.).
Second, current metrics do not account for the increased
likelihood of failure during application execution due
to longer runtimes associated with energy saving ap-
proaches. In response, they proposed a new metric to
better evaluate energy savings techniques in the realm of
large-scale HPC systems, which are not only associated
with high power consumptions, but also increased fail-
ure rates. Energy savings techniques may decrease fail-
ure rates by providing lower temperatures, while min-
imizing the increase to overall execution time. On the
other hand, DVFS techniques save energy by lowering
voltages, which can increase failure rates. Referring
back to the two examples mentioned at the beginning of
this section, a 2% or 4% increase to overall performance
for an application running for several days may translate
into the application encountering another failure, and
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subsequent restart, which may negate any energy sav-
ings. The proposed metric is energy-reliability, which
better quantifies the effectiveness of an energy savings
technique with respect to reliability mechanisms. Fig. 8
illustrates the growing dominance of reliability mech-
anisms in overall energy usage in large-scale systems.
Energy-reliability encompasses the default application
energy usage where no failures occur and the energy us-
age associated with reliability mechanisms, demonstrat-
ing that expending more energy to complete an applica-
tion faster and reduce the likelihood of encountering a
failure, can result in lower energy usage.

Another energy efficiency metric is the vector-valued
metric developed by Hsu et al [84]. It differs from pre-
vious metrics described in this section in that it places
equal weight on both energy and performance in a two-
dimensional vector, whereas many other metrics con-
dense these two objectives into one scalar value. With
a single scalar value representing energy efficiency, su-
percomputers can be fully ordered, but with the vector-
valued metric only partial order can be achieved. In
other words, a supercomputer is better if both energy
efficiency and performance are higher than its compara-
tor. A potential downside of partial order is that mul-
tiple supercomputers will be similarly ranked in terms
of best energy efficiency or highest performance. Ad-
ditionally, there will be a cluster of supercomputers that
will fall into the middle of these two axes, and determin-
ing where the “best" supercomputer should fall is highly
subjective.

The search for an ideal energy efficiency and perfor-
mance metric continues forward.

V. POWER-CONSTRAINED HPC

Future HPC systems will be significantly power con-
strained. The U.S. DOE has imposed a 20 MW power
budget in achieving an exaflop [1], [2], [3]. This will
force power budgets to be imposed across all levels of
the system as illustrated in Fig. 9. The facility-wide
power bound will constrain the amount of power that
can be given to each system in the machine room. Each
system will have a system-wide scheduler to manage the
power across all jobs on the system. Each job will have
a resource manager to ensure the job power bound is not
exceeded. The job-level power bound translates into a
node-level and socket-level power bound. The power
bounds at all levels in the hierarchy must be respected
in order to ensure reliable operation.

Fig. 9
HIERARCHICAL POWER BOUNDS.

Power capping has become a tractable solution to
meeting power goals at exascale. Rather than managing
the CPU frequency directly with DVFS, software mech-
anisms are enabling users to specify a specific power
bound, and the firmware will modulate between dis-
crete frequencies to guarantee the power bound is not
exceeded. While performance under DVFS has been
extensively studied for years and is well-understood,
performance under a power cap will be difficult as
differences in manufacturing variability become ex-
posed. This section will provide an in-depth overview
of the previous and current research endeavors of power-
constrained techniques for HPC.

A. Hardware Overprovisioning

In order to achieve an exaflop at 20 MW, HPC sys-
tems are likely to contain more nodes than can be
powered at peak simultaneously without exceeding the
system-wide bound. This is known as hardware over-
provisioning [39], or overprovisioning for short. Over-
provisioning is being driven by the utilization wall [85]
initially proposed by Venkatesh et al. Increasing transis-
tor switching rates are producing more heat than can be
efficiently dissipated, limiting the portion of the proces-
sor that can run at peak power. The remaining fraction
of the processor left unpowered is known as dark sili-
con [86].
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Fig. 10
EXHAUSTIVE CONFIGURATION SEARCH SPACE FOR AN

APPLICATION AT A 4500W SYSTEM POWER BOUND [88].

