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Abstract—Scientific visualization for exascale computing is
very likely to require in situ processing. Traditional simulation
checkpointing and post hoc visualization will likely be unsustain-
able on future systems at current trends due to the growing gap
between I/O bandwidth and FLOPS. As a result, the majority
of simulation data may be lost if in situ visualization techniques
are not deployed. In situ visualization in this paradigm will be
given unprecedented access to simulation output, potentially being
able to process all relevant simulation output at every simulation
time step, allowing for very high temporal fidelity compared to
traditional post hoc visualization. However, this access poses many
challenges in terms of data management, resource management
and sharing, algorithm development and design, and implemen-
tation approaches. Currently, the community primarily relies on
two in situ techniques: tightly coupled (on the same resource
as the simulation) and loosely coupled (not sharing resources
with the simulation). Each of these approaches have positive and
negative factors which affect their performance under different
simulation, resource, and visualization type constraints. Meaning,
that for every given visualization task, it is not generally known
which method would give the best performance on every data
type, architecture, and set of resource constraints. Due to the
lack of research and development on this topic it is still an open
research problem requiring future research.

I INTRODUCTION
As leading-edge supercomputers get increasingly powerful,

scientific simulations running on these machines are gener-
ating ever larger volumes of data. However, the increasing
cost of data movement, in particular moving data to disk,
is increasingly limiting the ability to process, analyze, and
fully comprehend simulation results [1], hampering knowl-
edge extraction. Specifically, while I/O bandwidths regularly
increase with each new supercomputer, these increases are well
below corresponding increases in computational ability and
data generated. Further, this trend is predicted to persist for
the foreseeable future.

Relative decreases in I/O pose a problem for stakeholders
running on these systems ranging from simulation scientists to
visualization researchers. To that end, the Advanced Scientific
Computing Research (ASCR) Scientific Grand Challenges
Workshop Series produced reports spanning eight different
scientific domains (High Energy Physics, Climate, Nuclear
Physics, Fusion, Nuclear Energy, Basic Energy Sciences, Biol-
ogy, National Security) [2], [3], [4], [5], [6], [7], [8], [9], that
explored the computing challenges, including visualization and
analysis challenges, for codes in each of those eight domains.
Each report mentioned data movement, storage, and analysis
as a major obstacle in the move to exascale. Many of these
scientific domains will be required to deal with petabytes, or

even exabytes, of data over the course of a simulation.
This trend poses a problem for the traditional post-

processing visualization methodology. The traditional visual-
ization workflow performs visualization as a post-processing
task, where simulation outputs are read from disk, into the
memory of a parallel tool where analysis and visualization
are performed. Visualization is generally I/O bound [10], [11],
and as the relative I/O bandwidth continues to decrease, the
challenges of visualizing increasingly larger data will become
more problematic. Post hoc visualization is particularly sensi-
tive to the I/O bottleneck, as data is first written to disk by the
simulation, and then read back from disk by the visualization
routine.

Given this reality, many large-scale simulation codes are
attempting to bypass the I/O bottleneck by using in situ
visualization and analysis, i.e., processing simulation data
when it is generated. Broadly speaking, two paradigms have
emerged [12]. First, co-processing, or tightly coupled, meth-
ods, where the simulation and visualization code run in the
same process using the same resources. Second, concurrent-
processing, or loosely coupled, methods, where the simulation
transfers data over the network to a separate set of visualization
nodes for processing.

A key question for in situ analysis is whether there is
a priori knowledge of which visualizations and analyses to
produce. If this a priori knowledge exists, then co-processing
techniques are an option, and will avoid network and addi-
tional resource usage. However, it is not guaranteed that the
required visualizations and analyses are known a priori. That
is, a domain scientist may need to explore the data in an
interactive fashion, or even produce unanticipated analyses,
lending itself more towards concurrent-processing methods.
Under these constraints, it becomes clear that both types of
in situ visualization have a place in the workflows of future
simulations, but there are challenges for each that need to be
addressed.

In situ processing poses many new challenges to both
simulation and visualization scientists that were hidden or
less predominant with the post-processing paradigm. A few of
the issues facing in situ include: how the in situ routines are
integrated with the simulation, how data is translated from the
simulation representation to the visualization representation,
how resources are allocated between the simulation and the vi-
sualization, how faults are isolated in the visualization routines,
how to massively scale communication heavy visualization
algorithms, and even how to do exploratory visualization in
an in situ world. One avenue of approach that could aid in



solving these problems, is the ability to model them under
varying computational setups and data loads. This modeling
work is an exciting area of future research for in situ.

In the remainder of this paper, we survey and explore in
situ visualization itself, key areas involved in in situ workflows,
and identify areas where the research is incomplete, or requires
further study. This paper is organized as follows: trends in high
performance computing and work in scientific visualization
and graphics are duscussed in Section II, the state of in situ
visualization is discussed in Section III, and an overview of
the limited area of in situ performance modeling is presented
in Section IV.

II BACKGROUND
In this section, we will cover important areas of background

research for in situ visualization and analysis. First, we look at
trends in high performance computing and their implications
for the future of visualization. Next, we explore the tradi-
tional scientific visualization and compositing pipelines, and
discuss prevalent scientific visualization tools including current
research in the area of data models, portable performance, and
massive scaling.

II-A High Performance Computing

High Performance Computing (HPC) is a landscape of constant
evolution. This evolution is seen in the composition of the
HPC systems themselves, as well as the science that they
enable. By using these systems, scientists have gained deeper
understandings in fields ranging from medicine to energy to
physics to even national security. Computers have seen nearly
a 50 billion-fold increase in computing power over the last 70
years [13]. Compared to other technologies, this is virtually
an unprecedented leap, enabling more than ever before, but
bringing with it a vast set of challenges.

One of those primary challenges is power. The Department
of Energy has set a nominal power cap for exascale systems at
20 MW per year. This roughly equates to a yearly energy bill of
$20 million dollars. However, reaching this goal is not easy. It
would be possible to construct an exascale system today using
conventional hardware and components, but DARPA estimated
in 2008 that this system’s power requirements would reach into
the 100’s of MW, far beyond the maximum power bound [15].
This estimate has since dropped with new system designs being
introduced, but it is still far beyond the 20 MW cap.

Therefore, to reach the performance goal given the maxi-
mum power bound, system designers are having to divert from
the traditional approach for scaling HPC systems, by transi-
tioning them from multi-core to many-core. This transition
pares down the power of the traditional central processing
unit in each node of the supercomputer, and instead, gets its
performance by utilizing many low power cores on devices
such as GPUs and Intel Xeon Phis. Indeed, this trend is
already being seen as the current generation of Department of
Energy computing systems are being prepared for their 2018
redesigns/upgrades.

Table I shows the three DOE supercomputing systems
up for upgrades in the 2016 to 2018 time frame. Focusing
on just Titan, a drastic change is scheduled to take place
in the topology of this system. Currently, this system is the

third fastest computer in the world [16]. It contains 18,688
nodes, consumes a total of 9 MW of power, and has a peak
performance of 27 PF. However, new upgrades are going to
drastically cut the number of nodes in the system down to just
around 3,500 nodes, a total power consumption of 10 MW, and
a peak performance of 150 PF. This change highlights that the
challenges of exascale are already here. Moving from a system
that currently has million-way concurrency towards a new
system which will have billion-way concurrency will require
a redesign of not only the simulations and codes running on
this system (focusing on parallelizing the underlying algo-
rithms) [17], but also in how data is saved and analyzed [18].

Taking it one step further, Table II shows the expected
characteristics of an actual machine at exascale. This table
focuses on the system performance versus the system I/O,
in order to highlight the data challenge. The system peak
performance is expected to rise by a factor of 500, yet the I/O
capacity is only expected to rise by a factor of 20. This means
that the current problems faced by simulation codes in terms
of how frequently they can save data are only going to get
worse. Take, for example, the leading-edge fusion simulation
code XGC1 which saves time steps on average every 100
steps [20]. Moving this code to an exascale system without
addressing the data problem is going to mean that time steps
will now only be saved every 1,000 to 10,000 steps. This will
drastically increase the likelihood that interesting physics will
be lost between saves.

In situ processing can address this with faster analysis
of data streams without having to first send data to disk.
This means that a higher temporal fidelity of data will be
available for analysis, while even potentially enabling the
possibility of interactive steering of the simulation through
the visualization [21]. In situ is an enabling technology and
is discussed further in Section III.

II-B Scientific Visualization

Visualization is an enabling technology that facilitates insight
into data across many domains. It is an essential tool for
confirming and communicating trends in data to both the
domain scientists as well as the general public [22]. Tradi-
tionally, scientific visualization has been performed as a post
processing task. That is, a simulation will save all of the data
needed for visualization to disk, and after the run is complete,
visualization can begin. This approach has the benefit that
the visualization software has access to all of the data from
every step all at once, making algorithms and visualization
workflows easier to develop.

Most of the parallelism in current scientific visualization
tools relies on not just distributed memory parallelism, but
specifically the message passing interface (MPI). MPI is
heavyweight, and requires a whole copy of the visualization
program per process. As we transition our visualization codes
to higher and higher concurrencies on the march to exas-
cale, this overhead can exceed the system memory and disk
space before any data is even loaded [19]. This revelation
is important to consider when running a visualization tool at
scales approaching those the size of the scientific simulations
themselves.

In order to achieve parallel scalability for massive thread-
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TABLE I: Current and projected system statistics for Advanced Scientific Computing Research Programs computing resources
after the next set of system procurements are completed. Two areas of critical importance to note are the node processors and the
system size of the current machines compared to the next evolution. Visualization codes will be expected to work efficiently on
concurrencies and architectures never seen before, meaning that the challenges from exascale computing are already emerging
now (table from [14]).

System attributes 
NERSC  
Now 

OLCF 
Now 

ALCF  
Now 

NERSC Upgrade OLCF Upgrade ALCF Upgrades 

Name 

Planned Installation 
Edison TITAN MIRA 

Cori 

2016 

Summit 

2017-2018 

Theta 

2016 

Aurora 

2018-2019 

System peak (PF) 2.6 27  10 > 30 150  >8.5 180  

Peak Power (MW) 2 9 4.8 < 3.7  10   1.7 13 

Total system memory 357 TB 710TB 768TB 

~1 PB DDR4 + 

High Bandwidth 

Memory 

(HBM)+1.5PB 

persistent memory  

> 1.74 PB 

DDR4 + HBM + 

2.8 PB 

persistent 

memory 

>480 TB DDR4 + 

High Bandwidth 

Memory (HBM) 

> 7 PB High 

Bandwidth On-

Package Memory 

Local Memory and 

Persistent Memory 

Node performance 

(TF) 
0.460  1.452   0.204  > 3 > 40 > 3 > 17 times Mira 

Node processors 
Intel Ivy 

Bridge  

AMD 

Opteron    

Nvidia 

Kepler   

64-bit 

PowerPC 

A2 

Intel Knights 

Landing  many 

core CPUs  

Intel Haswell CPU 

in data partition 

Multiple IBM 

Power9 CPUs 

& 

multiple Nvidia 

Voltas GPUS  

Intel Knights 

Landing Xeon Phi 

many core CPUs 

 

Knights Hill Xeon 

Phi many core 

CPUs   

System size (nodes) 
5,600 

nodes 

18,688 

nodes 
49,152 

9,300 nodes 

1,900 nodes in 

data partition 

~3,500 nodes >2,500 nodes >50,000 nodes 

System Interconnect  Aries Gemini 5D Torus Aries 
Dual Rail EDR-

IB   
Aries 

2nd Generation Intel 

Omni-Path 

Architecture 

File System 

7.6 PB 

168 

GB/s, 

Lustre® 

32 PB 

1 TB/s, 

Lustre® 

26 PB 

300 GB/s 

GPFS™ 

28 PB 

744 GB/s  

Lustre® 

120 PB 

1 TB/s 

GPFS™ 

10PB, 210 GB/s 

Lustre initial 

150 PB 

1 TB/s 

Lustre® 

 ASCR  Computing Upgrades At a Glance 

TABLE II: Current petascale system performance compared
against the design target for the 2023 exascale system. Moving
to billion way concurrency and an exaflop in performance are
critical challenges for visualization when compared to current
visualization algorithm scaling and the network bandwidth
when trying to move data to disk (adapted from [19]).

System Parameter 2011 “2023” Factor Change

System Peak 2 PF 1 EF 500

Power 6 MW <= 20 MW 3

System Memory 0.3 PB 32 PB 64 PB 100-200

Total Concurrency 225K 1Bx10 40,000

Node Performance 125 GF 1 TF 10 TF 8-80

Node Concurrency 12 1,000 10,000 83-830

Network BW 1.5 GB/s 100 GB/s 1000 GB/s 66-660

System Size (nodes) 18,700 100,000 1,000,000 50-500

I/O Capacity 15 PB 300 PB 1000 PB 20-67

ing, visualization algorithms will have to be redesigned [23].
The key in this redesign will be to focus on data model, data

interdependencies, and portable performance. In the following
subsections, we will focus on three specific themes in visual-
ization:

1) Section II-B1 will look at tools currently being used and
developed by the visualization community in terms of
their scalability, data models, and challenges for exascale.

2) Section II-B2 will explore current trends in graphics for
visualization, focusing on image generation in a highly
parallel environment.

3) Section II-B3 will look at color for scientific visualiza-
tion, as color map choices have large implications for
interpreting and understanding a visualization.

