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Abstract. Question Answering (QA) requires understanding of natural
language queries along with information content to obtain an answer to
the question. In this survey, we focus on the question answering methods
specifically based on the neural network frameworks which are the state-
of-art for many QA datasets. The crux of a neural network model lies
in the representation of both question and answer along with auxiliary
knowledge as a continuous real valued representation, called vectors or
embeddings. Powerful QA models require processing of large information
content accessible from Knowledge Bases (KBs). Many KBs are readily
available and involve colossal quantities of information. KBs have been
successfully incorporated to neural QA by embedding the relations and
entities present in KBs and then using the learned embeddings. We sur-
vey several successful applications of KBs to neural question answering
problem and study the role KBs play in neural QA.

1 Introduction

Neural network-based architectures [52], also called Deep Learning, have been
successfully applied to many diverse and challenging problems of artificial intel-
ligence. The novelty of such deep learning methods lie in the generality of their
framework, with applications ranging from image generation [33] to machine
translation [5]. Deep learning methods are capable of generalizing and integrat-
ing inputs from several different data sources by transforming input data into a
continuous real-valued representation. This makes deep learning methods suit-
able for multi-modal problems. Question answering systems often require inte-
gration of different information source to answer a question successfully making
deep learning methods highly applicable to solving question answering problems.
Automatically answering questions asked in natural languages is a complex but
integral problem in artificial intelligence [17]. Several Question Answering (QA)
systems exist over different domains [117], question types [85], answer types [9]
and resource access ([24], [41]). A general paradigm for QA is to map a resource
to the question using either information retrieval (IR) [97] or semantic pars-
ing based query formulations [112]. In this survey, we study application of deep
learning methods to question answering.

A major problem for QA systems is the lack of structured information to
answer a question. Knowledge Graphs (KGs) or Knowledge Bases (KBs) are the



primary source of such structured information. KBs can be used as either a graph
network, fact triples or a querying database. Several KGs are readily available
with huge amount of information and facts structured within. Some widely used
KBs include Freebase [10], DBPedia [4], YAGO [89], Gene Ontology [3], Word-
net [66], ConceptNet [59] and Google Knowledge Graph [84]. Semantic parsing
[8] approach to question answering parse a natural language question into struc-
tured query which is executed into KBs. Such systems suffer from limitations of
both Knowledge Bases and the transformation system. A major limitation of a
KB is its completeness - no KB exists with all the world’s information content
incorporated into it.

Question Answering is a difficult problem often requiring many components
to effectively answer a question. In fact, the classical solution to QA is based
upon different components which handle a specific sub task, working together
in a cascading manner to extract answer to a question. Figure 1 gives an exam-
ple architecture to question answering problem. The issue with such cascading
system is propagation of errors. Moreover, as recent performance of deep learn-
ing has demonstrated, finding features suitable to a task manually is often an
erroneous, time-consuming and in many cases infeasible. The broad spectrum of
question answering methods could definitely benefit with models that can work
on raw data without relying on human generated features. Figure 2 shows one
such example which does not require any human engineering, making the system
more reliant on learning capacity of the model as opposed to hand engineering
features’ ability to effectively discriminate the problem space.

Fig. 1: A classical approach to problem of question answering [41].

Deep Learning methods are powerful framework with state-of-art results in
natural language understanding [23] and information retrieval. KBs are an in-
tegral source of information for QA systems, especially factoid answers. It is



Fig. 2: A neural network based approach to question answering [81].

(almost) natural to integrate deep learning methodologies with information rich
KBs in QA systems, primarily factoid QAs. However, there exists issue of repre-
sentation of KBs before they are integrated to neural network architecture. KBs
are represented as a triple of form (head, relation, tail) with head and tail rep-
resenting entities related via relation with focus towards symbolic frameworks
and languages. One example of such triple is (car, haspart, engine). To solve this
particular problem, researchers have devised methods to convert KB tuples into
vector representation that are usable in neural networks [11]. Representation
Learning of KB triples enables researcher to further enhance a KB with newer
relations since embedding methods provide a functional estimate of a correct
triple from an incorrect one (the problem is called triple prediction). We survey
different methods to embed KBs as they form a crucial component for answering
factoid questions using neural network architectures.

Deep Learning methods have gained unprecedented success in two subareas
of question answering- visual question answering (VQA) and reading compre-
hension (RC). VQA [1] is answering questions posed in natural language about
information contained within an image which is provided along with the ques-
tion. RC [38] generates an answer to a question presented in natural language
based on the sample of text provided with the question. Success of neural net-
works to these two problems could be attributed to representation learning and
simplicity of multi-modal data integration by uniform representation. We study
common theme in architectures for VQAs and RCs. We also focus on models
which integrate further information such as KBs. KBs enable representation of
world knowledge in machine understandable form and their integration to neural
architecture enables the model to add additional constraints while generating or
selecting an answer.

In this survey, we study neural question answering methods applied to wide
range of question answering problems including factoid question answering, vi-
sual question answering and reading comprehension. We primarily explore the
usability and contribution of KBs to neural question answering. While several



methods have been proposed to embed KBs, their usage is rather limited. We hy-
pothesize that proper usage of KBs within a neural QA system should empower
neural networks further. We also propose an architecture which aims toward
that goal and state plausible future goals for their further usage with neural
networks.

2 Deep Learning Methods

Deep Learning [52] methods are neural network architecture which enables learn-
ing of representation of data with multiple level of abstraction. These level of
abstractions enable deep learning methods to generalize information while also
being able to narrow down to a specific aspect of information. Deep Neural Net-
works, one of the most widely used deep learning model, have seen widespread
application in natural language processing tasks such as parsing [76], language
modeling [7], sentiment analysis ( [46, 86]), factoid question answering [41], ma-
chine translation [92], visual question answering [1] among others. There are
three widely popular neural network architecture for supervised deep learn-
ing - Convolutional Neural Networks (CNNs) [48], Recurrent Neural Networks
(RNNs) [40] and a fully connected neural networks [80]. CNNs [51] are primarily
designed towards image data with powerful property of shift invariance and their
local receptors. RNNs, on the other hand, are neural networks with self connec-
tions for sequential dependencies that is very natural to textual data and time
series. A fully connected neural networks are mostly useful for representation
learning task [65] which requires shallow network for faster data processing. The
common features of all deep learning methods is their gradient based optimiza-
tion which is done by either backpropagation or backpropagation through time
(BPTT) for recurrent neural networks.