Processor designs are already leveraging overprovi-
sioning. The operating frequency of each core is de-
pendent on the number of active cores, and all cores
cannot simultaneously be operating at the highest fre-
quency. By applying this same idea to HPC, customiz-
ing the hardware configuration on a per-application ba-
sis depending on its trace and component utilization can
result in better performance [39], [87]. For example,
if an application has high memory utilization, reducing
the number of cores per node or allocating more power
to the memory subsystem may result in better perfor-
mance. Fig. 10 shows a configuration with fewer cores
per node running at a lower power cap results in the best
overall execution time, significantly outperforming the
default case where each processor runs at TDP.

Most HPC applications stress the system components
far below their peak capacity [38], so allocating max-
imum power is an inefficient use of the limited power
at exascale. Fig. 11 demonstrated an inefficient use of
system-wide power as almost 1 MW of power was left
unused.

New technologies, such as Intel’s RAPL, enable soft-
ware to impose a hardware-enforced power bound on
the processor. In the simplest case, RAPL could stat-
ically impose the same power bound on each proces-
sor, but this would also be poor use of the power as
some applications may not run steadily at the power

bound. In the alternative case, RAPL could dynami-
cally impose a power limit based on the current utiliza-
tion of the hardware components. Reaching an exaflop
under the power bound will require resource managers
to make well-informed decisions on how to best allo-
cate power among the components in order to maximize
performance.

B. Performance Under a Power Bound

Rountree et al. [37] paved the way for the future of
power-aware supercomputing by leveraging RAPL to
enforce a power bound on the processor. Their work was
the first to use this technology exposing the new chal-
lenges that come with applying a power bound across
a large number of processors. Fig. 12 shows the power
draw across 64 homogeneous processors over six dif-
ferent parallel benchmarks. The higher the power con-
sumption for a given processor, the less efficient it is,
while the lower the power consumption, the more ef-
ficient the processor. Fig. 12 also indicates the severe
level of processor heterogeneity that will exist in exas-
cale systems — a challenge HPC will need to overcome.
Work by Fukazawa et al. [89] also looked at the impacts
of a power bound on the execution time of applications,
finding a non-linear correlation between execution time
and power consumption when under a power cap.

Traditionally, manufacturing variations are mitigated
by grouping the processors by similar performance be-
haviors. Then, HPC systems are composed of proces-
sors from the same bin. This approach ignores vari-
ations in power consumption across duplicate proces-
sors (see Fig. 12). Applying a power bound further
exposes variations in CPU frequencies, which impact
overall performance. An initial quantification of the

Fig. 11
SYSTEM-WIDE POWER CONSUMPTION ON PRODUCTION

SYSTEM AT LLNL [38].
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Fig. 12
POWER DRAW OF 64 PROCESSORS OVER SIX PARALLEL

BENCHMARKS [37].

manufacturing variations in four current production sys-
tems showed as much as 23% variation in power con-
sumption and as much as 17% in performance variation
across distributed ranks [43]. Manufacturing variations
are a large challenge, irrespective of the underlying ar-
chitecture, and correlations between performance and
power consumption are almost impossible to predict.
Further, when the non-homogeneous processors are un-
der a power bound, the performance variation across
ranks worsens to 64%.

C. Power-Aware System-Level Schedulers

System-level schedulers are necessary to ensure the
power consumption of all running jobs does not exceed
the power bound imposed by the facility. At present,
these schedulers are aware of the number of nodes avail-
able and the number of nodes allocated to other jobs.
At exascale where power is a limited resource, sched-
ulers will need to also be aware of the available power
and allocate compute nodes appropriately. RMAP, short
for Resource Manager for Power [38], [42], schedules
jobs based on the available power in order to improve
turnaround time for jobs and to minimize the amount of
unused system power at any given time. Traditionally
when submitting a job, the user specifies the number of
nodes and the estimated runtime. In this power-aware
scheduler, users will additionally specify a threshold

value, identifying a maximum slowdown tolerance fac-
tor. In some cases, RMAP may apply a lower power cap
on the processor, degrading the performance of a job,
but enabling the job to fit within the current available
resources.

Power capping technologies alone will not be suffi-
cient at enforcing a system-wide power bound. In addi-
tion to power capping individual components, a global
agent must ensure the global power bound is not ex-
ceeded. POWSched schedules power between jobs in
a cluster [90], [91]. It is independent of the application
behaviors, making reallocation decisions based on cur-
rent per-socket power consumption, while abiding by
the system-wide power bound. With this dynamic ap-
proach, system-wide throughput is increased up to 14%
by reallocating excess power on processors where appli-
cations are not fully utilizing the available power.

