
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Data-Parallel Hashing Techniques for GPU Architectures

Brenton Lessley1

1Department of Computer and Information Science, University of Oregon, Eugene, OR, USA

Abstract
Hash tables are one of the most fundamental data structures for effectively storing and accessing sparse data, with widespread
usage in domains ranging from computer graphics to machine learning. This study surveys the state-of-the-art research on
data-parallel hashing techniques for emerging massively-parallel, many-core GPU architectures. Key factors affecting the
performance of different hashing schemes are discovered and used to suggest best practices and pinpoint areas for further
research.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [High Performance Computing]: Parallel Algorithms—
Hashing

1. Introduction

The problem of searching for elements in a set is a well-studied
algorithm in computer science. Canonical methods for this task
are primarily based on sorting, spatial partitioning, and hash-
ing [Knu98]. In searching via hashing, an indexable hash table data
structure is used for efficient random access and storage of sparse
data, enabling fast lookups on average. For many years, numer-
ous theoretical and practical hashing approaches have been intro-
duced and applied to problems in areas such as computer graph-
ics, database processing, machine learning, and scientific visualiza-
tion, to name a few [Ull72,ML75,KU86,CHM97,Knu98,WSSJ14,
WLKC16]. With the emergence of multi-processor CPU systems
and thread-based programming, significant research was focused
on the design of concurrent, lock-free hashing techniques for
single-node, CPU shared-memory [Gre02, Mic02, PGB∗05, SS06,
GHS∗10]. Moreover, studies began to investigate external-memory
(off-chip) and multi-node, distributed-memory parallel techniques
that could accommodate the oncoming shift towards large-scale
data processing [BZ07,CKWT14]. These methods, however, do not
demonstrate node-level scalability for the massive number of con-
current threads and parallelism offered by current and emerging
many-core architectures, particularly graphical processing units
(GPUs). GPUs are specifically designed for data-parallel compu-
tation, in which the same operation is performed on different data
elements in parallel.

CPU-based hashing designs face several notable challenges
when ported to GPU architectures:

• Sufficient parallelism: Extra instruction- and thread-level paral-
lelism must be exploited to cover GPU global memory latencies
and utilize the thousands of smaller GPU compute cores. Data-

parallel design is key to exposing this necessary parallel through-
put.

• Memory accesses: Traditional pointer-based hash tables induce
many random memory accesses that may not be aligned within
the same cache line, leading to multiple global memory loads
that limit throughput on the GPU.

• Control flow: Lock-free hash tables that can be both queried and
updated induce heavy thread contention for atomic read-write
memory accesses. This effectively serializes the control flow of
threads and limits the thread-level parallelism on the GPU.

• Limited memory: CPU-based hashing leverages large on-chip
caching and shared memory to support random-access memory
requests quickly. On the GPU, this fast memory is limited in size
and can result in more cache misses and expensive global mem-
ory loads.

In this study, we survey the state-of-the-art data-parallel hash-
ing techniques that specifically address the above-mentioned chal-
lenges in order to meet the requirements of emerging massively-
parallel, many-core GPU architectures. These hashing techniques
can be broadly categorized into four groups: open-addressing, per-
fect hashing, spatial hashing, and separate chaining. Each technique
is distinguished by the manner in which it resolves collisions during
the hashing procedure.

The remainder of this survey is organized as follows. Section 2
reviews the necessary background material to motivate GPU-based
data-parallel hashing. Section 3 surveys the four categories of hash-
ing techniques in detail, with some categories consisting of mul-
tiple sub-techniques. Section 4 categorizes and summarizes real-
world applications of these hashing techniques at a high-level. Sec-
tion 5 synthesizes and presents the findings of this survey in terms

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

2 Brenton Lessley / Area Exam Paper

of best practices and opportunities for further research. Section 6
concludes the work.

2. Background

The following section reviews concepts that are related to GPU-
based data-parallel hashing.

2.1. Scalable Parallelism

Lamport [Lam78] defines concurrency as the decomposition of a
process into independently-executing events (subprograms or in-
structions) that do not causally affect each other. Parallelism oc-
curs when these events are all executed at the same time and per-
form roughly the same work. According to Amdahl [Amd67], a
program contains both non-parallelizable, or serial, work and paral-
lelizable work. Given P processors (e.g., hardware cores or threads)
available to perform parallelizable work, Amdahl’s Law defines the
speedup SP of a program as SP ≤ T1/TP, where T1 and TP are the
times to complete the program with a single processor and P pro-
cessors, respectively. As P→∞, S∞ ≤ 1

f , where f is the fraction
of serial work in the program. So, the speedup, or scalability, of
a program is limited by its inherent serial work, as the number of
processors increases. Ideally, a linear speedup is desired, such that
P processors achieve a speedup of P; a speedup proportional to P
is said to be scalable.

Often a programmer writes and executes a program without ex-
plicit design for parallelism, assuming that the underlying hardware
and compiler will automatically deliver a speedup via greater pro-
cessor cores and transistors, instruction pipelining, vectorization,
memory caching, etc [JR15]. While these automatic improvements
may benefit perfectly parallelizable work, they are not guaranteed
to address imperfectly parallelizable work that contains data depen-
dencies, synchronization, high latency cache misses, etc [MRR12].
To make this work perfectly parallelizable, the program must be
refactored, or redesigned, to expose more explicit parallelism that
can increase the speedup (SP). Brent [Bre74] shows that this ex-
plicit parallelism should first seek to minimize the span of the
program, which is the longest chain of tasks that must be exe-
cuted sequentially in order. Defining T1 as the total serial work
and T∞ as the span, Brent’s Lemma relates the work and span as
TP ≤ (T1−T∞)/P+T∞. This lemma reveals that the perfectly par-
allelizable work T1−T∞ is scalable with P, while the imperfectly
parallelizable span takes time T∞ regardless of P and is the limiting
factor of the scalability of TP.

