Data Reduction Techniques for Scientific Visualization and Data Analysis

Samuel Li’

! Department of Computer and Information Science, University of Oregon

1. Introduction

The classic paradigm for scientific visualization and data analysis
is post-hoc, where simulation codes write results on the file system
and visualization routines read them back to operate. This paradigm
sees file I/O as an increasing bottleneck, in terms of both transfer
rates and storage capacity. As a result, simulation scientists, as data
producers, often sample available time slices to save on disk. This
sampling process is not risk-free, since the discarded time slices
might contain interesting information.

Visualization and data analysis scientists, as data consumers,
see reasonable turnaround times of processing data a precondi-
tion to successfully perform tasks with exploratory natures. The
turnaround time is often spent on both reading data from disk, and
computations that produce meaningful visualizations and statistics.

Data reduction is a means to tackle the above-mentioned difficul-
ties both simulation and visualization scientists face. For simulation
scientists, data in reduced form requires less transfer time and stor-
age space on disk, giving more freedom to utilizing available hard-
ware resources. For visualization scientists, reading in less bytes
also means a shorter turnaround time, giving a better interactivity.

Besides relieving burdens of I/0, a few data reduction techniques
also reduce the memory footprints at the same time for visualiza-
tion computations. This is achieved by either lowering the grid res-
olution, or simplifying a given mesh. The benefit of reduced mem-
ory footprint is that computations proceed even faster, greatly im-
proving the turnaround time for data explorations.

Data reduction comes at a cost as well. The most obvious cost
is a computational overhead that consumes CPU cycles. If compu-
tational overhead becomes too high, it can potentially diminish the
benefit of a faster I/O. Some data reduction techniques, namely the
lossy ones, even hurt the data integrity. These techniques aims to
recover the data into a close approximation, and it is up to the sci-
entists to decide if the lost integrity is acceptable. Overall, adopting
data reduction into a work flow requires finding a middle ground
between data size, processing time, and integrity, and where this
middle ground lies is very task-dependent.

This paper surveys techniques to achieve data reduction for sim-
ulation, visualization, and data analysis. We keep a few different
usage scenarios in mind when doing this survey. These scenarios
are distinguished by three important properties of available data
reduction techniques; they serve as three dimensions to guide a sci-
entist to dive into a collection of techniques that best meet her re-
quirements. Note that a single technique does not necessarily keep

staying in one scenario given that many techniques can operate in
different modes. We identify these three dimensions as follows, and
elaborate the ideas behind them in Subsection 1.1.

1. lossy or lossless data reduction;

2. reduce on write or reduce on read; and

3. resulting in original memory footprint or reduced memory foot-
print.

1.1. Use Case Dimensions

Lossy or lossless: This dimension is concerned with potential in-
formation loss after applying data reduction. With lossy reduction,
the reduced form can never recover data identical to the original
one. Lossy techniques aim to find a good balance between infor-
mation loss and data reduction. With lossless reduction, the exact
information from the original data is preserved. Lossless techniques
aim to eliminate any redundancies in the data.

The choice between lossy and lossless reduction depends on the
requirements of the analysis routines. On the one hand, analyses
that require the best available precision to operate on have to choose
lossless compression. On the other hand, many analyses, especially
scientific visualization routines, can tolerate some degree of infor-
mation loss. This tolerance can result in great rewards, for example,
certain visual analytics tasks can still carry on with 256 : 1 lossy
wavelet compression [LGP*15], while one of the state-of-the-art
lossless coders can achieve up to 3.7 : 1 compression on another
scientific data set [LI06]. That is one order of magnitude differ-
ence. Moreover, data reduction techniques that are tailored toward
specific visualization or analysis tasks can often smartly discard
data that is deemed not as useful, thus achieving even higher re-
duction rates. For example, Cinema [AJO*14] achieves orders of
magnitude reduction for visual exploration tasks.

Reduce on write or reduce on read: This dimension is con-
cerned with the stage where data reduction is performed: when
the simulation code is writing results, or when the visualization
is reading data from storage. Reduce on write refers to operators
that create a representation of data with reduced size, and write this
new representation to the permanent storage. Reduce on read is less
intuitive: it refers to the case where a portion (as opposed to the
entirety) of the data on disk is read out for analysis. Simple tech-
niques such as subsetting (Subsection 2.7) achieves reduction on
read by only retrieving domains of interest, and more complicated
techniques (e.g. multi-resolution in Subsection 2.2) are able to re-
cover the entire domain with a portion of the data, often at a penalty

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

of inferior quality. Reducing on write and reducing on read are not
exclusive in theory: if a technique supports reduce on read, one can
also just write that portion of the data to disks. In this survey, we
focus on how a technique is mostly used in practice regarding this
dimension.

The notion of reduce on read is important to interactive tasks
such as data explorations, since reading less data means a shorter
turnaround time. The level of reduce on read is usually adjustable,
with the option to use the entire saved data to obtain the most accu-
rate available recovery. As a result, reduce on read enables work-
flows like progressive data access.

Original memory footprint or reduced memory footprint:
This dimension is concerned with the capability of a technique to
reduce memory footprint in addition to reducing the size in stor-
age. This dimension looks at data recovered from its reduced form,
rather than what is stored. Using an example to explain this idea,
a compressed image would normally not reduce memory footprint
after it was decoded into RGB values to display. However, it could
reduce memory footprint if it was shrunk to have smaller dimen-
sions — smaller dimensions mean less RGB values to display. For
scientific visualizations, reduced memory footprint can be achieved
by simple techniques such as subsetting (Subsection 2.7) where
only a subset of domains is loaded, or more complicated techniques
such as mesh simplification (Subsection 2.6), where a similar but
dramatically simplified mesh is used for further operations.

The benefit of reduced memory footprint is two-fold. Firstly, for
data sets larger than the memory capacity, one can still fit them into
memory for processing with reduced memory footprint. Secondly,
even if a data set fits within memory in its original form, the re-
duced form takes less time to process. Often times, the amount of
reduction in memory footprint is adjustable and the option to go to
the most accurate recovery is available. As a result, reduction on
memory footprint is favorable for interactive tasks as well.

1.2. Paper Organization

This survey paper will separate the descriptions of data reduc-
tion techniques and their use cases. Techniques descriptions are
presented in Section 2, where all surveyed techniques are catego-
rized into seven groups. This section describes how each technique
achieves data reduction, and readers are expected to obtain a high-
level understanding of their reduction mechanism. We also group
use cases of data reduction, but based on the combinations of prop-
erties discussed in Subsection 1.1. This categorization scheme re-
sults in eight use cases in total. We chose this categorization scheme
for accessibility, i.e., a scientist can focus on a use case of interest
based on her requirements. Section 3 through Section 10 survey
these eight use cases. Of course one technique can be used in mul-
tiple use cases, and thus appear in multiple sections. Finally, we
conclude this survey in Section 11.

2. Techniques Overview

There are seven categories of data reduction techniques in this pa-
per, and each subsection overviews one category. Some data reduc-
tion techniques work by taking inputs and producing outputs, so we

refer to them as compressors. We also use the term coders, which
are very similar to compressors, except that coders can also act as a
component of another compressor. For example, an entropy coder
can be used by itself, or as a component in a wavelet compressor.

2.1. General-Purpose Compressors

General-purpose compressors are used in almost every field of
computer science and on almost all types of data. Also, because
of the general-purposed nature of these compressors, they are often
used together with other data reduction techniques to help further
improve the reduction efficiency. We survey three families of such
coders: entropy-based coders, dictionary-based coders, and vector
quantization.

Entropy-based compressors work by encoding strings based
on their information content, or entropy, to achieve the best cod-
ing efficiency. For example, Huffman coding [H*52] identifies the
frequency of each symbol’s occurrence, so it is able to use fewer
bits to encode high-frequency symbols, and more bits for low-
frequency symbols. The number of bits Huffman coding uses ap-
proaches the theoretical entropy of input when each symbol has a
probability close to powers of % Other prominent members in this
family include arithmetic encoding [WNC87] and the very simple
run-length coding. Arithmetic encoding could be seen as a gener-
alization of Huffman encoding and is more efficient with arbitrary
probability distributions. Run-length coding replaces consecutive
occurrences of a symbol with a pair of symbols and its number
of occurrences. Entropy-based compressors are often used together
with other techniques since data going through certain treatments
(transforms, predictions, for example) can become close to constant
with very small fluctuations.

In terms of our three dimensions, entropy-based compressors are
considered lossless, reduce on write, and resulting in the original
memory footprint.

Dictionary-based compressors work by matching strings to a
dictionary so only the matching information, and not the actual
strings, is stored. As an example, to compress the current para-
graph of text, a coder keeps the page and index of each word in
a standard English dictionary. For general purpose compression,
the dictionary is usually constructed for each compression task,
and thus becomes a storage overhead. Smart ways to construct
and store this dictionary can minimize this overhead. LZ77 [ZL77]
and LZ78 [ZL78] are among the first dictionary-based coders.
They have many variants that enjoy very wide uses, including DE-
FLATE [Deu96], LZW [Wel84], LZO [Obe05], LZ4 [Col11], and
LZMA/LZMA?2 [Pav99], to name a few. Among them DEFLATE
and LZMA? are the underlying algorithms of popular compression
format . gz and . xz, respectively. Dictionary-based coders tend to
have a faster throughput than entropy-based coders, and they also
can be configured towards either a higher compression ratio or a
faster throughput.

Dictionary-based compressors are considered lossless, reduce on
write, and resulting in the original memory footprint, in terms of
our three dimensions.

Quantization is a popular lossy compression approach that is

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

_ “u
el
/ Quantized / Quantized

Codeword E Codeword

Input Quads

H

Input Pairs

Figure 1: Vector quantization on vectors of size two (left) and size
four (right).

applicable to any quantities, and also sees heavy use in the sig-
nal processing community. We describe two flavors of quantization
here: scalar quantization and the more complicated, yet powerful,
vector quantization.

Scalar quantization provides an n-to-m (n >> m) mapping for
scalar values, so all possible input values are represented by a finite
set of discrete values. An example is to represent all floating-point
values between 0.0 and 1.0 with a 256-step gray scale for image
output. Using scalar quantization, all values between ﬁ and %
are represented by the ith gray step.

Vector quantization generalizes scalar quantization by providing
such n-to-m (n > m) mapping for vectors. It takes input vectors
instead of single values, and maps them to a much smaller set of
vectors as output. Figure 1 illustrates vector quantization of vectors
in size two and four. These vectors could be a pair of adjacent pixels
or a quad of pixels from an image. The resulting vectors are called
codewords, and the n-to-m mapping scheme is called a codebook.
In practice, both the size of the codebook and the length of the
vector are important parameters to adjust.

Vector quantization becomes advantageous when the underly-
ing data exhibits coherence, i.e., similarities between neighbor data
points. Given such an input data set, the input vectors then dis-
tribute in the vector space following certain patterns. A good code-
book then allocates more codewords to dense areas in the vec-
tor space, providing better ability to distinguish them apart. The
process of finding a good codebook is very much like finding
a voronoi-diagram-like partition for a space. Such successful al-
gorithms include the LBG algorithm [LBG80] and Lloyd’s algo-
rithm [LI1082].

Quantization is considered lossy, reduce on write, and resulting
in the original memory footprint in terms of our three dimensions.
Also, [GG12] provides a good reference on vector quantization for
signal compression.

2.2. Multi-resolution Approach

The multi-resolution approach builds a hierarchy of the data vol-
ume with different resolutions. The finest level is the native resolu-
tion of the original data, and every other level has a lower resolution
in this hierarchy. Data size is reduced at the lower resolution levels,
but usually not at the native resolution level.

Multi-resolution provides a means to achieve progressive data
access by loading a small amount of data to reconstruct an ap-
proximation with lower resolutions first, and then keeps loading
more data to reconstruct better approximations until reaching the
full resolution. This property makes it suitable for data exploration
tasks. This subsection surveys three families of multi-resolution ap-
proaches.

Sampling for multi-resolution is the simplest technique to
achieve multi-resolution. It recursively samples the data volume,
and each sample results in a new separate level with lower res-
olution. The fact that each resolution level is separate, however,
introduces significant storage overhead going towards the native
resolution. As a result, some applications opt to discard the native
resolution level to actually reduce data size [WAF*11].

Sampling for multi-resolution is considered lossy, capable of
both reduce on write and reduce on read, and resulting in reduced
memory footprint.