2.1 Convolutional Neural Networks

A Convolutional Neural Network is a special form of neural network that is
characterized by a convolution layer often followed by a sampling layer to lower
parameters count. The structure of CNN is designed to take advantage of 2D
structure of an input image which is achieved with local connections and tied
weights followed by some form of pooling which results in translation invariant
features. A general CNN architecture consists of convolutional and subsampling
layers optionally followed by fully connected layers. A convolutional layers has
filters, each of size smaller than original image, giving rise to locally connected
structure which are each convolved with image to produce feature maps. This
feature map is subsampled by pooling layer. A sequence of convolutional and
pooling layers is usually followed by fully-connected layers for softmax compu-
tation, which is used for output prediction. CNNs are trained by gradient-based
error propagation methods.



Fig. 3: A simple convolutional neural network (CNN) architecture for images.
[18]

CNNs applied to text Convolutional Neural Network (CNNs) are developed
primarily for image representation but their ability to represent image data has
led to their usage in text data as well. The primary different between a CNN
applied to text and image lies in the filter size. For text data, the width of a filter
is always kept constant with the embedding size of incoming text data. This is
generally followed by max-pooling over each feature map (output of convolution
operation) to create a concatenated vector. Figure 4 depicts a CNN architecture
applied to text data. While CNNs applied to text do not have a good structural
justification evident upon image data, CNN architectures are faster to execute
and produce competitive results in text data when compared to other deep
learning architectures [46] . They are also extensively used in character-aware
language models [47] which performs representation learning for characters and
generates words and documents based on likelihood function of the model.

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are another special characterization of neu-
ral networks which makes use of sequential information present in input data as
a form for recurring unit. They are called recurrent because they perform the
same task for every element of a sequence, with the output being dependent on
previous computations. A RNN needs unfolding in time of the computation as
depicted in Figure 5. RNNs are very natural and intuitive to text data which are
sequential by nature and thus provide a very powerful generative model. Simple
RNNs though suffer from problem of vanishing [39] and exploding gradients [74]
thus making their theoretical and modelling suitability to text useless. Different
variants of RNN called Long short-term Memory (LSTM) [40] and Gated Re-
current Units (GRUs) [20] are selected as cell of RNNs for modeling sequential
data.

RNN-based architecture are popular for language modeling problem [63].
The usability of RNN is enhanced by a variation of RNN-architecture called
sequence-to-sequence models [92] where both inputs and outputs are sequential
data e.g.; machine translation. Seq2Seq models (Figure 6), as they are widely
called, are foundation of architecture for most of the more complex problems



Fig. 4: A simple convolutional neural network (CNN) architecture applied to text
data. The filter width is fixed for text and feature maps are of variable size. [18]

in machine learning which includes machine translations [62, 5], visual question
answering [1], reading comprehension [38], and caption generation [105]. This
formulation consists of an encoder - which reads input sequence and converts it
into a fixed vector representation and a decoder - which uses the fixed vector
representation to regenerate the output sequence.

2.3 Neural Networks for Embedding

A neural network used for learning embeddings (also called vector representa-
tions) of input data is a feedforward neural network with a single hidden layer
[65] with non-linearities being absent. Such simple architectures are selected to
process vast amount of resources (billions of words). The most popular archi-
tecture for learning embeddings is skip-gram model (Figure 7), whose training
objective is to learn word vector representations that are good at predicting
nearby words. Another model is continuous bag-of-words (CBOW) (Figure 8)



Fig. 5: A recurrent neural network unfolding in time of computation during for-
ward propagation. [52]

Fig. 6: A basic sequence to sequence architecture with an encoder and decoder
component. Each square box represents a RNN cell, e.g.; LSTM [92]

which uses context word to predict target word [64]. Pennington et al. [75] gen-
erated word vectors using count based models.

The reason for learning embeddings for words or lower level structures (im-
ages when dealing with video processing) is to convert every entity into a vector
space such that words which are used in common contexts are closer to each other
in that space. Embeddings adds external context knowledge to machine learning
models which cannot be obtained from other representations such as bag-of-
words. Another nice property of word embeddings lies in the geometric prop-
erties such as vector(king) − vector(male) + vector(female) ∼ vector(queen)
which is a highly desirable common-sense knowledge to the models as input.

2.4 Neural Networks with Attention

An extension of sequence-to-sequence neural networks is neural network with
attention, in which the decoder attends to hidden state of encoder at each en-
coding step of incoming sequence. The decoder ”attends” to different part of
source sequence at each step of output generation. This process is learned by
the model itself i.t. it learns which part to attend to when decoding. The cur-
rent attention mechanism is a matrix α ∈ RTT×TS where TS is source sequence



Fig. 7: A skip-gram model for learning word embeddings. [65]

Fig. 8: A continuous bag-of-words model for learning word embeddings. [64]

length and TT is target sequence length. It makes the decoded output yt of a
neural network dependent on weighted combination of all the input states based
on attention weights, which is the normalized row vector α(t,:). The approach
for attention was popularized by its application to neural machine translation
in [5]. A basic attention mechanism is illustrated in Figure 9.

Attention mechanism are also applied to question answering problem in which
attention weights help the model focus on specific segment of text during many
different tasks such as question embedding (some parts of question are more
important than rest) [24] and text segments during reading comprehension [38].



Fig. 9: An attention mechanism trying to generate tth target word yt given a
source sentence (x1, x2, ..., xT ). at,x is the weight input encoded representation
hx has on generating yt. A bidirectional RNN is in usage. [5]

2.5 Memory Networks

Memory Networks [102] and related NN architectures including Neural Turning
Machine [34, 90] are neural networks with external memory. They are extremely
useful paradigm for solving factoid question answering [16] and question answer-
ing involving reasoning [102]. Their novelty lies in their ability to manipulate ex-
ternal memory locations, such as a Knowledge Base (KB) or a Universal Schema
[79].