A common factor affecting imperfectly parallelizable work and
scalability is memory dependencies between parallel (or concur-
rent) tasks. For example, in a race condition, tasks contend for ex-
clusive write access to a single memory location and must synchro-
nize their reads to ensure correctness [MRR12]. While some depen-
dencies can be refactored into a perfectly parallelizable form, others
still require synchronization (e.g., locks and mutexes) or hardware
atomic primitives to prevent non-deterministic output. The key to
enabling scalability in this scenario is to avoid high contention at
any given memory location and prevent blocking of tasks, whereby
tasks remains idle (sometimes deadlocked) until they can access a
lock resource. To enable lock-free progress of work among tasks,

fine-grained atomic primitives are commonly used to efficiently
check and increment values at memory locations [Her91,DHM13].
For example, the compare-and-swap (CAS) primitive atomically
compares the value read at a location to an expected value. If the
values are equal, then a new value is set at the location; otherwise,
the value doesn’t change.

Moreover, programs that have a high ratio of memory accesses
to arithmetic computations can incur significant memory latency,
which is the number of clock or instruction cycles needed to com-
plete a single memory access [PH08]. During this latency period,
processors should perform a sufficient amount of parallel work to
hide the latency and avoid being idle. Given the bandwidth, or
instructions completed per cycle, of each processor, Little’s Law
specifies the number of parallel instructions needed to hide la-
tency as the bandwidth multiplied by latency [Lit11]. While emerg-
ing many-core and massively-threaded architectures provide more
available parallelism and higher bandwidth rates, the memory la-
tency rate remains stagnant due to physical limitations [MRR12].
Thus, to exploit this greater throughput and instruction-level par-
allelism (ILP), a program should ideally be decomposed into fine-
grained units of computation that perform parallelizable work (fine-
grained parallelism).

Furthermore, the increase in available parallelism provided by
emerging architectures also enables larger workloads and data to
be processed in parallel [MRR12, JR15]. Gustafson [Gus88] noted
that as a problem size grows, the amount of parallel work increases
much faster than the amount of serial work. Thus, a speedup can
be achieved by decreasing the serial fraction of the total work. By
explicitly parallelizing fine-grained computations that operate on
this data, scalable data-parallelism can be attained, whereby a sin-
gle instruction is performed over multiple data elements (SIMD)
in parallel (e.g., via a vector instruction), as opposed to over a sin-
gle scalar data values (SISD). This differs from task-parallelism, in
which multiple tasks of a program conduct multiple instructions
in parallel over the same data elements (MIMD) [PH08]. Task-
parallelism only permits a constant speedup and induces coarse-
grained parallelism, whereby all tasks work in parallel but an in-
dividual task could still be executing serial work. By performing
inner fine-grained parallelism within outer course-grained parallel
tasks, a nested parallelism is attained [BS05]. Many recursive and
segmented problems (e.g., quicksort and closest pair) can often be
refactored into nested-parallel versions [Ble90]. Flynn [Fly72] in-
troduces SIMD, SISD, and MIMD as part of a taxonomy of com-
puter instruction set architectures.

2.2. General-Purpose Computing on GPU (GPGPU)

A graphical processing unit (GPU) is a special-purpose architec-
ture that is designed specifically for high-throughput, data-parallel
computations that possess a high arithmetic intensity—the ratio of
arithmetic operations to memory operations [PH08]. Traditionally
used and hard-wired for accelerating computer graphics and image
processing calculations, modern GPUs contain many times more
execution cores and available instruction-level parallelism (ILP)
than a CPU of comparable size [Nvi17b]. This inherent ILP is pro-
vided by a group of processors, each of which performs SIMD-
like instructions over thousands of independent, parallel threads.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 3

These stream processors operate on sets of data, or streams, that
require similar computation and exhibit the following characteris-
tics [KRD∗03]:

• High Arithmetic Intensity: High number of arithmetic instruc-
tions per memory instruction. The stream processing should
be largely compute-bound as opposed to memory bandwidth-
bound.
• High Data-Parallelism: At each time step, a single instruction

can be applied to a large number of streams, and each stream is
not dependent on the results of other streams.
• High Locality of Reference: As many streams as possible in a

set should align their memory accesses to the same segment of
memory, minimizing the number of memory transactions to ser-
vice the streams.

General-purpose GPU (GPGPU) computing leverages the
massively-parallel hardware capabilities of the GPU for solv-
ing general-purpose problems that are traditionally computed on
the CPU (i.e., non-graphics-related calculations). These problems
should feature large data sets that can be processed in parallel
and satisfy the characteristics of stream processing outlined above.
Accordingly, algorithms for solving these problems should be re-
designed and optimized for the data-parallel GPU architecture,
which has significantly different hardware features and perfor-
mance goals than a modern CPU architecture [Nvi17a].

Modern GPGPUs with dedicated memory are most-commonly
packaged as discrete, programmable devices that can be added onto
the motherboard of a compute system and programmed to configure
and execute parallel functions [PH08]. The primary market leaders
in the design of discrete GPGPUs are Nvidia and Advanced Micro
Devices (AMD), with their GeForce and Radeon family of gen-
erational devices, respectively. Developed by Nvidia, the CUDA
parallel programming library provides an interface to design algo-
rithms for execution on an Nvidia GPU and configure hardware
elements [Nvi17b]. For the remainder of this survey, all references
to a GPU will be with respect to a modern Nvidia CUDA-enabled
GPU, as it is used prevalently in most of the GPU hashing studies.

The following subsections review important features of the GPU
architecture and discuss criteria for optimal GPU performance.

2.2.1. SIMT Architecture

A GPU is designed specifically for Single-Instruction, Multiple
Threads (SIMT) execution, which is a combination of SIMD and
simultaneous multi-threading (SMT) execution that was introduced
by Nvidia in 2006 as part of the Tesla micro-architecture [Nvi17c].
On the host CPU, a program, or kernel function, is written in CUDA
C and invoked for execution on the GPU. The kernel is executed
N times in parallel by N different CUDA threads, which are dis-
patched as equally-sized thread blocks. The total number of threads
is equal to the number of thread blocks times the number of threads
per block, both of which are user-defined in the kernel. Thread
blocks are required to be independent and can be scheduled in
any order to be executed in parallel on one of several independent
streaming multi-processors (SMs). The number of blocks is typi-
cally based on the number of data elements being processed by the
kernel or the number of available SMs [Nvi17b]. Since each SM

has limited memory resources available for resident thread blocks,
there is a limit to the number of threads per block—typically 1024
threads. Given these memory constraints, all SMs may be occu-
pied at once and some thread blocks will be left inactive. As thread
blocks terminate, a dedicated GPU scheduling unit launches new
thread blocks onto the vacant SMs.