Space-filling curves share the spirit of sampling for multi-
resolution, but intelligently organize data such that multi-resolution
is achieved without storage overhead: data points from the lower
resolution levels always contribute to the reconstruction of higher
resolution levels. Mathematically, space-filling curves are contin-
uous that visit every data point in an n-dimensional space exactly
once; they map an n-dimensional space to a one dimensional curve.
This mapping has a unique property that a space-filling curve would
finish visiting all data points in one resolution level before visiting
the next level. Data locality is achieved by keeping the data points
belonging to the same resolution level together. That said, com-
monly used approaches to store high dimensional arrays in mem-
ory, such as row-major and column-major storage, also map an nD
space to a 1D representation, but they do not provide data locality.
The most prominent space-filling curves are Z-curves [Mor66] and
Hilbert curves [Hil91]. We use the former as an example to explain
how space-filling curves work.

Z-curves traverse a data volume from the coarsest resolution
level to finer levels in a Z-shaped pattern. It traverses a resolution
level all at once and then go to a finer level. Storage wise, data
points from the coarser levels also contribute to the finer levels, so
no overhead is introduced even at the native resolution. Figure 2
illustrates how a Z-order curve traverse data points in a 16 X 16
matrix from the coarsest 1 X 1 resolution to an 8 X 8 resolution.
Higher dimensional Z-order curves are also discussed in [PFO1].

Space-filling curves are considered lossy, capable of both reduce
on write and reduce on read, and resulting in reduced memory foot-
print.

Transform-based multi-resolution approaches transform data
into frequency domain, and then use low frequency components to
construct approximations with lower resolutions. This approach is
technically sound because if we look at the input data as signals, the
low frequency components represent a general trend while the high
frequency components represent detailed deviations on that trend.
There are three classic transforms in this family: cosine transform,
Fourier transform, and wavelet transform. Compared to space-
filling curves, transform-based techniques take into account simi-
larities between neighbor data points, resulting in better approxima-

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

(a) (b)
16, 16
14 14 ENEN\ES BN BN B
12 12 c‘c S T :\c CadlC!
10 10 :3_:3:: BRe [SHe\ B 5
8 B B lk [CRAC

0 2 4 6 8 10 12 14 16 0 5 10 15

(©) (d)

Figure 2: A Z-order curve traverses a 16 x 16 plane with four res-
olution levels. (a) shows the coarsest level in 2 X 2 dimension, and
(b), (c), and (d) each shows a finer level, until all data points are
visited in (d).

tions at lower resolution levels. We will use wavelet transforms as
an example to explain transform-based multi-resolutions. Theories
behind the cosine transform, Fourier transform, and wavelet trans-
form are covered in detail by [RY 14, Sne95, SN96] respectively.

Mathematically, wavelet transforms take in a signal and repre-
sent it using a linear combination of a set of basis functions. The ba-
sis functions have two flavors: scaling functions to capture the low
frequency components, and wavelet functions to capture the high
frequency components. As a result, wavelet coefficients from the
scaling functions contain approximations and coefficients from the
wavelet functions contain the detailed deviations. Wavelet trans-
forms can be recursively applied on the approximation coefficients,
resulting in a hierarchical representation of the input signal. In a 1D
case with a discrete signal x[n], this linear combination is thus rep-
resented as the following equation with J lower-resolution levels:

J=1
x[n] =} ao,i-Go.iln] + Z;)Zd-"vi ;. (1)
i j=0"i

Here j = 0 denotes the coarsest level and j = J denotes the finest
level with original resolution where x[n] is at. Scaling and wavelet
basis functions are denoted as ¢, ;1] and y; ;[n], respectively. Their
coefficients, a;; and d; ;, are approximation and detail coefficients
accordingly.

Figure 3 illustrates a hierarchy after three passes of wavelet
transform (J = 3). The approximation coefficients — a5 ;, a1 ;, and
ag ; — are three different resolution levels. Note only a ; is kept in

Level =3 ‘ Original Data: x[n] ‘

Detail Coeff: d2 i‘

Level =2 | approx Coeff: a, |

AN

Level=1‘ a ‘ d ‘

1,i

1,i

Figure 3: Hierarchical representation of wavelet coefficients after
three passes of wavelet transform. Blue blocks are coefficients to be
saved; in total they take the same amount of storage as the original
data. Reconstruction goes from bottom to the top, and could stop at
any intermediate level to get an approximation.

storage, and a| ; and ay ; are calculated on-the-fly with detail coeffi-
cients dy ; and dy ; . Overall, the blue blocks in Figure 3 are saved to
disk using the same amount of storage as the original data x[n]. In
the case of higher dimensions, the same transform is applied in all
dimensions, resulting in lower-resolution squares (2D) and cubes
(3D) for example.

Transform-based multi-resolution is considered lossy, capable of
both reduce on write and reduce on read, and resulting in reduced
memory footprint.

Miscellaneous: We note that there are other techniques to
achieve multi-resolution. Laplacian pyramid was used for di-
rect rendering of computed tomography data, and the authors
found it significantly faster than wavelet transforms [GY95].
Curvelets [CDDYO06] and surfacelets [LD07] are newer multi-
resolution technologies that attempt to capture specific features
from the data set (edges for curvelets and signal singularities for
surfacelets). However, both introduce storage overheads. Evalu-
ation of these two techniques on turbulence data can be found
at [PLW*16].

2.3. Predictive Coding Schemes

Predictive coding schemes work by using a predictor to predict
the next values based on known ones. A good predictor results
in small residuals, which is the difference between the predicted
and real values. These residuals can be safely discarded if they are
smaller than an error tolerance. Otherwise, they need to be coded
efficiently. Entropy-based coders are popular with these residuals,
since they usually contain significantly lower entropy than the orig-
inal data. Predictive coding schemes surveyed here are mainly from
two communities: video processing and scientific data compres-
sion. The former introduced motion compensated predictions, and
the latter introduced a wide range of predictors and compressors. In
this section, we will briefly describe motion compensated predic-
tions, and survey those scientific data oriented predictors in more
detail.

Motion compensated prediction, or MCP [Ana89], is specif-
ically designed for video coding. MCP assumes picture changes

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

O Predicted Vertex
© +1 Weight Vertex
@ -1 Weight Vertex

Figure 4: A Lorenzo predictor uses known values in a cube (green
or red) to predict an unknown value (blue) in 2D and 3D cases.
Green vertices have +1 weight and red vertices have —1 weight.

from frame to frame are mostly due to translations of objects in the
scene or panning of the camera. Said another way, picture changes
are due to the movement of several large groups of pixels. MCP
first identifies pixels moving together, and then uses a single vector
— amotion vector — to record the motion of this group. Therefore,
motion vectors serve as the predictors and are encoded. The more
pixels moving in groups, the more compression MCP achieves. Be-
cause of the nature of MCP, it is mostly used for time-varying data
sets.

MCP is mostly used as a lossy, reduce on write operator with the
original memory footprint.

Linear predictors predict the data points with constant values,
or change in a linear fashion. This intuition has synonyms in par-
ticle simulations that particles will stay at the same locations, or
travel along a straight line [EGMO04]. To add some heuristic into lin-
ear predictors, one can pick out the smoothest changing dimension
to make predictions in a multi-dimensional data set, as proposed
in [ZTGBO02].

Compvox [FY94] improves linear predictors by taking into con-
sideration more neighbor values by using the following equation to
predict a value at (x,y,z) in a 3D volume:

V(x,y,2) = apv(x—1,y,2) + aav(x,y — 1,2) +azv(x,y,z— 1). (2)

The linear coefficients (aj,a;,a3) are constantly updated as the
coder keeps processing data to improve prediction accuracy. The
overall compression is lossless, Compvox achieves a 2:1 compres-
sion ratio on average with a few test data sets, which was better
than both popular compression tools gzip and zip.

These linear predictors were proposed as lossless, reduce on
write operators that result in the original memory footprint.

Lorenzo predictor [ILRS03] was proposed for large scientific
data sets in arbitrary dimensions. This predictor works in units of n-
dimensional cubes (squares in 2D, cubes in 3D, hypercubes in even
higher dimensions): it uses the known values of the cube vertices
to predict the only unknown value at a corner of the cube:

EW) =Y (~)™ " Flu) 3)
ueC

Here the vertex v is predicted using values from other vertices u
that belong to the same cube C. The degree between two vertices
(number of edges connecting them) is denoted as dyy, and this de-
gree determines the weight of each neighbor to be either 41 or —1.
Figure 4 illustrates the weights in 2D and 3D cases. According to
the authors with proof, “the Lorenzo predictor is of highest possible

order among all predictors that estimate the value of a scalar field
at one corner of a cube from the values at the other corners.”

Lorenzo predictor can be both lossy or lossless, achieves reduce
on write, and results in the original memory footprint.

FPZIP [LI06] is a compressor for productions that employs the
Lorenzo predictor. FPZIP optimizes coding for residuals (the dif-
ference between the predicted and actual values) by mapping the
numbers to unsigned integer representations and applying arith-
metic coding. Least significant bits can be discarded when mapping
to integers to achieve lossy compression. The major advantage of
FPZIP over the original Lorenzo predictor compressor in [ILRS03]
was its compression speed: it is two times faster.

FPZIP can be both lossy or lossless, achieves reduce on write,
and results in the original memory footprint.

ISABELA [LSE™*11] uses a B-splines curve fitting approach. IS-
ABELA is unique in that it sorts data points before going through
the curve fitting step, which greatly improves prediction accuracy.
Sorting requires the coder to keep the indexing information for de-
coding. Given that each single index requires /og, N bits to encode
in an N sized array, the total storage requirement for indices is
N xlogyN bits. As aresult, ISABELA is advantageous with smaller
arrays. Thus, the authors proposed splitting the data into windows
for efficient storage, more specifically, 1024 sized windows for this
study.

ISABELA is mainly used as a lossy, reduce on write operator
that results in the original memory footprint.

Combinations of predictors are also proposed. These compres-
sors try a few predictors for each prediction, and choose the best
one at that data point. FPC [BR09] uses two hash table based
predictors, FCM [SS97] and DFCM [GVDBO01]. SZ [DC15] uses
three curve-filling predictors that predict the next value to be 1)
the same as the preceding value, 2) fitting a linear curve, and
3) fitting a quadratic curve, as Figure 5 illustrates. FPC and SZ
both linearize the data before predicting, meaning that they treat
multi-dimensional data as if they were one-dimensional. FPC and
SZ have different handles on prediction errors. FPC uses leading-
zero encoding to compress residuals, so it strictly performs lossless
compression. SZ uses an error tolerance to decide if a data point
is “unpredictable,” and if it is, SZ records the unpredictable values
separately. As a result, SZ works best as a lossy compressor when
a large portion of data points could be predicted within the error
tolerance.

Based on evaluations in [DC15], SZ provides better efficiency
(larger compression rates with fixed error, or less error with fixed
compression rate) than a number of coders including the above-
mentioned FPC, ISABELA, and FPZIP. SZ is also among the
fastest coders, which makes it appealing for real-world uses.

2.4. Transform-based Compression

Techniques in this family all have a certain type of transform op-
eration in their hearts, and often involve additional coders to en-
code the coefficients from the transforms. Transform-based tech-
niques achieve compression by smartly discarding either coeffi-
cients with the least information content, or least significant bit

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

X Predicted Value | {7
o Decompressed Value P x®
O Original Data Value o X‘.N)
Preceding Neighbor Fitting >
Linear Curve Fitting <5
: - 1y Y Ve 22
Quadratic Curve.: Fiting oY § ” £ 5
@ Gy 0T g8
=] 55 Q)
g u] 581 XX i
- X 39;
@ o Freenneeaneseened
el 1 1 1 1 >
i-3 i-2 i-1 i 1-D array

Figure 5: Three predictors used in SZ.

planes. As a result, they provide lossy compression. Note this ap-
proach differs from transform-based multi-resolution, where coef-
ficients were discarded if they represented the details of the original
data. From a practical point of view, transform-based compression
in this subsection recovers data with the full resolution, whereas
transform-based multi-resolution recovers data with lower resolu-
tion.

The most successful transform in compression applica-
tions is wavelet transform, which is adopted in the newest
JPEG2000 [SCEO1] still image compression standard. Cosine
transform was used in the predecessor of JPEG2000, the
JPEG [Wal92] still image compression standard, which still enjoys
wide use today. The rest of this subsection surveys a few different
transforms with optional coder combinations. We also provide an
example showing how a transform “compacts” information to fa-
cilitate compression in the wavelet transform + significance map
subsection.

Wavelet transform + significance map is the most straightfor-
ward approach to achieve compression with wavelets: it saves the
wavelet coefficients with the most information content, and treats
the rest coefficients as zeros. A significance map is no more than
a mechanism to bookkeep the locations of those non-zero coeffi-
cients. Data compressed using this approach thus has two parts: 1)
significant coefficients which contain most information, and 2) a
significance map which keeps where they are.