An Input module is used to learn representations for the values to be stored
in memory, which are then used to compute output representation and final pre-
dictions. The different mechanisms within a Memory Network could be different
e.g. sentence representation can be either an averaging over word embedding or
a position-encoded representation. The pluggable application and flexibility of
the network makes Memory Networks state-of-art for factoid question answering
[16]. Another advantage lies in different level of guidances applied i.e. additional
information incorporation is easier than standard NN architecture [102, 114].
An end-to-end memory network (being end-to-end is not required of a memory
network) is shown in Figure 10.



Fig. 10: An end-to-end memory network architecture in which sentences embed-
ding are stored as memory values and multiple layers (one in left and three in
right) are used to compute representation for final answer. [90]

2.6 Multi-modal Networks

An interesting application of neural networks is their easy integration to multi-
modal problems, such as Visual Question Answering. Figure 11 gives an example
architecture for multi-modal data problem. All data sources are converted into
continuous vector representations which can then be integrated with each other
to perform final joint inference. Fukui et al. [29] give an efficient algorithm for
computing compact bilinear pooling over multi-modal data based on Fast Fourier
Transform.

Fig. 11: A multi-modal neural network for visual question answering [45].

3 Knowledge Base

Knowledge Base (KB) is structured database with schema such as an ontol-
ogy describing entities, relations and attributes which form the foundation of



structural information. Facts are then added to the KB in accordance with the
structure, forming the entirety of a KB. A KB can also be represented as a graphs
of facts, with entities representing the nodes of graph and relationship between
entities being described by edges. For our survey, we treat Knowledge Base and
Knowledge Graph as same entity. The reason for such treatment is potential
transformation of KB into graphs. Also, the existing neural network literature
does not draw any distinction between two terms and use them interchangeably.

Knowledge Graphs are typically stored as directed graphs of multi-relational
data whose nodes correspond to entities and edges correspond to relations be-
tween them. KBs are represented as a triplet of form (h, l, t) or (head, label, tail)
which indicates there exists a relationship of name label between the entities
head and tail. There are numbers of Knowledge Base (KBs) in development and
usage such as Freebase [10], DBPedia [4], YAGO [89], Gene Ontology [3], Word-
net [66], ConceptNet [59] and Google Knowledge Graph [84]. Such large KBs are
constructed for usage as a querying system. Most Knowledge Graphs are writ-
ten in formats (e.g. OWL [2]) which makes them accessible via query languages
like SPARQL [77]. This itself is a significant research area and contributes to
reasoner system such as HermiT [82] which can be used to generate an answer
from such large knowledge graphs based on SPARQL query formulation.

The most widely used Knowledge Base is Freebase [10]. It is a structured KB
in which entities are connected by predefined predicates or relations. All predi-
cates are directional, connecting from subject to object. A triple (subject, pred-
icate, object) denoted by (h, p, t) describes a fact; e.g, (US Route2, major cities,
Kalispell) refers to the fact that US Route 2 runs through the city of Kalispell.
Another KB, Reverb [26] is extracted automatically from text with minimal hu-
man intervention and is highly unstructured: entities are unique string and the
lexicon for relationship is open. This leads to many more relationships, but en-
tities with multiple references are not deduplicated, ambiguous referents are not
resolved, and the reliability of the stored facts is much lower than in Freebase.

The usage of knowledge graphs is limited by two issues - completeness [87,
101] and compatibility. The issue of completeness arise from the fact that no
KBs can be ever exhaustively completed. There are initiatives to keep on build-
ing KBs based on continuous stream of texts such as Never Ending Language
Learner (NELL) [19] but even such learners are not expected to exhaustively
cover all worlds knowledge. This inadequacy can lead to error in query based
system which completely rely on KBs. Another challenge in usage of KB lies
in its compatibility. Each KB has their own design decisions and thus even for
same concepts and relations, different naming conventions are preferred which
presents a challenge in applying more than one KBs to a problem. Application of
more than one KB could potentially decrease the incompleteness of KBs [12]. A
common solution is preferred to both problems - embedding of knowledge bases.

KB embedding is a challenging problem. The main issue is the computational
complexity since most of the modern KBs tend to be huge with several millions
entities which necessitates the usage of simpler model for learning embeddings
while at the same time requiring nice embeddings with properties similar to



word2vec models. An initial step as part of KG embeddings is to flatten hugely
hierarchical structure of such graphs into a triple format. This leads to loss of
direct hierarchical relationship but limits the possible number of triples from
being infeasible for learning embeddings. Such hierarchical representations are
expected to be intrinsically represented within the embedded vectors. In this
survey, we focus on embedding methods that are based on neural networks. There
are several tensor factorization methods for relational learning that generate
embeddings for KBs such as Nickel et al. [71], Nickel and Tresp [70], Nickel et al.
[72]. Bayesian Clustering methods have also been successfully applied to embed
a KB [91]. The objective function for embedding knowledge base is associated
to link and triple predictions using a form of margin-loss function.

3.1 Embedding Models

Embedding models for KB completion associate entities and/or relations with
dense feature vectors or matrices [11]. Such models obtain vectors which are able
to produce state-of-art performance in tasks such as link prediction or triple
predictions [12, 99, 35, 68, 69]. Such vectors can have interesting generalization
properties similar to word embeddings where geometrical distance holds some
semantic interpretation [49]. KB embedding models are primarily evaluated on
two standard tasks - link prediction [12] and triple classification [87].

3.2 General Framework

For E entities and R relations where G denotes the knowledge graph consisting
of a set of triples (h, r, t) such that h, t ∈ E and r ∈ R. The embedding model
defines a score function f(h, r, t) for each triple, which is the score of its implau-
sibility. The objective of embedding models is to choose f such that score of a
plausible triple (h, r, t) is smaller than score of an implausible one (h′, r′, t′). The
model parameters are learned by minimizing a margin-based objective function:

L =
∑

(h,r,t)∈G,(h′,r,t′)∈G′

[γ + f(h, r, t)− f(h′, r, t′)]+ (1)

where [x]+ = max(0, x), γ is the margin hyper-parameter and

G′ = {(h′, r, t)|h′ ∈ E, (h′, r, t) /∈ G} ∪ {(h, r, t′)|t′ ∈ E, (h, r, t′) /∈ G} (2)

is the set of incorrect triples generated by corrupting the correct triple (h, r, t) ∈
G. Table 1 shows scoring function for some successful neural-embedding models.



