
UNIVERSITY OF OREGON

Graph Representation Learning and
Graph Classification

by

Sara Riazi

in the
Department of Computer and Information Science

June 2017

University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Abstract

Many real-world problems are represented by using graphs. For example, given a graph of
a chemical compound, we want do determine whether it causes a gene mutation or not.
As another example, given a graph of a social network, we want to predict a potential
friendship that does not exist but it is likely to appear soon. Many of these questions can
be answered by using machine learning methods if we have vector representations of the
inputs, which are either graphs or vertices, depending on the problem. A general approach
to extracting such vectors is to learn a latent vector representation for the vertices or
the entire graph such that these vectors can be used in machine learning tasks, such as
training a classifier or a predictive model (Bengio et al., 2013). The learned vectors should
reflect the graph’s structure and its attributes, including vertex and edge attributes. For
example, two adjacent vertices in a graph should have similar vector representations. The
problem of learning a latent vector representation for graphs or vertices is called graph
representation learning or graph embedding. In this document, we mainly focus on recent
developments in graph representation learning in different settings and its connection to
various problems, such as graph classification or graph clustering.

3

1 Introduction

Many real-world problems are represented as graphs or networks in different computational
domains, such as bioinformatics (Borgwardt et al., 2005a; Baldi and Pollastri, 2003),
chemical informatics (Ralaivola et al., 2005; Wale et al., 2008), vision (Shi and Malik,
2000; Felzenszwalb and Huttenlocher, 2004), or social networks analysis (Liben-Nowell
and Kleinberg, 2007; Backstrom and Leskovec, 2011; Agrawal et al., 2013).

In many of these problems, the input data is in the form of graphs, and the task is to
predict either node and edge labels or graph labels.

For example, chemical compounds are described as the interaction graph of the forming
elements, and based on the structure of the graph, the functionality of the compounds
differs. Given some known functionality, such as being toxic on nontoxic as the labels of
chemical compounds, the problem is to predict the functionality of an unseen compound
structure. This prediction can be seen as classifying each graph as being either toxic or
nontoxic.

Another interesting problem is learning protein-protein interactions. In this problem, each
node in the graph is a protein and the edges shows if two proteins interact. However,
studying the interaction of two proteins is expensive in term of the cost of required
resource. Therefore, the problem is to predict the presence of edges among proteins given
some known edges, so bio researchers can study only the interaction of proteins that their
algorithm predicts the existence of an edge between them. This problem can also be
considered as an edge label classification problem by supposing a complete graph among
protein and classifying each label as either present or not-present.

Community detection, especially in social analysis, is very popular for understanding the
structure of the network and how it grows. This problem is similar to classifying each node
as being member of a community or not. However, the general problem is unsupervised
since none of the memberships nor the number of communities are know in advance, but
in some cases we already know the label of some nodes and we want to predict the labels
of the others.

One general approach that helps us to solve these problems is to represent the graph data
as a low dimensional vector representation and then use linear or non-linear classification
algorithms such as support vector machines (Bishop, 2006).

4

There exists different ways for finding a representation for graph data, such as extracting
structural features from the graph and use them as a representation. Graph kernels are
well-known approaches that use these structural properties for comparing two graphs.

The more recent approach is to use neural networks to learn a latent representation. In
these approaches the neural network is responsible for extracting the structural features as
set of latent parameters, which are not explicitly observable from the structure of graphs.

Learning node representation is the problem of indicating each vertex of the graph using
a low dimensional vector such that the vectors of similar vertices are located near each
others in the euclidean space. Therefore, these low dimensional representation can be
used in different algorithms for graph clustering and classification. This low-dimensional
can also be used for visualizing graph data either by learning a 2-dimensional vector
representation or learning a low-dimensional vector representation and learn another
mapping to 2-dimensional space. A well-known algorithm for the latter approach is
t-SNE (Maaten and Hinton, 2008), which takes low-dimensional vectors as the input and
maps them to a 2D space.

The goal of this document is to discuss different approaches for representing graphs or
nodes in low-dimensional vector spaces, and the use of these representation for learning
from graph data, especially in task of label predication for nodes, edges and graphs.

The rest of this document is organized as follows: in Section 2, we introduce the main
approaches for learning representation learning of word sequences, which have inspired
many graph representation learning algorithms. In Section 3, we discuss general graph
representation algorithms, then in Section 4, we see how we can learn better representation
if we jointly train the representation learning and the classification and clustering task.

Deep neural networks are widely used for representation learning, in Section 5, we explore
how we can exploit deep neural networks for learning graph representations. In Section 6
and Section 7 we discuss the main approaches for graph representation learning when
associated information is available for every vertex or when we have different node or edge
types. Section 8 explores the problem of graph classification using graph kernel methods
and neural networks, and finally, Section 9 concludes the document and discusses possible
future directions.

5

2 Sequence Representation

The structure of graphs can be captured by sets of random walks starting at every vertex
of the graph. Each of these random walks forms a sequence of vertices. Therefore, the
algorithms for word representation that uses sequences of words (sentences) as the input
can also be exploited for graph representation Perozzi et al. (2014). Word representation
or word embedding is an important tool in language modeling Bengio et al. (2003), which
helps algorithms to extract similar words. The idea is that given a corpus, similar words
would appear within similar context. A context of a word is the set of surrounding words
in the same sentence.

The basic word representation is a 2-gram or one-word context, in which we only care
about the co-occurrence of a word and its context that includes only one word. Basically
two words are similar if they appear within similar context more often. An N-graph is
the generalization of 2-gram which focuses on the appearance of similar words in similar
contexts that have more than one word. The most well-known word representation learning
algorithm is Skip-gram (Mikolov et al., 2013b,a), which we discuss in more detail.

Given a corpus with n words, originally each word w is represented using an one-hot-
encoding vector, which is an n-dimensional binary vector that has one entry for each
word in the corpus. The one-hot vector representation of w has only one non-zero element
located in the column corresponding to word w. The objective is to learn a d-dimensional
vector representation for each word, such that d� n and similar words have close vector
representations.

Skip-gram measures the similarity of words based on their context. The context of a target
word w is a window of words surrounding the target word, which is called the context
words c. The objective function of Skip-gram is to maximize the probability of predicting
the context words given target words:

max
∑
w∈V

∑
c∈Vc

logP (c|w), (1)

where V is word vocabulary and and Vc is the context vocabulary, which may be considered
to be equal to V . Skip-gram estimates P (c|w) using a softmax function:

P (c|w) =
exp(Φ(w)TΦ(c))∑
c′∈V exp(Φ(w)TΦ(c′))

, (2)

where Φ(.) is a function from vocabulary space to a d-dimensional vector representation.

6

However, because the size of the context vocabulary is often very large, computing the
denominator in the above softmax is prohibitive. To overcome this obstacle hierarchical
softmax (Morin and Bengio, 2005) and negative sampling (Mikolov et al., 2013c; Dyer,
2014) have been widely used.

The idea of hierarchical softmax is to group words into classes in order to reduce the
summation. If we can predict the class of each word, then we only have to do the
summation for the words belonging to that class, which reduces the required computation
significantly. Morin and Bengio (2005) propose using hierarchical clustering, in which they
form a binary tree of classes, and each intermediate node only predicates whether the word
belong to the left or right sub-classes. They use softmax, for prediction at intermediate
node:

P (bl = 1|w) = σ(Ψ(bl)
TΦ(w)), (3)

where Ψ(.) is the vector representation of each intermediate node and σ(.) is the sigmoid
function: σ(x) : 1/(1 + exp(−x)). Since the variable of the intermediate nodes are binary,
we don’t need to compute the normalization constant by simply selecting P (bl = 0|w) =

1− P (bl = 1|w). Using hierarchical softmax, Relation 2 can be computed using:

P (c|w) =

dlog |V|e∏
l=1

P (bl|w), (4)

which needs evaluating dlog |V|e different softmax functions and is exponentially more
efficient than computing Relation 2. For example, Figure 1 shows a factorization for
computing P (v3|Φ(v1)) as P (b1 = 0|Φ(v1))P (b2 = 1|Φ(v1))P (b5 = 0|Φ(v1)).