D. Power-Aware Job-Level Resource Managers

Power-aware resource managers will be critical to
making effective use of the limited power such that per-
formance is maximized.

In a power-constrained setting, the overall perfor-
mance is determined by the slowest node under the
power cap. To maximize performance, Power Balancer
is shown to be a viable solution in maintaining the same
performance while using less power, since the faster
nodes are allocated less power, freeing up power to
speed up the slower nodes [92]. Power balancer requires
executing the application once at the desired power bud-
get per-node to determine the slowest processor. Then,
for all other packages, power balancer determines the
minimum power cap, where the performance is still bet-
ter than the slowest processor. Because these metrics
are collected offline and without a global view of the
application behaviors running on each node, power bal-
ancer is limited in its effectiveness and is not ideal for
production.

Similarly, the work by [43] also requires an initial run
of the application, one at the minimum frequency and
one at the maximum frequency, in order to collect CPU
and DRAM power consumption.

Conductor [93] combines DVFS and power capping
to manage power consumption of a single job. Power
budgets are enforced from the top-down. The super-
computing center has a maximum power limit enforced
either by the power capacity that can be drawn from
the wall or budgetary constraints. This system-wide
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power limit is divided up across the number of nodes
in the system. Assuming the system is worst-case pro-
visioned, the budget assumes every node is running at
peak power. Then, the per-node power limit is divided
among the components in the node, such as the proces-
sor and memory subsystem. The per-job power limit
is derived from the resource allocations. Conductor ini-
tially configures the level of concurrency and CPU oper-
ating frequency to minimize slack time. RAPL is used
to enforce a per-processor power limit. During appli-
cation execution, Conductor shifts power to maximize
performance under a job-level power bound, dynami-
cally changing the level of concurrency and operating
frequency on a per-task basis.

An integer linear programming solution shows the
theoretical upper bound of performance benefits in a
power-constrained environment [41]. Results demon-
strate that current power-aware runtime systems are
leaving further performance improvements on the table.
By selecting an optimal configuration, up to 41.1% bet-
ter performance could be gained. At this time, Conduc-
tor provides close-to-optimal performance improvement
as determined by the ILP solution.

E. Per-Component Power Allocations

Much of the previously discussed work has focused
on power capping of the processor. While the CPU is
traditionally the heavy power consumer in an HPC sys-
tem, other components, such as the memory, intercon-
nect, accelerators, etc., will need to be accounted for as
well in the global power bound.

Sarood et al. [40] used an interpolation scheme to de-
termine the optimal configuration for running an appli-
cation in an overprovisioned setting. Finding the best
configuration would require an offline phase of profiling
the application for each valid configuration (n×pc, pm),
where n is the number of nodes, pc is the power cap for
the CPU, and pm is the power cap for the memory. How-
ever, this can result in a huge overhead as the number of
nodes or available number of discrete power caps for
the CPU and memory increases. To mitigate the over-
head, [40] used curve fitting to predict performance. In
some instances, capping the CPU and memory frees up
enough power for the application to use an additional
node for computation.

Similarly, work by Tiwari et al. [94] also target cap-
ping the CPU and DRAM to maximize performance un-
der a power bound. Their work differs from that of [40]

Fig. 13
TWO TYPES OF VISUALIZATION PIPELINES. THE LEFT

FIGURE SHOWS THE TRADITIONAL POST-PROCESSING

VISUALIZATION MODEL, WHILE THE RIGHT SHOWS THE

IN SITU MODEL [95].

as it does not require offline profiling of the application
itself. Rather, it uses profiles of computation execution
behaviors from representative HPC kernels. The result-
ing empirical data set is used to develop a prediction
model on the optimal power cap configuration for the
CPU and DRAM to optimize performance.

VI. SCIENTIFIC VISUALIZATION AND POWER

In addition to high power consumption at exascale,
another critical problem will be I/O bandwidth rates.
The rate at which scientific simulations are producing
large amounts of data is far exceeding the ability to write
out that data and store it to disk. This will require new
methodologies to analyze simulation data with higher
temporal sparsity.