Each SM chip contains hundreds of ALU (arithmetic logic unit)
and SFU (special function unit) compute cores and an interconnec-
tion network that provides k-way access to any of the k partitions
of off-chip, high-bandwidth global DRAM memory. Memory re-
quests first query a global L2 cache and then only proceed to global
memory upon a cache miss. Additionally, a read-only texture mem-
ory space is provided to cache global memory data and enable fast
loads. On-chip thread management and scheduling units pack each
thread block on the SM into one or more smaller logical process-
ing groups known as warps—typically 32 threads per warp; these
warps compose a cooperative thread array (CTA). The thread man-
ager ensures that each CTA is allocated sufficient shared memory
space and per-thread registers (user-specified in kernel program).
This on-chip shared memory is designed to be low-latency near
the compute cores and can be programmed to serve as L1 cache
or different ratios thereof (newer generations now include these as
separate memory spaces) [Har14].

Finally, each time an instruction is issued, the SM instruction
scheduler selects a warp that is ready to execute the next SIMT
scalar (register-based) instruction, which is executed independently
and in parallel by each active thread in the warp. In particular, the
scheduler applies an active mask to the warp to ensure that only
active threads issue the instruction; individual threads in a warp
may be inactive due to independent branching in the program. A
synchronization barrier detects when all threads (and warps) of a
CTA have exited and then frees the warp resources and informs the
scheduler that these warps are now ready to process new instruc-
tions, much like context switching on the CPU. Unlike a CPU, the
SM does not perform any branch prediction or speculative execu-
tion (e.g., prefetching memory) among warp threads [PH08].

SIMT execution is similar to SIMD, but differs in that SIMT
applies one instruction to multiple independent warp threads in
parallel, instead of to multiple data lanes. In SIMT, scalar instruc-
tions control individual threads, whereas in SIMD, vector instruc-
tions control the entire set of data lanes. This detachment from
the vector-based processing enables threads of a warp to conduct
a form of SMT execution, where each thread behaves more like
a heavier-weight CPU thread [PH08]. Each thread has its own set
of registers, addressable memory requests, and control flow. Warp
threads may take divergent paths to complete an instruction (e.g.,
via conditional statements) and contribute to starvation as faster-
completing threads wait for the slower threads to finish.

The two-level GPU hierarchy of warps within SMs offers mas-
sive nested parallelism over data [PH08]. At the outer, SM level
of granularity, coarse-grained parallelism is attained by distribut-
ing thread blocks onto independent, parallel SMs for execution.
Then at the inner, warp level of granularity, fine-grained data and
thread parallelism is achieved via the SIMT execution of an in-
struction among parallel warp threads, each of which operates on
an individual data element. The massive data-parallelism and avail-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

4 Brenton Lessley / Area Exam Paper

able compute cores are provided specifically for high-throughput,
arithmetically-intense tasks with large amounts of data to be inde-
pendently processed. If a high-latency memory load is made, then it
is expected that the remaining warps and processors will simultane-
ously perform sufficient work to hide this latency; otherwise, hard-
ware resources remain unused and yield a lower aggregate through-
put [Vol16]. The GPU design trades-off lower memory latency and
larger cache sizes (such as on a CPU) for increased instruction
throughput via the massive parallel multi-threading [PH08].

This architecture description is based on the Nvidia Maxwell
micro-architecture, which was released in 2015 [Har14]. While cer-
tain quantities of components (e.g., SMs, compute cores, mem-
ory sizes, and thread block sizes) change with each new gener-
ational release of the Nvidia GPU, the general architectural de-
sign and execution model remain constant [Nvi17b]. The CUDA
C Programming Guide [Nvi17b] and Nvidia PTX ISA documenta-
tion [Nvi17c] contain further details on the GPU architecture, exe-
cution and memory models, and CUDA programming.

2.2.2. Optimal Performance Criteria

The following performance strategies are critical for maximizing
utilization, memory throughput, and instruction throughput on the
GPU [Nvi17a].

Sufficient parallelism: Sufficient instruction-level and thread-
level parallelism should be attained to fully hide arithmetic and
memory latencies. According to Little’s Law, the number of paral-
lel instructions needed to hide a latency (number of cycles needed
to perform an instruction) is roughly the latency times the through-
put (number of instructions performed per cycle) [Lit11]. During
this latency period, threads that are dependent on the output data of
other currently-executing threads in a warp (or thread block) are
stalled. Thus, this latency can be hidden either by having these
threads simultaneously perform additional, non-dependent SIMT
instructions in parallel (instruction-level parallelism), or by increas-
ing the number of concurrently running warps and warp threads
(thread-level parallelism) [Vol16].

Since each SM has limited memory resources for threads, the
number of concurrent warps possible on an SM is a function of
several configurable components: allocated shared memory, num-
ber of registers per thread, and number of threads per thread
block [Nvi17b]. Based on these parameters, the number of paral-
lel thread blocks and warps on an SM can be calculated and used
to compute the occupancy, or ratio of the number of active warps
to the maximum number of warps. In terms of Little’s Law, suffi-
cient parallel work can be exploited with either a high occupancy
or low occupancy, depending on the amount of work per thread.
Based on the specific demands for SM resources, such as shared
memory or register usage, by the kernel program, the number of
available warps will vary accordingly. Higher occupancy, usually
past 50 percent, does not always translate into improved perfor-
mance [Nvi17a]. For example, a lower occupancy kernel will have
more registers available per thread than a higher occupancy ker-
nel, allowing low-latency access to local variables and minimizing
register spilling into high-latency local memory.

Memory coalescing: When a warp executes an instruction that

accesses global memory, it coalesces the memory accesses of the
threads within the warp into one or more memory transactions,
or cache lines, depending on the size of the word accessed by
each thread and the spatial coherency of the requested memory ad-
dresses. To minimize transactions and maximize memory through-
put, threads within a warp should coherently access memory ad-
dresses that fit within the same cache line or transaction. Other-
wise, memory divergence occurs and multiple lines of memory are
fetched, each containing many unused words. In the worst case
alignment, each of the 32 warp threads accesses successive mem-
ory addresses that are multiples of the cache line size, prompting
32 successive load transactions [Nvi17a].