Mikolov et al. (2013c) introduce negative sampling as another way to deal with the com-
putational complexity of the normalization constant of the softmax relation (Relation 2).
Negative sampling penalizes the co-occurrence of random context words and the target
words. Therefore, the objective function of skip-gram becomes the following:

σ(Φ(c)TΦ(w)) +
k∑
i=1

Ec′∼PD
[log σ(−Φ(w)TΦ(c′))], (5)

where PD is an empirical unigram distribution: PD(c) = #(c)
D

.

Levy and Goldberg (2014) show that optimizing the above objective function is similar to
factorization of matrix M, whose elements, Mij , are shifted point-wise mutual information

7

Figure 1: (Perozzi et al., 2014) Hierarchical softmax for computing P (vi|Φ(v)). Each
intermediate node defines P (bl|Φ(v)), which be trained using logistic regression.

(PMI) of words and contexts: Mij = log #(w,c)|D|
#(w)#(c)

− log k. To learn the representation using
matrix factorization the goal is to reconstruct the matrix M as the linear product matrix
U ∈ R|V|×d and V ∈ R|V|×d:

min
U,V

M − UV T , (6)

where there rows of U and V are the vector representations of target words and context
words, respectively.

3 Learning Graph Representation

Similar to word representation, the goal of graph representation is to learn a low-
dimensional vector for each vertex in the graph such that the vector representation
carries the structural properties of the graph. Formally, for graph G(V , E) of vertex set
V and edge set E , we want to learn a d-dimensional vector representation Φ(v) for each
v ∈ V such that d� |V|.

DeepWalk (Perozzi et al., 2014) suggests using a model similar to the Skip-gram model for
learning Φ(v), which maps vertex v to its vector representation. DeepWalk relates each
vertex to one word and the set of random walks on the graph G to the corpus. Using this
relationship, DeepWalk successfully applies the Skip-gram model for learning the graph
representation. DeepWalk generates a set of fixed-length random walks Rv starting at
every vertex v of the graph. Then for every vertex vj of random walk Rv, it considers the
vertices surrounding vj (in a window centered at vj) as the context of vj. Finally, the

8

representation vector of vj, Φ(vj), is calculated by optimizing the following relation:

max
Φ

∑
i∈{j−w,··· ,j−1,j+1,···j+w

logP (vi|Φ(vj)), (7)

where the size of the window is 2w.

DeepWalks uses hierarchical softmax to compute the probability of P (vi|Φ(vj)).

Node2vec (Grover and Leskovec, 2016) is another successful representation learning
approach for graphs which is similar to DeepWalk in term of objective function and
using random walks, however it uses negative sampling instead of hierarchical softmax to
overcome the intractability of Relation 2. Moreover, Node2vec defines the neighborhood of
node vj as its context, and introduce methods for extracting the neighborhood of a vertex.
The main difference between the random walk exploration and neighborhood exploration
is in introducing a search bias α, which controls selecting the next node to visit not only
based on the current node, but also on the previous node. To select the next node to visit
we need to sample from:

P (vj = x|vj−1 = v, vj−2 = t) =

{
α(t,x)wxv

Z
if (v,x) ∈ E

0 otherwise
, (8)

where Z is the normalization constant, and α is defined based on the shortest path distant
dtx between node t and x as the following:

α(t, x) =


1
p

if dtx = 0

1 if dtx = 1
1
q

if dtx = 2

, (9)

where p and q are positive parameters that control neighborhood exploration. p controls
how often the random walk revisits the previous node, and q controls how often the
random walk explores nodes that are not immediate neighbors of the previous node. For
example, for p� 1 and q � 1 results in random walks which are more likely emulating
depth-firth search, while the random walks generated with p > g � 1 are more likely
emulating breadth-first search.

Although DeepWalk and Node2vec are successful in learning graph representations, they
mostly suffer from the fact that random walks only capture local structural properties of
graphs; therefore, what they learn mostly depends on what random walks can capture.

9

Figure 2: (Grover and Leskovec, 2016) Neighborhood exploration using search param-
eters p and q. The goal is to select the next node to visit given that the current and

previous nodes are v and t, respectively.

Moreover, to learn the representation of large-scale graphs, they may need many random
walks for each vertex which is prohibitive.

Tang et al. (2015b) address these problems by defining an objective function which directly
depends on the structure of graph instead of relying on random walks for capturing the
structure of input graphs. This objective function is based on the definition of proximity
in graphs, which includes first-order proximity and second-order proximity.

First-order proximity is the pairwise similarity between two vertices vi and vj , defined
as the joint probability distribution over both of them: P (vi, vj) = σ(Φ(vi)

TΦ(vj)).

Second-order proximity is the pairwise similarity between two vertices vi and vj that
share similar context or neighborhood, and is defined using P (vi|vj):

p(vi|vj) =
exp(Φ(vi)

TΦ(vj))∑|V|
k=1 exp(Φ(vk)TΦ(vj))

(10)

Tang et al. (2015b) define empirical distributions based on the graph structure for both
P (vi, vj) and P (vi|vj), and then minimize the distant between empirical distribution and
the model defined as KL-divergence.

The empirical distribution for P (vi, vj) is defined as wij

W
, where W is the total weights of

the edges in the graph and wij is the weight of the edge between vertex i and vertex j.
Similarly, the empirical distribution for P (vi|vj) is defined as wij∑

i wij
.

10

Therefore, minimizing KL-divergence for these two models results in the objective functions
O1 and O2 for the first-order and second-order proximity, respectively:

O1 : min
Φ
−
∑

(i,j)∈E

wij logP (vi, vj)

O2 : min
Φ
−
∑

(i,j)∈E

wij logP (vi|vj) (11)

Tang et al. (2015b) experimentally show that optimizing either O2 or O2 +O1 is learning
a better representation comparing to DeepWalk.

3.1 Multi-Scale Representation

In general, Skip-gram based models only consider the linear interaction of vertices by
considering the co-occurrence of context vertices and target vertices together. However, a
random walk sequence captures multi-scale information from the graph. A random walk of
length k can be considered as a sample from P k, two samples from P k−1, and so on, where
P is the normalized transition matrix of the graph. Therefore, the amount of information
about different scale is not balanced. To make a balanced multi-scale representation,
Walklets Perozzi et al. (2016) extend the idea of DeepWalk by generating samples from
different scales. Walklets construct skipped random walks, in which two adjacent vertices
in the skipped random walk of scale k are k − 1 vertex apart in the original random walk.
Therefore, it can generate enough samples from all target scales, then use Skip-gram to
learn a multi-scale representation for the graph.

Similar to Walklets, GraRep (Cao et al., 2015) learns multi-scale representation for a
graph. For scale k, GraRep, factorizes P k using SVD and find d-dimension representation,
and finally concatenate all representation of different scales together.

Comparing to Walklets, GraRep using the whole P k instead of samples from it, which
makes it more computationally expensive. However, we can extract the representation of
each scale easily from the representation learned by GraRep, which is not possible for the
representation learned by Walklets.

Using matrix factorization for learning graph representation and random-walk based
approaches are connected as Yang and Liu (2015) show that optimizing DeepWalk objective
function is equal to factorizing matrix M = log

∑t
1
P t

t
following the formulation of Levy

and Goldberg (2014) for relation of matrix factorization and Skip-gram.

11

4 Guided Representation Learning

The learned representation may be used for different optimizations for other tasks such
as vertex clustering or classification. Jointly learning of representation and the target
application results in a better-guided representation. Here, we discuss guided representation
learning for both vertex classification and clustering.