Wavelet transforms are able to compact information into a
small number of coefficients. Moreover, with orthogonal and near-
orthogonal wavelet kernels, the magnitudes of resulting wavelet co-
efficients are proportional to their information content. As a result,
saving the coefficients with the largest magnitudes provides effi-
cient compression. We use an example to illustrate this “informa-
tion compaction”: a sine wave with twenty data points goes through
a wavelet transform with the CDF 9/7 [CDF92] wavelet kernel.
This transform was recursively performed for two levels, as de-
scribed by Equation 1. Figure 6 plots the resulting wavelet coeffi-
cients, and it shows fewer coefficients have large magnitudes after
each level of transform. Longer input arrays usually allow more
levels of transform, which further compacts information.

Wavelet transform + significance map is a lossy, capable of both
reduce on write operator that results in the original memory foot-
print.

Wavelet transform + general purpose compressors involves

Coefficients from One Level of Transform Coefficients from Two Levels of Transform

0 = o

Y

-1
1. 3 5 7 9 11 13 15 17 19 1.3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Figure 6: Wavelet coefficients from one and two levels of wavelet
transform using the CDF 9/7 kernel. The input array was a sine
wave with length twenty.

two operations: first it performs wavelet transform, and then uses
general purpose compressors to compress the resulting wavelet
coefficients. The rational is that the coefficients contain much
less entropy after wavelet transforms, which makes them friendly
to compression. Quantization, which itself is a general pur-
pose compressor, is often combined together with other com-
pressors, since quantization further reduces entropy substantially.
The choice of other general purpose compressors includes gzip
in [SSEM15], run-length encoding in [[P98a,KS99], Huffman cod-
ing in [TMMO96], and a combination of run-length and Huffman
coding in [GWGS02].

Wavelet transform + general purpose compressors is mostly used
as a lossy, reduce on write operator that results in the original mem-
ory footprint.

Wavelet transform + state-of-the-art coders uses coders that
are specifically designed to encode wavelet coefficients, which is
contrary to the general purpose compressors in the previous sub-
section. These coders represent the latest and the most advanced
development in this domain, and they consistently achieve the high-
est compression accuracies among all wavelet-based compression
techniques. We briefly introduce how these coders work, and leave
the details to the actual papers that introduced the coders.

These state-of-the-art coders usually work in three steps: 1)
wavelet transform, 2) quantization, and 3) encoding. In the wavelet
transform step, the CDF family of wavelet kernels [CDF92], espe-
cially the member with nine and seven filter sizes which is referred
as CDF 9/7, produces coefficients most friendly to further encod-
ing. In the quantization step, all coefficients are represented as inte-
gers. Integer representations enable the concept of bit plane, where
the most significant bits from all coefficients fit in the most signifi-
cant bit plane; all second most significant bits fit in the second sig-
nificant bit plane; and so on. Wavelet transform compacts informa-
tion into a small number of coefficients, so the first few significant
planes are expected to have only a few non-zero bits. In the encod-
ing step, specific data structures are used to encode the bit planes
from most to least significant ones. These data structures exploit
the spatial self-similarities of coefficients to achieve high encoding
efficiency. The encoding results are in the form of bitstreams, and
starting from the beginning any length of the bitstream is able to
reconstruct the data.

Data structures in this family include ZeroTree [Sha93], Set Par-
titioning in Hierarchical Trees (SPIHT) [SP93], Set Partitioned Em-
bedded bloCKs (SPECK) [IP98b, PINS04], and Embedded Block

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

Coding with Optimized Truncation (EBCOT) [Tau00]. We note
that EBCOT is the coder that was adopted by the JPEG200 stan-
dard. Though originally proposed to code 2D images, most of
these coders are extended to higher dimensions, including 3D ver-
sions of ZeroTree [CP96], SPIHT [KP97], SPECK [TPMO03], and
EBCOT [XXLZ01], and 4D versions of ZeroTree [ZJIM*02], and
SPIHT [ZLMS04,LBMNO5]. We note that wavelet coefficient cod-
ing is a big topic itself, and what we surveyed here are some repre-
sentative and well-studied techniques. There are many other tech-
niques, for example reported in [CSD* 00, LP07,NS01,R0d99].

Wavelet transform + state-of-the-art coders is lossy, capable of
both reduce on write and reduce on read, and result in the original
memory footprint.

ZFP is a newly emerged transform-based compressor specifi-
cally designed to encode scientific data in high throughput [Lin14].
It uses a custom block transform to encode data in blocks of 4° size,
and also an embedded coding scheme to encode coefficients one
“bit plane” by another, which is a similar workflow to the “wavelet
transform + state-of-the-art coder." The transform of ZFP, however,
was carefully designed to make use of a lifted implementation,
which significantly reduces the operations needed per transform.
As aresult, ZFP was reported to achieve a throughput of 400MB/s.

ZFP is recommended by its authors to be used as a lossy and
reduce on write compressor, and it results in the original memory
footprint.

Other transforms are also used for data reduction, for exam-
ple, the Fourier transform, cosine transform (DCT) [ANR74], and
Karhunen-Loeve transforms (KLT) [Loe78]. They work in the sim-
ilar fashion as the “wavelet transform + general purpose compres-
sors” family techniques, where general purpose compressors are
used to encode the coefficients from transforms. The choice of gen-
eral purpose compressors include quantization and entropy-based
coders, for example, in techniques introduced in [CYH*97, CL97,
FMO7] respectively. One way to use these transforms is to perform
“compression domain volume rendering,” which skips the inverse
transform step to perform volume rendering directly with the com-
pressed data. For example, frequency domain volume rendering has
been reported in [TL93, WROO0].

2.5. Save Derived Information

Techniques in this section do not attempt to reduce the size of simu-
lation data itself. Instead, they apply certain operations on the data,
derive additional information, and save the derived information.
One might confuse this class of techniques with in-situ visualiza-
tion, where visualization is performed simultaneously with numer-
ical simulations. Saving derived information differs from in-situ vi-
sualization in that 1) the derived information is not necessarily the
target visualization and analysis; 2) the derived information still
allows explorations in post-hoc style as other data reduction tech-
niques do. The rest of this section surveys such techniques in the
scientific visualization community.

Lagrangian representations are derived representations of
pathlines for flow analysis [ACG™*14]. Traditionally the velocity
field of simulation data is saved on disk, and advections are per-

formed to obtain pathlines during analysis routines. Using La-
grangian representations, the advection operation is performed in-
situ along with the simulation, so the resulting pathlines are saved
on disk. The amount of data reduction is controlled by how many
pathlines are saved, e.g., less pathlines result in more aggressive
data reduction. An arbitrary pathline can be interpolated from
nearby pathlines on the fly during analysis routines. These saved
pathlines are also expected to be very accurate because they are
calculated from every time step of a simulation, as opposed to a
temporal subset, which is often the case. The high temporal accu-
racy is also why this technique is named “Lagrangian representa-
tion.” To further improve the smoothness of Lagrangian pathlines,
the C! cubic composite Bézier curves and cubic Hermite splines
were proven to be viable representations [BJ15].

Lagrangian representation is lossy, reduce on write, and resulting
in reduced memory footprint.

Volumetric depth images, or VDIs [FSE13], are derived from
raycastings with auxiliary information. More specifically, this tech-
nique partitions samples along a ray into segments based on their
similarities, and keeps all segments of a ray in a list. These seg-
ments contain color, opacity, and depth information. A complete
set of VDIs further contains the model view and projection matri-
ces used during the generation of segments, which enables arbitrary
camera settings for volume renderings in the data exploration stage.
The final volume rendering can be performed at interactive rates
due to the saved segments. Data reduction achieved through VDIs
is at one order of magnitude. A VDI application on a time series of
volumes is also reported in [FFSE14].

VDI is lossy, reduce on write, and resulting in reduced memory
footprint.

Proxy images are specially designed images from render-
ings to perform image-space rendering for analysis. For exam-
ple, three types of proxy images are used in the framework pro-
posed by [TCMI10]: depth image, multi-view perspective image,
and accumulated attenuation. Depth images are generated for mul-
tiple intensity intervals to enable semi-transparent rendering and
complex lighting. Multi-view perspective images contain samples
that would only be visible from neighboring viewpoints to enable
view changes for explorations. Accumulated attenuations are used
to represent opacity mappings to enable transfer function explo-
rations. In terms of data reduction, the resulting proxy images are
orders magnitude smaller than the simulation data. They are also
less computational expensive than real renderings in most cases.

Proxy image is lossy, reduce on write, and resulting in reduced
memory footprint.

2.6. Mesh Simplification

Mesh simplification operates on mesh data, with triangle and tetra-
hedral meshes most commonly seen. It achieves data reduction by
calculating a new mesh with less vertices, yet remains a similar
structure of the original mesh. Usually, a mesh simplification rou-
tine uses certain criteria to decide which vertices to eliminate, as
surveyed in this subsection

Vertex removal and tessellation is a classic mesh simplification

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

Figure 7: A candidate vertex is evaluated by its distance to the av-
erage plane.

Yav

Figure 8: An edge collapses to a single vertex.

algorithm. It deletes identified vertices and perform local tessella-
tions (triangulation and tetrahedralization in 2D and 3D) to fill the
resulting hole. One of the vertex selection criteria, for example,
was “distance-to-plane” from [SZL92]. The intuition is to elimi-
nate vertices that are almost on a flat plane. Figure 7 illustrates this
idea. If a vertex V is surrounded by a complete cycle of triangles,
an average plane of these triangles is calculated. This cycle of tri-
angles is reasonably flat if the distance from V to the average plane
is small enough (e.g. below a threshold). V is thus prioritized to
be removed. Similar simplification technique is also generalized to
higher dimensions in [RO96], where the authors use n-dimensional
Delaunay tessellations to fill the resulting hole from the removal of
vertices.

Vertex removal is lossy, reduce on write, and resulting in reduced
memory footprint.

Edge collapsing Edge collapsing works by recursively collaps-
ing an edge to a vertex, removing one edge and one vertex at
a time. Figure 8 illustrates a basic edge collapse: edge e, de-
fined by two vertices v; and v, collapses to a third vertex e on
this edge, resulting stretch on triangles sharing v; or v;. Trotts
et al. [THIW98, THJ99] pick the next edge to collapse based on
prediction of deviations of local triangles and tetrahedra if it were
collapsed. Garland et al. [GH97] use quadric-based error metrics
(QEM) to guide the edge collapsing process, which have proven to
give better results in the mean error sense. Their approach is later
extended to higher dimensions in [GZ05].

Edge collapsing is lossy, reduce on write, and resulting in re-
duced memory footprint.

Vertex clustering Vertex clustering simplifies a mesh by using
one vertex to represent a cluster of them. Rossignac et al. [RB93]
used uniform grids to divide a 3D volume into small cubes and use
a single vertex as the representative of that cube. This representa-
tive vertex could be either the center of mass of all vertices, or the

most important vertex. Shaffer et al. [SGO1] proposed an improve-
ment by using adaptive partitioning of the space. Their algorithm
requires a two-pass processing of the mesh: the first pass analyzes
the mesh, and the second pass is able to allocate more cells to re-
gions with more details.

Vertex clustering is lossy, reduce on write, and resulting in re-
duced memory footprint.

2.7. Subsetting

Subsetting achieves data reduction by keeping or retrieving only a
portion of the entire data set. Subsetting can be achieved on spatial
domains, on variables, and on a querying basis, as the rest of this
subsection shows.

Domain subsetting uses meta data of domains to select a subset
of domains for further analysis. Domain subsetting allows algo-
rithms to only read in, and further operate on, a subset of data that
meets the data range requirement. The granularity of subsetting is
often at the spatial domain level, because the meta data of each
domain can help decide if the current domain is needed without ac-
tually reading data from the whole domain. Examples of domain
subsettings include using scalar ranges to choose domains for iso-
surface calculation, and use spatial extents for slicing a volume.

We consider this technique lossless because the domains read out
keep their original form. Domain subsetting also achieves reduce
on read, and results in reduce memory footprint.

Variable subsetting is often used in multivariate visualization
scenarios, where the large number of variables become an obstacle
for analysis. Variable subsetting techniques help identify variables
that are more relevant to specific tasks, and subset these variables
for further analysis. Variable subsetting reduces memory footprint
and also unloads the perception burden of human on multivariate
visualizations.