The traditional scientific visualization workflow fol-
lows a post-processing model with two stages as shown
in Fig. 13. First, the scientific simulation writes out data
to disk at discrete time steps. Then, the data is read
from disk and post-processed with scientific visualiza-
tion tools, such as VisIt [96] and ParaView [97]. As
simulations evolve in complexity, the amount of data
per time step is increasing exponentially, making it un-
feasible to write out data at frequent rates. Advanced
solutions write out fewer time steps, or more recently,
follow an in situ processing model, where data is pro-
cessed alongside the simulation. The challenge here is
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saving enough data from the simulation without losing
accuracy or key areas of interest. As the I/O bottleneck
increases, simulation data must be written to disk less
frequently and the ability to gain insight from simula-
tion codes decreases.

Scientific visualization routines will need to work
not only within the I/O bandwidth limitations, but also
within the framework of a power-constrained system at
exascale. Currently, research at the crossroads between
power-constrained HPC and scientific visualization is
minimal [52], [95], [98], [99], [100], [101].

For in situ strategies, power will need to be shared in
some fashion between the scientific simulation and vi-
sualization [102]. In one scenario, the simulation and
visualization may share the compute resources with-
out any data movement necessary. In another scenario,
compute cores may be split among the simulation and
visualization, necessitating intra-node data movement.
In a third scenario, compute nodes may be split among
the simulation and visualization, requiring inter-node
data movement. Managing power allocations for in
situ strategies will be a critical advancement in the field
of power-aware scientific visualization as it will enable
continued data exploration and analysis of large-scale
scientific simulations. Within this context, memory ca-
pacity and bandwidth will be shared between the sim-
ulation and visualization, so understanding how to al-
locate power to the memory hierarchy will be another
important area of research. This area is unique from pre-
vious power-constrained research endeavors that aim to
benefit a wide range of individual applications.

Data movement costs have become a large factor in
continuing to gain insight from scientific data. The sci-
entific visualization community has moved away from a
post-processing model to an in situ model, where data
is processed alongside the simulation, potentially re-
ducing the overheads of data storage and data move-
ment. Additionally, research endeavors have targeted
NVRAM as an intermediate data staging area for in situ
processing. This technology lessens the latency and per-
formance gap between main memory and disk, but the
energy costs have not been studied. Gamell et al. [103]
conducted a study of the power consumption behaviors
of different data management and data movement strate-
gies of a configuration with NVRAM in the memory hi-
erarchy. They found NVRAM to be a viable solution
as it has high bandwidth for data transfer, particularly
for large block sizes. However, NVRAM has a higher

power consumption than the SSD.
Labasan et al. [52] provided an initial survey of

the various factors that impact power and performance
trade-offs for an isosurfacing algorithm implemented
in two frameworks. First, the algorithm was self-
implemented to specifically perform Marching Cubes
on tetrahedral data. The optimized implementation
was efficient for this particular data type, especially in
the number of instructions executed. Second, the iso-
surfacing algorithm was implemented with a general-
purpose framework known as VTK [104]. General-
purpose frameworks such as VTK sacrifice performance
for the ability to handle a wide variety of configurations
and data types. Aside from implementation, other fac-
tors impacting the trade-off include concurrency, paral-
lel programming paradigm, and architecture.

VII. CONCLUSION AND FUTURE WORK

Scientific visualization is a key component in mak-
ing scientific discoveries. It enables the exploration and
analysis of scientific data, and the ability to communi-
cate findings through a comprehensible image. Visu-
alization at exascale will encounter challenges not only
from I/O bandwidth rates, but will also from power con-
straints. The visualization community is actively mov-
ing towards in situ processing in order to reduce the I/O
costs associated with moving large amounts of data in
and out of memory. At present, there is a very limited set
of work in addressing the power constraints at exascale
and the challenges associated with an in situ pipeline.
Several open questions must be addressed, such as:
• Are there distinct phases with visualization applica-
tions that are good candidates for power-saving tech-
niques?
• What are the power behaviors of different data move-
ment strategies?
• How should power be scheduled between the simu-
lation and visualization? Are there times power can
be shifted away from the visualization, resulting in de-
graded image quality or analysis accuracy, thus freeing
up power for the simulation?
The community community will need to explore and
address this space in order to reach exascale. Our
research will investigate the relatively new space of
power-aware visualization and understand the trade-offs
between power and performance for visualization algo-
rithms.
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APPENDIX

I. POWER MONITORING TOOLS

There are a wide range of hardware and software tools
for power monitoring. More commonly, these tools
are capable of monitoring power rather than controlling
power. As such, there is an increasingly high demand
for tools that enable power control at fine-grained tem-
poral and spatial granularities in moving towards ex-
ascale, where power will be a severely constrained re-
source and will need to be allocated wisely. In the fol-
lowing appendix, we provide more details on the power
monitoring tools dicussed in Section II-C. For reference,
the different power monitoring solutions discussed here
are summarized in Table III.