4.1 Vertex Classification

Vertex classification is an important problem since many semi-supervised learning algo-
rithms can be reduced to vertex classification (Zhu et al., 2005). The graph captures the
similarity among the points, so every vertex represents one data point either labeled or
unlabeled. This problem is also known as collective classification (Sen et al., 2008). Several
methods have been proposed for collective classification such iterative classification (Sen
et al., 2008). Label Propagation (Zhu and Ghahramani, 2002) is another well-known
algorithm for vertex classification, in which the labels of the unlabeled points are decided
based on the majority vote on the labels of the neighbors, and since many neighbors may
be originally unlabeled; therefore, Label Propagation iteratively do the label assignment
until it converges.

In general, in a semi-supervised setting, we are given the labels of a portion of data
points, and the problem is to determine the labels of remaining unlabeled points. This
setting is important since the number of labeled data is limited while we often access to
considerable amount unlabeled data. The hypothesis of semi-supervised learning is to take
the advantage of the unlabeled data to improve the performance of learning algorithms.
However, it has been studied that an infinite number of unlabeled data is not always
beneficial (Nadler et al., 2009).

Semi-supervised problems can be seen as the supervised problems with regularization on
the graph of point similarities (Weston et al., 2012):

min

Nl∑
i=1

l(yi, f(xi)) + λ

Nl+Nu∑
i,j=1

L(f(xi), f(xj),Wij), (12)

where Nl and Nu is the number of the labeled and unlabeled points, respectively, and Wij

is the weight of similarity of point i and point j. If we defined the regularization function

12

L as Wij‖f(xi) − f(xj)‖2 then L = fT∆f , where ∆ = D −W is the Laplacian of the
similarity graph and D is a diagonal matrix Dii =

∑
jWij.

Graph embedding has also been used for vertex classification (Tang et al., 2015b; Grover
and Leskovec, 2016). In those setting the learned representation of labeled and unlabeled
vertices is used as the input features in traditional classification algorithms such SVM.
However, recently, Yang et al. (2016) show that we can get better classification performance
if we jointly learn the graph embedding and train the classification algorithm. Yang et al.
(2016) introduce a combined objective function for the joint learning:

min− 1

Nl

Nl∑
i

logP (yi|xi, ei)− λE(i,c,γ) log σ(γwT
c ei), (13)

where the first term is the supervised loss and the second term is the unsupervised term.
In Relation 13, ei and xi are the representation and input feature of vertex i, respectively,
and wc is the representation of the context c. γ controls the negative samples such that if
γ = −1, we randomly sample a context c from possible vertices. If γ = 1, we select the
context based on the samples random walk similar to DeepWalk (Perozzi et al., 2014).
Here, yi is label of the labeled vertices. This setting is transductive, which means that it
cannot classify an unseen point.

Yang et al. (2016) also give an inductive formulation for this setting by removing the
dependence of the supervised part on embedding ei. A classifier trained using inductive
formulation can classify unseen data points.

4.2 Vertex Clustering

In graph clustering, the objective is to label each vertex with the community that it belongs
to. However, similar to many data clustering algorithms such as K-means, the number of
communities are not known in advance. The problem of community detection or graph
clustering has been studied extensively. Among the developed algorithms modularity
based community detection (Brandes et al., 2008), spectral clustering algorithms (Spielmat
and Teng, 1996; Lin and Cohen, 2010), label propagation (Zhu and Ghahramani, 2002;
Fujiwara and Irie, 2014; Ugander and Backstrom, 2013) have been more successful.

An interesting connection of graph clustering or vertex clustering to the representation
learning is that we can use embedded vector of vertices as data points and run K-means
clustering to find possible graph clustering. This is similar to spectral clustering, but in

13

spectral clustering, the representation is constructed using the eigenvectors, while in the
representation learning, the embedded vector is learned using probabilistic methods.

We can improve the objective function with extra terms that guides the learning pro-
cedure to force the vectors of vertices in similar communities to be close to each other,
especially if the target application of the representation learning is a vertex clustering
application (Zheng et al., 2016; Tu et al., 2016; Wang et al., 2017).

To capture the community structure from the embedding, Zheng et al. (2016) use Gaussian
mixture models (Bishop, 2006) to find the clusters given the embedding of the vertices.
They suppose that the embedding of vertices of a cluster has a multivariate Gaussian
distribution. Therefore, the embedding for the community k of the graph G is defined as
tuple (Ψk,Σk), where Ψk and Σk are the mean and covariance matrix of a multivariate
Gaussian distribution over the vertex embedding of G. As a result, community embedding
characterizes the conditional probability of vertex vi be a member of community k as a
Gaussian distribution parameterized by Ψk and Σk:

P (vi|zi = k) = N (Φ(vi); Ψk,Σk), (14)

where zi is the hidden variable indicating the community of vertex vi. Therefore, the
objective function for the community embedding becomes:

O3 =
β

K

N∑
i=1

log
K∑
k=1

πkN (Φ(vi); Ψk,Σk), (15)

where πk is the fraction of nodes resides in the cluster k, N is the total number vertices
in the graph, and K is the number of clusters. β controls the contribution of O3 in the
overall objective function with first-order and second-order proximity terms.

5 Learning Representation using Neural Networks

The goal of representation learning or embedding is to define a mapping f : Rn → Rd

such that d � n. The function f is used to transform points from the original space
into a low-dimensional space, which is similar to dimensionality reduction. Therefore,
the approaches for dimensionality reduction can also be used to define the mapping. For
example, singular value decomposition (SVD) is a well-known linear dimensional reduction
method, which factorizes the matrix of data points X as X ≈ UΛV T , where X is m× n

14

Figure 3: Simple stacked autoencoder with two layers of hidden variables.

matrix of m n-dimensional data points, and U and V are two m×d matrices. Λ is diagonal
matrix of d singular values. In this setting the d-dimensional representation of each point
xi is defined as ΛV T

i .

Another successfully applied dimensionality reduction is non-linear transformation. Lapla-
cian eigenmaps (Belkin and Niyogi, 2003) try to learn a representation for data points
considering the proximity of the points encoded as a similarity matrix W . To find the
representation, we have to minimize the following objective function:

L =
∑
i,j

Wij‖fi − fj‖2 = fTLf

s.t.fTD1 = 0, fTDf = I, (16)

where L = D −W is the laplacian and D is a diagonal matrix such that Dii =
∑

jWij.
The goal of the constraints is to make the representations balanced.

Another non-linear approach for learning representation is using neural networks. These
type of neural networks are called autoencoders (Vincent et al., 2010). Figure ?? shows
a simple autoencoder with two layers of hidden variables. The objective function of an
autoencoder is minimizing the reconstruction loss:

∑
x∈D ‖x̂−x‖, where D is the training

set of points. After learning the parameters, the embedded vector of an input data point
is the value of the middle hidden layer for that input. Autoencoders are computationally
more efficient than SVDs (the learning time of autoencoder is linear in the number of
vertices, while the running time of SVD is quadratic in the number of vertices (Cao et al.,
2016)).

Given an adjacency matrix A for a graph G, if we consider each row of matrix A as a
sample point Ai, then we can use a stacked autoencoder to learn a representation for

15

each sample point. Here, for each vertex i, the corresponding input vector Ai contains
the neighborhood information of vertex i. Therefore, the representation that we learn
using a stacked autoencoder embeds the second-order proximity (Wang et al., 2016).
However, since the most entries of Ai are zero, naively using autoencoder to minimize
the reconstruction loss results in reconstructed vector Âi whose all of its entries are zero.
To address this problem, Wang et al. (2016) use a modified loss function that increases
the loss when the value of the entry is one. The modified loss function encourages the
autoencoder to avoid predicting all zero vector:

L2 =
n∑
i=1

‖(x̂i − xi)� bi‖22, (17)

where � is element-wise multiplication, and bij is one when xij is zero and some value
greater that one when xij = 1. Therefore, the model is forced to learn a meaningful
representation by increasing the loss when xij = 1.