II-B1 High Profile Scientific Visualization Tools

There are several tools for scientific visualization that have
gained wide adoption and use in the community. Central to the
performance of each of these tools are their underlying data
models and implementations. In the following sections we will
describe several high profile tools for scientific visualization,
including how they handle data on a high level, describing

Page 3



how this impacts performance and use on future systems, and
implications for in situ visualization.

II-B1.1 AVS and OpenDX

The Application Visualization System (AVS) [24] and
OpenDX [25] are two early versions of open source visualiza-
tion tools. AVS is a system that provides a modular interac-
tive approach to forming visualization pipelines. Visualization
components are construted visually into flow graphs to create
the final visualization product. OpenDX emerged a few years
after AVS, and was the open source version of IBM’s Data
Explorer. OpenDX also had a visual programming interface
for constructing visualization pipelines, and contrained many
built-in visualization options. These tools have lost prominance
with the emergence of newer tools with more refined API’s that
allow easier integration into existing scientific workflows and
batch scheduling systems.

II-B1.2 VTK

VTK, also known as the Visualization Toolkit [26], is an
ongoing software effort enabling extensible visualization and
analysis for a wide variety of data set types and filters. The
underlying design goals of this toolkit are to be portable,
standards based, freely available, and simple [27]. Further,
two scalable visualization tools, ParaView [28] and VisIt [29],
make use of VTK’s foundational data models.

The following discussion of VTK will focus on its data
model, as data models are one of the most foundational
elements of a visualization tool, and have wide implications in
terms of the expressiveness of the data model and its memory
overhead in a visualization pipeline.

VTK Data Model: VTK’s data model exposes a few core
mesh types, which are extensible and can be applied to a wide
range of scientific domains. The main mesh types supported
by VTK are rectilinear, structured, and unstructured. These
three mesh types represent the geometric structure of the
data set. Each mesh type consists of point locations in three-
dimensional space, cells that reference the area between those
points, and fields defined on the points or cells. The fields are
stored as values in any number of arrays of data, which can
be aligned on the points or cells, or unaligned. The values can
range from simple scalar numeric quantities to vector or tensor
quantities to more complicated types, such as strings.

VTK Data Model Shortcomings for In Situ and Future
Architectures: The main shortcoming of VTK’s data model
is related to the expressiveness of the model itself in accu-
rately and efficiently representing the multitude types of data
produced by simulation codes. VTK’s data model supports
only a small number of mesh types, such as unstructured and
rectilinear grids, but contemporary simulations are representing
more complex data instantiations. Even if the data model can
accurately represent the simulation data, the data is often
forced into an inefficient data structure because VTK has
assumed the data will fall into one of the few defined mesh

types. Often times, the data does not fit into one of these
structures, so it must be forced into a less efficient one.

Another shortcoming of VTK’s data model is related to
parallelism on future architectures. VTK’s data model does
not support the recent trends in hardware parallelism resulting
from accelerators, such as GPUs. Its data model is also limited
in that it does not leverage or support data parallelism.

Lastly, the VTK data model poses challenges when op-
erating on very large data. In the general VTK visualization
pipeline, a filter is applied to a data set, and the result is a
completely new data set. This means that in general, each
filter applied to a VTK data set results in a new data set being
created, severely bloating memory. This approach to memory
management in a data model does not scale well for in situ
approaches, and will be even more problematic on the next
generation of supercomputers.

In summary, VTK’s data model lacks support for necessary
features, such as general higher order polynomial elements,
non-Cartesian space or dimensionalities greater than three,
and mixed-dimensionality elements in a single data set. As
we move to the next generation of architectures and continue
evolving scientific simulation codes, there is an increasing
demand for an improved and more advanced data model that
is extensible and can enable us to represent a wider range of
data types. These new representations and memory efficiency
are especially important for use in situ, when memory use
and an easy translation from simulation data representation to
visualization data representation is needed.

II-B1.3 VisIt and ParaView

VisIt and ParaView are two open source visualization tools
developed, at least in part, through the efforts of U.S. National
Laboratories. The history of these tools span many years,
and will not be presented here. Instead, the primary design
philosophy and major features for end-users will be discussed
and then compared to the needs of in situ visualization.

VisIt: VisIt is an end-user visualization and analysis tool
designed to work on very large and diverse data [30]. More-
over, VisIt was designed for more than just data visualization.
It lists five primary use cases that it focuses on [29]:

• Visual Exploration: the creation of images from data.
• Debugging: users can locate hard-to-find problems in their

data.
• Quantitative Analysis: users can perform quantitative

analysis through the interface to ask very complex ques-
tions of their data.

• Comparative Analysis: allows different simulation runs or
multiple time steps to be compared.

• Communication: users present their findings to a large
audience through movies, images, and plots.

Core to the VisIt design is its extensibility. It allows for
new components to be inserted by end-users easily. This
extensibility and ease of use makes it a very successful tool,
one used across a multitude of scientific domains.

VisIt is designed to work as a distributed system. It has a
server that utilizes parallel compute capabilities coupled with
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the client running as the user interface. In addition, VisIt has
capabilities of running in situ with LibSim [31], enabling
users to utilize the full feature list of VisIt during in situ
instrumentation (the in situ capabilities will be explored further
in Section III). VisIt has been shown to scale effectively to tens
of thousands of cores, and is widely used by scientists running
on some of the largest systems all over the world.

In summary, VisIt is a very powerful visualization tool,
that is applicable in a wide variety of use cases. However,
two limitations do exist when looking at the use of VisIt in
situ: VisIt utilizes VTK under the hood, so the data model
issues from VTK come into play. In addition, the visualization
library is fairly heavy weight, and can cause problems when
performing different types of in situ integrations, potentially
making it a sub-optimal approach.

ParaView: ParaView is another end-user tool for the vi-
sualization of large data. ParaView was designed with the
philosophy of being open-source and multi-platform, extensi-
ble for different architectures, allowing support for distributed
computation, and providing an intuitive user interface.

ParaView was designed as a layered architecture, with three
distinct layers [28]. The first is VTK, which provides the data
model and underlying algorithms. Second is the parallel exten-
sion to VTK to allow for streaming and distributed-memory
parallel execution. Third is ParaView itself, predominantly
composed of the GUI.

ParaView has been shown to scale well in distributed-
memory parallel execution mode, on very large data. In addi-
tion, ParaView enables in situ integrations through ParaView
Catalyst [32] (the in situ capabilities will be explored further
in Section III).

In summary, ParaView is a very powerful visualization tool,
that is applicable in a wide variety of use cases. However,
two limitations do exist when looking at the use of ParaView
in situ: ParaView utilizes VTK under the hood, so the data
model issues from VTK come into play, in addition (as with
VisIt), the visualization library is fairly heavy weight, and can
cause problems when performing different types of in situ
integrations, potentially making its a sub-optimal approach.

II-B1.4 EAVL, Dax, PISTON

EAVL [33], [34], Dax [35], and PISTON [36] are three
frameworks developed with a mission to explore methods of
transitioning visualization algorithms to the available paral-
lelism of emerging many-core hardware architectures targeted
for exascale [37].

? EAVL (Extreme-scale Analysis and Visualization Library)
was developed to address three primary objectives: update
the traditional data model to handle modern simulation
codes; investigate the efficiency of I/O, computation and
memory on an updated data and execution model; and
explore visualization algorithms on next-generation archi-
tectures.

The heart of the EAVL approach is the data model.
EAVL defines more flexible meshes, and data structures
which more efficiently supports the traditional types of
data supported by de-facto standards like VTK, but also

allows for efficient representations of non-traditional data.
Examples of non-traditional data includes graphs, mixed
data types (e.g., molecular data, high order field data,
unique mesh topologies (e.g., unstructured adaptive mesh
refinement and quad-trees)).

EAVL uses a functor concept in the execution model
to allow users to write operations that are applied to
data. The functor concept in EAVL has been abstracted
to allow for execution on either the CPU or GPU, and
the execution model manages the movement of data to
the particular execution hardware.

? The primary strength of the Dax Toolkit is its explo-
ration of achieving high node-level concurrency, at the
levels needed for efficient exascale visualization. This
is accomplished through the use of worklets, which are
functions that implement a given algorithm’s behavior on
an element of a mesh, or a small local neighborhood. The
worklets are constrained to be serial and stateless, which
enable concurrent scheduling on an unlimited number of
threads.

? PISTON was developed with the goal of facilitating the
development of visualization and analysis operators that
had highly portable performance. The idea being that
there are many different architectures that a visualization
algorithm may be run on, and developing and tuning
algorithms specific to each architecture is an inefficient
and undesirable approach for visualization. To that end,
PISTON is built on top of Thrust [38], which provides
implementations of data-parallel primitives in CUDA,
OpenMP, and TBB. This approach allows algorithms to be
implemented once, and ported to the correct architecture
at compile time.

In summary, each of these frameworks provided valuable
insight into methods for transitioning visualization pipelines to
many-core architectures, and to natively supporting in situ vi-
sualization. The best elements from each of these frameworks
were used to form the foundation for VTK-m.

II-B1.5 VTK-m

VTK-m is an effort that has merged the best aspects of three
previously described projects, EAVL, Dax and PISTON [39].
The motivator behind VTK-m is to create a high-performance
portable visualization library. The portable nature of VTK-m
is achieved through its use of data-parallel primitives (DPPs),
first described by Blelloch [40]. Data-parallel primitives are
designed in a way such that a variety of algorithms can be
expressed using a relatively small selection of DPPs, such as
map, scan, reduce, and so on. These primitives allow VTK-
m to be moved between many different architectures without
having to redesign each individual visualization routine. Cen-
tral to the portable nature of VTK-m is the underlying data
model, which is similar to that of EAVL, but with even greater
freedom.

The data model in VTK-m was designed to be flexible
enough to accommodate the myriad of different data layouts of
scientific domains that may use VTK-m, while still providing
a clear set of semantics. Furthermore, the data representation
must be space efficient and be accessible on the different
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processor types in use (that is, work on both CPU and GPU).
As shown in Figure 1, a VTK-m data set consists of three
components: cell sets, coordinate systems, and fields. By

CoordSystems[]
Fields[]
CellSets[]

Data Set

Structured
Dimension

CellSet
Name

Dimensionality
LogicalStructure

Data

CoordSystem Field
Name
Order

Association
Data

Explicit
Connectivity

Fig. 1: VTK-m data model overview

allowing arbitrary combinations of coordinate systems, cell
sets, and fields, VTK-m is able to overcome the inefficiencies
and difficulties in data representation imposed by traditional
data models. Traditional data models often choose a set of
rigid characteristics for a data set. These rigid characteristics
then are labeled as a specific type of mesh. For example, a
uniform data set has regular axis-aligned coordinates and a
logical [i, j, k] cell arrangement. An unstructured data set has
fully explicit coordinates (a [x, y, z] value separately defined
for each point) with fully explicit cell connectivity defined
by arrays of indices. This fundamentally rigid way of looking
at and representing data makes the traditional data model the
less expressive and less efficient choice for high performance
computing applications.

VTK-m allows for the much needed more exact repre-
sentation, and with the burden of the traditional data model
removed, VTK-m programmers can create more expressive
data layouts. In fact, it is much easier to represent data types
such as non-physical or high dimensional data in a VTK-m
data model versus that in the traditional paradigm. Another
important example of this efficiency is that VTK-m is designed
to function with zero copy. This is an important motivator for
in situ programming as VTK-m can utilize the data arrays from
the simulation in place, saving both time and space.

In summary, the design directions taken by VTK-m are
pushing the current boundaries of visualization from the multi-
core realm into the many-core realm, prepping the visualization
community for this inevitable transition. VTK-m is being de-
veloped as a header only library, which should ease integration
issues when using VTK-m in situ, giving it great flexibility.

II-B2 Graphics in Support of Scientific Visualization

The creation of a graphics system that performs tasks in
real-time is a challenging area of study for both graphic

system designers as well as scientists employing new graphics
algorithms in that space [41]. However, the challenges are
justified, as visualization can be one of the most informative
methods for communicating the essence of an experiment or
data to scientists or the public [42], [43]. With ever increasing
geometry and pixel counts, the task of employing an algorithm
with a sufficient level of parallelism has become paramount.
To that end, there are three basic classes of parallel rendering
algorithms recognized in this space, sort-first, sort-middle, and
sort-last rending. These algorithms each have been designed
for applications in different domains. Sort-last rendering per-
forms best when the geometry is massive compared to the
pixel count, commonly seen in HPC visualization. Sort-first
on the other hand, is the reverse of sort-last, performing best
on low geometry counts with high pixel densities, commonly
seen in virtual environment generation. Sort-middle is a hybrid
approach that attempts to take the best elements form both
sort-first and sort-last.

In this section, we will first describe a basic parallel graph-
ics pipeline and the three techniques for geometry sorting,
followed by a discussion of optimized algorithms for sort-last
rendering, and a framework designed to composite images at
massive scale. This analysis is important for when we move
to discuss in situ visualization, as rendering can be a major
bottleneck for in situ visualization tasks.

II-B2.1 A Parallel Graphics Pipeline

The heart of a parallel graphics pipeline can be viewed as a
sorting problem, where the contribution of each object in a
given view by each pixel must be determined. The location of
this sort determines the entire structure of the resulting parallel
algorithm. The sort can, in general, take place anywhere
in the rendering pipeline: during geometry processing (sort-
first), between geometry processing and rasterization (sort-
middle), or during rasterization (sort-last). Sort-first means
redistributing raw primitives (before their screen-space pa-
rameters are known). Sort-middle means redistributing screen-
space primitives. Sort-last means redistributing pixels, samples,
or pixel fragments [44]. Using any one of these choices leads
to a completely different class of parallel rendering algorithms.