Variable subsetting could be achieved by dimension reduction
techniques, such as Multidimensional Scaling (MDS), Principal
Component Analysis (PCA) and Independent Component Analysis
(ICA) in [GXY12,SKK06,TLMMO02] respectively. Variable subset-
ting could also build on information theory. For example, Biswas et
al. [BDSW13] reported an information-aware framework in which
the contribution of individual variables to the total entropy is cal-
culated, and variables are grouped or selected based on their indi-
vidual and mutual information.

We consider variable subsetting lossy because the variables are
selected from dimension reduction techniques, rather than selection
criteria set by the analyst. There might be information loss during
dimension reduction. Variable subsetting also achieves reduce on
read, and results in reduced memory footprint.

Query-Based Subsetting Queries find pieces of data that meet
specific criteria. We treat them as a form of subsetting in that they
enable loading portions rather than the entirety of data. Query-
based subsetting is often used in analysis scenarios where ad-hoc
query dominates the data read process. Query-based subsetting bor-
rows fast query techniques from database management systems to
enables data access in query style. As a result, it enables reduction
on read applications.

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

bitmap index
RID | A || =0 =1 =2 =3| gioyre9: A basic bitmap for a
; (1) (1) (1) 8 8 variable A that can take four dis-
3| 9l o 0 1 0 tinc values: {0, 1, 2, 3}. Each
4l 21l 0 o 1 o | Row Identifier (RID) represents
51 31 o 0 0 1 | anoccurance of A Queries can be
63 0 0 o0 1 | answered by bitwise operations,
71 1] 0o 1 0o o | forexample, query “A < 2”1is an-
8| 3| 0 0 0 1 | sweredby bitwise OR on bits by
b1 by b3 by | and by.

Bitmap [O’N89, CI98] is an indexing technique that allows fast
queries. Using Bitmaps, each value in a set of N elements is rep-
resented by a Row IDentifier (RID). Each RID consists of N bits
with a single bit valued one and N — 1 valued zero. Queries are per-
formed by bitwise logical operations, which are very fast on mod-
ern processors. Figure 9 illustrates a basic bitmap for a set with
four elements: {0,1,2,3}. The limitation of bitmaps is that they
are most effective on variables with low cardinality. For scientific
data with floating point values, bitmaps are used with binning, as
explained in [WAB*09].

There are also tree-based schemes for multi-dimensional data
query borrowed from the database management community. Such
schemes include R-tree [Gut84] with its variants R*-tree [BKSS90]
and R+-tree [SRF87], and B-tree [BM72] with its variants BBIO
tree [CFSWO1]. B-tree is reported to have better performance in in-
dexing unstructured tetrahedral meshes [PAL*06], but overall these
schemes are not popular among scientific visualization community.

Query-based subsetting is lossless, reduce on read, and resulting
in reduced memory footprint.

3. Use Case 1: Lossless, Reduce on Write, Original Memory
Footprint

This section surveys applications that utilize lossless operators to
achieve reduce on write, and no reduction in memory footprint.
Such use cases are the simplest in the sense that they only trade-
off between two variables: computational time and data size. Tech-
nique wise, general purpose compressors (Subsection 2.1) and pre-
dictive coders (Subsection 2.3) are most often seen for this use case.
Besides direct compression on scientific data sets, there are also
applications to use these compressors for I/O middlewares and file
systems with transparent compression.

We note here that by lossless we mean a “bit-to-bit” recovery.
That is, every bit going through an encoding and decoding se-
quence stays the same. For floating-point scientific data, this defi-
nition excludes transform-based compression techniques (Subsec-
tion 2.4). That is because though transforms themselves are math-
ematically invertible, their calculations on floating-point values in-
troduce arithmetic errors. These tiny errors may accumulate, even-
tually resulting in recoveries that are not “bit-to-bit” identical. That
said, these transforms are lossless if operated on fixed-point val-
ues, for example, gray scale images. This section will not cover
transform-based techniques because we focus on applications on
floating-point scientific data.

3.1. Data Set Compression

General-purpose compressors (Subsection 2.1) and predictive
coders (Subsection 2.3) are used for direct compression on data
sets in this setting. For example, tetrahedral and triangular meshes
are compressed using arithmetic coding respectively in [GGS99,
PKO5]. The former managed to use just slightly more bits to encode
the mesh connectivity than its binary entropy. The combination of
predictors and general-purpose compressors are also used to com-
press volume data [ZTGBO02, FY94] and particle data [EGMO04].
This combination performs better than general-purpose compres-
sors (e.g., gzip, zip) alone, as discovered in [FY94].

The best available coders for scientific data in this use case are
those designed for floating-point values, namely FPZIP [LI06] and
FPC [BRO9]. These coders achieve not only better compression ra-
tios than general-purpose compressors (e.g., gzip, bzip2), but also
higher throughputs. A high throughput is essential to reduce overall
I/O time (compression + actual I/O) in a simulation run. A reduced
overall I/O is proven to be true for FPZIP [LIO6], and is likely to
hold up for FPC as well given its reported numbers [BR09].

3.2. Transparent Compression on I/O

Specific I/O middleware and file systems have transparent compres-
sion built in, meaning that data is stored in compressed forms with-
out notifying any applications accessing the data. HDF5 [The] and
ADIOS [BLZ*14] are two I/O middlewares providing such func-
tionality, and Btrfs [RBM13] and ZFS [BMO7] are two file systems
with transparent compression. The actual throughput of this kind
of I/O middlewares or file systems is again greatly impacted by the
underlying compression algorithms. As a result, there are usually
multiple compressors to choose from for different use cases. For
example, Btrfs recommends using LZO for high throughput, and
zlib for high compression ratio [btr].

4. Use Case 2: Lossless, Reduce on Read, Reduced Memory
Footprint

This section surveys applications that use a lossless operator to
achieve reduce on read, and also reduce memory footprint. These
applications use such operators to speed up I/O when reading data
in for analysis tasks (reduce on read), and also speed up the anal-
ysis routine or even load data that does not fit in memory (reduce
memory footprint). Subsetting (Subsection 2.7) is a viable operator
to achieve these goals. We survey applications using domain sub-
setting and query-based subsetting in this section.

4.1. Domain Subsetting for Visualization Pipeline

Vislt [CBW™*12], an open-source visualization system for scientific
data, uses domain subsetting for its visualization pipeline. Vislt in-
troduces a concept of “contract,” which provides an opportunity
for every component of the pipeline to modify it with the list of
domains that component requires [CBB*05]. When an update is is-
sued at the bottom of the pipeline, the contract travels upstream to
inform each component of the downstream components’ require-
ments, and allow the current component to determine its require-
ments. Finally, the source at the beginning of the pipeline receives

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

Figure 10: An example pipeline.
During the update phase (de-
noted by thin arrows), contract
version 0 (V0), comes from the [VZ

File Reader
(Source)

sink. VO is then an input to - :
the contour filter, which modi- ‘\[Slice Filter]
fies the contract to make con- [V1 {}

Contour Filter |

U

Renderer
(Sink)

tract version 1 (V1). The details

of the execution phase are then [VO
passed to the source, which be-
gins the execute phase (denoted
by thick arrows).

a contract containing all components’ requirements, and reads in
only the required domains.

The following example illustrates this contract-based visualiza-
tion pipeline using domain subsetting. This pipeline has four com-
ponents as Figure 10 shows. Each component has a chance to iden-
tify a list of domains that it needs based on its parameters and the
metadata of each domain, i.e., the slice filter picks out the domains
covering the spatial extents of the slice, and the contour filter picks
out the domains containing the desired isovalue. The resulting con-
tract would contain the intersection of these two domain lists. As
the visualization pipeline starts execution, the file reader only reads
in the subset of domains indicated by the contract, and the benefits
from a reduced data size propagates downstream to every filter.

4.2. Query-based Subsetting for Fast Analysis

FastBit [WAB*09] is an open-source toolkit to perform fast query
on scientific data. It uses Bitmaps in its heart for queries. In an ap-
plication to track the evolution of ignition kernels in a combustion
simulation, FastBit is used to speed up this analysis [WKCSO03].
During step 1 — finding points satisfying conditions for ignition
kernels — FastBit naturally performed queries on the data. Dur-
ing step 2 — grouping the points into connected components —
each connected component was represented as a bitmap. During
step 3 — tracking the evolution of ignition kernels by computing
the overlap among them — was completed quickly with bitwise
AND operation. Another application of FastBit, histogram-based
parallel coordinates, proved to have satisfactory performance in ex-
ploring extremely large data (=~ 1.5TB) on distribute-memory sys-
tems [RWC*08]. Both tasks of interactive query and particle track-
ing enjoyed significant speedups from FastBit. Finally, FastBit was
also used to provide a query interface to the popular scientific data
format HDF5, resulting in HDF5-FastQuery [GSS*06]. Data stored
with HDF5-FastQuery then supports queries for certain data points
using query criteria like “Temperature > 32” and “CO, > 0.1

5. Use Case 3: Lossy, Reduce on Write, Original Memory
Footprint

This section surveys applications that use a lossy operator to
achieve reduce on write, but not reduce memory footprint after re-
covery. This use case is similar to what we surveyed in Section 3,
but uses lossy compressors. On the one hand, compared to loss-
less approaches, the loss of accuracy enables much more aggressive

compression. On the other hand, the inaccurate recovery needs to
be carefully studied to make sure 1) analyses can still carry on (i.e.
limited false negatives) and 2) analyses are not misled by compres-
sion artifacts (i.e. limited false positives). Overall, this lossy, re-
duce on write, no reduction on memory approach is easily applied
to many applications, and it is a major use case of data reduction.

One commonly adopted approach for simulation runs falls into
this use case: temporal sampling. Though sampling strategies dif-
fer, temporal sampling loses some time steps in exchange of re-
lieved write burden on disks. The saved time steps are still in their
original forms without changing the memory footprint. The rest of
this section describes applications that use more complicated op-
erators to reduce sizes of single three-dimensional volumes and a
series of time-varying data set.

5.1. Three Dimensional Data Volume Compression

Grid data volumes are a very common output of numerical simu-
lations. A lossy operator significantly reduces the size of the data
volumes into a compressed form, which is suitable to save to disks.
The input data volume is recoverable from the compressed form,
but errors may be introduced at individual grid points. A few tech-
niques from different families are used to compress grid data vol-
umes.

Vector quantization (Section 2.1) was used in direct volume
rendering [NH92]. Here contiguous blocks of size I x J x K serve
as individual vectors for quantization. This application has taken
advantage of the fast decoding speed of vector quantization, which
only involves looking up the codebook. The decompression over-
head was measured to be 5%. However, the compression step
was time consuming since finding a good codebook was expen-
sive. To achieve even faster rendering speed, the same authors pre-
computed shading and ray tracing information for each I X J X K
block, and still applied vector quantization to compress them. The
resulting volume rendering system was very fast because it retrieves
most information from the codebook.

Predictive coders SZ and FPZIP (Section 2.3) fit into this use
case as well [DC15,LI06]. Both coders feature fast coding and de-
coding speed, making them suitable for potential in-situ use. One
advantage of predictive coders for lossy compression is that they
can easily bound the absolute errors, i.e., work in an error bound
mode. This is because the coders can easily obtain the absolute er-
ror by comparing the prediction and real values, and make adjust-
ments accordingly. Error bound is important for certain applica-
tions where the scientists need a guarantee on the accuracy of their
data. Meanwhile, error bound compression leads to an uncertainty
of the final compressed file size, i.e., no size bound. As a result,
a scientist who would like to adopt these predictive coders might
need to run experiments to have a sense of the compression ratios
on her data. Test results reported in the SZ paper suggest that SZ
actually achieves the highest compression in most data sets, making
it an appealing choice for real world uses.

Wavelet transform with VAPOR: VAPOR is an open-source
visualization package for the climate community [NC12]. It uses
wavelets to provide both multi-resolution and compression to the
data, and we focus on its compression capability in this section.

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

(a) Baseline results from the uncom- (b) Results from lossy wavelet com-
pressed raw data. pression with VAPOR at 256:1 ratio.

Figure 11: Visual analytics of high enstrophy areas from a turbu-
lent flow simulation. Each one of qualified areas is identified as a
connected component and has a unique color. The two renderings
are from the raw and compressed versions of the same data set.

VAPOR adopts the wavelet transforms + significance map strat-
egy to achieve compression (Section 2.4). This strategy proves
to be effective in compressing turbulent flow data, as meaningful
visual analytics can still carry out even with a 256 : 1 compres-
sion rate [LGP*15]. Figure 11 illustrates the comparison between
a baseline rendering and a rendering with lossy compressed data.
Using transform-based strategy, VAPOR naturally performs size
bound compression by saving a target portion of all coefficients.
However, it also introduces storage overheads to keep the signifi-
cance map. Therefore, VAPOR takes more space than % of the raw
data in practice in a X : 1 compression setting.