The aforementioned loss function only preserves the second-order proximity. To preserve
the first-order proximity, we need the learned representation of two vertices be close to
each other if those vertices are neighbors in the graph. There if Aij is one we want to g(AI)

and g(Aj) be close to each other. Wang et al. (2016) introduce the following objective to
satisfy the first-order proximity:

L1 =
∑
ij

Aij‖y(K)
i − y

(K)
j ‖

2
2 (18)

Figure 4 shows how two autoencoders for two vertices interact to preserve the first-order
proximity. It is worth mentioning that each of the instances of the autoencoder shares the
weight vectors. By jointly optimizing L1 and L2, the learned representations satisfy both
first-order and second-order proximity objectives. Wang et al. (2016) experimentally show
that using stacked autoencoders results in better performance comparing to LINE (Tang
et al., 2015b), which optimizes the first-order and second-order proximity objectives using
a shallow neural model.

In another work, Cao et al. (2016) build on their previous work GraRep (Cao et al.,
2015) by replacing SVD with a stacked denoising autoencoder. Moreover, instead of
factorizing each P k separately, they apply dimensionally reduction on combination of
them: r =

∑K
k=1 w(k)P k, where w(t) is a non-decreasing function.

16

Figure 4: (Wang et al., 2016) Stacked autoencoder model for learning node representa-
tions. The learned representation for vertex i is y(K)

i

6 Information Enhanced Representation Learning

The method previously described for learning representation of graphs, only considers the
structure of the graph for finding the representation, while in many real-world graphs,
other information is attached to the users, which can improve the learned representation.
For example, in the Twitter graph, each user is a vertex in the graph, and the edges show
the friend and follower relationship. Suppose we are interested in learning the vertex
representations such that the representations of the political tweets are close to each
other. Such a representation can be used to group the political users together. Having the
information about the users’ tweets helps the representation to better distinguish between
political and non-political users. This problem is known as collective classification (Sen
et al., 2008), in which the labels of the subset of users are given as the training data. We
study the classification of vertices in Section 4.

Yang et al. (2015) use both the structure of a graph and text features associated with
each vertex to learn a representation, which is called text-associated deep walk (TADW).
Yang et al. (2015) first show that the vertex representation learned by DeepWalk (Perozzi
et al., 2014) can also be obtained by using matrix factorization. A similar result has been
shown for learning word representation using skip-gram (Levy and Goldberg, 2014). In
the matrix factorization version of DeepWalk, the objective is to find a factorization of a
low-rank matrix M to minimize:

min
W,H

∑
ij

(Mij − (W TH)ij)
2 +

λ

2
(‖W‖2

F + ‖H‖2
F), (19)

17

Figure 5: (Pan et al., 2016) The neural network model of the DeepWalk method (left),
and the coupled neural network model of Tri-Party (right).

where W ∈ R|V |×k such that each rows shows the representation of the target vertices and
H ∈ Rk×|V | such that the columns show the representation of the context vertices (Yang
et al., 2015). The matrix M is computed from the generated random walks:

Mij = log
N(vi, cj)

N(vi)
, (20)

where N(.) and N(., .) count the occurrence and the co-occurrence of the vertices and
contexts. In order to incorporate the text features, TADW supposes that the text features
for each vertex is given as matrix T ∈ Rft×|V |, where ft is the dimension of the text features.
Therefore, TADW minimizes the following matrix factorization objective functions:

min
W,H

∑
ij

(Mij − (W THT)ij)
2 +

λ

2
(‖W‖2

F + ‖H‖2
F), (21)

where H ∈ Rk×ft . In the task of vertex classification when the text features are available,
TADW shows a considerable improvement over DeepWalk and other representation learning
methods that only consider the structural properties of the graph. However, for large-scale
graphs solving Relation 21 is very computationally expensive in terms of constructing
matrix M and running matrix factorization methods such as SVD. To alleviate this
problem, TADW constructs an approximation of M which reduces the accuracy of the
algorithms.

To address the scalability problem, Pan et al. (2016) introduce a coupled neural network
architecture that learn representation from three parties: graph structure, node contents
and node labels (if is available otherwise it ignores this part). This architecture is called

18

Tri-Party. Figure 5 shows the architecture of Tri-Party as well as the neural network
models of the DeepWalk method. The Tri-Party’s neural network model can capture
the inter-node occurrence similar to DeepWalk, while it can also capture node-word and
label-word occurrence. Comparing to TADW, Tri-Party extracts the text features jointly
with learning the representation, while TADW first learns the text features and then used
it for learning the vertex representations. In tasks of vertex classification, Pan et al. (2016)
show that Tri-Party is constantly better than TADW.

7 Heterogeneous Graph Embedding

Many existing algorithms for graph embeddings only consider the homogeneous graphs
while nowadays, many real-world networks are heterogeneous. For example, in social
networks, we can have multiple node types such as videos, images, text, and users, which
are connected through edges with multiple types as well (Sun and Han, 2013). Some edges
link single classes of objects, for example, image to image, while some others link different
class of objects such as users to images.

A successful embedding methods for the heterogeneous should jointly consider the multiple
content types and structural properties of the graphs.

The main problem of jointly learning the vertex representation is that relations among
different vertex types have different semantic, so they are not comparable in general. There-
fore, using methods such as DeepWalk (Perozzi et al., 2014) or LINE (Tang et al., 2015b)
that does not discriminate among different relation types result in a poor performance in
the presence of heterogeneous networks.

Two main approaches have been introduced to solve this problem. One approach is to
separate the networks of different types and jointly learn a representation for all networks.
In this approach, the heterogeneous network is union several homogeneous networks.
Tang et al. (2015a) study learning a word embedding by constructing a heterogeneous
networks, which consists, a network of word-word relations, a network of word-document
relations, and a network of word-label relations. They have extended LINE’s objective
function (Equation 11) by introducing separate terms for different networks and then
jointly optimizing them:

O = Oww +Owd +Owl, (22)

19

Oww, Owd, and Owl are the objectives of word-word, word-document, word-label networks,
respectively.

Similarly, Xu et al. (2017) separate a heterogeneous network into the constructing ho-
mogeneous networks and edges between these networks. As it learns a latent space
representation for the vertices of each network using first order proximity similar to
LINE (Tang et al., 2015b), it also considers the inter-network edges that connect two
homogeneous networks. To represent these edges, Xu et al. (2017) defines the following
joint probability over the nodes from two different networks:

p(ui, vj) =
1

1 + exp(−uTi Mvj)
, (23)

where M is du × dv real-valued matrix that relates the latent space of two homogeneous
networks and du and dv are the dimension of the representations of the networks. For
two homogeneous network Gu(Vu, Eu) and Gv(Vv, Ev) and crossing edges Euv, the final
objective of this model becomes as:

O = Lpos + Lneg + Lreg, (24)

where Lpos emphasizes the existing edge, Lneg penalizes the model for considering an
edge between two not-connected vertices, and Lreg is the regularization part: Lreg =

λ
∑

i∈Vu ‖ui‖
2 + γ

∑
i∈Vv ‖vi‖

2 + ‖M‖. Here the parameter γ, λ and β are for adjusting
the regularization on different part of the objective function.

Xu et al. (2017) define Lpos as:

Lpos =− [
∑

(i,j)∈Eu

wuij log p(ui, uj)+∑
(i,j)∈Ev

wvij log p(vi, vj)+∑
(i,j)∈Euv

wuvij log p(ui, vj)]. (25)

20

Figure 6: (Chang et al., 2015) The architecture of HNE. The image input is fed to
convolutional neural networks and text input is fed to fully connected neural network. The
output of both networks are mapped to the same latent space using linear transformations.