The pipeline in a parallel graphics system can be thought of
as having two primary parts, geometry processing and rasteri-
zation (see Figure 2). Image geometry is generally parallelized
by assigning each processor to a subset of the objects in the
scene. Rasterization is often parallelized by assigning each
processor a portion of the pixel calculations [44]. Each of these
steps, depending on the algorithm, may incur redistribution
costs as well. Image geometry may incur redistribution costs
as volume data moves between nodes to facilitate interpolation
of the assigned points, while rasterization may occur costs as
local images are moved to facilitate their combination into a
complete image [45].

Sort-first: In sort-first rendering, the primitives are dis-
tributed as early in the rendering pipeline as possible (during
geometry processing) to the processors that will be performing
the remainder of the calculations. This method is most often
used when there is a very large pixel count (as compared to
geometry), as screen regions are divided among the available
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Fig. 2: Graphics pipeline in a fully parallel rendering system.
Processors G perform geometry processing, while processors
R perform rasterization (image from [44]).

processors (in essence parallelizing over the screen space).
These algorithms begin with each processor being assigned

a region of the screen and taking an arbitrary portion of the
data, and then beginning a transformation on that data. The
transformation is applied until it can be determined to which
portion of the scene that primitive falls (usually calculating
the bounding box [44]). Once the scene space for all of the
primitives are found, those that are located on processors to
which they do not belong (according to the screen space that
has been assigned to that processor), are redistributed over the
network to the appropriate processors.

In summary, sort-first rendering is advantageous due to
its low communication requirements when data primitives are
sparse, and due to a single processor carrying out the entire
pipeline for a portion of the screen. This method’s drawbacks
include its susceptibility to load imbalance when primitives
clump into regions on the screen, giving certain processors
much more work.

Sort-middle: In Sort-middle rendering, the data is redis-
tributed in the middle of the rendering pipeline. At this stage,
all primitives have been transformed into screen coordinates
and are ready for rasterization [44]. Each frame is first trans-
formed by the geometry processor, and then transmitted to the
appropriate rasterizer (may or may not be the same processor
depending on the implementation).

The general advantage of the sort-middle technique is its
straightforward implementation, and the redistribution occurs
at a natural place. The disadvantages are that it can have
high communication costs and is susceptible to load imbalance
when primitives are not evenly distributed across the screen.

Sort-last: The sort-last technique defers sorting until the
end of the rendering pipeline. Each processor in this para-
digm are assigned arbitrary subsets of the primitives [44].
Each of the processors computes pixel values for its subsets,
irregardless of where they fall on the screen. This means
that this algorithm scales well and gets a performance boost

through the utilization of more and more processors [46].
At the end of the pipeline, pixels are transmitted over the
network to be composited and their visibility resolved. It is at
this point, however, that a bottleneck can develop. Interactive
or real-time applications which rely heavily on the network
to transmit all of the pixel data will suffer in performance
due to the distributed pixels. Depending on the algorithm’s
implementation, this can be a major drawback in sort-last
techniques.

In general, sort-last parallel rendering is the only proven
way of parallel rendering at scale. This is mainly because the
full rendering pipeline is carried out by individual processors
until pixel merging is required. In addition, this approach
is less prone to load imbalance. One disadvantage, however,
is that the performance of sort-last parallel rendering drops
sharply as the resolution of the display increases [47]. Fur-
thermore, the final compositing step is generally regarded as
the bottleneck for sort-last algorithms, so methods reducing the
prevalence of this bottleneck will be of great value to scientific
visualization at scale [48].

II-B2.2 Optimized Algorithms for Sort-Last Rendering

With sort-last rendering being the widely accepted choice for
performing image compositing at scale, a lot of work has
been done in creating algorithms in this space that are highly
efficient. In this section, we will list a few of the most well
known and used algorithms, as well as look at a piece of
open source software that integrates some of the most recent
advances in compositing algorithms.

Direct Send: In sort-last parallel rendering, the hardest task
is the final image composting. Generally, n rendering channels
will generate n full-size partial images, containing color and
potentially depth [49]. These images must then be merged to
form the final rendering. Direct send compositing divides the
final image gathering task into n screen-space tiles to avoid
exchanging full size images between the n processes. Each of
the tiles is associated to a single channel for compositing, and
at the end of the compositing process all of the partial tiles
are assembled to form the final image.

Another strength of this algorithm are the number of
synchronization points required. In this algorithm, only two
synchronization points are needed, meaning less communica-
tion overhead on the system. Communication in this method
does become a problem with larger geometries. The amount of
data that must be transferred across the network is proportional
to the rendering resolution as the pixels from each of the sub
images must be sent across the network and finally composited.
This process is particularly slow when using the TCP/IP stack.
Eilemann suggests that this bottleneck can be reduced by using
faster network technologies such as tunneling or asynchronous
transfers [49], but the overall data transfer in this scenario still
remains high, and as resolutions and data set sizes increase at a
much higher rate than network speed, this bottleneck becomes
a major obstacle.

Binary-Swap: The binary-swap method is an efficient and
simple compositing algorithm that repeatedly splits the sub-
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images and distributes them to the appropriate processor for
compositing [50]. At every compositing stage, all processors
participate by being paired with another processor, splitting
their image plane in half, and each one taking responsibility
for one half of the plane. This means that this method will
take exactly log(n) compositing stages to complete.

The idea behind binary-swap, is that only non-blank pixels
affect the composited results, meaning that binary-swap ex-
ploits the sparsity of the sub-images by creating a bounding
rectangle that exactly encompasses the non blank region in
an image. The determination of this bounding rectangle takes
O(A) time, where A is the number of pixels. Most importantly
however, once all of the bounding rectangles are determined,
it only takes O(1) time to merge two bounding rectangles,
making updates to the bounding box of the composited image
very efficient [50].

The primary problem of this method is the occurrence of
load imbalance. Load imbalance may occur when the split of
an image takes place in such a way that paired processors are
given grossly different amounts of work. This means that one
of the processors will have a much larger run time compared
to its mate.

2-3 Swap: At its core, the 2-3 swap image compositing
algorithm is a generalization of a binary-swap to an arbitrary
number of processors [51]. This algorithm is derived from
the observation that any integer greater than one can be
decomposed into a summation of a list of twos and threes,
meaning that the initial partition of processors in this algorithm
can be done using combinations of twos and threes. In fact,
it follows that if the number of processors is a power of two,
then 2-3 swap essentially becomes a binary-swap in execution
stage.

This algorithm is initially started by creation a tree of the
number of given processors. Each non-leaf node in this tree
has either two or three children, which determines the groups
of processors during each stage of the image compositing
algorithm. The initial work is evenly distributed among M
participating processors in a group.

The primary pros of the 2-3 swap algorithm are that it is
highly flexible and can utilize any number of processors for
compositing, and each processor participates in all stages of
compositing, giving maximum resource utilization.

Radix-K: Radix-K is a configurable algorithm for parallel
image compositing [43], [52]. A unique aspect of Radix-K is
its ability to overlap communication and computation, making
this algorithm very customizable to the underlying hardware
of a system.

In general, the Radix-k algorithm for image compositing
builds on the previous contributions of binary-swap and direct
send. By parameterizing the number of message partners in a
round, it unifies these two algorithms by factoring the number
of processes into a number of rounds with a separate radix for
each round [43].

Improving Compositing Performance with IceT: Of the
previous four algorithms, Radix-K is the leader in terms

of work division. This algorithm performs highly parallel
computation in conjunction with communication. The worst
algorithm in terms of work division is direct send. Direct send
is highly susceptible to work imbalance and suffers when it
comes to having to communicate much larger segments to the
final image. 2-3 swap and binary-swap are also susceptible to
work imbalance, with 2-3 swap being more resilient. However,
as stated previously, as Radix-K is able to communicate while
running computation asynchronously, it mitigates imbalance
and uses it to its advantage.

IceT, a leading production-quality image compositing
framework, takes the problem of image compositing a step
further, creating a testbed for enhancing these and other
leading edge image compositing algorithms [48]. In this work,
Moreland et al. found that not only were they able to create a
testing ground for many different compositing algorithms si-
multaneously, but further, they were able to drastically improve
compositing algorithms (Radix-K especially) while efficiently
scaling to 64K cores. Their work demonstrates that image
compositing still has room for improvement, and that through
works like theirs, image compositing may soon scale efficiently
for exascale sized runs. For more discussion of the challenges
of scaling visualization tasks to exascale, see Section III-F1.

II-B3 The Importance of Color Map Choice in Visualization

A fundamental aspect of visualization is choice of color,
usually through a color map. A color map is typically defined
by mapping a range of numeric values to a continuum of
colors [53]. The choice of color map however, is not just a
matter of aesthetics, it must be carefully chosen to highlight
the data and add extra insight [54].

Color choice for visualization is a well studied topic,
yet many researchers and visualization tools still make poor
choices. By making a poor choice in a color map, a researcher
may get an exaggerated perspective of a data feature, or even
worse, completely miss an important occurrence because the
color scheme occluded it. One prime example of a bad color
map is the rainbow color map [55].

There are several primary issues with the rainbow color
map. First, the rainbow color map has no natural ordering. For
example, the gray-scale color map has a definite ordering from
dark to light, where contrarily, the colors red, green, yellow,
and blue, have no apparent ordering. Second, the rainbow color
map obscures data change because it is largely isoluminant,
meaning that viewers mostly only see value changes at color
boundaries. Lastly, the colors in the rainbow color map are
poorly suited for those with vision deficiencies [56], those
who cannot distinguish the differences between red and green
colors.

The left image of Figure 3 shows an image colored with the
traditional rainbow color map. Notice how the central green
band of the rainbow color map consumes a large portion of the
color scale. This property of the rainbow color map potentially
hides many features within a data set as seen in the image on
the right in Figure 3. This image is colored with a normalized
rainbow color map, illuminating many more features of the
data.

Color maps and color perception are a large and well
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Fig. 3: Left, example of the data obscuring effects of the
standard rainbow color map applied to topographic data.
Right, normalized rainbow color map applied to the same data
demonstrating better contrast between the different levels of
the color scale (image from [54]).

studied topic that any visualization researcher needs to be
aware of. The choice and use of color in visualization must
be carefully chosen for the audience and type of data being
displayed, or else the final visualization may end up being
incomplete at best, or a misrepresentation at worst.

III IN SITU VISUALIZATION
Traditionally, scientific visualization has been performed as

a post processing task. That is, all of the simulation data was
written to persistent storage, and then after a simulation was
complete, it would be analyzed and visualized. This model
worked well up to the petascale era, but is beginning to break
down [57]. The total amount of data that a supercomputer
can generate with a simulation far surpasses its ability to
write all of that data to persistent storage. For example,
Figure 4 shows the current relative bandwidth of the total
compute capability of the Titan supercomputer at Oak Ridge
National Laboratory versus its storage bandwidth. The five
orders of magnitude difference between the two demonstrate
the intractability of writing all scientific data to disk prior to
performing visualization. This reality leads to an alternative
model for visualization that bypasses this limitation, termed in
situ.

In situ as a technology is not new, with the earliest
production-quality in situ graphics being seen as early as the
1960’s [59]. Therefore, it is not surprising that several past
surveys of in situ and in situ techniques have been published.
In 1998 Heiland et al. [60] presented a survey of co-processing
systems, which covered some of the basic use and availability
of predominant co-processing frameworks. A year later in
1999, Mulder et al. [61] surveyed predominant computational
steering environments, whose roots lie in in situ visualization
and analysis. Recently in 2016, Ayachit et al. [62] and Bauer
et al. [58] present two different takes on the state of in situ
technology and challenges, as well as discussions of in situ
frameworks. This section builds on the ideas presented in those
surveys, and presents current in situ terminology, challenges,
frameworks, and in situ research covering different motivations
and use cases for in situ.

III-A In Situ Terminology

In situ visualization is an umbrella term used to describe many
different visualization configurations where the visualization
and analysis routines are run while the simulation is still in
progress, reducing the amount of data that must be transferred
over the network and saved to disk [63]. The visualization
community has played fast and loose with the term in situ, and
it has come to mean many different things. Clarifying terms
have been introduced such as co-processing or tightly coupled,
and concurrent processing or loosely coupled [12], but even
these terms are starting to degrade. Current efforts are under-
way to bring the visualization community all onto the same
page about terminology, with an effort termed the “In Situ
Terminology Project.” The terminology being developed in this
report will go a long ways towards clarifying the meaning of
in situ terms for the community and our stakeholders, but will
not be presented here as the report is still under development.
Instead, I will stick with the more loose and general terms
currently in use by the community, and will make the switch
to the new terminology set as it is introduced to the larger
visualization community.

The terms I will stick to in this section are as follows:

• In situ: Umbrella term used to describe all different types
of in situ setups.

• Tight coupling: We define tightly coupled to mean when
the simulation and visualization code run in the same
process using the same resources as the simulation.

• Loose Coupling: We define loosely coupled to mean
when the simulation transfers data over the network to
a separate set of visualization nodes for processing.

• Hybrid Coupling: We define hybrid coupling to mean
when there are visualization components being run on
the same process as the simulation and data is still being
transferred over the network to separate visualization
processes on a separate set of visualization resources.

For simplification as shown in Figure 5, we view the tight
and loose coupling paradigms as on-node and off-node respec-
tively. Tightly coupled can be thought of as running on the
same node as the simulation, and not utilizing asynchronous
data transfers from the simulation to the visualization routines,
while loosely coupled can be viewed as on-node. Now that the
definitions of in situ have been presented, we will present an
overview of the challenges of using in situ techniques, and its
barriers to adoption by the simulation community.