A. Coarse-Grained Monitoring

The WattsUp? Pro [10] is an external monitor that
polls the power consumption of the target device at fre-
quent intervals. The power meter is connected between
the power supply at the wall and the target device, so
the meter is effectively measuring the total power draw
from the wall power supply. The actual power mea-
surement reported by the meter will be below the actual
power at the wall due to leakage between the wall and
the WattsUp? device.

There have been several research efforts using this
external monitor [35], [63], [103], [105], [106], [107].
While such a device beneficially provides physical
power measurements rather than modeled ones, it has
some pitfalls. The first being that it reports the power
consumption of the entire system, which does not re-
veal how the power is being consumed across different
components, such as the processor and memory infras-
tructure. Measuring power consumption of a large-scale
HPC system would render this solution cost-ineffective
as multiple WattsUp? power meters would need to be
purchased. Further, each power meter would only pro-
vide power consumption of the node to which it is con-
nected, rather than giving the power consumption of the
entire system, which is not as linear as simply com-
puting the aggregate sum of the power consumption
per node. An additional problem is the frequency up-
date rate of twice per second, which will be too coarse-
grained to attribute power consumption to particular re-
gions or phases in the application.

Software can monitor power consumption and en-
ergy usage on Cray XC30 systems at the node-level.

The interface to these hardware counters are via files in
userspace. Hart et al. [11] demonstrated the function-
ality of Cray’s infrastructure on two different architec-
tures, one with an accelerator and one without. Cray’s
new power measurement capabilities available begin-
ning with the Cray Cascade provide additional counters
that monitor the power consumption due to the accel-
erator. All counters are updated every 0.1 sec. Austin
et al. [108] used Cray’s power management infrastruc-
ture on the Edison system at NERSC to investigate the
trade-offs between power and performance for large-
scale HPC applications at the node-level.

B. Vendor-Specific Component-Level Monitoring

Intel’s Running Average Power Limit (RAPL)
technology [12] was first introduced with Sandy Bridge
processors. RAPL provides privileged access to a wide
variety of 64-bit model-specific registers (MSRs) to
monitor and control various power and thermal features
of the processor and peripherals. One of these features
is predicting the power consumption with internal mod-
els based on counters in order to make decisions on how
to spend any available power headroom wisely. With
the introduction of Haswell processors, fully integrated
voltage regulators enabled actual power measurements
to vastly improve the accuracy of RAPL energy mea-
surements [21].

Fig. 14 highlights four RAPL power domains, which
can vary across architectures:
• Package (PKG): All components on the processor
• Power Plane 0 (PP0): Cores and local private caches
• Power Plane 1 (PP1): Uncore devices, such as graph-
ics cards on client processors or QuickPath Interconnect
(QPI) on server processors
• DRAM: Memory subsystem
Traditionally, the client processors support the PKG,
PP0, and PP1 domains, while the server processor sup-
ports PKG, PP0, and DRAM domains. Here, the as-
sumption is that the power consumption, P , of the PKG
domain is less than or equal to the sum of the PP0 do-
main and the PP1 domain:

PPKG ≤ PPP0 + PPP1 (11)

Then, the assumption is that the power consumption
attributed to the last-level cache (LLC) and integrated
memory controller (iMC) is calculated by subtracting
the power consumption of the PKG domain, the power
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Fig. 14
RAPL DOMAINS FOR A GIVEN PROCESSOR.

consumption of the PP0 domain, and the power con-
sumption of the PP1 domain:

PLLC,iMC = PPKG − PPP0 − PPP1 (12)

Each RAPL domain has registers for the following
parameters:
• Power Limit and associated Time Window for enforc-
ing a power cap
• Energy Status for monitoring energy usage (and de-
riving power consumption)
• Perf Status for monitoring the performance impact of
the enforced power cap
• RAPL Info defines the minimum and maximum
power supported by the given domain, the max time
window, and the thermal design power (TDP)

Each MSR bit field is expressed in terms of power,
energy, or time units, which are fused into a read-only
register called MSR_RAPL_POWER_UNITS. For most
architectures, the power unit is expressed in 1

8W , the
energy unit is expressed in 15.3µJ , and the time unit is
expressed in 976µs.