The goal of Lneg is penalize the model from presenting an edge between two vertices that
are not connected:

Lneg =− [
∑

(i,j)/∈Eu

wuij log 1− p(ui, uj)+∑
(i,j)/∈Ev

wvij log 1− p(vi, vj)+∑
(i,j)/∈Euv

wuvij log 1− p(ui, vj)]. (26)

However, considering all pairs of vertices in a large-scale graph is impractical; therefore,
Xu et al. (2017) only use a limited number sample from all possible pairs.

In another approach, Chang et al. (2015) introduce HNE which learns a representation
for a heterogeneous network of image and text data. HNE uses convolutional neural
networks for embedding image data and fully connected neural networks for embedding
text. However, it supposes that the vector representation of text data and image data are
not comparable, so it introduces matrices U and V , which map the vector representation of
image and text data, respectively, into an r-dimensional space using linear transformations.
Figure 6 shows the architecture of HNE.

Given tj and xj are text and image samples, respectively, the output representation
of a convolutional neural network is a dT dimensional vector gT (tj) and the output
representation of a fully connected neural network dI dimensional vector gI(xj). The

21

linear transformation maps both of these vectors into a r-dimensional space:

ĝI(xj) = UTgI(xj) (27)

ĝT (tj) = V TgT (tj) (28)

Finally, HNE minimizes the following objective function over the set of parameters of con-
volutional neural network PI , full connected neural network PT , and linear transformation
matrices U and V using stochastic gradient descent:

min
PI ,PT ,U,V

1

NII

∑
vi,vj∈VI

L(ĝI(xi), ĝI(xj))

+
λ1

NTT

∑
vi,vj∈VT

L(ĝT (ti), ĝT (tj))

+
λ2

NTI

∑
vi∈VT ,vj∈VI

L(ĝT (ti), ĝI(xj)), (29)

where VI and VT are the set of image and text vertices, respectively, and NII , NIT , and
NTT are the number of image-image, image-text, and text-text in the heterogeneous
graphs. The loss function L is defined as L(yi,yj) = log(1 + exp(−AijyTi yj)), where Aij
is one if there exists an edge between the vertices represented by r-dimensional vectors yi
and yj, otherwise Aij is zero. The loss function L forces the r-dimensional representation
of vertices become close to each other if they are neighbours in the heterogeneous graph.

8 Classification of Graph Data

Classification of graph data has very important applications such as protein-protein
interaction or predicting the functionality of the chemical compounds. In the graph
classification problem, we are given a set of graphs {g1, g2, · · · gn}, in which only the labels
of a subset of graphs are seen, and the goal is to predict the label of unseen graphs.

Graph classification is a difficult task known to be NP-hard since we can reduce it to check
graph isomorphism. The basic method for comparing two graphs gi and gj is to compute
the edit-distance between two graphs, which is the number of modification needed for
transforming graph gi to graph gj.

22

8.1 Kernel Graphs

Kernel methods are one of the major development in machine learning. A kernel measures
the similarity of the data points, which can be used for classification. For example,
for a simple linear classification task h(x) = sign(wT q(x) + b) can be rewritten as
h(x) = sign(

∑
i αik(x, xi) + b), where k(x, xi) = q(x)T q(x) is the kernel function that

measures the similarity of sample points using the extracted feature function q(.).

Similarly, we can define k(gi, gj) to measure the similarity of two graphs gi and gj. In
this case q(gi) is the vector of features extracted from graph gi. Different graph kernel
methods merely differ based on how they extracted features from graphs. The most
common graph kernels are random walk kernels (Borgwardt et al., 2005b), shortest-path
kernels (Borgwardt and Kriegel, 2005), graphlet kernels (Shervashidze et al., 2009), and
Weisfeiler-Lehman graph Kernels (Shervashidze et al., 2011).

In the following sections, we briefly discuss the computation of these graph kernels.

8.1.1 Random-Walk Graph Kernels

A random-Walk kernel ksp(gi, gj) measures the similarity of two labeled graphs gi and gj
by comparing the random walks of the graphs. A label graph has a label lv ∈ {l1, l2, · · · lk}
to every vertex v ∈ V . The vector q(gi) is formed by counting the number of tuples
(lis, l

j
d,m) generated from the graph, where li and lj are the labels of source vertex s and

destination vertex d in a walk, respectively, and m is the length of the walk.

8.1.2 Shortest-Path Graph Kernels

Shortest-path kernels (Borgwardt and Kriegel, 2005) are similar to random-walk graph
kernels but the tuples (lis, l

j
d,m) are formed from the shortest paths instead of walks.

Shortest-path kernels are more accurate compare to random-walk kernels since the shortest
paths are more direct compare to random walks. However, forming shortest-path kernels
needs the computation of all shortest paths which is O(n3) so forming the shortest-path
kernel is O(n4).

23

Figure 7: (Yanardag and Vishwanathan, 2015) The set of non-isomorphic graphlets
with less than 6 vertices.

8.1.3 Graphlet Graph Kernels

The graphlet kernels (Shervashidze et al., 2009) count the number of substructures,
graphlets, in the graphs. Figure 7 shows the set of non-isomorphic graphlets with
fewer than six vertices. For this set of graphlets, q(gi) has 52 to entries, and each entry
shows the normalized count of the corresponding graphlet in the graph gi. For counting
graphlets with k vertices in a graph with n vertices, we need to explore

(
n
x

)
combinations,

which has complexity O(nk). Therefore, graphlet counting is more practical with smaller
k. To alleviate this problem, Shervashidze et al. (2009) suggest sampling the graphlets
from the graph instead of exhaustive search.

8.1.4 Weisfeiler-Lehman Graph Kernels

This category of kernels is based counting the share subtrees in graphs. Weisfeiler-
Lehman graph kernel uses an iterative relabeling process to compute the kernel values,
and it designed for labeled graphs. Each relabeling iteration maps graph (V,E, Lh) to
(V,E, Lh+1), in which only the labels of the vertices are different. In iteration h, each
vertex i collects the labels of its neighbors as tuple of (li, lN(i)), where li is the label of
vertex i and lN(i) is the set of labels of the neighbors of vertex i (Figure 8.a). At the end
of each iteration, the relabeling process assigns a new label for each tuple such that similar
tuples get similar labels (Figure 8, part c, and d). The final feature for each graph is the
concatenation of the label counts for each iteration (Figure 8.e).

8.2 Graph Classification Using Neural Network

The main problem of graph kernels is that the extracted features from the graphs are not
independent (Narayanan et al., 2016; Yanardag and Vishwanathan, 2015). For example,
one path of length l also includes the paths of length l − 1. Therefore, the vector

24

Figure 8: (Shervashidze et al., 2011) One iteration of the Weisfeiler-Lehman graph
kernel.

representations of two graphs may become dissimilar although the substructures in these
two graphs are similar. Yanardag and Vishwanathan (2015) shows this effect and names
it as diagonal dominance, which is shown in Figure 9. The matrices show constructed
Weisfeiler-Lehman kernels for classifying MUTAG dataset (Debnath et al., 1991).

To address this problem, Yanardag and Vishwanathan (2015) modify the graph kernels in
to order to consider the similarity among the substructures used for feature extraction
from the graphs:

Kd(gi, gj) = q(gi)
TMq(gj), (30)

where M is the matrix express the similarity among the substructures. Yanardag and
Vishwanathan (2015) use Skip-gram (see Section 2) to learn M . However, in order to

25

Figure 9: (Yanardag and Vishwanathan, 2015) a) Diagonal dominance effect for
Weisfeiler-Lehman graph kernel on MUTAG dataset. b) Adding similarity matrix

alleviate the problem.

use Skip-graph, we need to define the co-occurrence for the substructures. Yanardag and
Vishwanathan (2015) define a graph of edit-distance over the substructures and consider
two seen substructures as co-occurred if they are neighbors in the edit distance graph.