III-B In Situ Challenges and Opportunities

It has only been recently that some scientists have begun to
see the need to adopt the in situ approach for visualization
and analysis of large-scale simulations [63]. This hesitancy is
due to essentially three primary factors. First, the traditional
paradigm of post-hoc visualization has meant that scientists
rarely had to use supercomputer time to perform their visual-
izations. The in situ paradigm would break this tradition, and
scientists see visualization as a new cost and overhead to their
science. Second, integrating in situ into a simulation has the
potential to be a monumental task. In addition to the integration
costs, the overhead of having visualization routines packaged
into the simulation code in the tight coupling case can cause
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Fig. 4: A plot of the relative bandwidth of system components in the Titan supercomputer at the Oak Ridge Leadership Class
Facility. The widths of the blue boxes are proportional to the bandwidth of the associated component. Multiple scales are shown
to demonstrate the 5 orders of magnitude difference between the computational bandwidth and the storage bandwidth (adapted
from [58]).

dependency issues between the simulation and visualization
routines, while also bloating the size of the simulation binary.
An additional side effect of this integration is the sharing of
memory between the simulation and visualization routines,
which can cause contention on compute nodes. Third, and the
most challenging problem with in situ, is the need to know
what to visualize a priori. This is, with in situ, it is required
to know what to visualize including regions, values, as well
as the type of visualization before the simulation starts.

These problems may seem daunting at first glance, but the
issues associated with each can be mitigated through different
in situ implementations. Not all in situ work has to be about
visualization. In fact, a great strength of in situ methods is
the ability to access all of a simulations data during the
course of a simulation, and only save what is interesting.
This means, in situ is a great tool for visualization, but also
for data manipulations such as data reductions, explorable
feature extractions, simulation monitoring, and the generation
of statistics [64]. Some example work in this area includes re-
ducing data output to an alternate explorable form, computing
collections of images, and storing images enhanced with fields
and meta data for post hoc exploration.

An example of creating an reduced alternate data form is
by Agranovsky et al. [65]. They describe a novel process for
improved post hoc data exploration using particle advection.
Instead of saving out vector fields every nth iteration, a basis
trajectory is saved. A basis trajectory is a snapshot of a particle

movement between the saved snapshots. This means that a
representative set of particles are traced in situ while the sim-
ulation runs, and their trajectories are output. This technique
allows for new particle trajectories to be interpolated between
known trajectories, increasing both speed and accuracy.

Examples of computing collections of images for post hoc
exploration comes from Yen et al. [66] and Chen et al. [67].
Yen et al. enable post hoc interaction with images through
lighting and color transfer function changes, performing slices,
and changing view. Chen et al. take the approach of visualizing
a large sampling of possible visualization configurations in
situ (various isocontour levels, different views, etc.), and then
providing an interface to explore the collection interactively.

Finally, examples of generating images with enhanced meta
data for post hoc exploration comes from Tikhonova et al. [68],
[69] and Fernandes et al. [70]. Tikhonova et al. describe a
method of storing layers of isosurface images that could later
be composited together for post hoc exploration. Fernandes et.
al. used a similar technique for volumetric renderings (saving
areas of interest along with depth information) that could be
explored post hoc.

The following three sections will present more in depth in-
formation about the three in situ techniques. They will discuss
the strengths and weaknesses of each technique, provide a look
at in situ frameworks in those categories, and give examples
of past works performed using each paradigm to motivate the
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(a) Tight Coupling

(b) Loose Coupling

(c) Hybrid Coupling

Fig. 5: Simulation and visualization resource configurations
given the definitions of each of the in situ terms.

technique.

III-C Tightly Coupled In Situ

With tightly coupled in situ, in situ routines will directly share
the same resources as a simulation. This has many different
advantages and disadvantages. By sharing the same compute
nodes the simulation and visualization codes will compete for
memory, making the careful design of in situ routines critical
with tight coupling. An inefficient or buggy implementation
could slow the simulation, or worse, cause it to crash.

Further, by sharing the same resources, the in situ routine
will be required to operate on the same level of concurrency
as the simulation, which could cause slow performance with
some in situ routines. Moreover, with this approach, the sim-
ulation code must wait for the in situ processing to complete
after each simulation time step before it can carry on with
computation [71]. This lock-step approach to computation is
not attractive to many simulation scientists, which is part of
their angst against using in situ techniques.

Even with these potential issues with tightly coupled in situ
it is a widely used technique, with many different works taking
advantage of data locality and computing power available to a
full scale simulation.

III-C1 Tightly Coupled In Situ Frameworks

This section presents a look at tightly coupled in situ frame-
works, and explores their features and restrictions. While many

in situ frameworks have the potential to operate in several
different modes, the frameworks presented here either operate
fully or primarily in the tightly coupled model. For each
framework we give a short description of functionality and
categorize them according to the in situ methodologies they
employ.

Cactus: Cactus [72], [73] is a development environment in
which an application can be developed and run. In addition,
Cactus has the capability of instrumenting legacy codes, to
prevent the need for redesign within the Cactus framework.
The remote visualization and data analysis capabilities of Cac-
tus are achieved with tight coupling. Visualization operations
are performed on the computational nodes, and the resultant
geometry can then be sent to a remote viewer or saved to
disk. An additional capability of Cactus, is that computational
steering can be accomplished through the remote viewer, on
predefined variables in the instrumented code.

CUMULVS: The Collaborative User Migration User Li-
brary for Visualization and Steering (CUMULVS) [74] is an
infrastructure to allow multiple users the ability to monitor
and steer of a simulation remotely. Users can connect and
disconnect at will during the course of the running simulation.
CUMULVS is capable of text and 2D output and visualization
from an instrumented simulation. The original 2D visualization
was supported through the use of AVS. A downside of the
CUMULVS system is that it does not support the output of
images, graphics are used purely for simulation monitoring.

ParaView Catalyst: ParaView Catalyst [32], [75] is the
ParaView library which allows for in situ visualization of
simulation output using the full visualization feature-set of
ParaView, or subsets of features, by using reduced size binaries
when minimal memory overhead to the simulation is required.
Catalyst operates in a tightly coupled fashion, pausing the
simulation while data operations take place.

Catalyst also allows for simulation steering and monitoring
by connecting the Catalyst routines instrumented into the
simulation to the ParaView application. This is a powerful
feature that allows researchers to step through their code and
dynamically modify visualizations based on the progress of
the simulation.

In order to use Catalyst it must be instrumented into the
simulation code, and an adapter needs to be written to define
the interface between the simulation and Catalyst. This adapter
defines how the simulation can call Catalyst as well as maps
the simulation data to the VTK data model used by Catalyst.
Catalyst has proven to be highly scalable, with the current
largest run being on 256 thousand cores.

Strawman: Strawman [76] is a system designed to explore
in situ visualization and analysis needs for physics codes on ex-
ascale architectures. An additional use for the infrastructure is
as light weight prototyping environment for in situ analysis and
visualization routines. This prototyping environment allows for
fast implementations of in situ ideas. It uses Conduit [77] for
a data model, EAVL/VTK-m for the visualization and analysis
pipeline, and IceT [78] for parallel image compositing.

Page 11



Strawman supports execution on many core environments,
multiple programming languages, and works within a batch
environment. It does limit its in situ focus however to tightly
coupled methods, so does not support research loose coupling
techniques. It does take advantage of this fact however, by
enabling zero-copy of the data when possible, taking full
advantage of the tightly coupled approach.

VisIO: VisIO [79] is an I/O library for use on distributed
file systems within visualization applications. It includes a
new scheduling algorithm to help preserve data locality within
a simulation by assigning visualization intelligently to co-
locate computation and data. The core of this framework
revolves around the use of the Hadoop distributed file system
in conjunction with a VisIO enabled reader in ParaView. One
drawback of this approach is that it requires the use of the
Hadoop file system, which could prove very time consuming
to use in an existing application.

VisIt Libsim: VisIt Libsim [80] is the VisIt library which
allows for in situ visualization of simulation output using
the full visualization feature-set of VisIt. Libsim operates in
a tightly coupled fashion, pausing the simulation while data
operations take place. In fact, when the Libsim library is
inserted into a simulation program, it makes each process of
the simulation act much like a VisIt compute engine, operating
in the same data space as the simulation.

One interesting feature that stems from the engine-viewer
approach used in VisIt, is that the Libsim routines within the
simulation listen for a request to connect by a VisIt process,
meaning that users can connect and disconnect from the in situ
routines as needed to perform periodic simulation steering or
to check validity.

One drawback of the Libsim approach is that it requires
instrumentation of the simulation code. Several calls need to
be inserted into the simulation, as well as the Libsim binary
itself. In some cases, if a simulation does not have a well-
defined loop to simulate a single timestep, Libsim suggests
restructuring of the simulation code.

Nevertheless, Libsim remains a powerful in situ visual-
ization tool, largely due to the large array of visualization
capabilities within the VisIt tool itself. It has also been shown
to scale well, nearly as well as VisIt itself, up to 62 thousand
cores [81].

III-C2 Related Work: Tightly Coupled In Situ

Implementations using tight coupling are often concerned most
with the full utilization of a resource. That is, the desire is to
run the simulation at the largest capacity possible, not reserving
nodes for visualization or I/O. This implementation does have
the advantage that the visualization routines have direct access
to the full simulation output, and the full parallel capacity of
the simulation machine. The following are several works that
utilize tight coupling for visualization.

Yu et al. [82] demonstrate a tightly coupled system for
volume rendering of jet fuel combustion data, in addition
to a remote viewer application used to view the volume
rendered images during the simulation run, as well as send

requests for different viewing angles or transfer functions to
the simulation code. The visualization code in their case was
directly integrated into the simulation code, and worked off
of pointers to the simulation results in order to reduce data
duplication. As this system required the simulation to pause
while visualization was taking place, it had a large effect
on simulation runtime, with combined visualization and I/O
times (from compositing) taking up to 4x more time than the
simulation when done at every time step. This was reduced to
two orders of magnitude less than the simulation time though,
when the temporal fidelity was dropped to every ten time steps.

Woodring et al. [83] describe an in situ workflow for saving
a simulation-time random sampling of large-scale particle
datga from a cosmological simulation. Their workflow uses an
extension of the kd-tree stratified random samping algorithm to
generate level-of-detail output files for post hoc visualization.
The level of detail approach is used in order to reduce storage
bottlenecks and give them an integrated approximation error
for their views. Using the kd-tree approach they are able to
tune the output size to their specific needs by changing how
many levels of the tree are written to disk, and show that at
the lowest level of detail that they can write only 1/64th of
the total simulation data to disk. This approach is useful in
that it still allows for exploration of the data post-hoc, which
is advantageous to static images.

Lorendeau et al. [84] describe a workflow using the Cata-
lyst in situ visualization library for visualizing a computational
fluid dynamics code. Catalyst is a ParaView library that
defines in situ workflows using parallel VTK. In the described
workflow the authors developed an adapter to their simulation
worfklow for Catalyst and use it to perform their visualization
operations. By introducing Catalyst they were able to perform
their visualization operations in situ and save on the amount of
data written to disk. They saw a 20 to 30% overhead associated
with their initial implementation, but predict it can be reduced
with better memory management in their adapter.

Ahrens et al. [85], [86] describes a tightly coupled system
that takes the approach of saving many images from many
angles from a simulation instead of writing simulation data
to disk. The system is called ParaView Cinema. The idea
is that if hundreds or thousands of images are created for a
given timestep, that it will be possible to create an interactive
database for a timestep that will allow interactive exploration
much like that of VisIt or ParaView. In addition, this system
has the capability of recreating a facsimile of the surface of
the data based on the many saved images, letting different
color maps and scalar fields be applied to the images during
the post hoc exploration. The ParaView Cinema approach was
demonstrated using a large-scale model for prediction across
scales ocean simulation, and it was shown that the interactive
database could be generated at twice the cost of generating
an equal number of traditional tightly coupled in situ images.
This cost may seem high, but the interactive database has a lot
more functionality than a traditional image, allowing for the
greater flexibility of post hoc exploration.

III-D Loosely Couple In Situ

Loosely coupled in situ offers many new configurations for
visualization not seen with tight coupling. The most common
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configuration is to have a set of dedicated visualization nodes
on the same machine as the simulation, which reduces the
effects of network latency that is seen when moving data to
another machine. This separate allocation allows the visual-
ization routines to run concurrently with the simulation, not
impacting its runtime as with tightly coupled methods.

This benefit of a separate set of visualization nodes is
also a primary downside of the loosely coupled visualization,
as simulation scientists rarely want to give up portions of
compute power for visualization tasks. Recently however, it
has been shown that by streaming simulation data to an
allocation of staging nodes, that the effects of disk latency can
be hidden by staging the disk writes to the separate allocation,
and letting them run while the simulation continues [87],
[88], [89]. Given this, the approach of dedicating a set of
the simulations nodes to staging becomes more palatable to
simulation scientists, and further allows the introduction of in
situ visualization techniques on that separate allocation, which
can further benefit the simulation.

III-D1 Loosely Coupled In Situ Frameworks

This section presents a look at loosely coupled in situ frame-
works, and explores their features and restrictions. While many
in situ frameworks have the potential to operate in several
different modes, the frameworks presented here either operate
fully or primarily in the loosely coupled model. For each
framework we give a short description of functionality and
categorize them according to the in situ methodologies they
employ.