The shared memory available to each thread block can help co-
alesce or eliminate redundant accesses to global memory [PH08].
The threads of the block (and associated warp) can share their data
and coordinate memory accesses to save significant global mem-
ory bandwidth. However, it also can act as a constraint on SM
occupancy—particularly limiting the number of available registers
per thread and warps—and is prone to bank conflicts, which oc-
cur when two or more threads in a warp access an address in the
same bank, or partition, of shared memory [Nvi17b]. Since an SM
only contains one hardware bus to each bank, multiple requests to
a bank must be serialized. Thus, optimal use of shared memory
necessitates that warp threads arrange their accesses to different
banks [Nvi17b]. Finally, the read-only texture memory of an SM
can be used by a warp to perform fast, non-coalesced lookups of
cached global memory, usually in smaller transaction widths.

Control flow: Control flow instructions (e.g., if, switch, do, for,
while) can significantly affect instruction throughput by causing
threads of the same warp to diverge and follow different execu-
tion paths, or branches. Optimal control flow is realized when all
the threads within a warp follow the same execution path [Nvi17a].
This scenario enables SIMD-like processing, whereby all threads
complete an instruction simultaneously in lock-step. During branch
divergence in a warp, the different executions paths, or branches,
must be serialized, increasing the total number of instructions ex-
ecuted for the warp. Additionally, the use of atomics and synchro-
nization primitives can also require additional serialized instruc-
tions and thread starvation within a warp, particularly during high
contention for updating a particular memory location [SO11].

2.3. Data Parallel Primitives

The redesign of serial algorithms for scalable data-parallelism
offers platform portability, as increases in processing units and
data are accompanied by unrestricted increases in speedup. Data-
parallel primitives (DPPs) provide a way to explicitly design and
program an algorithm for this scalable, platform-portable data-
parallelism. DPPs are highly-optimized building blocks that are
combined together to compose a larger algorithm. The traditional
design of this algorithm is thus refactored in terms of DPPs. By
providing highly-optimized implementations of each DPP for each
platform architecture, an algorithm composed of DPPs can be exe-
cuted efficiently across multiple platforms. This use of DPPs elimi-
nates the combinatorial (cross-product) programming issue of hav-
ing to implement a different version of the algorithm for each dif-
ferent architecture.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 5

The early work on DPPs was set forth by Blelloch [Ble90], who
proposed a scan vector model for parallel computing. In this model,
a vector-RAM (V-RAM) machine architecture is composed of a
vector memory and a parallel vector processor. The processor exe-
cutes vector instructions, or primitives, that operate on one or more
arbitrarily-long vectors of atomic data elements, which are stored
in the vector memory. This is equivalent to having as many inde-
pendent, parallel processors as there are data elements to be pro-
cessed. Each primitive is classified as either scan or segmented
(per-segment parallel instruction), and must possess a parallel, or
step, time complexity of O(logn) and a serial, or element, time
complexity of O(n), in terms of n data elements; the element com-
plexity is the time needed to simulate the primitive on a serial ran-
dom access machine (RAM). Several canonical primitives are then
introduced and used as building blocks to refactor a variety of data
structures and algorithms into data-parallel forms.

The following are examples of DPPs that are commonly-used as
building blocks to construct data-parallel algorithms:

• Map: Applies an operation on all elements of the input array,
storing the result in an output array of the same size, at the same
index;
• Reduce: Applies an aggregate binary operation (e.g., summation

or maximum) on all elements of an input array, yielding a sin-
gle output value. ReduceByKey is a variation that performs seg-
mented Reduce on the input array based on unique key, yielding
an output value for each key;
• Gather: Given an input array of values, reads values into an out-

put array according to an array of indices;
• Scan: Calculates partial aggregates, or a prefix sum, for all values

in an input array and stores them in an output array of the same
size;
• Scatter: Writes each value of an input data array into an index in

an output array, as specified in the array of indices;
• Compact: Applies a unary predicate (e.g., if an input element is

greater than zero) on all values in an input array, filtering out all
the values which do not satisfy the predicate. Only the remaining
elements are copied into an output array of an equal or smaller
size;
• SortByKey: conducts an in-place segmented Sort on the input ar-

ray, with segments based on a key or unique data value in the
input array;
• Unique: Ignores duplicate values which are adjacent to each

other, copying only unique values from the input array to the
output array of the same or lesser size; and
• Zip: Binds two arrays of the same size into an output array of

pairs, with the first and second components of a pair equal to
array values at a given index.

Several other DPPs exist, each meeting the required step and el-
ement complexities specified by Blelloch [Ble90]. Cross-platform
implementations of a wide variety of DPPs form the basis of several
notable open-source libraries.

The Many-Core Visualization Toolkit (VTK-m) [MSU∗16] is a
platform-portable library that provides a growing set of DPPs and
DPP-based algorithms [vtk17]. With a single code base, back-end
code generation and runtime support are provided for use on GPUs

and CPUs. Currently, each GPU-based DPP is a modified variant
from the Nvidia CUDA Thrust library of parallel algorithms and
data structures [Nvi17d], and each CPU-based DPP is adopted from
the Intel Thread Building Blocks (TBB) library for scalable data
parallel programming [Int17]. VTK-m provides the flexibility to
develop custom device adapter algorithms, or DPPs, for a new de-
vice type. This device can take the form of an emerging architecture
or a new parallel programming language (e.g., Thrust and TBB) for
which DPPs must be re-optimized. Thus, a DPP can be invoked in
the high-level VTK-m user code and executed on any of the devices
at runtime. The choice of device is either specified at compile-time
by the user, or automatically selected by VTK-m. VTK-m, Thrust,
and TBB all employ a generic programming model that provides
C++ Standard Template Library (STL)-like interfaces to DPPs and
algorithms [PLMS00]. Templated arrays form the primitive data
structures over which elements are parallelized and operated on by
DPPs. Many of these array types provide additional functionality
on top of underlying vector iterators that are inspired by those in
the Boost Iterator Library [Boo03].

The CUDA Data Parallel Primitives Library (CUDPP) [cud17]
is a library of fundamental DPPs and algorithms written in Nvidia
CUDA C [Nvi17b] and designed for high-performance execu-
tion on CUDA-compatible GPUs. Each DPP and algorithm in-
corporated into the library is considered best-in-class and typi-
cally published in peer-reviewed literature (e.g., radix sort [MG10,
ADMO16], mergesort [SHG09, DTGO12], and cuckoo hash-
ing [ASA∗09, AVS∗12]). Thus, its data-parallel implementations
are constantly updated to reflect the state-of-the-art.