Using matrixM for emphasizing the similarity of the substructures increases the graph clas-
sification accuracy for the same feature extraction methods (Yanardag and Vishwanathan,
2015).

Another approach to consider graph structure in embedding is subgraph2vec (Narayanan
et al., 2016), which tries to predict a subgraph context given each subgraph. Each subgraph
is extracted as a breath-first-search tree rooted at each node based on Weisfeiler-Lehman
relabeling process (Shervashidze et al., 2011), and the context of each subgraph is the
rooted BFS tree extracted from all neighbors. Different from the aforementioned walk-
based approaches, subgraph2vec benefits from non-linear context which is more suitable
for graph data.

The state-of-the-art algorithm for graph classification defines a convolution neural network
(CNNs) over input graphs (Niepert et al., 2016).

CNNs were successfully applied in different domains especially vision and natural language
processing (Krizhevsky et al., 2012; Karpathy et al., 2014; Kim, 2014; Zhang et al., 2015).
The main idea of CNNs to extract features from local regions of the input by moving a
filter over different regions. However, in practice, we have a separate filter for each region,
but they share their weight to emulate the convolution of a filter. A local region connected
to a filter is called the receptive field of that filter. The convolution layer is followed by

26

Figure 10: (Yanardag and Vishwanathan, 2015) Edit-distance graph of graphlets shown
in Figure 7.

pooling layer which downsamples the output of the previous layer. The convolution layer
and pooling layer may be used for extracting more than one common features.

In the model developed by Niepert et al. (2016), each receptive field of the convolution
neural network receives a normalized subgraphs from the input graph.

However, the input of neural networks is fixed-length, but the graph data has a variable
size. Therefor, we need to normalize the graph data. Niepert et al. (2016) introduce
PATCHY-SAN algorithms to normalize the graph data, and then feed the normalized
graph into a convolutional neural network. PATCHY-SAN suppose that the nodes of the
input graphs have an ordering, so they are comparable. Given the ordering, it selects a set
of w vertices as the root nodes from the ordered set of vertices. It picks root nodes with
the stride of s, i.e. if it selects vertex i then the next vertex is i+ s. Then, PATCHY-SAN
extracts k nodes in the neighborhood of each root node using breath-first search, where k
is the size of the receptive fields of the convolutional neural network. Finally, it normalizes
each root node and its neighborhood based the closeness of each node in the neighborhood
to the root node of that neighborhood. Figure 11 shows the process of normalizing graphs
using PATCHY-SAN.

DeepGraphs (Li et al., 2016) is another approach for using deep learning for graph
classification. However, instead of constructing receptive fields based on neighborhood
extraction, it uses heat kernels (Chung, 2007; Bai and Hancock, 2004; Fang et al., 2015) to
capture the features from the input graph. Heat kernels over graphs are defined using the
eigenvalues and eigenvectors of the normalized graph Laplacian: LN = D

−1
2 AD

−1
2 , where

27

Figure 11: (Niepert et al., 2016) Normalizing the input graph in order to feed to the
convolutional neural networks.

D is diagonal matrix of output weights: Dii =
∑

jWij and A is the adjacency graph.
Then the heat kernel for diffusion step z is defined as a function of a pair of vertices i and
j:

hz(i, j) =

|V |∑
k

eλkzµk(i)µk(j), (31)

where k and µk are the kth eigenvalue and eigenvector of the input graph, respectively.
Heat kernels have interesting properties, for example, every isomorphic graph has the
same heat kernels, which makes it suitable for graph comparison and graph classification
tasks. However, computing heat kernel is expensive, so instead, Li et al. (2016) use a heat
kernel signature. A heat kernel signature over N diffusion steps is defined as a matrix
H ∈ R|V |N , where Hiz = hz(i, i). Heat kernel signatures simplify the computation of
heat kernels, while isomorphic graphs have similar heat kernel signatures. However, heat
kernel signature H still depends on the ordering of vertices. To address this problem,
Li et al. (2016) represent H with another matrix in which each column j is constructed
based on the histogram of values on the column j of H. In this construction, the order
of the vertices is not important anymore, which makes it possible to pass the matrix of
histograms as the input to a deep neural network.

9 Conclusion and Future Directions

In this report, we have described representation learning for the graph data in various
settings with shallow and deep neural networks. This setting includes homogeneous and
heterogeneous networks as well as when associated information is available. We have also
discussed how we can learn better representation by jointly learning that with clustering
and classification algorithms.

28

The most promising future direction is to develop a representation learning algorithm
that generalizes LINE (Tang et al., 2015b) to capture higher-order proximity. We believe
an approach based on message-passing can be better capture higher-order proximity
since two vertices with similar context receive similar messages. Moreover, a message-
passing approach can easily be implemented over data-parallel graph frameworks such as
GraphX (Gonzalez et al., 2014) to scale to very large graphs.

There are some possible directions mainly about jointly learning of the representation and
different target application. For example, Zheng et al. (2016) enforce a flat clustering of the
vertices, but in many applications, hierarchical graph clustering is more plausible, especially
for analyzing the graph structure. Using learning a flat clustering and representation, and
constructing the hierarchies from the representations may not be as accurate than jointly
learning the hierarchical clustering and representation. We want to further study this
specific problem as a future direction.

The representation learning approaches merely explore learning representations for the
vertices of the graphs. However, as we have discussed, in the graph classification problems,
we are given with different graphs and the problem is to classify the graphs, which depends
on feature extractions. However, these feature extractions are expensive, so we want to
explore ways to jointly learn vertex representation as well as representation for the whole
graphs. Therefore, the graph representations can be used to train classifiers.

Bibliography

[Agrawal et al. 2013] Agrawal, Priyanka ; Garg, Vikas K. ; Narayanam, Ramasuri:
Link Label Prediction in Signed Social Networks. In: IJCAI, 2013

[Backstrom and Leskovec 2011] Backstrom, Lars ; Leskovec, Jure: Supervised
random walks: predicting and recommending links in social networks. In: Proceedings
of the fourth ACM international conference on Web search and data mining ACM
(Veranst.), 2011, p. 635–644

[Bai and Hancock 2004] Bai, Xiao ; Hancock, Edwin: Heat kernels, manifolds and
graph embedding. In: Structural, Syntactic, and Statistical Pattern Recognition (2004),
p. 198–206

[Baldi and Pollastri 2003] Baldi, Pierre ; Pollastri, Gianluca: The principled design
of large-scale recursive neural network architectures–dag-rnns and the protein structure
prediction problem. In: Journal of Machine Learning Research 4 (2003), No. Sep,
p. 575–602

[Belkin and Niyogi 2003] Belkin, Mikhail ; Niyogi, Partha: Laplacian eigenmaps for
dimensionality reduction and data representation. In: Neural computation 15 (2003),
No. 6, p. 1373–1396

[Bengio et al. 2013] Bengio, Yoshua ; Courville, Aaron ; Vincent, Pascal: Repre-
sentation learning: A review and new perspectives. In: IEEE transactions on pattern
analysis and machine intelligence 35 (2013), No. 8, p. 1798–1828

[Bengio et al. 2003] Bengio, Yoshua ; Ducharme, Réjean ; Vincent, Pascal ; Jauvin,
Christian: A neural probabilistic language model. In: Journal of machine learning
research 3 (2003), No. Feb, p. 1137–1155

[Bishop 2006] Bishop, Christopher M.: Pattern recognition and machine learning. In:
Machine Learning 128 (2006), p. 1–58