Table 1: The scoring function of neural-embedding models for Knowl-
edge Bases. The entities h and t are represented by vectors vh, vt ∈ Rk.

Model Score Function f(h, r, t)

Structured Embedding
(SE) [11]

‖Wr,1vh −Wr,2vt‖l1/2
Wr,1,Wr,2inR

k×k

SME [14]

(W1,1vh +W1,2vr + b1)T (W2,1vt +W2,2vr + b2)

b1, b2 ∈ Rn;W1,1,W1,2,W2,1,W2,2 ∈ Rn×k

TransE [12]

‖vh + vr − vt‖l1/2 ; vr ∈ Rk

TransH [99]

‖(I − rprTp )vh + vr − (I − rprTp )vt‖l1/2
rp, vr ∈ Rk;

I : Identity Matrix k × k

TransR [58]

‖Wrvh + vr −Wrvt‖l1/2
Wr ∈ Rn×k; vr ∈ Rn

TransD [43]

‖(I + rph
T
p )vh + vr − (I + rpt

T
p )vt‖l1/2

rp, vr ∈ Rn;hp, tp ∈ Rk;

I : Identity Matrix n× k



Model Score Function f(h, r, t)

lppTransD [116]

‖(I + rp,1h
T
p )vh + vr − (I + rp,2t

T
p )vt‖l1/2

rp,1, rp,2, vr ∈ Rn;hp, tp ∈ Rk;

I : Identity Matrix n× k

TranSparse [44]

‖Wh
r θ

h
r vh + vr −W t

rθ
t
rvt‖l1/2

Wh
r , w

t
r ∈ Rn×k; θhr , θ

t
r ∈ R; vr ∈ Rn

STransE [69]

‖Wr,1vh + vr −Wr,2vt‖l1/2
Wr,1,Wr,2 ∈ Rk×k; vr ∈ Rk

DistMult [108]

vThWrvt;Wr is a diagonal matrix ∈ Rk×k

NTN [87]

vTr tanh(vThMrvt +Wr,1vh +Wr,2vt + br)

vr, br ∈ Rn;Mr ∈ Rk×k×n;Wr,1,Wr,2 ∈ Rk×k

HolE [73]

σ(vTr (vh ◦ vt))
vr ∈ Rk, ◦ denotes circular correlation



Model Score Function f(h, r, t)

Bilinear-COMP [35]

vThWr1Wr2...Wrmvt

Wr1, wr2, ..,Wrm ∈ Rk×k

TransE-COMP [35]

‖vh + vr1 + vr2 + ...+ vrm − vt‖l1/2
vr1, .., vrm ∈ Rk

Unstructured [14]

‖vh − vl‖l1/2

We describe some significant models in greater detail.

3.3 Translation-based Methods

Translation-based embedding methods learn embeddings for entities and rela-
tions based on the translation operation over head and tail entity using relation
entity. The simplest of such model is Unstructured Model [14] which assumes
head and tail vector are similar and does not take relationship into account.
The Structured Embedding (SE) model [11] transforms head and tail entities
into relation subspace using two distinct transformation matrices. The trans-
formed head and tail entities are expected to be near one another in optimal
subspace. The Semantic Matching Energy (SME) model learns triplet as a form
a bigram function (using matrix multiplication) and as a trigram model (using
tensor multiplication). The bilinear tensor based projection matrix obtains bet-
ter performance on test task of link prediction confirming more complex model
leads to better performance.

The pioneer work in translation-based embedding model is TransE [12]. It
assumes all relations and entities can be represented by vectors of uniform size.
The objective of TranE expects the head entity displaced by relation vector to be
closer to the tail entity. The approach is noted for simplistic design, and flexible
architecture leading to multiple improvements being made on top of TransE.
One main problem with TransE model lies in its inability to differentiate between
different relation mappings such asone-to-one, many-to-one, one-to-many which
makes the model unsuitable for representing such relations.



TransH [99] treats each relation to be a different plane and modified TranE
such that head and tail entities are projected to relation plane before being
checked for displacement operation. This makes the method more flexible in
handling various relation mappings since different relations would be projected
into different planes, depending on its type. Figure 12 shows the geometrical
contrast between TransH and TransE. Another translation method, TransD [43]
considers diversity of both entity and relation. An entity is represented by two
vectors with one vector being used to project the entity into relation subspace
while the other calculates the translation with respect to other entity in triple.
TransD primarily aims to cover different type associated with the entities. A
similar idea of handling relations differently is followed in Lin et al. [57] where
TransR treats a relation as a matrix which are then used to project entities
to relation subspace for translation measurement. Another approach CTransR
further considers multiple types of representation within a relation by clustering
head and tail entities covered by the relation and learning a unique embedding
for each cluster. The problem is constrained to ensure the learned representation
does not stray too far from original relation matrix.

Fig. 12: The difference between TransE [12] and TransH [99] in geometrical space.

Fig. 13: The difference between TransE [12] and flexible Translation [28] which
aims to ensure the sum of head and relation vector points in the same direction
as tail vector.



Fig. 14: A transitive property preservation transformation using role-based pro-
jection for TransE-lpp method [116]

Fig. 15: A symmetric property preservation transformation using role-based pro-
jection for TransE-lpp method [116]

A flexible translation approach is proposed in Feng et al. [28] which uses the
motivating example given in Figure 13 as a basis for reducing the constraint such
that tail entity should only be in the same direction as the displacement of head
and relation entity. This leads to tail entity being a plane as opposed to vector
and hence a constraint is placed on possible plane for both head and tail entity
during training. A translation-based method that preserves the transitivity and
symmetricity of relations is given in Yoon et al. [116] where head and tails are
mapped differently based on their position. This model is incremental in nature
and can be integrated with any of the translation based approach as an additional
constraint. The role based projection is illustrated in Figure 15 and Figure 14.
STransE [69] follows the similar approach of projecting head and tail entity using
separate projection matrices. The relation is represented using two matrices
and a vector, making the model flexible to handle type differences within both
relations and entities. Ji et al. [44] propose TransSparse with an assumption that
some relations can be represented with fewer number of parameters as opposed
to other relations. The embedding is thus a function of sparseness which is made
adaptive and function of number of entities linked by the relation, while the rest
of computation is similar to STransE giving greater flexibility for representing
entities.