EPIC: The Extract Plug-in Components Toolkit
(EPIC) [90] is designed to create in situ data surface
extracts from a running simulation. These extracts can be
viewed in situ using a prototype version of FieldView, or
extracts can be saved to disk. One downside of EPIC is
that it requires the simulation to use the EPIC defined MPI
communicator. This requirement could cause substantial
integration issues for codes wishing to employ EPIC.

Freeprocessing: Freeprocessing [91], [92] is an in situ
interposition library designed to reduced the barrier to entry
for simulations to introduce in situ visualization. The premise
is that many visualization codes avoid in situ technology as
it has a large upfront cost for integration, and worse, if it
requires direct manipulation of the simulation source code, it
could have negative repercussions for performance and code
stability. Freeprocessing has the ability to do loosely coupled
visualization using staging nodes, in either a synchronous or
asynchronous mode. Further, Freeprocessing can connect to
existing visualization tools such as VisIt Libsim or ParaView
Catalyst to take advantage of existing work in high perfor-
mance visualization routines.

ICARUS: Initialize Compute Analyze Render Update Steer
(ICARUS) [71] is a ParaView plug-in for in situ visualization
and computational steering. It operates in the loosely coupled
environment using a shared memory mapped HDF5 file for
data access. It has minimal modification requirements for a

simulation code, but only operates on the HDF5 file format.
Simulation steering is accomplished through the use of the
shared file interface, where each side can read and write from
the files to pass steering messages.

pV3: Parallel Visual3 (pV3) [93], [94] is a parallel vi-
sualization system primarily targeted at computational fluid
dynamics codes. It utilizes a client-server architecture, and
has built in visualization capabilities. The client-server ar-
chitectures allows the system to connect to an instrumented
simulation at will. The pV3 system allows for computational
steering, tightly coupled, and post-hoc visualization. pV3 is no
longer under development.

III-D2 Related Work: Loosely Coupled In Situ

Past works that utilize loosely coupled in situ are most often
concerned with the impact that visualization has on a running
simulation. Works in this category often try to reduce the
effect that visualization has on the simulation time as much as
possible, and often do so by running on a separate allocation.
The following are several different approaches to loosely
coupled visualization.

Ellsworth et al. [95] describe a time-critical pipeline for
weather forecasting using the GEOS4 simulation code. This
code is run under very tight time constraints four times a day,
which requires the visualization to be performed with minimal
overhead. The visualization is achieved in this workflow by
copying the simulation data to a separate shared memory
segment where a discrete visualization system then accesses
and operates on the data. This setup does require that the
simulation be instrumented, and several new calls had to be
added directly to the simulation code to redirect the output
to the desired shared-memory segment. The resultant time-
varying visualizations are then saved to disk or displayed on
a tiled wall display.

Ma et al. [64] describe a visualization system for an
earthquake simulation that uses a remote viewer over the
wide are network to interactively change the visualization
operations, view angles, color, etc. of rendering operations
being done on the simulation machine itself. The integration of
their visualization system requires that a simulation provide an
API to access the internal data structures of the simulation, so
the integration is visible from the perspective of the simulation
scientist. However, this approach does limit the amount of
integration needed compared to other more intrusive methods.
The authors then demonstrated the viability of their system
by interactively visualizing the results of a 2048 process
simulation.

Pugmire et al. [96] introduce a visualization workflow that
utilizes ADIOS to intercept the I/O calls of a simulation and
stage the simulation data on a separate allocation of nodes.
Their workflow then used EAVL to perform parallel visual-
ization operations on the staged data, Mesa [97] to perform
rendering, and IceT to perform parallel image compositing.
Their experiments show that by incorporating Mesa and IceT
into the parallel visualization environment EAVL, that they
were able to further reduce the time to completion by between
5% and 14% versus an MPI compositor.

Page 13



III-E Hybrid In Situ and Computational Steering

Hybrid methods [12] are composed of both tightly and loosely
coupled components being utilized simultaneously. These
methods support the flexibility of processing and reducing data
on the simulation resources before they are either written to
disk, or transferred to the visualization resource for additional
processing. In other words, it offers the ability to achieve the
best of both the tight and loose coupling paradigms.

Computational steering systems are methods related to
hybrid in situ, as they allow a user to control all aspects
of the computational science pipeline [98]. This control can
range from simple monitoring controls to check that a sim-
ulation is in a valid state, to advanced controls that allow a
user to step through a simulation and change key simulation
variables while a simulation is in progress. One advantage of
computational steering is that it can enable a user to steer a
simulation back to a valid state, or stop an invalid simulation
before computing time is wasted on invalid computations.

III-E1 Hybrid In Situ and Computational Steering Frame-
works

This section presents a look at hybrid in situ frameworks, and
explores their features and restrictions. For each framework we
give a short description of functionality and categorize them
according to the in situ methodologies they employ.

ADIOS: The Adaptable I/O System (ADIOS) [99], [100],
is a componentization of the I/O layer used by high-end
simulations and/or for high-end scientific data management,
providing an easy-to-use programming interface, which can
be as simple as file I/O statements. ADIOS abstracts the
API away from implementation, allowing users to compose
their applications without detailed knowledge of the underlying
software and hardware stack. The ADIOS framework has been
designed with a dual purpose: to increase the I/O throughput
of simulations using well-known optimization techniques, and
also to serve as the platform for introducing novel data
management solutions for production-use without extensive
modifications to the target applications.

ADIOS is used by a variety of mission critical applications
running at DOE and NSF facilities, including combustion,
materials science, fusion, seismology, and others. At the same
time, ADIOS offers the community a framework for develop-
ing next generation I/O and data analytics techniques. Recent
advances in this area include FlexIO [101], an infrastructure
for the flexible placement of in situ analytics at different levels
of the memory hierarchy, and PreDatA [102], a strategy for
characterizing data while it is being generated in order to
support faster data manipulations on staging resources.

To address the growing imbalance between computational
capability and I/O performance, ADIOS introduced the concept
of data staging, where rather than writing data directly to
shared backend storage devices, a staging pipeline moves data
to a transient location, on separate physical nodes and/or on
memory resources on the same node where data is generated.
Once on the staging nodes, data can be aggregated, processed,
indexed, filtered, and eventually written out to persistent
storage [103]. A key outcome of staging has been dramatic

reductions in the total volume of data to be stored through
the use of tightly coupled and loosely coupled data analyt-
ics. ADIOS contains a variety of transport methods for the
movement of data, including DataSpaces [104], which allows
memory coupling between processes running on different sets
of nodes, FlexPath [105], which supports a publish/subscribe
interface for direct memory access, and ICEE [106] which
supports RDMA transfers over wide area networks.

Damaris/Viz: Damaris/Viz [107], [108] is an in situ
framework based off of the I/O middleware framework
Damaris [109]. Damaris/Viz was developed with the goals of
having low impact on simulation runtime, low impact for in
situ integration, and high adaptability. It achieves these goals
by having low instrumentation costs. Visualization capabilities
consist of user-defined modules, or connections to the VisIt
Libsim or Paraview Catalyst interfaces. Damaris/Viz can op-
erate in either a tightly coupled approach, utilizing a subset of
cores on each simulation node, or loosely coupled, by using a
dedicated set of visualization nodes.

EPSN: EPSN [110] is a library designed to provide a
software environment for computational steering. There are
two methods of interacting with EPSN, a lightweight network
user interface, or through a distributed parallel visualization
tool. The visualization and steering tools utilize VTK and IceT.
EPSN has a client server relationship allowing multiple clients
to connect and disconnect to the simulation on-the-fly.

GLEAN: GLEAN [111] is a non-intrusive framework for
real time data analysis and I/O acceleration. It achieves this
by being semantically aware of the data it is transporting, and
by mitigating the variability of filesystem I/O performance
through asynchronous data staging nodes using the network.
GLEAN follows a similar model to ADIOS, and allows for
custom data analyses to be performed on both the compute
and staging resources. This model can mitigate the overall data
saved to disk, improving application performance.

GLEAN supports both the tightly and loosely coupled
in situ paradigms. Tightly coupled workflows are supported
when GLEAN is embedded as part of the simulation, sharing
the same address spaces and resources, and the simulation is
semantically aware when it calls GLEAN. Loosely coupled
workflows are supported when GLEAN asynchronously moves
simulation data to a separate allocation of staging nodes though
standard I/O libraries like HDF5.

Numerous performance studies exist using GLEAN, and it
has been shown to be scalable and has drastically improved
I/O performance on test codes that traditionally used HDF5
or pnetcdf. Overall, GLEAN is a powerful framework that
requires minimal or no modifications to existing applications
to implement, and can improve application performance on
applications experiencing network bottlenecks. That is, sim-
ulation scientists can focus on simulation development, and
let GLEAN focus on data transport enhancements, while also
giving the simulation new opportunities to insert data analysis
methods on both the simulation and data staging nodes.
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Magellan: Magellan [112] is a framework for computa-
tional steering of a simulation. To instrument a code with
Magellan it must be annotated to reveal specific steering
parameters to the Magellan interface. This interface consists
of two components, steering servers and steering clients. The
steering client is a mechanism to interface with the steering
servers and interactively change parameters. Magellan allows
for multiple applications to be steered simultaneously, but is
very limited in its graphical capabilities. It must be linked with
outside visualization systems for the creation of visualizations.
Magellan is no longer under development.

SCIRun: SCIRun [113] is a programming environment
that allows for the construction, debugging, and steering of
scientific computations. The computational steering aspect of
SCIRun is one of its more highly developed aspects, allowing
users to vary different aspects of a simulation while it is
running. This interactivity is performed lock-step, so it follows
the tightly coupled approach of stalling the simulation while
it performs its steering and analysis. SCIRun is modular, so
further extensions can be added through the modular interface.

SENSEI: SENSEI [59] is an effort to both streamline the in
situ instrumentation of a scientific code and allow for flexibility
in the choice of analysis infrastructure. This flexibility is
achieved through the use of the underlying technologies that
SENSEI employs. It allows for the use of both VisIt Libsim
and ParaView Catalyst as visualization platforms, and either
GLEAN or ADIOS for data staging. The analysis routines in
SENSEI use the standard VTK data model for cross-platform
compatibility.

SENSEI has even addressed some of the drawbacks of the
VTK data model discussed earlier in section II-B1, by adapting
the VTK data model to support structures-of-arrays, array-of-
structures, and zero-copy.

To instrument a code with SENSEI, there are two adapters
that need to be created. First, a data adapter API is created.
This adapter is used to provide the analysis code with access
to simulation mesh and array attributes. Second, an analysis
adapter API is created. This adapter provides a concrete
instance of an analysis adapter, which is a mechanism for
interfacing with different in situ infrastructures. Figure 6 gives
an overview of possible SENSEI instrumentation layouts. It is
possible to perform both loosely coupled and tightly coupled
analysis with this interface, with multiple options for staging
and visualization technologies.

III-E2 Related Work: Hybrid In Situ

Past work in the area of hybrid in situ and computational
steering often focus on making in situ more accessible to simu-
lation teams, providing greater temporal locality of simulation
visualizations, and providing a channel for the simulation team
to interact with the running simulation directly. Some of the
works presented below take advantage of the different frame-
works presented above, while others roll their own approaches
to specific simulation needs.

Past work in the area of simulation monitoring and steering
has focused a lot of effort into designing methods for quickly

Fig. 6: A depiction of the SENSEI generic data interface for
tight coupling, loose coupling, and hybrid implementations.
It enables the dynamic choice of instrumentation technology
depending on user circumstances though the use of its generic
interface (adapted from [59]).

and efficiently visualizing data across a network. Some notable
examples include Visapult [114], Visualization Dot Com [115],
VisPortal [116], and a Real-Time Monitoring framework for
large scientific simulations [117]. VisPortal and Visualization
Dot Com build on the foundations of Visapult, and provide
a remote distributed visualization framework for efficient vi-
sualization of remote simulation data. This framework uses
both the local visualization client and the remote data client
to perform parallel renderings, decreasing the time to produce
the final visualizations. By leveraging Visapult, VisPortal and
Visualization Dot Com are able to provide convenient access
to simulation data to scientists through an easy to use and
accessable online interface.

A different approach to simulation monitoring is the online
dashboard. One successful instance of an online dashboard is
eSimon [118], used for the XGC1 simulation. This dashboard
was launched with each simulation run and was responsible
for several different common visualization and analysis tasks
in XGC1. First, the dashboard was responsible for creating
and updating plots of approximately 150 different variables
every 30 seconds and plotting 65 different planes for the
live simulation. At the conclusion of a run, the dashboard
would automatically output movies of each of these plots of
interest for quick review. In addition, this dashboard cataloged
simulation output allowing users to search for and retrieve
data of interest, without having to locate and search through
simulation output files. Finally, this dashboard was available
to scientists anywhere in the world through their internet
browsers. This approach to simulation monitoring is powerful,
as it is easy-to-use from the point-of-view of the simulation
scientist and is easy to access.

Moving on now to works on visualization, we look at a
few works utilizing ADIOS. ADIOS is an enabling technology,
and a number of past visualization works have taken advantage
of the easy integration and data transfer and translation capa-
bilities of the platform. Some recent examples include work
by Bennett et al. [119], Pugmire et al. [120], and Kress et
al. [121].

The work by Bennett et al. makes the insight that many
analysis algorithms can be formulated to perform various
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amounts of filtering and aggregation, resulting in intermediate
data that can be orders of magnitude smaller than simulation
output. They put this insight into practice by creating a two
stage pipeline using a combustion simulation, in which data is
first filtered and reduced on the simulation nodes before being
transffered to a staging area using ADIOS. Once in the staging
area they performed topological analysis, gathered descriptive
statistics, and performed visualization. They validated this
approach at moderate scale showing that it was possible and
fast to perform these operations in a hybrid fashion.