2.4. GPU Searching

The following section reviews canonical approaches for organizing,
storing, and searching data on the GPU.

Let U = {i}0≤i<u be the universe for some arbitrary positive in-
teger u. Then let S⊂U be an unordered set of n = |S| elements, or
keys, belonging to U . The search problem seeks an answer to the
query: “Is key k a member of S?” If k ∈ S, then we return its corre-
sponding value, which is either k itself or a different value. A data
structure is built or constructed over S to efficiently facilitate the
searching operation. The data structure is implementation-specific
and can be as simple as a sorted (ordered) variant of the original
set, a hash table, or a tree-based partitioning of the elements.

A generalization of the search task is the dictionary prob-
lem, which seeks to both modify and query key-value pairs (k,v)
in S. A canonical dictionary data structure supports insert(k,v),
delete(k,v), query(k), range(k1,k2) (returns {k|k1 ≤ k≤ k2}), and
count(k1,k2) (returns |range(k1,k2)|). To support these operations,
the dictionary must be dynamic and accommodate incremental or
batch updates after construction; this contrasts to a static data struc-
ture, which either does not support updates after a one-time build or
must be rebuilt after each update. In multi-threaded environments,
these structures must also provide concurrency and ensure correct-
ness among mixed, parallel operations that may access the same
elements simultaneously.

An extensive body of work has embarked on the redesign of
data structures for construction and general computation on the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

6 Brenton Lessley / Area Exam Paper

GPU [OLG∗07]. Within the context of searching, these acceler-
ation structures include sorted arrays [ASA∗09, SGL09, AVS∗12,
KDB12,LBMC16,LMLC17,ALF∗17] and linked lists [YHGT10],
hash tables (see section 3), spatial-partitioning trees (e.g., k-
d trees [ZHWG08, Kar12, WBS∗14], octrees [ZGHG11, Kar12],
bounding volume hierarchies (BVH) [LGS∗09, Kar12], R-
trees [LWL12], and binary indexing trees [KCS∗10, SR17]),
spatial-partitioning grids (e.g., uniform [LD08,KS09,GTW15] and
two-level [KBS11]), skiplists [MCP17], and queues (e.g., binary
heap priority [HAP12] and FIFO [CCT12, SF15]). Due to signif-
icant architectural differences between the CPU and GPU, search
structures cannot simply be “ported” from the CPU to the GPU
and maintain optimal performance. On the CPU, these structures
can be designed to fit within larger cache, perform recursion, and
employ heavier-weight synchronization or hardware atomics. How-
ever, during queries, the occurrence of varying paths of pointers
(pointer chasing) and dependencies between different phases or
levels of the structure both limit the parallel throughput on the
GPU. Moreover, these structures ideally should be constructed di-
rectly on the GPU, as transfers from the CPU over the PCIe bus
induce costly latencies.

For searching an unordered array of elements on the GPU, two
canonical data structures exist: the sorted array and the hash ta-
ble. Both of these data structures are known to be relatively fast
to construct on the GPU and are amenable to data-parallel design
patterns [ALF∗17].

2.4.1. Searching Via Sorting

Given a set of n unordered elements, a canonical searching ap-
proach is to first sort the elements in ascending order and then con-
duct a binary or k-nary search for the query element. This search
requires a logarithmic number of comparisons in the worst-case,
but is not as amenable to caching as consecutive comparisons are
not spatially close in memory for large n. Moreover, on the GPU,
an ordered query pattern by threads in a warp can enable memory
coalescing during comparisons.

The current version of the CUDA Thrust library [Nvi17d] pro-
vides fast and high-throughput data-parallel implementations of
mergesort [SHG09] and radix sort [MG10] for arrays of cus-
tom (e.g., comparator function) or numerical (i.e., integers and
floats) data types, respectively. Similarly, the latest version of the
CUDPP library [cud17] includes best-in-class data-parallel algo-
rithms for mergesort [SHG09, DTGO12] and radix sort [MG10,
ADMO16], each of which are adapted from published work. Singh
et al. [SJC17] survey and compare the large body of recent GPU-
based sorting techniques.

A few studies have investigated various factors that affect the
performance of data-parallel sort methods within the context of
searching [ASA∗09, AVS∗12, LMLC17]. Kaldewey and Blas in-
troduce a GPU-based p-ary search that first uses p parallel threads
to locate a query key within one of p larger segments of a sorted
array, and then iteratively repeats the procedure over p smaller seg-
ments within the larger segment. This search achieves high mem-
ory throughput and is amenable to memory coalescing among the
threads [KDB12]. Moreover, the algorithm was also ported to the
CPU to leverage the SIMD vector instructions in a fashion similar

to the k-ary search introduced by Schlegel et al. [SGL09]. However,
the fixed vector width restricts the degree of parallelism and value
of p, which is significantly higher on the GPU.

Inserting or deleting elements into a sorted array is generally
not supported and requires inefficient approaches such as append-
ing/removing new elements and re-sorting the larger/smaller ar-
ray, or first sorting the batch of new insertions and then merg-
ing them into the existing sorted array. Ashkiani et al. [ALF∗17]
present these approaches and the resulting performance for a dy-
namic sorting-based dictionary data structure, along with setting
forth the current challenges of designing dynamic data structures
on the GPU.

2.4.2. Searching Via Hashing

Instead of maintaining elements in sorted order and performing a
logarithmic number of lookups per query, hash tables compactly
reorganize the elements such that only a constant number of direct,
random-access lookups are needed on average [CSRL01]. More
formally, given a universe U of possible keys and an unordered
set S ⊆ U of n keys (not necessarily distinct), a hash function,
h : U 7→ H, maps the keys from S to the range H = { j}0≤ j<m for
some arbitrary positive integer m ≥ n. Defining a memory space
over this range of size m specifies a hash table, into which keys
are inserted and queried. Thus, the hash table is addressable by the
hash function. During an insertion or query operation for a key q,
the hash function computes an address h(q) = r into H. If the loca-
tion H[r] is empty, then q is either inserted into H[r] (for an inser-
tion) or does not exist in H (for a query). If H[r] contains the key q
(for a query), then either q or an associated value of q is returned†,
indicating success. Otherwise, if multiple distinct keys q′ 6= q are
hashed to the same address h(q′) = r, then a situation known as
a hash collision occurs. These collisions are typically resolved via
separate chaining (i.e., employing linked lists to store multiple keys
at a single address) or open-addressing (e.g., when an address is oc-
cupied, then store the key at the next empty address).