3.4 Tensor-based Methods

The neural tensor model [87] is one of the first work to use bilinear tensor
operator to representation each relation as shown in Figure 16. Yang et al. [108]
use a bilinear score function without any non-linearity to learn embeddings.
Bilinear models are popular with matrix factorization based embedding methods
[25]. Quadratic forms are used to model entities and relations in [37, 104, 95, 31,



93]. Such methods are similar due to the three-way interactions between relation,
head and tail entities during the score computation. ProjE [83] use diagonal
matrix and linear interaction to combine entity and relation similar to translation
based methods, but sigmoid and tanh activation are used when projecting to a
score metric. The objective is to learn by either pointwise learning or listwise
learning based upon softmax regression function. The architecture by means of
example for ProjE is at Figure 17. Nickel et al. [73] uses a circular correlation
operation while learning embedding which can be interpreted as compression of
tensor product.

Fig. 16: A Neural Tensor Network Layer [87]

Fig. 17: An embedding projection for KG completion given an input example (?,
CityOf, Illinois) [83]



3.5 Relation Path-based methods

More recent developments for embedding have shown that the relation path be-
tween entities in Knowledge Graph provide a richer context information which
enables learning more structured embeddings [61, 30, 35, 54, 56, 94, 68]. A con-
text dependent path based pre-training similar to Word2Vec [64] is proposed
by Luo et al. [61]. The method first learns the embedding by obtaining context
using connection between entities. The learned embeddings are then fine-tuned
by using one of the translation based objective function. Guu et al. [35] use
path queries to obtain a relational transformation which is then integrated into
a translation model, such as TransE. The authors define some translation based
methods as composable which is essentially decomposable into a head entity-
relation pair without any dependency on tail entity. The paths are then obtained
by randomly traversing through the knowledge graph using random walk. Lin
et al. [56] extend the TransE method by additional objective of learning scor-
ing from a different relation path representation, which is a summation over
all relation paths that are termed reliable. The reliability is based upon path-
constraint resource allocation algorithm which is recursive function weighted over
the number of incoming edges to a node. The path representation is calculated
by multiple operation such as addition, multiplication and RNNs as illustrated
in Figure 18. Such path-based methods often suffer from problem of computing
possible paths between entities exhaustively which can be computationally chal-
lenging. Toutanova et al. [94] propose a dynamic algorithm to enable efficient
incorporation of relation paths of bounded length in compositional path models.
Neelakantan et al. [67] propose a KB completion method using RNNs that are
able to infer multi-hop relationships. Their approach is able to take vector em-
bedding of relationships at each time step, the final output is the inference of the
relationship between the first and last entity on the path. Such methods require
large training corpus and the authors use 52M relational triples for training their
model.

Fig. 18: A path representation computation for [56]

In addition to these classes of embedding methods for knowledge bases, some
work aims at learning knowledge base embedding using external resources. Such
methods enable the model to handle knowledge graph sparseness since the en-
tity annotated corpus such as Wikipedia can be used for learning embedding



for knowledge base like Freebase. Wang and Li [100] use external text corpus
to pointwise textual context and pairwise textual context, which describe the
amount of co-occurrence between entities and words. Embeddings for knowl-
edge base are learned using the margin based translation objective function aug-
mented with averaged embedding representations obtained from co-occurrence.
Such methods are able to leverage large about of additional resources. The eval-
uation criteria for Knowledge Graph embeddings are either link prediction or
triple predictions with Xiao et al. [104] obtaining best result in Wordnet and
Ji et al. [43] getting better performance in Freebase dataset for link prediction
task.

4 Factoid Question Answering

Factoid Question Answering (FQA) refers to questions which can be answered
effectively by a phrase or an entity of a Knowledge Graph. There are mainly two
paradigms of FQAs - answering questions over a KG or obtaining answer from
natural text using open factoid question answering. Few approaches exist which
attempt to combine both resources or use multiple Knowledge Base. The problem
of obtaining answers as a phrase from the text provided with question is a
different challenge, called reading comprehension [38] or machine comprehension
and follows different methodology to factoid question answering.

4.1 FQA from Knowledge Graphs

A Knowledge Graph-based factoid question answering involves mapping the
question in natural language into triples of Knowledge Graphs. The distinc-
tion is made between FQA systems mapping to just one triples and mapping
to multiple triples. The system which maps to a single triple is called Simple
Question Answering (SimpleQA). Simple QA is a relatively easy problem com-
pared to other factoid and non-factoid QAs. They are also teh most frequent
type of questions asked [27]. A SimpleQA task involves answering a question
such as ”What is the hometown of Obama?” which asks for a direct topic of an
entity ”Obama” which is ”hometown”. The challenges to SimpleQA systems lie
in possibility to formulate a question in multiple of ways, making the mapping
process hard to generalize.

A highly successful paradigm to factoid question answering involves convert-
ing the natural text into structured queries, which is then fed into the Knowledge
Base systems to obtain answer, called semantic parsing [8, 112, 111]. The seman-
tic parsers learn to understand natural language questions by converting them
into logical forms. Semantic Parsing is highly successful in solving problems of
factoid question answering such as those involving multiple relations and ques-
tions whose answers involve a list of ordering which is difficult to answer using
look-up based FQA methods. There are few examples of neural network based se-
mantic parsing methods [55] which use a data-based approach to convert natural
text into formal query but they are still highly regulated. We skip such methods



for our study since they are not a neural network-based approach though it is
useful to keep in mind that such methods exists and offer a powerful alternative
to methods presented in this survey.

Simple Question Answering (SimpleQA) A common approach to solving
SimpleQA problem is to extract a set of candidate answers from Knowledge
Base using relation extraction [111, 112, 110, 6] or distributed representation
[13, 24, 107]. Fader et al. [27] introduce WikiAnswers, a paraphrasing dataset
which helps generalize for unseen words and question patterns. Another dataset
SimpleQuestions is introduced by Bordes et al. [16]. SimpleQA involves em-
bedding of knowledge base to find entity of knowledge base that is closest to
the question’s representation as the answer. The general framework for factoid
question answering is: Given an input question sentence S = {w1, w2, .., wQ}
and a sentence representation s ∈ Rk, we find the entity e in KB E such that
f(s, e) > f(s, e′), e′ ∪ e = E.