The work by Pugmire et al. focused on the development
of scalable visualization plugins that operate within the data
staging of ADIOS. They show the creation of an interactive
visualization system which utilizes the RDMA transfer capa-
bilities of ADIOS for data transport, and VisIt for visualization.
ADIOS would send subsets of data requested by the visualiza-
tion client to a visualization cluster where VisIt scripts would
operate on the data, with the final results being viewed by
a remote visualization client. Figure 7 shows the result of a
visualization using their system, which is the visualization of
a turbulent eddy and its accompanying particles within the
fusion simulation code XGC1.

Fig. 7: The VisIt interface window demonstrating particle
tracking by ID of particles that were inside a 3D eddy at a
particular timestep in the past (from [120]).

Kress et al. focused primarily on data reduction using
ADIOS and a separate analysis node allocation. Their premise
is that at exascale, simulation data reduction will be required
in order to gain a reasonable temporal view for visualizations.
They present two different types of data reductions that can be
done in staging by altering the underlying data representations.
One interesting approach they present is representing data with
reduced precision formats. That is, simulations are typically
over-resolved, so for visualization it is not necessary to main-
tain full precision, and they demonstrate that visualizations are
comparable at different digits of precision. They caution how-
ever, that data reduction must be done with domain knowledge.
Data features may be lost when doing visualizations of derived
variables.

A further example that does not utilize ADIOS is by
Vishwanath et al. [122]. They describe a test of the GLEAN
framework on an adaptive mesh hydrodynamics code, in which
they increased I/O speed and computed fractal dimensions of
the data as it was being written to disk. In this work, they
were able to instrument the simulation code without adding
anything to the simulation code itself, instead the I/O libraries
already in use by the simulation were instrumented to use
GLEAN. Through their tests they say that it was much faster to

compute the fractal dimensions in situ versus their traditional
post hoc approach, and that they were able to increase I/O
speed between 10-117x vs HDF5 and pnetcdf.

A more basic example not utilizing a framework is by
Buffat et al. [123]. They describe a client-server system for in
situ analysis of computational fluid dynamics. Their workflow
has the capability of performing computational steering, and
can use VisIt Libsim for remote visualization. The core of their
workflow is a separate allocation of nodes where the visualiza-
tion tasks take place in Python, and the data is asynchronously
transffered to this allocation from the simulation using MPI.

III-F Comparing In Situ Paradigms

Now that the two basic and one hybrid in situ coupling variants
have been discussed, it is important to begin to consider the
costs and benefits that each scenario brings to a simulation
code. In order to have concrete comparisons on which to base
judgments on the costs and benefits of each scenario, I will
present ten in situ comparison factors [124]. These comparison
factors were selected to span the range of issues relevant
to both scientists that are running simulations, and computer
science researchers and developers that are deploying analysis
and visualization methods. These factors consider required
HPC resources (both shared and dedicated), impact on the
running simulation, fault tolerance, and usability.

III-F1 In Situ Comparison Metrics

Data Access: With simulations producing more data than
can be saved to disk, a different data set is available for
visualization and analysis depending on when the data is
accessed. Generally speaking, there is more data and time steps
available on the simulation resources than there will be once
the data is transferred and saved to disk. Thus, the correct set
of operations should be performed on the data at each stage.
For operations that require all data and all time steps, that
operation should be performed on the simulation nodes before
data is culled. However, if an operation or simulation team
can handle performing analysis on a sparser data set, such an
operation could take place after data is saved to disk.

With tightly coupled in situ, visualization and analysis
routines can take advantage of having the full richness of the
simulation output. Operations exist that take into account all
of the produced data for every time step.

On the other hand, loosely coupled in situ visualization
routines must often operate with a sparser set of data. However,
it should be noted that this data set can be more complete
than those that are saved to disk because the network transfer
can allow for a greater volume of data to be sent. Therefore,
loosely coupled in situ routines often work with less data than
is available in situ, but more than is available post hoc.

Data Movement: Moving large quantities of data from one
location to another can be an expensive task. The cost of this
task varies substantially depending on where the data is being
sent, i.e., between nodes in an allocation or off node over the
network, so data movement should be kept to a minimum.
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Often the amount of data needed varies by the visualization
algorithm employed. For a simulation using tightly coupled
in situ visualization and analysis, the amount of data moved
can range from none to simulation-stalling levels. This is
because some visualization algorithms traditionally require
large amounts of data to be sent between the ranks, which
complicates the problem when using tightly coupled in situ.
Communicating between every node in the simulation can be
enormously expensive compared to a smaller node allocation.

Loosely coupled in situ visualization has a different issue
with regards to data movement. Before loosely coupled in
situ visualization can take place, the data must be sent from
the simulation to a visualization resource for processing. This
dump from the simulation to the visualization resource can
saturate the network, and could even cause a slowdown in the
simulation while it sends the data over the network. This data
dump has the potential to move far less data, in total, during the
visualization routine as compared to that of tightly coupled in
situ. This is due to visualization allocations traditionally being
much smaller than simulation node allocations, meaning that
communication takes place over a much smaller domain.

Data Duplication: At the conclusion of each time step of
a simulation, a new set of data is available and ready for use.
On node resources may take immediate advantage of this data,
while off node resources require a copy to be made. The act
of making this copy means that the data now exists in two
places, doubling the memory footprint.

Tightly coupled in situ visualization does not have a data
duplication problem. All data is already available within the
simulation, so no duplication will take place.

Loosely coupled in situ visualization must work on a
copy of the data by definition. That is, the data is copied
from the simulation nodes to whatever loosely coupled in
situ visualization solution is being used. This duplication now
doubles the RAM usage for each time step, possibly making
it the less efficient choice.

Data Translation: Simulation codes store mesh and field
data in myriad ways that visualization programs must be able
to interpret and work with. The foundation for performing such
a translation is a data model (which describes what data can
be represented) and its implementation (which describes how
to lay out arrays).

In the in situ world, there are two basic options. First,
the visualization code can allocate new arrays that match its
own data model implementation and then copy data from
the simulation code’s arrays into its own arrays. Obviously,
this memory bloat is often viewed as undesirable. However,
this approach is still used in VisIt’s LibSim and ParaView’s
Catalyst. The second option is to ensure that the visualization
code can work directly on the simulation data layout. This
is straightforward when writing custom code specifically for
that simulation, but much harder when trying to design a
general-purpose visualization infrastructure that can be re-used
with many simulation codes. The approaches used by the
community so far involve redirection of data accesses through
virtual functions (done in some cases with Catalyst), designing
a data model implementation that supports many different array

organizations to increase the chances that the simulation code
uses an array layout that the visualization code can support
(as with EAVL), or writing templated code customized to
the simulation code during the compilation process (as with
SciRun).

To date, the two basic options have proven difficult for
doing easy and overhead-free data translation. Instead, we note
that this problem has been addressed previously for data I/O,
where simulation codes write arrays to disk and visualization
codes read them. Establishing schemas, interfaces, and con-
ventions was a non-trivial task in this space, but one that is
now generally considered “solved.” With respect to in situ, the
loosely coupled approach can take advantage of this existing
solution by using the simulation code’s I/O calls as a way to
pass data. As a result, the path to integrating in situ technology
with the loosely coupled approach is significantly less of a
burden.

Coordination: Coordination is required between the simu-
lation and the visualization. This coordination lets the visual-
ization know that the next iteration of simulation data is ready
and that visualization can begin.

In a tightly coupled in situ paradigm, coordination is
minimal. If visualization code is directly embedded into the
simulation, this could be as simple as calling the visualization
routine at the end of the simulation main loop. For production
tools like LibSim and Catalyst, the coordination is very similar,
but the call is made into the particular library.

In a loosely coupled in situ paradigm, much more coordina-
tion is required. At the end of each cycle in the main loop a call
must be made to transfer the data to the visualization resource.
This transfer requires use of the network and coordination
on both the sending and receiving side to ensure the data is
successfully sent and received. To guard against faults, care
must be taken to recover from situations when a network call
fails, or the visualization resource is not available.

Resource Requirements: All in situ paradigms require
additional resources of some sort. In a tightly coupled in
situ paradigm the simulation and visualization share the same
resources, including execution, memory, and network. In an
era when memory per core is steadily decreasing, visualization
tools are required to operate under very tight memory restric-
tions. In cases where intermediate results need to be computed
and held in memory, this can be a challenge. Additionally,
supercomputing time is in high demand and very expensive.
Therefore, simulations will generally dedicate a fixed window
of time for visualization. These restrictions place challenges
on visualization, which generally run on dedicated resources
with large memory, or on the development of new techniques
that operate within tight time and memory requirements.

In a loosely coupled in situ paradigm, additional visualiza-
tion nodes are required. These additional nodes are requested
at the time the simulation is run, increasing the cost of running
a simulation. However, these additional nodes can be used
asynchronously once the data is transferred. The visualization
can run while the next time step is being computed by the
simulation, and there are no restrictions on memory usage.
However, care must be taken to handle the arrival of the next
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time step, if the visualization routines are still running. But
otherwise, the restrictions are minimal.

Exploratory Visualization: Exploratory visualization, a
task most associated with post-processing of data on disk, is
generally not a strength in any in situ paradigms. Typically,
the visualization must be specified a priori, and so care must
be taken to decide when the simulation is launched and which
particular operations will be performed. However, tools like
LibSim and Catalyst do allow fully-featured visualization tools
access to specified parts of simulation data, making free-
form exploratory visualization possible, but at the expense of
pausing the simulation while the user interacts with the data.

Scalability: Any in situ paradigm is constrained to use the
concurrency of the allocated resources. In a tightly coupled
paradigm, this is the allocation for the entire simulation. While
this level of concurrency might be advantageous for embar-
rassingly parallel routines that require little synchronization
or communication, it can be a bottleneck for visualization
routines that require significant communication (e.g., particle
tracking, etc) or algorithms that don’t exhibit scaling up to
the levels of simulation codes (e.g., hundreds of thousands
of cores). Conversely, in a loosely coupled paradigm, the
concurrency of the visualization resource can be appropriately
configured for the tasks to be performed. Algorithms that
require significant synchronization and communication will
generally perform much better at lower levels of concurrency,
and this can be used to optimize performance.

Fault Tolerance: As supercomputers continue to grow in
size and complexity, resilience and fault tolerance at all levels
become increasingly important. For tightly coupled in situ
paradigms where visualization and simulation run together,
fault tolerance becomes imperative. Simulations are directly
exposed to data corruption, infinite loops, and errors in visual-
ization routines, and could result in faults or crashes. Because
of the expense of supercomputing time, and the drastic impact
of faults on simulation codes, fault tolerance is a requirement.
In practice, this is difficult to achieve.

Because of the clear and distinct separation between the
simulation and the visualization in a loosely coupled paradigm,
the exposure to faults is greatly reduced. In this paradigm,
the data transfer to the visualization resource becomes the
only point of exposure to faults. The exposure can be further
reduced by using asynchronous transfers.

Ease of Use: Usability spans a wide range of topics, and
includes things such as integration, deployment, development,
and dependencies. For tightly coupled in situ where there is
a fundamental connection between the simulation and visu-
alization code, software engineering practices become very
important. Because of this basic interdependence, changes in
either the simulation or visualization code, or dependencies
on third party libraries, need to be carefully managed. In the
case of stand-alone production packages where there is a more
separated interface point, careful coordination of releases and
patches is still required.

TABLE III: Summarization of the benefits of both the tightly
and loosely coupled in situ paradigms. The paradigm which is
strongest in a given category is indicated with a check mark,
and a dash is used when the paradigms are equally as good.

Favored Paradigm
Comparison Factor Tightly Coupled Loosely Coupled
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For loosely coupled in situ, the interface between the
simulation and visualization takes place through the API. Here,
a cleanly defined, concise, and small set of APIs determine the
usability of the system.

Finally, there is no free lunch. Development costs must
be taken into account. While writing custom visualization
code has the advantage of maintaining full control and mak-
ing domain-specific optimizations easy, there is the cost of
not taking advantage of community-wide investments devoted
to making standard tools and libraries. On the other hand,
developing loosely coupled in situ frameworks is a large
undertaking, and providing the flexibility to handle a wide
variety of uses cases is a challenge.

III-F2 Summarizing In Situ Paradigm Strengths

Based on the evaluation of the 10 factors we discussed
previously, there are clearly very good reasons for using each
of the techniques. Table III summarizes the evaluation metrics,
and which in situ paradigm is best in that area. In cases with
very specific needs, there is often a clear choice of in situ
method. In practice however, there are generally many factors
under consideration, and the optimal in situ approach will be
situationally dependent.

Tightly coupled approaches will work very well when
the simulation has a predefined list of images and analyses
that it needs produced. These can be directly coded into the
simulation. We emphasize that if a visualization task can be
tightly coupled, it should be.

On the other hand, if interactive exploration is required, if
subsets of data should be saved for further analysis, or an open
source visualization solution needs to be employed for data
visualization, loose coupling might be the best approach. These
approaches avoid many of the pitfalls of being fault intolerant,
they are generally easier to deploy and maintain, they generally
scale better, and the data translation from the simulation
representation to the visualization library representation is
solved through existing I/O calls.

Since both paradigms are strong under varying circum-
stances, in an ideal world, there would be a model that
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would predict for a given visualization task whether in situ
visualization (including which paradigm) is viable or not given
a list of computational, time, and resource constraints. This is
an area that merits further research, and is an area that interests
me. A summary of research in performance modeling for in
situ visualization is presented in Section IV.