The occurrence of collisions deteriorates the query performance,
as each of the collided keys must be iteratively inspected and com-
pared against the query key. According to the birthday paradox,
with a discrete uniform distribution hash function that outputs a
value between 1 and 365 for any key, the probability that two ran-
dom keys hash to the same address in a hash table of size 23 is 50
percent [STKT06]. More generally, for n hash values and a table
size of m, the probability p(n,m) of a collision is

p(n,m) =

1−
n−1

∏
k=1

(
1− k

m

)
n≤ m

1 n > m

≈ 1−
(

m−1
m

) n(n−1)
2

.

Thus, for a large number of keys (n) and small hash table (m), hash
collisions are inevitable.

† In practice, the values should be easily stored and accessible within an
auxiliary array or via a custom arrangement within the hash table.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 7

In order to minimize collisions, an initial approach is to use
a good quality hash function that is both efficient to compute
and distributes keys as evenly as possible throughout the hash
table [CSRL01]. One such family of functions are randomly-
generated, parameterized functions of the form h(k) = (a · k +
b) mod p mod |H|, where p is a large prime number and a and b
are randomly-generated constants that bias h from outputting du-
plicate values [AVS∗12]. However, h is a function of the table size,
|H|. If |H| is too small, then not even the best of hash functions can
avoid an increase in collisions. Given the table size, the load factor
α of the table is defined as α = n/|H|, or the percentage of occu-
pied addresses in the hash table, which |H| is typically larger than
n. If new keys are inserted into the table and α reaches a maximum
threshold, then typically the table is allocated to a larger size and
all the keys are rehashed into the table.

To avoid collision resolution altogether, a perfect hash function
can be constructed to hash keys into a hash table without collisions.
Each key is mapped to a distinct address in the table. However,
composing such a perfect hashing scheme is known to be difficult
in general [LH06]. The probability of attaining a perfect hash for n
keys in a large table of size m (m� n) is defined as

p(n,m) = (1) ·
(

1− 1
m

)
·
(

1− 2
m

)
· · ·
(

1− n−1
m

)
≈ e

−n2
2m ,

which is very small for a large n or small m. Nonetheless, a sig-
nificant body of research has investigated this approach and is re-
viewed in this survey, within the context of parallel hashing.

A hash table is static if it does not support modification after
being constructed; that is, the table is only constructed to handle
query operations. Thus, a static hash table also does not support
mixed operations and the initial batch of insertions used to con-
struct the table (bulk build) must be completed before the batch
of query operations. A hash table that can be updated, or mu-
tated, via insertion and deletion operations post-construction is
considered dynamic. Denoting the query, insert, and delete oper-
ations as q, i, and d, respectively, the operation distribution Γ =
(q, i,d),q + i + d = 1 specifies the percentage of each operation
that are conducted concurrently in a hashing workload [AFO17].
For example, Γ = (0.7,0.15,0.15) represents a query-heavy work-
load that performs 70% queries and 30% updates. Additionally, the
percentage q can be split into queried keys that exist in the hash
table and those that do not. Often, queries for non-existent keys can
present worst-case scenarios for many hash techniques, as a maxi-
mum number of searches are conducted until failure [AFO17].

As general data structures, hash tables do not place any spe-
cial emphasis on the key access patterns over time [CPK16].
However, the patterns that appear in various real-world appli-
cations do possess observable structure. For example, geomet-
ric tasks may query spatially-close keys in a sequential or co-
herent pattern, and database tasks may query certain subsets of
keys more frequently than others, whereby the hash table serves
as a working set or most-recently-used (MRU) table for cache-
like accesses [AVS∗12, PR13, CPK16]. Moreover, dynamic hash
tables do not place special emphasis on the mixture Γ, or pat-
tern, of query and update operations. However, execution time per-

formance may be better or worse for some hashing techniques,
depending on the specific Γ, such as query-heavy for key-value
stores [ZWY∗15] or update-heavy for real-time, interactive spatial
hash tables [LH06, ASA∗09, GLHL11, NZIS13].

Finally, hash tables offer compact storage for sparse spatial data
that contains repeated elements or empty elements that don’t need
to be computed. For example, instead of storing an entire, mostly-
empty voxelized 3D grid, the non-empty voxels can be hashed into
a dense hash table [LH06]. Then, every voxel can be queried to
determine whether it should be rendered or not, returning a negative
result for the empty voxels. Furthermore, a hash table does not have
to be one-dimensional. Instead, the data structure can consist of
multiple hash tables or bucketed partitions that are each addressed
by a different hash function.

While collision resolution is straightforward to implement in a
serial CPU setting, it does not easily translate to a parallel set-
ting, particularly on massively-threaded, data-parallel GPU archi-
tectures. GPU-based hashing‡presents several notable challenges:

• Hashing is a memory-bound problem that is not as amenable
to the compute-bound and limited-caching design of the GPU,
which hides memory latencies via a large arithmetic throughput.
• The random-access nature of hashing can lead to disparate writes

and reads by parallel-cooperating threads on the GPU, which
performs best when memory accesses are coalesced or spatially
coherent.
• The limited memory available on a GPU puts restrictions on the

maximum hash table size and number of tables that can reside
on device.
• Collision resolution schemes handle varying numbers of keys

that are hashed and chained to the same address (separate chain-
ing), or varying numbers of attempts to place a new, collided key
into an empty table location (open-addressing). This variance
causes some insert and query operations to require more work
than others. On a GPU, threads work in groups to execute the
same operation on keys in a data-parallel fashion. Thus, a perfor-
mance bottleneck arises when faster, non-colliding threads wait
for slower, colliding threads to finish. Moreover, some threads
may insert colliding keys that are unable to find an empty table
location, leading to failure during construction of the table.

Searching via the construction and usage of a hash table on the
GPU has recently received a breadth of new research, with a variety
of different parallel designs and applications, ranging from colli-
sion detection to surface rendering to nearest neighbor approxima-
tion. The following section covers these GPU-based parallel hash-
ing approaches.