A CNN based approach to answering Simple Questions is proposed by Yin
et al. [115] with two-step pipeline - entity linking and fact selection. An active
and passive entity linkers are used, with passive entity linking done via subse-
quence matching between question phrase and entities and knowledge bases and
an active entity linking obtained through a BiLSTM-CRF [21] model to detect
entity mentions. A sequentially labeled dataset is required for training an ac-
tive entity linker. An active entity linking is followed by passive entity linking
to obtain more candidates. A fact pool is obtained from facts containing candi-
date entities. For fact selection, two CNNs are proposed - a character CNN to
match over KB entity and its mention in the question surface form; so that the
generated representation is more robust even in presence of typos, spaces and
other character violation. A word-level CNN with attentive max-pooling learns
the match of the KB predicate with the pattern in question. Char-CNN and
Word-CNN decompose each question fact into an entity mention surface-form
match and a predicate-pattern semantic match.

Bordes et al. [16] perform simple question answering using Memory Networks.
The memory network consists of a memory and a neural network that is trained
to query it given some inputs. It consists of four components - Input map (I),
Output map (O), Generalization (G) and Response (R). The workflow is to store
Freebase into memory and then train MemNN to answer question. The object-
triplet in Freebase are grouped and mediator nodes are removed by creating a
single relationship. The grouping mechanism is to allow multiple objects to be
linked to same subject and relationship, which is called as a KB-triplet. A KB
triplet is represented in bag-of-words model with subject and relationship having
value 1 and object entries set to 1/k where k is number of objects. The questions
are mapped to bag-of-ngrams. The output module performs the memory lookups
given the input to return the supporting facts destined to eventually provide the
answer given a question. A candidate generation phase proceeds the output
module operation. The scoring is obtained after performing cosine similarity
on embedded representations where both the question and triple is summed



Fig. 19: A CNN-based SimpleQA system using char- and word-RNN for semantic
and surface matching [115].

representation of underlying entities. The response module returns the set of
selected supporting fact.

Lukovnikov et al. [60] follow neural network based approach to answer sim-
ple questions using KB (Figure 20). Question is encoded using word level GRUs
and word is represented as concatenation of Glove vector with character level
encoding. Subject are represented as concatenation of entity labels (char level)
and type labels (word level). Char-level NNs are used to mitigate Out of vo-
cabulary issues. Predicates are embedded using encoding GRUs initialized with
word representations. The task is then to obtain the subject and predicate from
question using scoring function. The caveat of model lies in candidate generation
which is a simple substring match.

Fig. 20: Question Answering architecture for [60]

Golub and He [32] propose a character-level approach (Figure 21) based on
the attention-enhanced encoder-decoder architecture [5]. The model of [32] con-
sists of a character-level RNN-based question encoder and an attention-enhanced
RNN decoder coupled with two separate character-level CNN-based entity label
and predicate URI encoders. A pairwise semantic relevance function is used to
measure the similarity between hidden states of the attention decoder and the
embedding of an entity or predicate candidate. A cosine similarity measure is
used to compute the likelihood of entity or relation being answer to the question.



The model is learned by maximizing the joint likelihood of entity and predicate
candidate matching.

Fig. 21: A character-level QA approach for SimpleQA [32]

Dai et al. [21] propose a word-level RNN-based approach with emphasis on
possible paraphrases of questions. The task of predicting subject and relation is
factorized into two sub-tasks - prediction of relation first followed by entity given
the relation and question (Figure 22). The model learns the question representa-
tion using GRU network , which is used to predict the likely relation candidate.
The subject prediction is performed using join information of both relation and
the question. Both [21] and [115] improve the performance of their approaches
using a BiLSTM-CRF tagging model that is separately trained to label parts of
the question as entity mention or context (relation pattern). Either log-likelihood
or negative sampling method could be used for learning the parameters.

Multi-relation Question Answering The formulation of multi-relation ques-
tion answering is driven by necessity to map questions in natural text to more
than one triples in a knowledge base. WebQuestions [8] dataset is a popular
benchmark for such problems with semantic parsing methods obtaining state of
art performance in this task. A key necessity to complex factoid QA requires a
large collection of text data with ClueWeb [111] a 5TB collection of text being
used for KB matching.

For challenging questions such as ”What mountain is highest in North Amer-
ica?”which requires learning a representation for mathematical function ”high-
est”, Xu et al. [107] use textual data to filter out wrong answers. The approach
is a two-step process with first step for extracting entities from KB, which is
then refined using Wikipedia text of topic entity as illustrated in Figure 23. A
multi-relational question can be answered by decomposing original question into
sub-questions using syntactic patterns with final answer obtained as intersection



Fig. 22: Word-level RNN for SimpleQA [21]

of sub-question. The relation extraction module is based upon Multi-Channel
CNN (Figure 24), with two channels being syntactic and sequential information.
The syntactic feature is the shortest path between an entity mention and the
question word in the dependency tree and the sequential information is words in
the sentence excluding word and entity mention. The refinement model is more
hand engineered with entity and relation clues to expand the answer search
space. A gold standard of question-relation mapping is required for training the
relation extraction. A dependency parser based query node expansion is devised
in Yao and Van Durme [111] where ClueWeb text is used to learn correlation be-
tween KB relations and words using co-occurrence statistics with the alignment
model.

Dong et al. [24] use multi-column CNNs to understand questions from three
different aspect - answer path, answer context and answer type and learn their
distributed representations. A low-dimensional embeddings of entities and re-
lations in KB is jointly learned and QA pairs are used to train the model to
rank candidate answers. This helps to analyze questions from multiple aspects.
MC-CNNs help to improve question representation by considering word orders
so that ”who killed A?” and ”who A killed?” are considered to be different as op-
posed to averaging over word-embeddings to obtain question representation [13].
A multiple-column CNN is used to learn multiple representation of same ques-
tion which could be formulated to represent question from different stances. The



Fig. 23: An example of relation extraction and textual refinement [107].