Wavelet transforms with the state-of-the-art coders Qcc-
Pack [Fow00] is an open-source package that includes two of the
state-of-the-art wavelet coders: SPIHT and SPECK (Section 2.4).
These coders output coefficients in the form of bit streams. A bit
stream has the property that any portion of it can be used to recover
the input data as long as this portion starts from the beginning of
the stream. Of course, the longer the bit stream used to recover, the
more accurate the recovery is, with a caveat that there are diminish-
ing returns. This property provides great flexibility to applications:
one can cut the output of bitstream at any point, and also read in any
portion of the bit stream that is already on disk. In another word,
QccPack with SPIHT and SPECK coders is able to achieve reduce
on read in addition to reduce on write. Size bound compression is
naturally achieved here.

There is currently limited scientific visualization applications of
these state-of-the-art wavelet coders, one example being JPEG2000
applied on large scale climate data [WMB*11]. The authors
demonstrated that JPEG2000 was effective in trading accuracy for
smaller sizes to transmit data through internet. They argued that
L norm is a better measurement to communicate accuracy with
domain scientists. We point out that in this application, the standard
two dimensional JPEG2000 compression was applied on individual
2D layers though the original data was in 3D. This approach did not
take advantage of data coherence in the vertical direction. Using a
state-of-the-art wavelet coder that naturally supports 3D volumes,

such as SPIHT and SPECK in QccPack, is likely to yield better
accuracies.

Transform-based coder ZFP is a transform-based compres-
sor that was designed for floating-point data (Section 2.4). ZFP
has the advantage of supporting finer random access compared to
wavelet transform techniques, since it performs transforms in rela-
tively smaller blocks. In the case of 3D data volumes, they are 43
blocks. ZFP supports both size bound and error bound compression
mode. The original ZFP reported in [Lin14] achieves size bound
compression by setting a target number of bits for every 43 block.
Later with the release of 0.41 version of ZFP, it gained support for
error bound compression [LCL16].

An advantage of ZFP is its fast coding and decoding speed. This
could be seen from a successful application of ZFP to relieve the
I/O burden on wave-propagation simulations [LCL16]. The work-
flow with ZFP was to compress the strain fields before writing them
to the disk, read the compressed strain fields out, and then decom-
press them before using them in kernel calculations. The overall
I/O time of the new workflow would include both calculation time
for compression and decompression, and the actual I/O time on the
compressed data. Experiments show that compared to I/O time with
the raw data, the overall I/O time of this new workflow is 3X to 4X
shorter for write and 5X to 6X shorter for read depending on the
preset error tolerance during compression.

5.2. Time-varying Data Volume Compression

Time-varying data is from time slices saved from numerical simu-
lations. Though policies of saving time slices differ, it is likely that
coherence exists from slice to slice. Compression techniques mak-
ing use of this coherence are referred as “spatiotemporal” compres-
sors in some literatures, and we survey their representative applica-
tions in this subsection.

Wavelet transforms are used in time-varying data volume com-
pression. This is partially because of the fewer technical difficul-
ties encountered during the compression: wavelet transforms are
essentially one dimensional operations and easy to apply along the
time dimension. For example, Villasenor et al. [VED96] applied
the CDF 9/7 1D wavelet filter bank over all four dimensions to
compress seismic reflection data. The authors argued that cosine
transform based techniques, such as JPEG and MPEG, are not suit-
able for such data, and proved the effectiveness of wavelet trans-
forms. There are also applications of wavelet-based spatiotemporal
compression applied to time-varying 3D medical images. Zeng et
al. [ZJUHO1, ZJIM*02] established the feasibility of spatiotempo-
ral wavelet compression of time-varying echocardiography images.
In the former of their work, the authors pointed out that the de-
gree of coherence present may differ between dimensions, and thus
warranted different handling. Lalgudi et al. [LBM*05, LBMNO5]
evaluated 4D wavelet spatiotemporal compression on functional
MRI (fMRI) data obtained as a time series of 3D images of the
brain. They confirmed the coherence difference between dimen-
sions: more benefit gain is observed from the time dimension
than the z dimension. These evaluations also show that on fMRI
data sets, among the three tested state-of-the-art coders — Ze-
roTrees, SPIHT, and JPEG2000 (see Section 2.4) — JPEG2000 and

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

SPIHT are considerably more efficient than ZeroTrees, and SPIHT
is slightly better than JPEG2000. We note that some medical data
sets are in integer format, thus lossless compression is possible even
going through transforms. When using the state-of-the-art coders
on floating point values, a quantization step is needed to represent
the numbers in fixed point format, prohibiting lossless recovery.

Motion compensated predictions (MCP, see Section 2.3) was
proposed for video compression along the time dimension, so it
can naturally be applied to time-varying data from simulations.
BM3D [DLVLO02] is a motion estimation scheme for time-varying
3D data volumes. It features two strategies to search for matches
in the next time step of a group of data points: an exhaustive and
a heuristic “hill climbing” strategy. The latter strategy uses a two
level steepest ascent method to guide the search. “Hill climbing”
also proves to be a more practical strategy since it is only slightly
less accurate but two orders of magnitude less expensive to com-
pute. Sanchez et al. [SNAO6] used an MCP-based video format,
H.264, to compress 4D medical imagery, and later developed their
custom compressor [SNAOS]. In the latter of their work, they used
one pass of motion compensation to reduce redundancies between
2D slices in both spatial and temporal dimensions, followed by
another pass of motion compensation on the residuals from the
first pass. The final residuals and motion vectors were coded by
arithmetic coding. In lossless compression mode, this proposed ap-
proach achieves significantly higher compression rates than both
3D-JPEG2000 and H.264 coders. MCP could also be used to-
gether with wavelet transforms based on the idea to use wavelets
to de-correlate coherence in spatial domains, and use MCP to de-
correlate coherence in the temporal domain, as explored in [GSO01]
and [KYLSOS5]. The latter shows that MCP reduces bit rate by 25%
compared to the wavelet-only approach when performing lossless
compression on medical imagery. Again, some of these applica-
tions report results as lossless because they worked on integer val-
ues. The same techniques applied to floating point values would
require a quantization step and introduce non-reversible errors.

ISABELA (Section 2.3) is designed to perform lossy spatiotem-
poral compression on scientific data. ISABELA features high scal-
ability, which makes it really appealing for in-situ use with large
scale simulations. A storage framework was built on top of IS-
ABELA to demonstrate the low overhead, fast random access, com-
pression effectiveness, and high scalability in in-situ uses [LSE* 13]
ISABELA is also flexible enough to provide error bound or size
bound modes.

FPZIP and ZFP in 4D mode (Section 2.3) are also available
options for time-varying data. The designs of both coders are easy
to extend to higher dimensions. We refer back to the discussion in
Subsection 5.1.

6. Use Case 4: Lossy, Reduce on Write, Reduced Memory
Footprint

Applications in this use case reduce the data size before writing to
disk. The reduced form would also lower memory footprints in ad-
dition to file sizes. Two families of techniques fit into this use case:
saving derived information (Subsection 2.5) and mesh simplifica-
tion (Subsection 2.6). We will cover their applications in this sec-
tion. Also, we note that multi-resolution approaches fit into this use

case as well if the user decides to save a lower-resolution version of
his data for further use, as indicated in [WAF*11]. However, multi-
resolution is more widely used as a “reduce on read” technique to
improve interactivity of analyses and data explorations. Therefore,
we decide to put multi-resolution application in Section 8 instead
for interested readers to refer to.

6.1. Mesh Simplification on Unstructured Grids

Mesh simplification (Section 2.6) is for unstructured meshes, for
example, tetrahedron meshes in 3D and triangle meshes in 2D.
Based on quality criteria, a simplified mesh could have one or two
orders magnitude less number of triangles, which makes it much
easier for interactive visualizations. A few applications success-
fully performed mesh simplification on extremely large meshes in
an out-of-core fashion.

Edge collapsing based out-of-core mesh simplification was pro-
posed in [WK03, VCL*07]. Both applications read the mesh from
disk in a streaming fashion with a certain ordering, i.e., the ge-
ometries are roughly sorted by one coordinate. Then the edges are
examined against certain error tolerance — they are collapsed if
the collapse does not bring more error than the error tolerance. The
approach in [VCL*07] is even able to preserve the stream order of
the mesh between input and output.

Vertex clustering based out-of-core mesh simplification were
also proposed in [Lin00,LSO01]. In the former work the authors ap-
plied the quadric error metric to guide vertex clustering. The benefit
was both better positioning of vertices, and the requirement of only
a single pass of the input model to generate the simplified version.
This application requires the system memory to hold the simplified
version of the mesh. This requirement was removed in their later
work ([LSO1]). This new version of algorithm compactly stores
auxiliary information on disks instead, and managed to avoid ex-
pensive disk random accesses.

6.2. Image Space Visualization and Exploration

Image space visualization techniques save explorable images rather
than the simulation data, thus dramatically reduce both the file size
on disk and footprint in memory. One way to think about image
space visualization is that it sacrifices the visualization flexibility
to achieve reduced sizes, as opposed to simulation data which pro-
vides great flexibility but requires more storage. Cinema [AJO*14]
is a such image space visualization framework.

Cinema couples simulations to generate the image database in-
situ. Cinema supports a rich set of settings for a domain scientist
to make decisions between the final imagery size and its flexibility.
For example, the scientist is able to specify visualization objects
to create, the parameter space of the selected objects, the camera
space of the objects, and the quality of generated images. Based
on the specifications, Cinema is able to provide an estimate cost in
terms of storage computational overhead. After creating the image
database, Cinema supports three types of visual analytics tasks: in-
teractive exploration, querying, and image compositing. While the
capability of interactive exploration is limited by the specifications
defined during image database creation, the querying and image

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

compositing capabilities are great enhanced by the fact that is this
an image-based technique.

Cinema exhibits impressive data reduction factors and perfor-
mance. The authors argued that the imagery is on the order of
10° whereas the simulation data could go onto the order of 1013,
The authors also showed that both the in-situ creation of the image
database and performing various visualization routines take con-
stant time.

6.3. Lagrangian Representations for Flow Analysis

Lagrangian representations keep the pathline information and are
designed for flow analysis. They are usually generated in-situ with
the numerical simulations, and can take advantage of high tempo-
ral fidelity to provide potentially highly accurate pathlines. Sauer
et al. [SXM16] further proposed a data structure that combines La-
grangian representations with traditional Eulerian representations:
Lagrangian particles are indicated by vectors originating from the
Eulerian grid points. With an indexing-based data structure, the
combined information from both representations is queried effi-
ciently for complex analyses, as demonstrated in studies of real
world fusion, combustion, and cosmology data sets. The additional
benefits of this combined representation include out-of-core opera-
tions and efficient sample of multi-resolution subsets.

7. Use Case 5: Lossy, Reduce on Read, Reduced Memory
Footprint

Multi-resolution approaches (Subsection 2.2) are widely applied in
this use case. A lower resolution version of the data is preferred
sometimes because it saves I/0 and consumes less memory, both
helping to provide better interactivity for data explorations.

We note that mesh simplification using either vertex removal or
edge collapsing is a progress process — it iterates to remove one
vertex or edge at a time. Techniques with this nature has the poten-
tial to create a multi-resolution hierarchy, as the authors indicated
in [SZL92,R096]. Unfortunately, we are not aware of any applica-
tions using it in this fashion.

7.1. Space Filling Curves for Progressive Data Access

Z-order curves have been used for out-of-core data access, where
portions of data must be kept in the next levels of memory given the
limit of available memory. Pascucci et al. [PFO1] used this technol-
ogy to create a global index of very large data sets to speed up data
request. A visualization algorithm — slicing — was used to demon-
strate this benefit by working on the available data in a progressive
fashion; it reduces the overall computation time. Hilbert curves are
used in MLOC [GRJ*12] — a framework for compressed scien-
tific data exploration with heterogeneous data access patterns — to
organize data in a multi-resolution fashion. Here spatial-temporal
data sets are linearized by Hilber curves with data points of the
same resolution level stored together. This improved data locality
alleviates I/O constraints.

1 bit sign 1

1

52 bit fr%acnon

exponent

1 1 | 1 1
1 1 1 I 1
11 bit 1 1 1 1 |
1 1 | 1 |
T T T T T
1 1 I I 1

PLoD Level 1 (2 bytes) Level2 Level3 | Level4 : Level 5 Level6 Level 7
Figure 12: All 64 bits in a double-precision value are divided into
seven groups. These seven groups represent seven precision-based

levels of details to achieve reduction in read.