MSRs in any domain can be accessed with rdmsr
and wrmsr, assuming the msr kernel confirms
the presence of and appropriate permissions for the
/dev/cpu/X/msr file. Giving users such privileged
access to underlying hardware can give rise to major se-
curity issues, so Lawrence Livermore National Labora-
tory (LLNL) has been spearheading an effort known as
msr-safe [109]. This creates a new msr-safe ker-
nel module, which creates a whitelist of MSRs, provid-

ing a more secure method to enforce power caps.
RAPL was the first tool of its kind to enable soft-

ware enforcement of a particular power cap. Since then,
other processor manufacturers, such as AMD and IBM,
have followed suit and are providing tools for capping
power. This will be a vital research platform for future
power-constrained research moving forward. Achiev-
ing exascale power goals will require assigning power
caps to different system components to ensure power
is being used wisely, while staying at or below a given
system-wide power bound as well as maximizing ma-
chine throughput. The RAPL package power domain
provides two fields to enforce power limits (and two as-
sociated fields to specify the time window), while all
other domains provide a single field. By default, the
upper power limit (PL2) has a higher-than-TDP power
limit over a very short time window to protect the power
supply from failing due to high power spikes in appli-
cation phases. The lower power limit (PL1) is typi-
cally set to TDP over a larger time window. Having
two power limits provides finer granularity of managing
power over an application.

While RAPL and MSRs in general provide a large
capability for monitoring and controlling different hard-
ware features of Intel architectures, it is rather dif-
ficult for software to handle these MSRs in an effi-
cient manner. One problem is that MSR encodings are
architecture-specific. That is to say, the translation be-
tween bits and actual values varies slightly between one
generation and the next. Additionally, some MSRs are
not enabled on all architectures. One other problem is
that the same MSR may be of different scope across
architectures. For example, on an Ivy Bridge proces-
sor, functionality to enforce a CPU frequency is for
the package, but on Haswell, functionality changes to
a per thread scope. To ease these challenges, LLNL
has an ongoing development effort of a library called
libmsr [110], which provides a wrapper API to directly
access various RAPL MSRs agnostic of the target ar-
chitecture. There are also some optimizations that are
implemented in the library, such as batching read and
write operations into a single operation to mitigate the
overhead of issuing an interrupt per operation per MSR.

RAPL is positioned as the most tractable platform
for understanding the constraints of exascale under a
power bound. Several studies have shown the accuracy
of RAPL’s power models as compared to actual mea-
surements [21], [111], [112], [113], [114], [115], [116].
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The authors in [44] propose modifying the current
RAPL algorithm for the DRAM power domain for
smoother power limiting. For each time window, The
RAPL algorithm calculates the available power by mea-
suring the current power consumption at discrete time
intervals and subtracting this value from the target
power utilization. Once the available power is calcu-
lated, RAPL looks at a table of M-states correspond-
ing to a particular bandwidth and maximum power con-
sumption, selecting the state that provides the highest
bandwidth given the available power. Unfortunately, the
M-states define the bandwidth at the worst-case power
consumption. Said another way, the power consumption
is defined assuming the highest memory traffic, but is
not representative of typical application behaviors. This
limits the RAPL algorithm’s ability to gracefully adapt
to the bandwidth behavior of the current phase, wasting
power allocation that could be better used somewhere
else in the system. To improve this, the authors suggest
adding an additional limit to the DRAM RAPL algo-
rithm such that one limit guarantees a specified power
cap over the time window, while a second limit adapts
the power consumption to the current bandwidth utiliza-
tion over smaller time intervals.

With the growing demand for fine-grained power
measurement capabilities, other vendors are releas-
ing software-based solutions to monitor power of tar-
geted components. NVIDIA’s Management Library
(NVML) provides GPU core temperature, current ef-
fective frequency of the GPU, and real-time power con-
sumption measurements [15]. This library is limited
in scope, only targeting the server processors, such as
the Tesla and Quadro lines. Power readings in milli-
Watt granularity are gathered with a simple API call to
nvmlDeviceGetPowerUsage. According to [15],
Fermi and Kepler GPU lines will have power readings
within ±5% of the physical power reading. Kasichayan-
ula et al. introduced the Activity-based Model for GPUs
(AMG) [117], which estimates activity and power con-
sumption with software models similar to those used by
RAPL, APM, and EnergyScale, which use prediction
models for CPU power consumption.