Fig. 24: MC-CNN for relation extraction [107].

vector representation of each candidate entity is also learned in multi-column
stance i.e. multiple representations Then score for question stance and answer



candidate is computed based on sum over three different representation dot prod-
uct. A simple Freebase search query is used for candidate generation, similar to
Yao and Van Durme [111]. The candidate answers are embedded via answer
path which averages all the relation in the path from question entity to answer
candidate, answer context - which is the averaged embedding of all the entities
and relations which appear in the context of the candidate answer and answer
type - the emebdded representation of answer type. k random answers are sam-
pled for each correct answer and a hinge loss is considered for pairs. The authors
report that answer path and answer type are more direct clues for question. A
paraphrase module is also learned for generalizing similar question word embed-
dings. The work achieves substantial improvements despite a naive candidate
generation and pruning (random) mechanism. An example is given in Figure 25.

Fig. 25: An overview for question-answer pair using MC-CNN similarity ap-
proach. Left: network architecture for question understanding. Right: embedding
candidate answer. [24]

Yang et al. [109] maps natural language to knowledge base by semi-automatically
generating mappings between knowledge base triples and natural text using in-
formation extraction methods. A triple set is formed by merge between natural
language and KB triples and they are jointly learned using translation-based
embedding methods. Input questions are also associated with the joint embed-
dings following information extraction methods which is followed by summation
based ranking measure. This model is particularly suited to SimpleQA problem,
but is applicable to multi-relational QA task as well.

Bordes et al. [13] learns embedding for words and KB constituent which are
then used to score natural language questions against candidate answers. We-
bQuestion [8] is used as evaluation benchmark. The dataset is augmented with
ClueWeb extractions [8] and question paraphrasing [27]. This work learns the



embedding of each words, entites and relations. The candidate answers are rep-
resented either as one-hot vector, path representation from entity mentioned in
question to answer entity, or subgraph representation which encodes all the enti-
ties surrounding the answer entity. The training is based on contrastive margin-
loss objective (Figure 26). Embeddings are trained in multi-task manner taking
paraphrase question dataset into considerations. A candidate answer is generated
before inference and then score is computed.

Fig. 26: Illustration of the subgraph embedding model scoring a candidate an-
swer: (i) locate entity in the question; (ii) compute path from entity to answer;
(iii) represent answer as path plus all connected entities to the answer (the sub-
graph); (iv) embed both the question and the answer subgraph separately using
the learned embedding vectors, and score the match via their dot product. [13]

Yin et al. [113] propose an encoder-decoder framework model for factoid
question answering with ability to enquire a KB. The key challenge addressed is
switching between natural text and text from KB while generating answers to
the question. They propose a model called GenQA (Figure 27) which consists
of Interpreter, Enquirer, Answerer and an external KB. Interpreter transforms
natural language question into en embedded representation and saves it to short
term memory. Enquirer takes the question embedding and retrieves relevant
facts from KB, which is summarized into an embedding. Enquirer first performs
term matching followed by embedding similarity to obtain relevant triples. The
similarity function could be either a bilinear model or an CNN-based matching
model. The answerer (Figure 28) generates an answer using sequential model
which is sampled from either the vocabulary from KB or from words.

Jain [42] preprocess Freebase to remove dummy entities and obtain more di-
rect triples. A L-hop factual memory network is constructed for computational
layers where each layer access candidate facts and question embedding. The sim-
ilarity is computed based on translation sum of subject and relation embeddings



Fig. 27: System diagram of GenQA [113]

of fact and question embedding. For multiple object facts, averaging is done
to compute the score. Each computation layer is followed by pruning of facts,
recomputation of question vector based on relevant facts and addition of new
facts. The model is trained using loss across each computation layer, weighted by
its distance from question layer of distance between the true answer and facts
considered in that computation layer. A paraphrasing loss is also included to
project paraphrases into same sub regions. This method obtains the state-of-art
performance in Web Questions dataset [8].

4.2 FQA over fixed answer set

Natural Language text is the most common source of answers in systems which
do not depend upon KB to obtain an answer. A common paradigm is to have
a closed FQA system with the possible answers already fixed, then the answer
prediction step can be replaced by a simple softmax layer.

Iyyer et al. [41] use a Dependency-Tree Recursive Network (DT-RNN) [88] to
learn the sentence embedding of each question. A dependency tree based RNN
is suited for question answering task since the impact of negations significantly



Fig. 28: Answerer module of GenQA [113]. Answerer is able to synthesize se-
quential answers using natural words with KB terms.

affect the answer and as such each word in question has different significance.
Iyyer et al. [41] use a contrastive max-margin loss function that is applied to the
dot product between the question sentence and the correct answer representa-
tion, multiplied by the rank difference between the incorrectly sampled answer to
correct answer which is mapped to a simple linear functional. An answer repre-
sentation learning framework helps with the generalization in both question and
answer aspect. Since a fixed answer size is used for learning the question-answer
mapping, it is a very domain specific approach.



4.3 FQA over multiple sources

A multiple-source based FQA requires question interpretation for different sources
and alignment between multiple sources. Commonly used multiple sources in-
clude either multiple KBs or a single KB augmented with textual information
to overcome sparseness of KBs.

Das et al. [22] apply question answering using memory networks over a uni-
versal schema which helps to jointly answer questions concerning either knowl-
edge bases or texts. The universal schema matrix is attended over in memory
networks to find the set of relations that are relevant to the question to finally
obtain a softmax layer to answer question on. An attention mechanism between
key of schema which is constructed by concatenating embedding of column and
row values of schema and input question is used to learn the mapping from ques-
tion to answer entity as shown in Figure 29. The model complexity makes this
approach unsuitable for application to small set FQAs.

Fig. 29: Memory Networks attending the facts in universal schema [22].

Bordes et al. [15] use Reverb to generate question pattern from templates
which are then used to learn an embedding which maps questions to answers
into embedding representations. All words and entites and relations in KBs are
mapped into one single vector representation using averaging. This work is one of
the earlier work on embedding-based QA and suffers from limitation of training
data when evaluated on WikiAnswers dataset [27].