29

30

[Borgwardt and Kriegel 2005] Borgwardt, Karsten M. ; Kriegel, Hans-Peter:
Shortest-path kernels on graphs. In: Data Mining, Fifth IEEE International Conference
on IEEE (Veranst.), 2005, p. 8–pp

[Borgwardt et al. 2005a] Borgwardt, Karsten M. ; Ong, Cheng S. ; Schönauer,
Stefan ; Vishwanathan, SVN ; Smola, Alex J. ; Kriegel, Hans-Peter: Protein
function prediction via graph kernels. In: Bioinformatics 21 (2005), No. suppl 1,
p. i47–i56

[Borgwardt et al. 2005b] Borgwardt, Karsten M. ; Ong, Cheng S. ; Schönauer,
Stefan ; Vishwanathan, SVN ; Smola, Alex J. ; Kriegel, Hans-Peter: Protein
function prediction via graph kernels. In: Bioinformatics 21 (2005), No. suppl 1,
p. i47–i56

[Brandes et al. 2008] Brandes, Ulrik ; Delling, Daniel ; Gaertler, Marco ; Görke,
Robert ; Hoefer, Martin ; Nikoloski, Zoran ; Wagner, Dorothea: On modularity
clustering. In: Knowledge and Data Engineering, IEEE Transactions on 20 (2008),
No. 2, p. 172–188

[Cao et al. 2015] Cao, Shaosheng ; Lu, Wei ; Xu, Qiongkai: Grarep: Learning
graph representations with global structural information. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management ACM
(Veranst.), 2015, p. 891–900

[Cao et al. 2016] Cao, Shaosheng ; Lu, Wei ; Xu, Qiongkai: Deep Neural Networks for
Learning Graph Representations. (2016)

[Chang et al. 2015] Chang, Shiyu ; Han, Wei ; Tang, Jiliang ; Qi, Guo-Jun ; Ag-

garwal, Charu C. ; Huang, Thomas S.: Heterogeneous network embedding via deep
architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining ACM (Veranst.), 2015, p. 119–128

[Chung 2007] Chung, Fan: The heat kernel as the pagerank of a graph. In: Proceedings
of the National Academy of Sciences 104 (2007), No. 50, p. 19735–19740

[Debnath et al. 1991] Debnath, Asim K. ; Lopez, de Compadre R. ; Debnath, Gargi ;
Shusterman, Alan J. ; Hansch, Corwin: Structure-activity relationship of mutagenic
aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital
energies and hydrophobicity. In: Journal of medicinal chemistry 34 (1991), No. 2,
p. 786–797

31

[Dyer 2014] Dyer, Chris: Notes on Noise Contrastive Estimation and Negative Sampling.
In: arXiv preprint arXiv:1410.8251 (2014)

[Fang et al. 2015] Fang, Yi ; Sun, Mengtian ; Ramani, Karthik: Heat-passing
framework for robust interpretation of data in networks. In: PloS one 10 (2015), No. 2,
p. e0116121

[Felzenszwalb and Huttenlocher 2004] Felzenszwalb, Pedro F. ; Huttenlocher,
Daniel P.: Efficient graph-based image segmentation. In: International journal of
computer vision 59 (2004), No. 2, p. 167–181

[Fujiwara and Irie 2014] Fujiwara, Yasuhiro ; Irie, Go: Efficient label propagation.
In: Proceedings of the 31st international conference on machine learning (ICML-14),
2014, p. 784–792

[Gonzalez et al. 2014] Gonzalez, Joseph E. ; Xin, Reynold S. ; Dave, Ankur ;
Crankshaw, Daniel ; Franklin, Michael J. ; Stoica, Ion: GraphX: Graph processing
in a distributed dataflow framework. In: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation. Broomfield, CO, USA, 2014 (OSDI
14), p. 599–613

[Grover and Leskovec 2016] Grover, Aditya ; Leskovec, Jure: node2vec: Scalable
Feature Learning for Networks. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 2016

[Karpathy et al. 2014] Karpathy, Andrej ; Toderici, George ; Shetty, Sanketh ;
Leung, Thomas ; Sukthankar, Rahul ; Fei-Fei, Li: Large-scale video classification
with convolutional neural networks. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2014, p. 1725–1732

[Kim 2014] Kim, Yoon: Convolutional neural networks for sentence classification. In:
arXiv preprint arXiv:1408.5882 (2014)

[Krizhevsky et al. 2012] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.:
ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira,
F. (Hrsg.) ; Burges, C. J. C. (Hrsg.) ; Bottou, L. (Hrsg.) ; Weinberger,
K. Q. (Hrsg.): Advances in Neural Information Processing Systems 25. Curran
Associates, Inc., 2012, p. 1097–1105. – URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

32

[Levy and Goldberg 2014] Levy, Omer ; Goldberg, Yoav: Neural word embedding
as implicit matrix factorization. In: Advances in neural information processing systems,
2014, p. 2177–2185

[Li et al. 2016] Li, Cheng ; Guo, Xiaoxiao ; Mei, Qiaozhu: DeepGraph: Graph Structure
Predicts Network Growth. In: arXiv preprint arXiv:1610.06251 (2016)

[Liben-Nowell and Kleinberg 2007] Liben-Nowell, David ; Kleinberg, Jon: The link-
prediction problem for social networks. In: journal of the Association for Information
Science and Technology 58 (2007), No. 7, p. 1019–1031

[Lin and Cohen 2010] Lin, Frank ; Cohen, William W.: Power iteration clustering. In:
Proceedings of the 27th international conference on machine learning (ICML-10), 2010,
p. 655–662

[Maaten and Hinton 2008] Maaten, Laurens van d. ; Hinton, Geoffrey: Visualizing
data using t-SNE. In: Journal of Machine Learning Research 9 (2008), No. Nov,
p. 2579–2605

[Mikolov et al. 2013a] Mikolov, Tomas ; Chen, Kai ; Corrado, Greg ; Dean,
Jeffrey: Efficient estimation of word representations in vector space. In: arXiv preprint
arXiv:1301.3781 (2013)

[Mikolov et al. 2013b] Mikolov, Tomas ; Sutskever, Ilya ; Chen, Kai ; Corrado,
Greg S. ; Dean, Jeff: Distributed representations of words and phrases and their
compositionality. In: Advances in neural information processing systems, 2013, p. 3111–
3119

[Mikolov et al. 2013c] Mikolov, Tomas ; Sutskever, Ilya ; Chen, Kai ; Corrado,
Greg S. ; Dean, Jeff: Distributed representations of words and phrases and their
compositionality. In: Advances in neural information processing systems, 2013, p. 3111–
3119

[Morin and Bengio 2005] Morin, Frederic ; Bengio, Yoshua: Hierarchical Probabilistic
Neural Network Language Model. In: Aistats Bd. 5 Citeseer (Veranst.), 2005, p. 246–252

[Nadler et al. 2009] Nadler, Boaz ; Srebro, Nathan ; Zhou, Xueyuan: Semi-
supervised learning with the graph Laplacian: The limit of infinite unlabelled data. In:
Advances in neural information processing systems 21 (2009)

33

[Narayanan et al. 2016] Narayanan, Annamalai ; Chandramohan, Mahinthan ;
Chen, Lihui ; Liu, Yang ; Saminathan, Santhoshkumar: subgraph2vec: Learning
Distributed Representations of Rooted Sub-graphs from Large Graphs. In: arXiv
preprint arXiv:1606.08928 (2016)

[Niepert et al. 2016] Niepert, Mathias ; Ahmed, Mohamed ; Kutzkov, Kon-
stantin: Learning Convolutional Neural Networks for Graphs. In: arXiv preprint
arXiv:1605.05273 (2016)

[Pan et al. 2016] Pan, Shirui ; Wu, Jia ; Zhu, Xingquan ; Zhang, Chengqi ; Wang,
Yang: Tri-party deep network representation. In: IJCAI, 2016