7.2. Wavelet Transforms for Progressive Data Access

Volume rendering on Magnetic Resonance (MR) data (e.g. the Vis-
ible Human Project [Ack98]) is among the first applications to
use wavelet-based multiresolution representations. Muraki [Mur92,
Mur93] proved the viability of wavelet-based multi-resolution rep-
resentations in volume rendering 3D MR data back in early 1990’s,
and he pointed out a potential use case in data transmission through
computer networks: a rough approximation can be sent first, fol-
lowed by enhanced details at selected regions. Nguyen et al. [NSO1]
divided 3D data volumes into 16> cubes and applied wavelet trans-
form on each of the cubes, achieving both a multi-resolution rep-
resentation and random access at the individual cube granularity.
Similar applications are also reported in [IP98a, Rod99] with dis-
cussions on random access strategies.

Multi-resolution representations are especially useful in interac-
tive visualization scenarios, because users can start from a coarse
approximation of the volume, and keep refining the entire or a por-
tion of the volume as more data is available. Ihm et al. [IP99] evalu-
ated the interactive use of their wavelet-based technique on the Vis-
ible Human data sets. Guthe et al. [GWGSO02] then achieved frame
rates adequate for practical interactive use on this data set with
multiple optimizations. Both LaMar et al. [WWH*00] and Weiler
et al. [LHJO00] explored the idea that the interactive visualization
uses finer resolutions to render objects closer to the view point,
while to use coarser resolutions for objects further from the view
point. Guthe et al. [GS04] further applied different resolution lev-
els to different data blocks when rendering, aiming to set a screen-
space error bound: more error sensitive blocks are rendered using
higher resolution levels. The screen-space error is calculated by
comparing the rendered image using the current set against the im-
age rendered using the blocks that map one voxel to a single pixel.
Further, Brix et al. [BMMB11] and Gao et al. [GWLSO05] applied
multi-resolution representations from wavelet on distributed sys-
tems. Interestingly, both works use space-filling curves to achieve
a better load balance among compute nodes. Finally, wavelet-based
multi-resolution approach is also adopted by VAPoR, an open-
source package for scientific visualization and analysis, to provide
a better user interactivity [CMNRO7, CROS5].

8. Use Case 6: Lossy, Reduce on Read, Original Memory
Footprint

This use case is similar to Case 5, since they are both for progres-
sive data access. This use case is different from Case 5 in that recov-
ered data will not reduce memory footprint. For grids and meshes
this means they will have the same number of vertices after recov-
ery from the compressed form. A few techniques that are able to

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

use partial saved data to recover the original data fit into this use
case.

MLOC [GRJ*12] provides reduction in read by using less num-
ber of bits to reconstruct each double-precision value that originally
has 64 bits. More specifically, MLOC divides the eight bytes of a
double-precision value into seven groups: the first group has two
bytes containing the sign, exponent, and the first four bits of the
fraction, and each group next has one byte containing eight more
bits of the fraction. The first group thus has a coarse approximation
of the data, and each extra group adds more precision. This strat-
egy is referred as Precision-based Level of Details, and illustrated
in Figure 12. Using the coarse levels of details in MLOC (e.g., level
1 through level 6) reduces I/O cost in read.

Two wavelet-based techniques — wavelet transform + signifi-
cance map and wavelet transform + state-of-the-art coders (Sub-
section 2.4) — are capable of supporting this use case as well. The
former sorts all wavelet coefficients based on their information con-
tent, and use a subset of coefficients containing most information
for reconstruction. Actually, this subset can be cut at any point to
start reconstruction, achieving reduction on read. The latter encodes
wavelet coefficients one bit-plane by another, from the most signif-
icant ones to less significant ones. Again, less number or partial bit-
planes can be used to start reconstruction, achieving reduction on
read. The QccPack [Fow00] implementation of SPIHT and SPECK
coders supports this use: a user is able to specify a smaller bit rate
for data reconstruction despite the available bit rate on file, thus
achieving reduction on read. Though capable, these wavelet-based
techniques have not been used in this lossy, reduction on read, and
no reduction in memory fashion in real-world applications to our
knowledge.

9. Use Case 7: Lossless, Reduce on Write, Reduced Memory
Footprint

This use case is similar to Case 2 (Section 4), with the difference
that we focus on reduction on write here, but reduction on read in
Case 2. In theory, domain subsetting adopted in Case 2 could be
used here, where the scientist deems a subset of domains contains
all data needed, and the discarded domains does not lose anything
useful. This might be applicable for some applications, for exam-
ple, in a wind farm simulation, we probably only want to save do-
mains near the wind turbines rather than the entire wind farm. After
all, this use case is relatively rare, and we are not aware of any for-
mal discussions of this kind.

10. Use Case 8: Lossless, Reduce on Read, Original Memory
Footprint

This use case is similar to Case 1 (Section 3) with the difference
that we focus on reduction on read here, but reduction on write in
Case 1. Based on our definition of reduction on read, it becomes
tricky to require both lossless and reduction on read at the same
time. By reduction on read we mean reconstruction using part of the
saved data is possible. If this reconstruction were lossless then the
saved data has redundancy, and the redundancy is easily eliminated
during writing. Since every lossless data reduction technique aims

to reduce redundancy even before writing to disks, we decide this
use case not practical.

11. Conclusion

This paper surveys common techniques used for visualization and
analysis of scientific data sets. They are distinguished by three
important characteristics: lossy or lossless, reduce on write or re-
duce on read, and results in original memory footprint or reduced
memory footprint. A scientist may use these three characteristics
to guide himself to choose a data reduction technique for her use
case. Existing applications with data reduction integrated into the
work flow are also surveyed in this paper, and they are organized
around the three characteristics of available techniques. We believe
this survey serves as a starting point for a visualization scientist as
well as a simulation scientist to explore data reduction options to
tackle his I/O constraints.

References

[ACG*14] AGRANOVSKY A., CAMP D., GARTH C., BETHEL E. W.,
Joy K. I., CHILDS H.: Improved post hoc flow analysis via lagrangian
representations. In Large Data Analysis and Visualization (LDAV), 2014
IEEE 4th Symposium on (2014), IEEE, pp. 67-75. 7

[Ack98] ACKERMAN M. J.: The visible human project. Proceedings of
the IEEE 86, 3 (1998), 504-511. 13

[AJO*14] AHRENS J., JOURDAIN S., O’LEARY P., PATCHETT J.,
ROGERS D. H., PETERSEN M.: An image-based approach to extreme
scale in situ visualization and analysis. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis (2014), IEEE Press, pp. 424-434. 1, 12

[Ana89] ANANDAN P.: A computational framework and an algorithm for
the measurement of visual motion. International Journal of Computer
Vision 2, 3 (1989), 283-310. 4

[ANR74] AHMED N., NATARAJAN T., RAO K. R.: Discrete cosine
transform. IEEE transactions on Computers 100, 1 (1974),90-93. 7

[BDSW13] BISWAS A., DUTTA S., SHEN H.-W., WOODRING J.: An
information-aware framework for exploring multivariate data sets. I[EEE
Transactions on Visualization and Computer Graphics 19, 12 (2013),
2683-2692. 8

[BJ15] Buiack R., Joy K. I.. Lagrangian representations of flow
fields with parameter curves. In Large Data Analysis and Visualization
(LDAV), 2015 IEEE 5th Symposium on (2015), IEEE, pp. 41-48. 7

[BKSS90] BECKMANN N., KRIEGEL H.-P., SCHNEIDER R., SEEGER
B.: The r*-tree: an efficient and robust access method for points and
rectangles. In ACM SIGMOD Record (1990), vol. 19, Acm, pp. 322—
331.9

[BLZ*14] BOYUKA D. A., LAKSHMINARASIMHAM S., ZoU X.,
GONG Z., JENKINS J., SCHENDEL E. R., PODHORSZKI N., LU Q.,
KLASKY S., SAMATOVA N. F.: Transparent in situ data transformations
in adios. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on (2014), IEEE, pp. 256-266. 9

[BM72] BAYER R., MCCREIGHT E.: Organization and maintenance
of large ordered indexes. Acta Informatica 1 (1972), 173-189. 9

[BMO7] BONWICK J., MOORE B.: ZFS: The last word in file systems. 9

[BMMBI11] BRIX K., MELIAN S., MULLER S., BACHMANN M.: Adap-
tive multiresolution methods: Practical issues on data structures, imple-
mentation and parallelization. In ESAIM: Proceedings (2011), vol. 34,
EDP Sciences, pp. 151-183. 13

[BR09] BURTSCHER M., RATANAWORABHAN P.: FPC: A high-speed
compressor for double-precision floating-point data. /EEE Transactions
on Computers 58, 1 (2009), 18-31. 5,9

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

[btr] Btrfs compression FAQ. [Online, accessed December 14
2016]. URL: https://btrfs.wiki.kernel.org/index.
php/Compression. 9

[CBB*05] CHILDS H., BRUGGER E., BONNELL K., MEREDITH J.,
MILLER M., WHITLOCK B., MAX N.: A contract based system for
large data visualization. In Visualization, 2005. VIS 05. IEEE (2005),
IEEE, pp. 191-198. 9

[CBW*12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RUBEL O., DURANT M., FAVRE J. M.,
NAVRATIL P.: VisIt: An End-User Tool For Visualizing and Analyzing
Very Large Data. In High Performance Visualization—Enabling Extreme-
Scale Scientific Insight. Oct 2012, pp. 357-372. 9

[CDDY06] CANDES E., DEMANET L., DONOHO D., YING L.: Fast
discrete curvelet transforms. Multiscale Modeling & Simulation 5, 3
(2006), 861-899. 4

[CDF92] COHEN A., DAUBECHIES I., FEAUVEAU J.-C.: Biorthogonal
bases of compactly supported wavelets. Communications on pure and
applied mathematics 45, 5 (1992), 485-560. 6

[CFSWO01] CHIANG Y.-J., FARIAS R., SILVA C. T., WEI B.: A unified
infrastructure for parallel out-of-core isosurface extraction and volume
rendering of unstructured grids. In Parallel and Large-Data Visualiza-
tion and Graphics, 2001. Proceedings. IEEE 2001 Symposium on (2001),
IEEE, pp. 59-151. 9

[CI98] CHAN C.-Y., IOANNIDIS Y. E.: Bitmap index design and eval-
uation. In ACM SIGMOD Record (1998), vol. 27, ACM, pp. 355-366.
9

[CL97] CHAN R. K., LEE M.: 3d-dct quantization as a compression
technique for video sequences. In Virtual Systems and MultiMedia, 1997.
VSMM’97. Proceedings., International Conference on (1997), 1EEE,
pp. 188-196. 7

[CMNRO7] CLYNE J., MININNI P., NORTON A., RAST M.: Interactive
desktop analysis of high resolution simulations: application to turbulent
plume dynamics and current sheet formation. New Journal of Physics 9,
8(2007), 301. 13

[Coll1] COLLET Y.: Lz4—extremely fast compression. 2

[CP96] CHEN Y., PEARLMAN W. A.: Three-dimensional subband cod-
ing of video using the zero-tree method. In Visual Communications and
Image Processing’96 (1996), International Society for Optics and Pho-
tonics, pp. 1302-1312. 7

[CRO5] CLYNE J., RAST M.: A prototype discovery environment for
analyzing and visualizing terascale turbulent fluid flow simulations. In
Visualization and Data Analysis 2005 (San Jose, CA, USA, Mar. 2005),
Erbacher R. F,, Roberts J. C., Grohn M. T., Borner K., (Eds.), vol. 5669,
SPIE, pp. 284-294. 13

[CSD*00] CHRYSAFIS C., SAID A., DRUKAREV A., ISLAM A.,
PEARLMAN W. A.: Sbhp-a low complexity wavelet coder. In ICASSP
(2000). 7

[CYH*97] CHIUEH T.-C., YANG C.-K., HE T., PFISTER H., KAUFMAN
A.: Integrated volume compression and visualization. In Visualiza-
tion’97., Proceedings (1997), IEEE, pp. 329-336. 7

[DC15] Dr1 S., CAPPELLO F.: Fast error-bounded lossy hpc data com-
pression with sz. In IPDPS 2016 (Chicago, IL, 06/2016 2015), IEEE,
IEEE. 5, 10

[Deu96] DEUTSCH P.: DEFLATE compressed data format specification
version 1.3. Tech. rep., 1996. 2

[DLVL02] DE LEEUW W., VAN LIERE R.: BM3D: motion estimation
in time dependent volume data. In Proceedings of the conference on
Visualization’02 (2002), IEEE Computer Society, pp. 427-434. 12