The major constraint on factoid question answering models is data limitation.
While there are multiple ways to phrase a single question, the dataset size suffers
from sparseness and is unable to work with methods that require more training
datasize. SimpleQA have made substantial progress recently due to the intro-
duction of SimpleQuestions [16] dataset, making larger neural network models
trainable till convergence without overfitting. While the focus on SimpleQA task
is to generalize mapping of question to facts, non-simple QA tasks and multi-
resource open domain QA task require learning mathematical and functional
dependencies required to answer the question. This makes the problem consider-
ably more complex, while at the same time, limited training data constrains the
model to use lesser parameters. There are also very few methods that attempt
to leverage multiple knowledge sources.



5 Attention-based Question Answering

Attention-based QA are extremely popular approaches for multi-modal data
problem such as Visual Question Answering (VQA) and problems requiring
deeper understanding of input data such as Reading Comprehension (RC) (also
called Machine Comprehension). A common approach to VQA is illustrated in
Figure 30. The baseline model concatenates visual and textual representations
obtained from CNN and RNN respectively to perform joint inference. This ap-
proach can be improved upon by introduction attention maps for input image
- with embedding for a certain section of image - which are then attended over
using attention mechanism for learning a joint embedding, which then performs
the final classification or sequence generation task. Multimodal bilinear compact
pooling [29] propose an efficient but highly optimized bilinear pooling over two
data sources enabling a robust embedding for visual question answering.

Fig. 30: Common approaches to visual question answering [103]

Kazemi and Elqursh [45] obtain state-of-art performance in Visual Question
Answering. Their architecture (Figure 31) consists of embedding an image using
ResNet [36]. The high level representation of image is a three-dimensional tensor.
The questions are embedded using standard LSTM-network. A multiple atten-
tion distributions over spatial dimension of the image features are computed
using the embeddings of image and question. The attention distribution gives
image glimses over the original input image, which are concatenated with image
and text embeddings and fed to a fully connected neural network for prediction.

Fig. 31: An overview of Kazemi and Elqursh [45] approach to VQA.

Another problem that is modeled using neural networks with attention is RC
task. In fact, RC and VQA architectures are closely related. Kumar et al. [50]



apply the same architecture to both problem (Figure 32) and obtain substantial
improvements over baseline methods.

Fig. 32: Dynamic Memory Networks application to textual and visual question
answering [50].

R-Net [98] (Figure 33) obtain state-of-art result on most complete RC dataset,
SQuAD [78]. The difference between VQA and RC lies in decoding stage of in-
ference where VQA decoding is done based upon preset vocabulary. RC datasets
might require sampling of input text to generate answer phrases or sequences.
This requires probabilistic decoding using combination of language decoding and
pointer networks [96] to obtain answer effectively. R-Net uses GRU to learn em-
beddings for input question and sentence which is then passed to gated attention-
based recurrent networks to determine importance of information in the pas-
sage regarding a question. Each passage representation incorporates aggregating
matching information from the whole question. Another gate is added to deter-
mine importance of passage parts relevant to the question. Another attention to
match over itself is used to incorporate context into question-aware embeddings.
Pointer Network is used to predict the start and end position of the answer.

Fig. 33: R-Net architecture for reading comprehension [98]



While there are many different variants of visual question answering and read-
ing comprehension methods in literature (see [1] for more details), the underlying
mechanism entails learning the fixed vector representation for both question and
input data (either image or text), then using the attention or bilinear pooling
to learn a joint embeddings. The learned vectors are used for making predic-
tions. We do not attempt to cover the entire attention-based question answering
methods due to space and time constraints.

6 Future Directions

I propose two directions for future: 1) Adding structural constraints to knowledge
base embedding methods to tighten dependencies over relation path and entity
types and 2) applying embedded knowledge bases to neural models for multi KB
question answering.

6.1 KB Embedding with structural constraints

The current approaches to embedding large entities such as KGs or a KB with
ontology treat the data as a triple, essentially ignoring structural information
and constraints present in the original representation. There is some progress in
including structural information during embedding ([35], [69]) where a composi-
tional relation is formulated between facts. The tail fact of a triple can be reached
from head fact , in a large-scale KG, through multiple paths. Such path is anal-
ogous to structure information of underlying KBs, which acts as a regularizer
to learn better embeddings. Such method can be compared to word embedding
methods [53] which exploit context information to learn structure of natural
texts. However, there is even more structure information that can be used from
a Knowledge Graph (KG) or a Knowledge Base (KB). Such information can be
easily obtained in form of constraints, especially for KBs. For example; the type
information in Freebase is a constraint, as it restricts domain and range of a
relation.

We propose a novel method for learning embeddings of large-scale Knowledge
Base (KB) such as WordNet. We formulate the embedding learning process as
a transformation where the head and tail entities are transformed non-linearly
by a relation such that a true head and tail entity transformed by true rela-
tion are closest in the projected sub-space. We treat all elements of a triple as
sequences, such that each element is provided with additional information. For
ontology embedding, each sequence comprises of the entity type, relations and
sub-classes information regarding each element. For KGs, a sequence could be a
list of elements near the entity. We use a Recurrent Neural Network (RNN) ar-
chitecture for learning representation of entities, which are then jointly attended
over by relation embedding to obtain relation-transformed representations. Our
architecture is illustrated in Figure 34.



Fig. 34: Our proposed architecture for learning embedding for KBs.

Applying Learned Embeddings The current approaches exclusively use the
learned embeddings from KB for similarity score computation between incoming
question and triple. Such approaches while able to relate between texts and facts
fail to exploit the representation of KB. One primary issue is due to the much
larger size of entities and relations in a KB, making them exhaustively difficult
to consider completely during training and inference. A constraint-based KB
embeddings where each entity is identified by its constraint along with learned
representation, makes it possible to use KB in inclusive manner during learning.
An attention-based dynamic question embedding with optimal fact extraction
methods can be devised efficiently with a type and attribute constrained knowl-
edge base embeddings.

6.2 Applying multiple KBs to Neural Networks

Any question answering system can benefit from having more knowledge re-
sources during answer generation. Similar to [106] where additional Wikipedia
text source is used to verify an answer, an additional KB can ideally improve
the performance of a QA system significantly. The lack of application of multi-
ple KBs to QA problem is due to the current implementation being unable to
handle one single KB effectively. A recurrent paradigm for learning embeddings
can be applied to obtain a higher level representation of a sub-tree within a a
knowledge graph. The neural question answering models can benefit from sub-
tree embedding learning of KGs making it possible to use multiple KBs within
the same problem framework.
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