[Perozzi et al. 2014] Perozzi, Bryan ; Al-Rfou, Rami ; Skiena, Steven: DeepWalk:
Online Learning of Social Representations. In: CoRR abs/1403.6652 (2014). – URL
http://arxiv.org/abs/1403.6652

[Perozzi et al. 2016] Perozzi, Bryan ; Kulkarni, Vivek ; Skiena, Steven: Walklets:
Multiscale Graph Embeddings for Interpretable Network Classification. In: arXiv
preprint arXiv:1605.02115 (2016)

[Ralaivola et al. 2005] Ralaivola, Liva ; Swamidass, Sanjay J. ; Saigo, Hiroto ;
Baldi, Pierre: Graph kernels for chemical informatics. In: Neural networks 18 (2005),
No. 8, p. 1093–1110

[Sen et al. 2008] Sen, Prithviraj ; Namata, Galileo ; Bilgic, Mustafa ; Getoor, Lise ;
Galligher, Brian ; Eliassi-Rad, Tina: Collective classification in network data. In:
AI magazine 29 (2008), No. 3, p. 93

[Shervashidze et al. 2011] Shervashidze, Nino ; Schweitzer, Pascal ; Leeuwen,
Erik Jan v. ; Mehlhorn, Kurt ; Borgwardt, Karsten M.: Weisfeiler-lehman graph
kernels. In: Journal of Machine Learning Research 12 (2011), No. Sep, p. 2539–2561

[Shervashidze et al. 2009] Shervashidze, Nino ; Vishwanathan, SVN ; Petri, Tobias ;
Mehlhorn, Kurt ; Borgwardt, Karsten M.: Efficient graphlet kernels for large
graph comparison. In: AISTATS Bd. 5, 2009, p. 488–495

[Shi and Malik 2000] Shi, Jianbo ; Malik, Jitendra: Normalized cuts and image
segmentation. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on
22 (2000), No. 8, p. 888–905

http://arxiv.org/abs/1403.6652

34

[Spielmat and Teng 1996] Spielmat, Daniel A. ; Teng, Shang-Hua: Spectral parti-
tioning works: Planar graphs and finite element meshes. In: Foundations of Computer
Science, 1996. Proceedings., 37th Annual Symposium on IEEE (Veranst.), 1996, p. 96–
105

[Sun and Han 2013] Sun, Yizhou ; Han, Jiawei: Mining heterogeneous information
networks: a structural analysis approach. In: ACM SIGKDD Explorations Newsletter
14 (2013), No. 2, p. 20–28

[Tang et al. 2015a] Tang, Jian ; Qu, Meng ; Mei, Qiaozhu: Pte: Predictive text
embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
ACM (Veranst.), 2015, p. 1165–1174

[Tang et al. 2015b] Tang, Jian ; Qu, Meng ; Wang, Mingzhe ; Zhang, Ming ; Yan,
Jun ; Mei, Qiaozhu: Line: Large-scale information network embedding. In: Proceedings
of the 24th International Conference on World Wide Web ACM (Veranst.), 2015,
p. 1067–1077

[Tu et al. 2016] Tu, Cunchao ; Wang, Hao ; Zeng, Xiangkai ; Liu, Zhiyuan ; Sun,
Maosong: Community-enhanced Network Representation Learning for Network Analysis.
In: arXiv preprint arXiv:1611.06645 (2016)

[Ugander and Backstrom 2013] Ugander, Johan ; Backstrom, Lars: Balanced
label propagation for partitioning massive graphs. In: Proceedings of the sixth ACM
international conference on Web search and data mining ACM (Veranst.), 2013, p. 507–
516

[Vincent et al. 2010] Vincent, Pascal ; Larochelle, Hugo ; Lajoie, Isabelle ; Bengio,
Yoshua ; Manzagol, Pierre-Antoine: Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. In: Journal of
Machine Learning Research 11 (2010), No. Dec, p. 3371–3408

[Wale et al. 2008] Wale, Nikil ; Watson, Ian A. ; Karypis, George: Comparison of
descriptor spaces for chemical compound retrieval and classification. In: Knowledge and
Information Systems 14 (2008), No. 3, p. 347–375

[Wang et al. 2016] Wang, Daixin ; Cui, Peng ; Zhu, Wenwu: Structural Deep Network
Embedding. In: Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY, USA : ACM, 2016 (KDD

35

’16), p. 1225–1234. – URL http://doi.acm.org/10.1145/2939672.2939753. – ISBN
978-1-4503-4232-2

[Wang et al. 2017] Wang, Xiao ; Cui, Peng ; Wang, Jing ; Pei, Jian ; Zhu, Wenwu ;
Yang, Shiqiang: Community Preserving Network Embedding. (2017)

[Weston et al. 2012] Weston, Jason ; Ratle, Frédéric ; Mobahi, Hossein ; Collobert,
Ronan: Deep learning via semi-supervised embedding. In: Neural Networks: Tricks of
the Trade. Springer, 2012, p. 639–655

[Xu et al. 2017] Xu, Linchuan ; Wei, Xiaokai ; Cao, Jiannong ; Yu, Philip S.:
Embedding of Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks.
In: Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining ACM (Veranst.), 2017, p. 741–749

[Yanardag and Vishwanathan 2015] Yanardag, Pinar ; Vishwanathan, SVN: Deep
graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining ACM (Veranst.), 2015, p. 1365–1374

[Yang and Liu 2015] Yang, Cheng ; Liu, Zhiyuan: Comprehend deepwalk as matrix
factorization. In: arXiv preprint arXiv:1501.00358 (2015)

[Yang et al. 2015] Yang, Cheng ; Liu, Zhiyuan ; Zhao, Deli ; Sun, Maosong ; Chang,
Edward Y.: Network Representation Learning with Rich Text Information. In: IJCAI,
2015, p. 2111–2117

[Yang et al. 2016] Yang, Zhilin ; Cohen, William W. ; Salakhutdinov, Rus-
lan: Revisiting semi-supervised learning with graph embeddings. In: arXiv preprint
arXiv:1603.08861 (2016)

[Zhang et al. 2015] Zhang, Xiang ; Zhao, Junbo ; LeCun, Yann: Character-level
convolutional networks for text classification. In: Advances in neural information
processing systems, 2015, p. 649–657

[Zheng et al. 2016] Zheng, Vincent W. ; Cavallari, Sandro ; Cai, Hongyun ; Chang,
Kevin Chen-Chuan ; Cambria, Erik: From Node Embedding To Community Embed-
ding. In: arXiv preprint arXiv:1610.09950 (2016)

[Zhu and Ghahramani 2002] Zhu, Xiaojin ; Ghahramani, Zoubin: Learning from
labeled and unlabeled data with label propagation. (2002)

http://doi.acm.org/10.1145/2939672.2939753

36

[Zhu et al. 2005] Zhu, Xiaojin ; Lafferty, John ; Rosenfeld, Ronald: Semi-
supervised learning with graphs. Carnegie Mellon University, language technologies
institute, school of computer science, 2005

	Abstract
	1 Introduction
	2 Sequence Representation
	3 Learning Graph Representation
	3.1 Multi-Scale Representation

	4 Guided Representation Learning
	4.1 Vertex Classification
	4.2 Vertex Clustering

	5 Learning Representation using Neural Networks
	6 Information Enhanced Representation Learning
	7 Heterogeneous Graph Embedding
	8 Classification of Graph Data
	8.1 Kernel Graphs
	8.1.1 Random-Walk Graph Kernels
	8.1.2 Shortest-Path Graph Kernels
	8.1.3 Graphlet Graph Kernels
	8.1.4 Weisfeiler-Lehman Graph Kernels

	8.2 Graph Classification Using Neural Network

	9 Conclusion and Future Directions