IV PERFORMANCE MODELING FOR IN SITU
APPLICATIONS

In general, performance modeling is the process of simu-
lating various user and system loads for specific tasks through
the use of a mathematical approximation of how the tasks
work. This mathematical approximation provides users with
the applicability or viability of the specific task given the
system loads and constraints. This type of approximation is
needed for in situ applications. That is, the ability to predict if
a given in situ visualization task is viable given a set of user
and system constraints would be useful for the community as
they schedule and prioritize in situ tasks in workflows.

IV-A Approaches to Performance Modeling

There are three main approaches to performance modeling, as
well as one combination of approaches. The approaches are
(1) analytic, (2) heuristic/statistical, (3) history-based method-
ologies [125], and (4) the combination approach, or semi-
empirical [126]. Each of these methods has sets of strengths
and weaknesses, and have been used extensively in the past.

Analytic Models: Analytic performance models take the
approach of reducing a set of steps to a mathematical pro-
cess that describes the cost of the steps, and can quickly
generate performance predictions for known input parameters.
Examples of analytic performance models and tools include
PANORAMA [127], Aspen [128], LogP [129], and the PERC
framework [130].

PANORAMA is an extension of the Aspen domain specific
performance modeling language, and is designed to model
the run-time performance of complex scientific workflows. It
incorporates task-level profiling and monitoring using Aspen,
and can predict runtimes of different tasks.

LogP was designed to aid in the development of fast and
portable parallel algorithms. It models computation based on
four main parameters that abstract the computing bandwidth,
communication bandwidth, communication delay, and the effi-
ciency of the coupling of communication and computation. The
designers chose these four parameters to capture the breadth
of the computation process, while keeping the model as simple
as possible.

The PERC Framework combines tools used for gathering
machine profiles and application signatures to model underly-
ing application performance. They base their model on the
assumption that an applications performance is dominated
by two overarching factors: the single processor performance
and its use of the network. These assumptions simplify their
model and requires only the understanding of single processor
performance in combination with the network performance
model to approximate an application’s performance

Heuristic/Statistical Models: Heuristic and statistical-
based modeling techniques model the underlying features of
a target system using a variety of different modeling levels
from the microprocessor instructions, cache use, and net-
work messaging. Examples in this area include GEMS [131],
ROSS [132], PACE [133], SST [134], [135], and performance
and power modeling [136].

The General Execution-driven Multiprocessor Simulator
(GEMS) is a series of modules for timing the memory and
microprocessor subsystems of a machine. This simulator cre-
ates detailed timings of processor performance and cache use.
This product is highly limited due to its complexity of use and
limited forms of release, making it difficult to use and slow to
create models.

The Rensselaer’s Optimistic Simulation System (ROSS)
is a modular system for simulating network performance.
ROSS is fast and accurate, outperforming other similar network
simulators. The downsides of this system are that it only mod-
els network performance, requires many different parameters
for estimation, and has long runtimes compared to analytical
performance models.

The Performance Analysis and Characterization Environ-
ment (PACE) is a layered system for modeling software, hard-
ware, and parallelism. It requires the creation of a specialized
workload definition using a domain specific language to cap-
ture the characteristics of a given application. Once completed,
it will model the fine-grained features of an application and
overall system performance to generate runtime predictions.

The Structural Simulation Toolkit (SST) is a simulator that
estimates the performance of large-scale parallel machines.
There are two primary ways to utilize SST. First, an MPI
trace from a previous simulation run can be replayed in the
simulator, allowing estimates to be generated for new archi-
tectures and configurations. Second, a skeleton application can
be provided which mimics the control and messaging pattern
of a real application. Together, these approaches allow this
toolkit to do cycle-specific analysis of an application and its
performance. The downside of this approach is that it takes a
very fine-grained view of performance modeling, and is more
time intensive.

The work on performance and power monitoring for
parallel scientific applications focuses on creating detailed
statistics on performance and power use during a simulation.
It accomplishes its power modeling by leveraging on-chip
performance counters for CPU and GPU systems. The per-
formance modeling is aided by the TAU Parallel Performance
System [137] which is capable of instrumenting and analyzing
the performance of parallel applications. This system enables
application tuning through iterative application runs, where
performance data is collected followed by application tuning
to address the bottlenecks shown in the collected performance
data.

History-based Models: History-based performance models
rely on instrumenting a series of past runs of a specific
workflow task and gathering performance traces. The traces are
then aggregated into a numerical model that can approximate
a known modeled task [138]. One good example of this
type of performance prediction is from the Large Hadron
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Collider [139]. The approach given in this work looks at a
long history of completed runs of a specific analysis task, and
can estimate the job runtime of that task within 75% accuracy.

Semi-empirical Models: Semi-empirical models are com-
binations of parts from both the heuristic and analytical
performance modeling approaches. The idea is that known
hardware parameters (e.g., network performance rates, disk
read/write speed) and empirical measurements like execution
time or performance counters are combined with the analytical
approach to create a hybrid model. This hybrid model bridges
the gap in terms of complexity from the heuristic to the
analytical approach and has the potential to be as accurate
using less resources and evaluation factors. One such work in
this space focuses on in situ rendering, and creates accurate
performance models for ray tracing, volume rendering, and
rasterization [140].

Summary of Performance Modeling: Comparing these
four different paradigms, we can see a large difference in the
complexity of gathering the data for creating the performance
models. The history-based methods in particular are not fea-
sible at massive scale and require many different simulation
runs using different simulation configurations to develop pre-
dictions. Worse, history-based models do not transfer between
machines of different configurations and require the whole
history process to be done again on new machines at full-scale.

Heuristic-based models can be extremely accurate, but
getting cycle-specific information for a simulation is a time
intensive process, and just as with the history-based methods,
it needs to be repeated on each new machine. These types
of models are not feasible for exascale simulations due to
enormous costs.

The class of performance models for exascale applications
that shows promise are the analytical models. Analytical
models reduce the complexity of a simulation down to a set
of overarching factors that determine the performance of an
application. This reduction means models for single processor
performance can be combined with models of network perfor-
mance to get a holistic picture of an applications performance
without running the full application. New models will still
need to be created for different architectures, but these models
will require much smaller runs requiring less time than a full
simulation run. Combine these types of performance models
with some known heuristics, and the resultant semi-empirical
model is even more powerful.

IV-B Performance Modeling for In Situ Visualization

There are no known works that focus on performance modeling
for in situ visualization workflows. This is where my interest
and dissertation work lies. In order to do performance model-
ing for in situ visualization, two different pieces of information
need to be combined to create overall models. First, studies
need to be done to determine what data will look like on
exascale machines in terms of size, frequency, and variety.
This data is important for performance models because it will
enable us to create models based on current data trends with
an eye on the future. Second, for in situ tasks that require

visualization, a total model is needed that covers the entire
in situ pipeline, including models for in situ rendering and
different types of visualization operations (this is where my
interest and dissertation work lies).

IV-B1 Cataloging Large-scale Simulation Visualization and
Analysis Tasks

We know of only one work that focused specifically on
cataloging and categorizing the different visualization and
analysis tasks of a simulation code. That work took an in
depth look at the XGC1 [141] simulation code through a series
of interviews with developers. Those interviews cataloged the
different visualization and analysis tasks and requirements
within XGC1, as well as the different simulation input and
output types and sizes [20]. This work found a wide breadth
of output sizes from the simulation with large variations in
temporal data availability. In addition, many of the visualiza-
tion requirements proposed by the simulation team required
very high fidelity from the largest simulation outputs. These
requirements from the simulation team point to the real need
for in situ visualization and analysis for large simulations, and
highlight the need for in situ researchers to be able to provide
concrete answers about the performance and viability of their
in situ routines at the temporal fidelity required by researchers.

This in-depth work provides a valuable look at one simu-
lation code team and their projections for exascale, however,
it would be valuable to conduct this type of research with
more simulation teams. Short of that, there are instances of
specific visualization and analysis requirements being reported
in conjunction with a study, which also provide valuable
insight when preparing for performance modeling.

A work by Bennett et al. [119] reports on a use case with
combustion simulations using S3D, where features are tracked,
identified, and visualized both in situ and in transit. Their
work utilized in situ and in transit methods using a volume
of nearly 1 billion cells and 16 seconds average wall time per
time step using 4896 cores. Through a combination of in situ
and in transit methods they were able to perform the feature
tracking and identification use case within their time budget,
while reducing the amount of data transferred over the network
and to disk.

Pugmire et al. [142] explore a feature tracking and identifi-
cation use case in the XGC1 simulation code, using a data set
of nearly 1 billion particles and a time budget of 10 seconds
per simulation time step. In this work, the authors describe a
system that intelligently handles the tracking of particles and
features of a simulation in real time in a user specified area
of interest.

Ellsworth et al. [95] describe a time-critical pipeline for
weather forecasting using the GEOS4 simulation code. This
code is run under very tight time constraints four times a day,
which requires the visualization to be performed with minimal
overhead. The visualization was performed on data consisting
of 23 million cells with up to seven 3D and four 2D fields per
cell.

Malakar et al. [143] describe a series of visualization tasks
done with the LAMMPS simulation code. The data contained
1 billion atoms, using 91 GB per simulation time step. Typical
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runs consisted of 1000 time steps, with output every 100 time
steps.

Slawinska et al. [144] demonstrate the incorporation of
ADIOS into Maya for an astrophysics simulation workflow.
Using in situ techniques, they reduced the amount of data
needed to perform their visualization and analysis task from
4.5 TB down to 24 GB that would normally be saved to disk
without in situ.

Dungque et al. [145] report on work done with computation
fluid dynamic data sets, visualizing helicopter rotor and wind
turbine movement. Their work utilized 18 million grid points
and data sets in excess of 60 GB per five revolutions. Their
final visualizations averaged 140,000 triangles, 45,000 quads,
and 121,000 vertices.

Two additional works focusing on the S3D simulation
code report large gains in visualization and analysis accuracy
by incorporating in situ techniques [82], [146]. Both papers
utilized similar data sets containing 1.3x109 grid points, 22
variables, and a simulation checkpoint size of 140 GB. Landge
et al. [146] show that in situ techniques enable feature extrac-
tion and tracking every 50 simulation time steps instead of
every 500 as was traditional with negligible overhead added
to the simulation.

From these past works, we have been able to get a sense
of some of the data sizes and visualization and analysis
requirements from other large-scale simulation codes. Through
the combination of all of these works, we can get a sense of
both the breadth and depth of the needs of these codes in
terms of data movement and usage. This information will be
valuable for the completion of the overall in situ visualization
performance model.

IV-B2 Rendering Performance Modeling

A recent work by Larsen et al. [140] developed a performance
model specifically for in situ rendering. This performance
model was designed to provide an a priori answer for the cost
of using an in situ rendering approach. It accomplished this
through the use of statistical performance models based on
algorithmic complexity, and was able to accurately predict the
runtime cost of a set of rendering algorithms.

One example of a performance model from this work is for
volume rendering. They determined that the time to perform
volume rendering could be characterized by three primary
variables (1) Active Pixels (AP), (2) Cells Spanned (CS), and
(3) Samples Per Ray (SPR). By their definition, active pixels
was the number of pixels that were updated as a result of
rendering. Cells spanned was the maximum number of cells
that a ray could span. Samples per ray was the average number
of samples along a ray that were inside of the data set. The
resultant model was:

TV R = c0 ∗ (AP ∗ CS) + c1 ∗ (AP ∗ SPR) + c2 (1)

This model was then combined with a compositing model they
created in order to predict rendering times in a distributed
setting. Overall, this model was very accurate, predicting the
runtime of many consecutive rendering tasks within a 10%-
20% on average.

One example question that was addressed by the paper

using the models developed was how many images could be
generated on different architectures using each of the three
rendering methods within a 60 second time budget. Figure 8
shows the trends in the number of images generated for
both the CPU and GPU architectures using their predictive
models. Being able to ask concrete questions like this one
using a performance model is a valuable contribution to the in
situ visualization community, allowing researchers to optimize
their workflows to meet desired performance and visualization
goals within specified time budgets.

Fig. 8: Predictions using each of the performance models
developed by Larsen et al. to determine how many images
could be generated by each rendering technique given a 60
second budget on each of the two different test architectures
(from [140]).

V CONCLUSION AND FUTURE WORK SUMMARY
In this survey, we have presented the current research

in important areas to in situ visualization and analysis. This
included a background look at high performance computing,
visualization, and graphics and rendering, which are critical
areas to understand when developing and working with in situ
visualization frameworks. This was followed by an in-depth
look at the state-of-the-art of in situ systems and performance
modeling.
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Andreas Kempf, and Jens Krüger. Freeprocessing: Transparent in situ
visualization via data interception. In Eurographics Symposium on Par-
allel Graphics and Visualization: EG PGV:[proceedings]/sponsored
by Eurographics Association in cooperation with ACM SIGGRAPH.
Eurographics Symposium on Parallel Graphics and Visualization,
volume 2014, page 49. NIH Public Access, 2014.

[92] Freprocessing. https://www.github.com/tfogal/freeprocessing. Ac-
cessed: 2016-11-27.

[93] Robert Haimes. Alaa 94-0321 pv3: A distributed system for large-scale
unsteady cfd visualization. 1994.

[94] R Haimes. pv3. 3http://raphael.mit.edu/pv3/. Accessed: 2016-11-27.
[95] David Ellsworth, Bryan Green, Chris Henze, Patrick Moran, and

Timothy Sandstrom. Concurrent visualization in a production su-
percomputing environment. IEEE Transactions on Visualization and
Computer Graphics, 12(5):997–1004, 2006.