[EGMO04] ELLSWORTH D., GREEN B., MORAN P.: Interactive terascale
particle visualization. In Proceedings of the conference on Visualiza-
tion’04 (2004), IEEE Computer Society, pp. 353-360. 5,9

[FFSE14] FERNANDES O., FREY S., SADLO F., ERTL T.: Space-time
volumetric depth images for in-situ visualization. In Large Data Analysis
and Visualization (LDAV), 2014 IEEE 4th Symposium on (2014), IEEE,
pp. 59-65. 7

[FM07] Fout N., MA K.-L.: Transform coding for hardware-
accelerated volume rendering. [EEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1600-1607. 7

[Fow00] FOWLER J. E.: QccPack: An open-source software library for
quantization, compression, and coding. In International Symposium on
Optical Science and Technology (2000), International Society for Optics
and Photonics, pp. 294-301. 11, 14

[FSE13] FREY S., SADLO F., ERTL T.: Explorable volumetric depth
images from raycasting. In 2013 XXVI Conference on Graphics, Patterns
and Images (2013), IEEE, pp. 123-130. 7

[FY94] FOWLER J. E., YAGEL R.: Lossless compression of volume
data. In Proceedings of the 1994 Symposium on Volume Visualiza-
tion (New York, NY, USA, 1994), VVS ’94, ACM, pp. 43-50. URL:
http://doi.acm.org/10.1145/197938.197961, doi:10.
1145/197938.197961. 5,9

[GG12] GERSHO A., GRAY R. M.: Vector quantization and signal com-
pression, vol. 159. Springer Science & Business Media, 2012. 3

[GGS99] GUMHOLD S., GUTHE S., STRASSER W.: Tetrahedral mesh
compression with the cut-border machine. In Proceedings of the confer-
ence on Visualization’99: celebrating ten years (1999), IEEE Computer
Society Press, pp. 51-58. 9

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification us-
ing quadric error metrics. In Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques (1997), ACM
Press/Addison-Wesley Publishing Co., pp. 209-216. 8

[GRJ*12] GONG Z., ROGERS T., JENKINS J., KOLLA H., ETHIER S.,
CHEN J., Ross R., KLASKY S., SAMATOVA N. F.: MLOC: Multi-
level layout optimization framework for compressed scientific data ex-
ploration with heterogeneous access patterns. In Parallel Processing
(ICPP), 2012 41st International Conference on (2012), IEEE, pp. 239—
248. 13, 14

[GSO1] GUTHE S., STRASSER W.: Real-time decompression and visu-
alization of animated volume data. In Visualization, 2001. VIS ’01. Pro-
ceedings (Oct 2001), pp. 349-572. do1:10.1109/VISUAL.2001.
964531. 12

[GS04] GUTHE S., STRASSER W.: Advanced techniques for high-
quality multi-resolution volume rendering. Computers & Graphics 28, 1
(2004), 51-58. 13

[GSS*06] GOSINK L., SHALF J., STOCKINGER K., WU K., BETHEL
W.: Hdf5-fastquery: Accelerating complex queries on hdf datasets using
fast bitmap indices. In 18th International Conference on Scientific and
Statistical Database Management (SSDBM’06) (2006), IEEE, pp. 149—
158. 10

[Gut84] GUTTMAN A.: R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD International Con-
ference on Management of Data (New York, NY, USA, 1984), SIGMOD
’84, ACM, pp. 47-57. URL: http://doi.acm.org/10.1145/
602259.602266,d01:10.1145/602259.602266. 9

[GVDBO1] GOEMAN B., VANDIERENDONCK H., DE BOSSCHERE K.:
Differential fcm: Increasing value prediction accuracy by improving ta-
ble usage efficiency. In High-Performance Computer Architecture, 2001.
HPCA. The Seventh International Symposium on (2001), IEEE, pp. 207—
216. 5

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.: Inter-
active rendering of large volume data sets. In Visualization, 2002. VIS
2002. IEEE (2002), IEEE, pp. 53-60. 6, 13

[GWLS05] GAo0J., WANG C., L1 L., SHEN H.-W.: A parallel multires-
olution volume rendering algorithm for large data visualization. Parallel
Computing 31, 2 (2005), 185-204. 13

https://btrfs.wiki.kernel.org/index.php/Compression
https://btrfs.wiki.kernel.org/index.php/Compression
http://doi.acm.org/10.1145/197938.197961
http://dx.doi.org/10.1145/197938.197961
http://dx.doi.org/10.1145/197938.197961
http://dx.doi.org/10.1109/VISUAL.2001.964531
http://dx.doi.org/10.1109/VISUAL.2001.964531
http://doi.acm.org/10.1145/602259.602266
http://doi.acm.org/10.1145/602259.602266
http://dx.doi.org/10.1145/602259.602266

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

[GXY12] GuUoO H., X1A0 H., YUAN X.: Scalable multivariate volume
visualization and analysis based on dimension projection and parallel
coordinates. IEEFE transactions on visualization and computer graphics
18,9 (2012), 1397-1410. 8

[GY95] GHAVAMNIA M. H., YANG X. D.: Direct rendering of laplacian
pyramid compressed volume data. In Proceedings of the 6th conference
on Visualization’95 (1995), IEEE Computer Society, p. 192. 4

[GZ05] GARLAND M., ZHOU Y.: Quadric-based simplification in any
dimension. ACM Transactions on Graphics (TOG) 24, 2 (2005), 209—
239. 8

[H*52] HUFFMAN D. A., ET AL.: A method for the construction of
minimum-redundancy codes. Proceedings of the IRE 40,9 (1952), 1098—
1101. 2

[Hil91] HILBERT D.: Ueber die stetige abbildung einer line auf ein
flachenstiick. Mathematische Annalen 38, 3 (1891), 459-460. 3

[ILRSO03] IBARRIA L., LINDSTROM P., ROSSIGNAC J., SZYMCZAK
A.: Out-of-core compression and decompression of large n-dimensional
scalar fields. In Computer Graphics Forum (2003), vol. 22, Wiley Online
Library, pp. 343-348. 5

[IP98a] IHM I., PARK S.: Wavelet-based 3d compression scheme for
very large volume data. In Graphics Interface (1998), vol. 98, Citeseer,
pp. 107-116. 6, 13

[TP98b] IsLAM A., PEARLMAN W. A.: Embedded and efficient low-
complexity hierarchical image coder. In Electronic Imaging’99 (1998),
International Society for Optics and Photonics, pp. 294-305. 6

[IP99] TIHM I., PARK S.: Wavelet-based 3d compression scheme for in-
teractive visualization of very large volume data. In Computer Graphics
Forum (1999), vol. 18, Wiley Online Library, pp. 3-15. 13

[KP97] KiM B.-J., PEARLMAN W. A.: An embedded wavelet video
coder using three-dimensional set partitioning in hierarchical trees
(spiht). In Data Compression Conference, 1997. DCC’97. Proceedings
(1997), IEEE, pp. 251-260. 7

[KS99] KiM T.-Y., SHIN Y. G.: An efficient wavelet-based compres-
sion method for volume rendering. In Computer Graphics and Applica-
tions, 1999. Proceedings. Seventh Pacific Conference on (1999), IEEE,
pp. 147-156. 6

[KYLS05] KASSIM A. A., YAN P., LEE W. S., SENGUPTA K.: Motion
compensated lossy-to-lossless compression of 4-d medical images using
integer wavelet transforms. IEEE transactions on information technol-
ogy in biomedicine 9, 1 (2005), 132-138. 12

[LBG80] LINDE Y., BUZO A., GRAY R.: An algorithm for vector quan-
tizer design. IEEE Transactions on communications 28, 1 (1980), 84-95.
3

[LBM*05] LALGUDI H. G., BILGIN A., MARCELLIN M. W., TABESH
A., NADAR M. S., TROUARD T. P.: Four-dimensional compression
of fMRI using JPEG2000. In Medical Imaging (2005), International
Society for Optics and Photonics, pp. 1028-1037. 11

[LBMNO5] LALGUDI H. G., BILGIN A., MARCELLIN M. W., NADAR
M. S.: Compression of fMRI and ultrasound images using 4d SPIHT.
In Image Processing, 2005. ICIP 2005. IEEE International Conference
on (2005), vol. 2, IEEE, pp. 1I-746. 7, 11

[LCL16] LINDSTROM P., CHEN P., LEE E.-J.: Reducing disk storage of
full-3d seismic waveform tomography (f3dt) through lossy online com-
pression. Computers & Geosciences 93 (2016), 45-54. 11

[LDO7] Lu Y.M., Do M. N.: Multidimensional directional filter banks
and surfacelets. /EEE Transactions on Image Processing 16, 4 (2007),
918-931. 4

[LGP*15] Li1S., GRUCHALLA K., POTTER K., CLYNE J., CHILDS H.:
Evaluating the efficacy of wavelet configurations on turbulent-flow data.
In IEEE Symposium on Large Data Analysis and Visualization (LDAV)
(2015), pp. 81-89. 1, 11

[LHJOO] LAMAR E., HAMANN B., Joy K. I.: Multiresolution tech-
niques for interactive texture-based volume visualization. In Electronic

Imaging (2000), International Society for Optics and Photonics, pp. 365—
374. 13

[LI0O6] LINDSTROM P., ISENBURG M.: Fast and efficient compression of
floating-point data. Visualization and Computer Graphics, IEEE Trans-
actions on 12,5 (2006), 1245-1250. 1, 5, 9, 10

[Lin00] LINDSTROM P.: Out-of-core simplification of large polygonal
models. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques (2000), ACM Press/Addison-Wesley
Publishing Co., pp. 259-262. 12

[Lin14] LINDSTROM P.: Fixed-rate compressed floating-point arrays.
IEEE transactions on visualization and computer graphics 20, 12
(2014), 2674-2683. 7, 11

[L1o82] LLOYD S.: Least squares quantization in pcm. IEEE transactions
on information theory 28, 2 (1982), 129-137. 3

[Loe78] LOEVE M.: Probability theory, vol. ii. Graduate texts in mathe-
matics 46 (1978), 0-387. 7

[LPO7] LiU Y., PEARLMAN W. A.: Four-dimensional wavelet compres-
sion of 4-d medical images using scalable 4-d sbhp. In Data Compres-
sion Conference, 2007. DCC’07 (2007), IEEE, pp. 233-242. 7

[LSO1] LINDSTROM P., SIiLVA C. T.: A memory insensitive technique
for large model simplification. In Proceedings of the conference on Vi-
sualization’01 (2001), IEEE Computer Society, pp. 121-126. 12

[LSE*11] LAKSHMINARASIMHAN S., SHAH N., ETHIER S., KLASKY
S., LATHAM R., Ross R., SAMATOVA N. F.: Compressing the in-
compressible with isabela: In-situ reduction of spatio-temporal data. In
Euro-Par 2011 Parallel Processing. Springer, 2011, pp. 366-379. 5

[LSE*13] LAKSHMINARASIMHAN S., SHAHN., ETHIER S., KU S.-H.,
CHANG C.-S., KLASKY S., LATHAM R., ROSS R., SAMATOVA N. F.:
Isabela for effective in situ compression of scientific data. Concurrency
and Computation: Practice and Experience 25, 4 (2013), 524-540. 12

[Mor66] MORTON G. M.: A computer oriented geodetic data base and
a new technique in file sequencing. International Business Machines
Company New York, 1966. 3

[Mur92] MURAKI S.: Approximation and rendering of volume data using
wavelet transforms. In Proceedings of the 3rd conference on Visualiza-
tion’92 (1992), IEEE Computer Society Press, pp. 21-28. 13

[Mur93] MURAKI S.: Volume data and wavelet transforms. IEEE Com-
puter Graphics and applications, 4 (1993), 50-56. 13

[NC12] NORTON A., CLYNE J.: The VAPOR visualization application.
In High Performance Visualization, Bethel E., Childs H., Hanson C.,
(Eds.). 2012, pp. 415-428. 10

[NH92] NING P., HESSELINK L.: Vector quantization for volume ren-
dering. In Proceedings of the 1992 workshop on Volume visualization
(1992), ACM, pp. 69-74. 10

[NSO1] NGUYEN K. G., SAUPE D.: Rapid high quality compression
of volume data for visualization. In Computer Graphics Forum (2001),
vol. 20, Wiley Online Library, pp. 49-57. 7, 13

[Obe05] OBERHUMER M.: Lzo real-time data compression library. User
manual for LZO version 0.28, URL: http://www. infosys. tuwien. ac.
at/Staff/lux/marco/lzo. html (February 1997) (2005). 2

[O’N89] O’NEIL P. E.: Model 204 architecture and performance. In
High Performance Transaction Systems. Springer, 1989, pp. 39-59. 9