AMD Application Power Management [13] pro-
vides similar functionality to Intel’s SpeedStep, Turbo-
Boost, and RAPL technologies. It is included with its
processors and uses internal models to make intelligent
decisions about how performance should be allocated.
Starting with Bulldozer, AMD introduced TDP Power

Cap technology, enabling software to limit power con-
sumption of the processor by enforcing a desired TDP
limit.

IBM EnergyScale [14] provides tools to measure,
monitor, and control the power consumption starting
with POWER6 systems. Some of the features include
the following:
• Power/thermal monitoring: Collect power consump-
tion and temperature of the server, inlet, and exhaust
• Static/dynamic power saver: Reduce frequency by a
fixed amount or allow internal algorithms based on per-
formance counters to determine frequencies all in favor
of saving power
• Power capping: Enforce power bound on server
• Processor folding: Migrate tasks among cores to max-
imize energy usage. For example, if the application de-
mands resources, migrate tasks to a larger number of
cores. When the demand decreases, reduce the number
of working cores, putting superfluous cores to idle or
sleep.
In order to collect the power data, Brochard et al. and
Knobloch et al. [118], [119] used two IBM-internal sys-
tem management tools, Amester to measure component-
level power and Active Energy Manager (AEM) to mea-
sure server-level and chassis-level power.

C. Fine-Grained Infrastructures

To overcome the limited information provided by
vendors about their respective power management in-
frastructures, several tools have been created to physi-
cally instrument compute nodes and individual compo-
nents irrespective of the underlying architecture. Pow-
erPack [16] is a hardware and software co-design
solution to automate collection of power data from
component-level sensors. PowerPack also enables us
to do fine-grained attribution of application behavior to
the power consumption and energy usage of the system.
Further details of the inner workings of PowerPack are
described in [83].

Penguin PowerInsight [17] is a commercially-
available hardware and software solution designed in
close collaboration with Sandia National Laboratory.
The hardware sensor modules integrate onto the mother-
board by attaching to the voltage rail between the power
supply and the motherboard components, such as the
CPU or memory. A software utility known as getRaw-
Power is provided to gather readings from the sensors
via the ioctl system call.



33

PowerMon and PowerMon2 [18] are very similar
solutions to Penguin’s PowerInsight discussed previ-
ously. It is a low cost — at most $150 per device
— fine-grained power monitoring device for commod-
ity systems capable of collecting data from eight chan-
nels simultaneously at a rate of 1000 samples per sec-
ond. The PowerMon2 was a more optimized solution
to its predecessor, the PowerMon, which had six mea-
surement channels and a sample collection frequency of
20 ms. This optimized device provided even more fine-
grained instrumentation with eight measurement chan-
nels to sample additional peripherals, such as GPUs, and
a maximum collection rate of 3000 samples per second.
The PowerMon2 has a smaller form factor than Pow-
erMon, enabling it to better integrate onto the mother-
board.

Ilsche et al. [19] created an infrastructure enabling
more frequent and fine-grained power monitoring of
components. In doing so, cost, size, and scalability were
low-level goals. This solution provides power read-
ings for applications executing as quickly as tens of
microseconds, and samples are collected every 100µs.
While Ilsche et al. provide a plausible solution demon-
strating the upper-bound on how quickly and how fine-
grained power monitoring can occur, the solution is not
viable for a large HPC system due to cost and size. Ver-
ification of their solution showed that power measure-
ments of the VRs provide the most fine-grained solu-
tion, but are limited in accuracy. Measurements from
the power supply to the DC components may be more
coarse-grained, but can provide samples at a rate of
100µs.

The High Definition Energy Efficiency Monitoring
(HDEEM) [20] is very similar to Penguin’s PowerIn-
sight, but differs in its hardware and software solution in
order to reduce cost and complexity, and improve scal-
ability. HDEEM makes use of an FPGA and baseboard
management controller (BMC) already present in the
hardware. By leveraging BMC, data can be collected
using the standard Intelligent Platform Management In-
terface (IPMI). The data is sent over PCIe to the FPGA,
which is faster than sending the data over ethernet or
USB.
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