[96] David Pugmire, James Kress, Jeremy Meredith, Norbert Podhorszki,
Jong Choi, and Scott Klasky. Towards scalable visualization plugins
for data staging workflows. In Big Data Analytics: Challenges and
Opportunities (BDAC-14) Workshop at Supercomputing Conference,
2014.

[97] The mesa 3d graphics library. http://www.mesa3d.org/. Accessed:
2016-11-27.

[98] Christopher Johnson, Steven G Parker, Charles Hansen, Gordon L
Kindlmann, and Yarden Livnat. Interactive simulation and visualiza-
tion. Computer, 32(12):59–65, 1999.

[99] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Pod-
horszki, Jong Youl Choi, Scott Klasky, Roselyne Tchoua, Jay Lofstead,
Ron Oldfield, Manish Parashar, Nagiza Samatova, Karsten Schwan,
Arie Shoshani, Matthew Wolf, Kesheng Wu, and Weikuan Yu. Hello
adios: the challenges and lessons of developing leadership class i/o
frameworks. Concurrency and Computation: Practice and Experience,
26(7):1453–1473, 2014.

[100] Scott Klasky, Hasan Abbasi, Jeremy Logan, Manish Parashar, Karsten
Schwan, Arie Shoshani, Matthew Wolf, Sean Ahern, Ilkay Altintas,
Wes Bethel, et al. In situ data processing for extreme-scale com-
puting. Scientific Discovery through Advanced Computing Program
(SciDAC11), 2011.

[101] Fang Zheng, Hongbo Zou, J Cao, J Dayal, T Nugye, G Eisenhauer, and
S Klasky. Flexio: location-flexible execution of in-situ data analytics
for large scale scientific applications. In Proceedings IEEE inter-
national parallel and distributed processing symposium (IPDPS13),
pages 320–331, 2013.

[102] Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Qing Liu,
Scott Klasky, Manish Parashar, Norbert Podhorszki, Karsten Schwan,
and Matthew Wolf. Predata–preparatory data analytics on peta-scale
machines. In Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1–12. IEEE, 2010.

[103] David A Boyuka, Sriram Lakshminarasimham, Xiaocheng Zou, Zhen-
huan Gong, John Jenkins, Eric R Schendel, Norbert Podhorszki, Qing
Liu, Scott Klasky, and Nagiza F Samatova. Transparent in situ data
transformations in adios. In Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium on, pages
256–266. IEEE, 2014.

[104] Ciprian Docan, Manish Parashar, and Scott Klasky. Dataspaces:
an interaction and coordination framework for coupled simulation
workflows. Cluster Computing, 15(2):163–181, 2012.

[105] Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew
Wolf, Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert
Podhorszki. Flexpath: Type-based publish/subscribe system for large-
scale science analytics. In 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing(CCGRID ’14), 2014.

[106] Jong Y Choi, Kesheng Wu, Jacky C Wu, Alex Sim, Qing G Liu,
Matthew Wolf, C Chang, and Scott Klasky. Icee: Wide-area in transit
data processing framework for near real-time scientific applications.
In 4th SC Workshop on Petascale (Big) Data Analytics: Challenges
and Opportunities in conjunction with SC13, 2013.

[107] Matthieu Dorier, Roberto Sisneros, Tom Peterka, Gabriel Antoniu, and
Dave Semeraro. Damaris/viz: A nonintrusive, adaptable and user-
friendly in situ visualization framework. In LDAV-IEEE Symposium
on Large-Scale Data Analysis and Visualization, 2013.

[108] Damaris/viz. http://damaris.gforge.inria.fr/doku.php. Accessed: 2016-
11-27.

[109] Damaris. http://damaris.gforge.inria.fr/. Accessed: 2016-11-27.
[110] Epsn. http://www.labri.fr/projet/epsn/. Accessed: 2016-11-27.
[111] Venkatram Vishwanath, Mark Hereld, Vitali Morozov, and Michael E

Papka. Topology-aware data movement and staging for i/o acceleration

Page 24



on blue gene/p supercomputing systems. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, page 19. ACM, 2011.

[112] Jeffrey Vetter and Karsten Schwan. High performance computational
steering of physical simulations. In Parallel Processing Symposium,
1997. Proceedings., 11th International, pages 128–132. IEEE, 1997.

[113] Steven G Parker and Christopher R Johnson. Scirun: a scientific
programming environment for computational steering. In Proceedings
of the 1995 ACM/IEEE conference on Supercomputing, page 52. ACM,
1995.

[114] Wes Bethel. Visapult: A prototype remote and distributed visualization
application and framework. Lawrence Berkeley National Laboratory,
2000.

[115] Wes Bethel. Visualization dot com. IEEE Computer Graphics and
Applications, 20(3):17–20, 2000.

[116] Wes Bethel, Cristina Siegerist, John Shalf, Praveenkumar Shetty,
TJ Jankun-Kelly, Oliver Kreylos, and Kwan-Liu Ma. Visportal: De-
ploying grid-enabled visualization tools through a web-portal interface.
Lawrence Berkeley National Laboratory, 2003.

[117] Valerio Pascucci, Daniel E Laney, Ray J Frank, Giorgio Scorzelli, Lars
Linsen, Bernd Hamann, and Francois Gygi. Real-time monitoring
of large scientific simulations. In Proceedings of the 2003 ACM
symposium on Applied computing, pages 194–198. ACM, 2003.

[118] Roselyne Tchoua, Jong Choi, Scott Klasky, Qing Liu, Jeremy Logan,
Kenneth Moreland, Jingqing Mu, Manish Parashar, Norbert Pod-
horszki, David Pugmire, et al. Adios visualization schema: A first step
towards improving interdisciplinary collaboration in high performance
computing. In eScience (eScience), 2013 IEEE 9th International
Conference on, pages 27–34. IEEE, 2013.

[119] Janine C Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila
Gyulassy, Tong Jin, Scott Klasky, Hemanth Kolla, Manish Parashar,
Valerio Pascucci, et al. Combining in-situ and in-transit processing to
enable extreme-scale scientific analysis. In High Performance Com-
puting, Networking, Storage and Analysis (SC), 2012 International
Conference for, pages 1–9. IEEE, 2012.

[120] David Pugmire, James Kress, Jong Choi, Scott Klasky, Tahsin Kurc,
Randy Michael Churchill, Matthew Wolf, Greg Eisenhower, Hank
Childs, Kesheng Wu, et al. Visualization and analysis for near-real-
time decision making in distributed workflows. In Parallel and Dis-
tributed Processing Symposium Workshops, 2016 IEEE International,
pages 1007–1013. IEEE, 2016.

[121] James Kress, Randy Churchill, Scott Klasky, Mark Kim, Hank Childs,
and David Pugmire. Preparing for in situ processing on upcoming
leading-edge supercomputers. To Appear: Supercomputing frontiers
and innovations, 2016.

[122] Venkatram Vishwanath, Mark Hereld, Michael E Papka, Randy Hud-
son, G Cal Jordan IV, and C Daley. In situ data analysis and
i/o acceleration of flash astrophysics simulation on leadership-class
system using glean. In Proc. SciDAC, Journal of Physics: Conference
Series, 2011.

[123] Marc Buffat, Anne Cadiou, Lionel Le Penven, and Christophe Pera.
In situ analysis and visualization of massively parallel computations.
International Journal of High Performance Computing Applications,
page 1094342015597081, 2015.

[124] James Kress, Scott Klasky, Norbert Podhorszki, Jong Choi, Hank
Childs, and David Pugmire. Loosely coupled in situ visualization:
A perspective on why it’s here to stay. In Proceedings of the
First Workshop on In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, ISAV2015, pages 1–6, New York, NY,
USA, 2015. ACM.

[125] Ian Bowman, John Shalf, Kwan-Liu Ma, and Wes Bethel. Perfor-
mance modeling for 3d visualization in a heterogeneous computing
environment. Lawrence Berkeley National Laboratory, 2004.

[126] Torsten Hoefler, William Gropp, William Kramer, and Marc Snir.
Performance modeling for systematic performance tuning. In State
of the Practice Reports, page 6. ACM, 2011.

[127] Ewa Deelman, Christopher Carothers, Anirban Mandal, Brian Tier-
ney, Jeffrey S Vetter, Ilya Baldin, Claris Castillo, Gideon Juve,
Dariusz Król, Vickie Lynch, et al. Panorama: An approach to
performance modeling and diagnosis of extreme-scale workflows.

International Journal of High Performance Computing Applications,
page 1094342015594515, 2015.

[128] Kyle L Spafford and Jeffrey S Vetter. Aspen: a domain specific lan-
guage for performance modeling. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, page 84. IEEE Computer Society Press, 2012.

[129] David Culler, Richard Karp, David Patterson, Abhijit Sahay,
Klaus Erik Schauser, Eunice Santos, Ramesh Subramonian, and
Thorsten Von Eicken. Logp: Towards a realistic model of parallel
computation. In ACM Sigplan Notices, volume 28, pages 1–12. ACM,
1993.

[130] Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa
Badia, and Avi Purkayastha. A framework for performance modeling
and prediction. In Supercomputing, ACM/IEEE 2002 Conference,
pages 21–21. IEEE, 2002.

[131] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R
Marty, Min Xu, Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and
David A Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. ACM SIGARCH Computer Architecture
News, 33(4):92–99, 2005.

[132] Christopher D Carothers, David Bauer, and Shawn Pearce. Ross: A
high-performance, low-memory, modular time warp system. Journal
of Parallel and Distributed Computing, 62(11):1648–1669, 2002.

[133] AM Alkindi, Darren J Kerbyson, Efstathios Papaefstathiou, and Gra-
ham R Nudd. Run-time optimization using dynamic performance pre-
diction. In International Conference on High-Performance Computing
and Networking, pages 280–289. Springer, 2000.

[134] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey,
Ron Oldfield, Marlo Weston, R Risen, Jeanine Cook, Paul Rosenfeld,
E CooperBalls, et al. The structural simulation toolkit. ACM
SIGMETRICS Performance Evaluation Review, 38(4):37–42, 2011.

[135] Curtis L Janssen, Helgi Adalsteinsson, and Joseph P Kenny. Us-
ing simulation to design extremescale applications and architectures:
programming model exploration. ACM SIGMETRICS Performance
Evaluation Review, 38(4):4–8, 2011.

[136] Van Bui, Boyana Norris, Kevin Huck, Lois Curfman McInnes, Li Li,
Oscar Hernandez, and Barbara Chapman. A component infrastructure
for performance and power modeling of parallel scientific applications.
In Proceedings of the 2008 compFrame/HPC-GECO workshop on
Component based high performance, page 6. ACM, 2008.

[137] Sameer S Shende and Allen D Malony. The tau parallel performance
system. International Journal of High Performance Computing Appli-
cations, 20(2):287–311, 2006.

[138] Rich Wolski, Neil T Spring, and Jim Hayes. The network weather
service: a distributed resource performance forecasting service for
metacomputing. Future Generation Computer Systems, 15(5):757–
768, 1999.

[139] Rafael Ferreira da Silva, Mats Rynge, Gideon Juve, Igor Sfiligoi,
Ewa Deelman, James Letts, Frank Würthwein, and Miron Livny.
Characterizing a high throughput computing workload: The compact
muon solenoid (cms) experiment at lhc. Procedia Computer Science,
51:39–48, 2015.

[140] Matthew Larsen, Cyrus Harrison, James Kress, David Pugmire,
Jeremy S. Meredith, and Hank Childs. Performance Modeling of
In Situ Rendering. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC16), pages 24:1–24:12, Salt Lake City, UT, November 2016.

[141] CS Chang, S Ku, PH Diamond, Z Lin, S Parker, TS Hahm, and N Sam-
atova. Compressed ion temperature gradient turbulence in diverted
tokamak edge). Physics of Plasmas (1994-present), 16(5):056108,
2009.

[142] David Pugmire, James Kress, Hank Childs, Matthew Wolf, Greg
Eisenhauer, Randy Churchill, Tahsin Kurc, Jong Choi, Scott Klasky,
Kesheng Wu, Alex Sim, and Junmin Gu. Visualization and analysis
for near-real-time decision making in distributed workflows. In High
Performance Data Analysis and Visualization (HPDAV) 2016 held in
conjuction with IPDPS 2016, May 2016.

[143] Preeti Malakar, Venkatram Vishwanath, Todd Munson, Christopher
Knight, Mark Hereld, Sven Leyffer, and Michael E Papka. Optimal
scheduling of in-situ analysis for large-scale scientific simulations. In

Page 25



Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 52. ACM, 2015.

[144] Magdalena Slawinska, Michael Clark, Matthew Wolf, Tanja Bode,
Hongbo Zou, Pablo Laguna, Jeremy Logan, Matthew Kinsey, and Scott
Klasky. A maya use case: adaptable scientific workflows with adios for
general relativistic astrophysics. In Proceedings of the Conference on
Extreme Science and Engineering Discovery Environment: Gateway
to Discovery, page 54. ACM, 2013.

[145] Earl PN Duque and Steve M Legensky. Visualization of large-scale
unsteady computational fluid dynamics datasets. In Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages 73–
73. IEEE, 2005.

[146] Aaditya G Landge, Valerio Pascucci, Attila Gyulassy, Janine C Ben-
nett, Hemanth Kolla, Jiann-Jong Chen, and Peer-Timo Bremer. In-
situ feature extraction of large scale combustion simulations using
segmented merge trees. In High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference for, pages
1020–1031. IEEE, 2014.

Page 26