[PAL*06] PAPADOMANOLAKIS S., AILAMAKIA.,LopEZJ.C.,TUT.,
O’HALLARON D. R., HEBER G.: Efficient query processing on un-
structured tetrahedral meshes. In Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data (2006), ACM,
pp. 551-562. 9

[Pav99] PavLoVv I.: 7z format, 1999. [Online, accessed October 30
2016]. URL: http://www.7-zip.org/7z.html. 2

[PFO1] Pascucct V., FRANK R. J.: Global static indexing for real-time
exploration of very large regular grids. In Supercomputing, ACM/IEEE
2001 Conference (2001), IEEE, pp. 45-45. 3, 13

http://www.7-zip.org/7z.html

S. Li / Data Reduction Techniques for Scientific Visualization and Data Analysis

[PINSO4] PEARLMAN W. A., ISLAM A., NAGARAJ N., SAID A.: Ef-
ficient, low-complexity image coding with a set-partitioning embedded
block coder. IEEE transactions on circuits and systems for video tech-
nology 14, 11 (2004), 1219-1235. 6

[PKO5] PENG J., Kuo C.-C. J.: Geometry-guided progressive lossless
3d mesh coding with octree (ot) decomposition. In ACM Transactions
on Graphics (TOG) (2005), vol. 24, ACM, pp. 609-616. 9

[PLW*16] PuLIDO J., LIVESCU D., WOODRING J., AHRENS J.,
HAMANN B.: Survey and analysis of multiresolution methods for turbu-
lence data. Computers & Fluids 125 (2016), 39-58. 4

[RB93] ROSSIGNAC J., BORREL P.: Multi-resolution 3d approxima-
tions for rendering complex scenes. In Modeling in computer graphics.
Springer, 1993, pp. 455-465. 8

[RBM13] RODEH O., BACIK J., MASON C.: Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013),9. 9

[RO96] RENZE K. J., OLIVER J. H.: Generalized unstructured decima-
tion [computer graphics]. [EEE Computer Graphics and Applications
16, 6 (1996), 24-32. 8, 13

[Rod99] RODLER F. F.: Wavelet based 3d compression with fast random
access for very large volume data. In Computer Graphics and Applica-
tions, 1999. Proceedings. Seventh Pacific Conference on (1999), IEEE,
pp. 108-117. 7,13

[RWC*08] RUBEL O., WU K., CHILDS H., MEREDITH J., GEDDES
C. G., CORMIER-MICHEL E., AHERN S., WEBER G. H., MESSMER
P., HAGEN H., ET AL.: High performance multivariate visual data explo-
ration for extremely large data. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (2008), IEEE Press, p. 51. 10

[RY14] Rao K. R., YIP P.: Discrete cosine transform: algorithms, ad-
vantages, applications. Academic press, 2014. 4

[SCEO1] SKODRAS A., CHRISTOPOULOS C., EBRAHIMI T.: The jpeg
2000 still image compression standard. /EEE Signal processing maga-
zine 18,5 (2001), 36-58. 6

[SGO1] SHAFFER E., GARLAND M.: Efficient adaptive simplification of
massive meshes. In Proceedings of the conference on Visualization’01
(2001), IEEE Computer Society, pp. 127-134. 8

[Sha93] SHAPIRO J. M.: Embedded image coding using zerotrees of
wavelet coefficients. Signal Processing, IEEE Transactions on 41, 12
(1993), 3445-3462. 6

[SKK06] SALAMA C.R., KELLER M., KOHLMANN P.: High-level user
interfaces for transfer function design with semantics. /EEE Transac-
tions on Visualization and Computer Graphics 12, 5 (2006), 1021-1028.
8

[SN96] STRANG G., NGUYEN T.: Wavelets and filter banks. SIAM,
1996. 4

[SNAO6] SANCHEZ V., NASIOPOULOS P., ABUGHARBIEH R.: Lossless
compression of 4d medical images using h. 264/avc. In 2006 IEEE In-
ternational Conference on Acoustics Speech and Signal Processing Pro-
ceedings (2006), vol. 2, IEEE, pp. II-1I. 12

[SNAO8] SANCHEZ V., NASIOPOULOS P., ABUGHARBIEH R.: Effi-
cient 4d motion compensated lossless compression of dynamic volumet-
ric medical image data. In Acoustics, Speech and Signal Processing,
2008. ICASSP 2008. IEEE International Conference on (2008), IEEE,
pp. 549-552. 12

[Sne95] SNEDDON I. N.: Fourier transforms. Courier Corporation, 1995.
4

[SP93] SAID A., PEARLMAN W. A.: Image compression using the
spatial-orientation tree. In ISCAS (1993), vol. 93, pp. 279-282. 6

[SRF87] SELLIS T., ROUSSOPOULOS N., FALOUTSOS C.: The r+-tree:
A dynamic index for multi-dimensional objects. 9

[SS97] SAZEIDES Y., SMITH J. E.: The predictability of data values.
In Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM
International Symposium on (1997), IEEE, pp. 248-258. 5

[SSEM15] SASAKIN., SATO K., ENDO T., MATSUOKA S.: Exploration
of lossy compression for application-level checkpoint/restart. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional (2015), IEEE, pp. 914-922. 6

[SXM16] SAUERF., XIEJ., MA K.-L.: A combined eulerian-lagrangian
data representation for large-scale applications. IEEE Transactions on
Visualization and Computer Graphics (2016). 13

[SZ1.92] SCHROEDER W.J., ZARGE J. A., LORENSEN W. E.: Decima-
tion of triangle meshes. In ACM Siggraph Computer Graphics (1992),
vol. 26, ACM, pp. 65-70. 8, 13

[Tau00] TAUBMAN D.: High performance scalable image compression
with ebcot. Image Processing, IEEE transactions on 9, 7 (2000), 1158-
1170. 7

[TCM10] TIKHONOVA A., CORREA C. D., MA K.-L.: Visualization
by proxy: A novel framework for deferred interaction with volume
data. [EEE Transactions on Visualization and Computer Graphics 16,
6 (2010), 1551-1559. 7

[The] THE HDF GROUP: Using compression in HDFS5. [Online, accessed
December 14 2016]. URL: https://support.hdfgroup.org/
HDF5/faqg/compression.html. 9

[THJ99] TroTTS I. J., HAMANN B., JOoYy K. I.: Simplification of tetra-
hedral meshes with error bounds. IEEE Transactions on Visualization
and Computer Graphics 5, 3 (1999), 224-237. 8

[THIW98] TROTTS I.J., HAMANN B., JoY K. I., WILEY D. F.: Simpli-
fication of tetrahedral meshes. In Visualization’98. Proceedings (1998),
IEEE, pp. 287-295. 8

[TL93] TOTSUKA T., LEVOY M.: Frequency domain volume rendering.
In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques (1993), ACM, pp. 271-278. 7

[TLMMO2] TAKANASHI I., LuM E. B., MA K.-L., MURAKI S.: Is-
pace: Interactive volume data classification techniques using indepen-
dent component analysis. In Computer Graphics and Applications, 2002.
Proceedings. 10th Pacific Conference on (2002), IEEE, pp. 366-374. 8

[TMM96] TROTT A., MOORHEAD R., MCGINLEY J.: Wavelets applied
to lossless compression and progressive transmission of floating point
data in 3-d curvilinear grids. In Visualization’96. Proceedings. (1996),
IEEE, pp. 385-388. 6

[TPMO3] TANG X., PEARLMAN W. A., MODESTINO J. W.: Hyper-
spectral image compression using three-dimensional wavelet coding. In
Electronic Imaging 2003 (2003), International Society for Optics and
Photonics, pp. 1037-1047. 7

[VCL*07] Vo H.T., CALLAHAN S. P., LINDSTROM P., PAscuccI V.,
SiLva C. T.: Streaming simplification of tetrahedral meshes. IEEE
Transactions on Visualization and Computer Graphics 13, 1 (2007),
145-155. 12

[VED96] VILLASENOR J. D., ERGAS R., DONOHO P.: Seismic data
compression using high-dimensional wavelet transforms. In Data
Compression Conference, 1996. DCC’96. Proceedings (1996), 1EEE,
pp- 396-405. 11

[WAB*09] WU K., AHERN S., BETHEL E. W., CHEN J., CHILDS H.,
CORMIER-MICHEL E., GEDDES C., GU J., HAGEN H., HAMANN B.,
ET AL.: Fastbit: interactively searching massive data. In Journal of
Physics: Conference Series (2009), vol. 180, IOP Publishing, p. 012053.
9,10

[WAF*11] WOODRING J., AHRENS J., FIGG J., WENDELBERGER J.,
HABIB S., HEITMANN K.: In-situ sampling of a large-scale particle sim-
ulation for interactive visualization and analysis. In Computer Graphics
Forum (2011), vol. 30, Wiley Online Library, pp. 1151-1160. 3, 12

[Wal92] WALLACE G. K.: The jpeg still picture compression standard.
IEEE transactions on consumer electronics 38, 1 (1992), xviii—xxxiv. 6

[Wel84] WELCH T. A.: A technique for high-performance data compres-
sion. Computer 17, 6 (1984), 8-19. 2

https://support.hdfgroup.org/HDF5/faq/compression.html
https://support.hdfgroup.org/HDF5/faq/compression.html

S. Li/ Data Reduction Techniques for Scientific Visualization and Data Analysis

[WKO03] Wu J., KOBBELT L.: A stream algorithm for the decimation of
massive meshes. In Graphics interface (2003), vol. 3, pp. 185-192. 12

[WKCS03] Wu K., KOEGLER W., CHEN J., SHOSHANI A.: Using
bitmap index for interactive exploration of large datasets. In Scientific
and Statistical Database Management, 2003. 15th International Confer-
ence on (2003), IEEE, pp. 65-74. 10

[WMB*11] WOODRING J., MNISZEWSKI S., BRISLAWN C., DE-
MARLE D., AHRENS J.: Revisiting wavelet compression for large-
scale climate data using jpeg 2000 and ensuring data precision. In Large
Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on (Oct
2011), pp. 31-38. do1:10.1109/LDAV.2011.6092314. 11

[WNCS87] WITTEN I. H., NEAL R. M., CLEARY J. G.: Arithmetic cod-
ing for data compression. Communications of the ACM 30, 6 (1987),
520-540. 2

[WROO] WESTENBERG M. A., ROERDINK J. B.: Frequency domain
volume rendering by the wavelet x-ray transform. [EEE Transactions
On Image Processing 9,7 (2000), 1249-1261. 7

[WWH*00] WEILER M., WESTERMANN R., HANSEN C., ZIMMER-
MANN K., ERTL T.: Level-of-detail volume rendering via 3d textures.
In Proceedings of the 2000 IEEE symposium on Volume visualization
(2000), ACM, pp. 7-13. 13

[XXLZ01] XulJ., XIONG Z., L1 S., ZHANG Y.-Q.: Three-dimensional
embedded subband coding with optimized truncation (3-d escot). Ap-
plied and Computational Harmonic Analysis 10, 3 (2001), 290-315. 7

[ZIM*02] ZENG L., JANSEN C. P., MARSCH S., UNSER M., HUN-
ZIKER P. R.: Four-dimensional wavelet compression of arbitrarily sized
echocardiographic data. Medical Imaging, IEEE Transactions on 21, 9
(2002), 1179-1187. 7, 11

[ZJUHO1] ZENG L., JANSEN C., UNSER M. A., HUNZIKER P.: Ex-
tension of wavelet compression algorithms to 3d and 4d image data:
Exploitation of data coherence in higher dimensions allows very high
compression ratios. In International Symposium on Optical Science
and Technology (2001), International Society for Optics and Photonics,
pp. 427-433. 11

[ZL77] Ziv J., LEMPEL A.: A universal algorithm for sequential data
compression. IEEE Transactions on information theory 23, 3 (1977),
337-343. 2

[ZL78] Ziv J., LEMPEL A.: Compression of individual sequences via
variable-rate coding. [EEFE transactions on Information Theory 24, 5
(1978), 530-536. 2

[ZLMS04] ZIEGLER G., LENSCH H. P., MAGNOR M., SEIDEL H.-P.:
Multi-video compression in texture space using 4d spiht. In Multimedia
Signal Processing, 2004 IEEE 6th Workshop on (2004), IEEE, pp. 39—
42. 7

[ZTGB02] ZHAO R., TAO T., GABRIEL M., BELFORD G. G.: Lossless
compression of very large volume data with fast dynamic access. In
Proc. SPIE (2002), vol. 4925, p. 180. 5,9

http://dx.doi.org/10.1109/LDAV.2011.6092314