3. Hashing Techniques

We consider four different categories of hashing techniques: open-
addressing probing, perfect hashing, spatial hashing, and separate

‡ In this study, the term hashing refers to the entire process from construct-
ing the hash table to the handling of collisions while querying or updating;
this is not to be confused with hash function design and computation, or its
application to cryptographic protocols and message passing.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

8 Brenton Lessley / Area Exam Paper

chaining. Each category is discussed in a separate subsection and
distinguished by its method of handling hash collisions or place-
ment of elements within the hash table.

3.1. Open-addressing Probing

In open-addressing, a key is inserted into the hash table by prob-
ing, or searching, through alternate table locations—the probe se-
quence—until a location is found to place the element [CSRL01].
The determination of where to place the element varies by probing
scheme: some schemes probe for the first unused location (empty
slot), whereas others evict the currently-residing key at the probe
location (i.e., a collision) and swap in the new key. Each probe lo-
cation is specified by a hash function unique to the probing scheme.
Thus, some probe sequences may be more compact or greater in
length than others, depending on the probing method. For a query
operation, the locations of the probe sequence are computed and
followed to search for the queried key in the table.

Each probing method trades-off different measures of perfor-
mance with respect to GPU-based hashing. A critical influence on
performance is the load factor, which is the percentage of occupied
locations in the hash table (subsection 2.4.2). As the load factor in-
creases towards 100 percent, the number of probes needed to insert
or query a key increases greatly. Once the table becomes full, prob-
ing sequences may continue indefinitely, unless bounded, and lead
to insertion failure and possibly a hashing restart, whereby the hash
table is reconstructed with different hash functions and parameters.
Moreover, for threads within a warp on the GPU, variability in the
number of probes per thread can induce branch divergence and in-
efficient SIMD parallelism, as all the threads will need to wait for
the worst-case number of probes to execute the next instruction.

The following subsections review research on open-addressing
probing for GPU-based hashing, distinguishing each study by its
general probing scheme: linear probing, cuckoo hashing, double
hashing, multi-level or bucketized probing, and robin hood hashing.

3.1.1. Linear Probing-based Hashing

Linear probing is the most basic method of open-addressing. In
this method, a key k first hashes to location h(k) in the hash table.
Then, if the location is already occupied, k linearly searches loca-
tions h(k)+ 1,h(k)+ 2, . . .etc. until an empty slot (insertion) or k
itself (query) is found. If h(k) is empty, then k is inserted imme-
diately, without probing; otherwise, a worst-case O(n) probes will
need to be made to locate k or an empty slot, where n is the size
of the hash table. While simple in design, linear probing suffers
from primary clustering, whereby a cluster, or contiguous block,
of locations following h(k) are occupied by keys, reducing nearby
empty slots. This occurs because colliding keys at h(k) each suc-
cessively probe for the next available empty slot after h(k) and in-
sert themselves into it. An improved variant of linear probing is
quadratic probing, which replaces the linear probe sequence start-
ing at h(k) with successive values of an arbitrary quadratic poly-
nomial: h(k)+12,h(k)+22, . . .etc. This avoids primary clustering,
but also introduces a secondary clustering effect as a result. For a
more than half-full table, both of these probing methods can incur
a long probe sequence to find an empty slot, possibly resulting in
failure during an insert.

Bordawekar [Bor14] develops an open-addressing approach
based on multi-level bounded linear probing, where the hash table
has multiple levels to reduce the number of lookups during linear
probing. In the first level hash table, each key hashes to a loca-
tion h1(k) and then looks for an empty location, via linear probing,
within a bounded probe region P1 = [h1(k),h1(k)+(j−1)], where
j is the size of the region. If an empty location is not found, then the
key must be inserted into the second-level hash table, which is ac-
complished by hashing to location h2(k) and linear probing within
another, yet larger, probe region P2. This procedure continues for
each level, until an empty location is found. In this work, only 2-
level and 3-level hash tables are considered; thus, a thread must
perform bounded probing on a key for at most three rounds, before
declaring failure. To query a key, a thread completes the same hash-
ing and probing procedure. In a data-parallel fashion, each thread
within a warp is assigned a key from the bounded probe region and
compares this key with the query key, using warp-level voting to
communicate success or failure. This continues across warps, for
each hash table level.

The initial design goal of this multi-level approach was to
bound and reduce the average number of probes per insertion and
query, while enabling memory coalescing and cache line coherency
among threads (or lanes) within a warp. By using a small, con-
stant number of hash tables and functions, the load factor could
be increased beyond the 70 percent of Alcantara et al.’s cuckoo
hashing (subsection 3.1.2), without sacrificing performance. How-
ever, experimental results reveal that this approach, with both two
and three levels (and hash functions), does not perform as fast as
cuckoo hashing for the largest batches of key-value pairs (hundreds
of millions); for smaller batches, the multi-level approaches are the
best performers. This finding is particularly noticeable for querying
the keys, suggesting that improved probing and memory coalescing
are likely not achieved. Additional details are needed to ascertain
whether the ordering of the keys—spatial or random—affect this
multi-level approach, or specific reasons why the expected warp-
level memory coalescing is not being realized.

Karnagel et al. [KML15] develop a linear probing hashing
scheme to perform database group-by and aggregation queries (i.e.,
a reduce-by-key operation) on the GPU. In this work, a database of
records (e.g., customer data) is stored in SSDs and then queried in
SQL format from the CPU. Selected columns of the query (e.g., zip
code and order total) are transferred and pinned into host memory,
from which the GPU fetches the column values in a coalesced, data-
parallel fashion via Universal Virtual Addressing (UVA). Then, a
hashing procedure begins to compute an aggregate (e.g. average
discount) for each unique item, or group, in the group-by column
(e.g., customer zip code). Each item in this column is initially in-
serted into a global memory hash table as a key-value pair, where
the key is the item ID and the value is a tuple (count, sum). For each
item, the ID key is hashed to a location and then probes linearly un-
til its matching key is found. If an empty slot is encountered, then
a new value tuple is inserted for the key; otherwise, the count and
sum of the tuple are atomically added to the current value tuple
for the key. After all threads have completed, the count and sum
of each key in the hash table are used to calculate aggregate val-
ues. These aggregate values form the output of the query. All GPU

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 9

hash table operations and arithmetic computations are performed
in data-parallel fashion by blocks of threads.

The primary contribution of this work is a thorough experimental
evaluation of several factors affecting hashing performance on the
GPU, including guidance on how to decide the hash table size, load
factor, and CUDA grid configuration of number of thread blocks
and threads per block. Notable experimental findings are the fol-
lowing:

• As the number of groups increases, either the hash table must
grow proportionately in size, or the load factor needs to increase.
The ideal table size is one that fits within shared L2 cache, with
a load factor below 50 percent. If a higher load factor is used,
then thread contention and long probe sequences emerge. This
contention is due to multiple threads attempting to access the
value tuple for the same key (group) and having to synchronize
via atomic compare-and-swap updates.
• Hash tables that cannot fit within L2 cache reside in global mem-

ory and each thread must make global memory accesses, unless
the data is cached. For the data to reside in cache, a cache line
load of a small, fixed size (e.g., 128 bytes for L1 and 32 bytes for
L2) must be performed. Since linear probing creates a variable
number of probes per thread and threads access random, non-
coalesced regions of memory, a thread will likely need multiple
cache line loads to complete an operation. With thousands of
concurrent threads, each invoking cache line loads into a limited
size cache, the chances of cache pollution and eviction are high,
diminishing the benefits of caching. Thus, to achieve undisturbed
cache access to data, fewer threads should be used. The number
of threads, however, should also be at least enough to hide the
memory latency of the PCIe data tranfers from host to device.

Additionally, the simple hash table and probing scheme are only
used in order to minimize the number of factors affecting perfor-
mance and because the approach is mainly PCIe-bandwidth bound,
which affords more probes and non-coalesced memory accesses to
hide the latency. The authors acknowledge the bounded linear prob-
ing approach of Bordawekar [Bor14], but cite the latter reason for
using a simpler hashing scheme.

3.1.2. Cuckoo-based Hashing

In cuckoo hashing, each key is assigned two locations in the hash
table, as specified by primary and secondary hash functions [PR04].
When inserting a new key, its first location is probed with the pri-
mary function and the contents of the location are inspected. If the
slot is empty, then the key is inserted and the probe sequence ends.
Otherwise, a collided key already occupies the slot and the cuckoo
eviction procedure begins. First, the occupying key is evicted and
hashed to the location specified by its secondary function, where
its contents are probed as before. This eviction chain continues un-
til either the evicted key is successfully inserted or a maximum
chain length is reached. If the eviction is successful, then the new
key is finally inserted at its primary location (first probe). Numer-
ous follow-up studies to this canonical approach have introduced
cuckoo hashing approaches with more than two hash functions
(probes) per key, a separate hash table for each hash function, and
other optimizations for concurrent, mixed operations (e.g., simulta-

neous inserts and queries) on the GPU. These studies are surveyed
in this subsection.

Alcantara et al. [ASA∗09] introduce a data-parallel, dynamic
hashing technique based on perfect hashing and cuckoo hashing
that supports both hash table construction and querying at real-
time, interactive rates. The querying performance of this technique
is compared against that of the perfect hashing technique of Lefeb-
vre and Hoppe [LH06] and a standard data-parallel sort plus binary
search approach. In this work, a two-phase hashing routine is con-
ducted to insert and query elements, with the goal of maximizing
shared-memory usage during cuckoo hashing.

First, elements are hashed into bucket regions within the
hash table, following the perfect hashing approach of Fredman
et al. [FKS84]. The maximum occupancy of each bucket is the
number of threads in a thread block (e.g., 512), such that the en-
tire bucket can fit within shared memory. The hash function aims
to coherently map elements into buckets such that:

• Each bucket, on average, maintains a load factor of 80%, and
• Spatially-nearby elements are located within the same bucket,

enabling coalescing of memory among threads during queries.

If more than 512 elements hash to a given bucket, then a new hash
function is generated and this phase is repeated. Then, within each
bucket, cuckoo hashing is performed to insert or query an element,
using i = 3 different hash functions hi (i.e., the multiple choices),
each corresponding to a sub-table Ti. During construction, each el-
ement simultaneously hashes to its location h1 in T1, in a winner-
takes-all fashion. If multiple threads hash to the same location, then
the winning thread (i.e., the last thread to write) remains and the
other threads proceed to hash into location h2 in T2. This continues
for T3, after which any remaining unplaced elements cycle back to
the beginning and hash into h1 in T1 again. At this point, if a colli-
sion occurs at h1, then the current residing element is evicted and
added to the batch of unplaced elements. This cuckoo hashing pro-
cedure continues until all elements are successfully placed into a
sub-table Ti or a maximum number of cycles have occurred.

An observation of this construction routine is that restarts can
occur during both phases if either a bucket overflows or the cuckoo
hashing reaches the maximum number of cycles within a bucket.
While this reconstruction may be viewed as a disadvantage of prob-
ing techniques in general, the authors maintain that the occurrence
of these restarts are reasonable in practice and fast to compute
on massively-parallel GPU architectures. Moreover, this technique
makes extensive use of thread atomics to increment and check val-
ues in both global and shared memory. While only a fixed number
of atomic operations are made each phase, they are still serialized
and must handle varying levels of thread contention, both of which
are known to degrade performance.

After construction, a query operation is performed by hashing
once into a bucket, and then making at most d = 3 hashing probes
to locate the element within one of the sub-tables Ti of the bucket.
Insertions and queries are all conducted in a data-parallel, SIMD
fashion. Since each thread warp assigned to a bucket has its own
dedicated block of shared memory, the probing and shuffling of
elements in the cuckoo hashing can be performed faster locally, as
opposed to accessing global memory.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

10 Brenton Lessley / Area Exam Paper

Experimental results for this technique reveal the following:

• For querying elements (voxels in a 3D grid) in a randomized
order, this hashing approach outperforms the perfect hashing ap-
proach of Lefebvre et al. [LH06] and the data-parallel binary
search of radix-sorted elements of Satish et al. [SHG09], par-
ticularly above 5 million elements. After this point, the binary
searches used in both methods do not scale and become time-
prohibitive.
• For querying in a sequential order, the data-parallel binary search

demonstrates better performance than this hashing technique,
due to more favorable thread branch divergence and memory co-
alescing among the sorted elements.
• Constructing the hash table of elements in this approach is

comparably-fast to radix sorting the elements, with noticeable
slowdowns due to more non-coalesced write operations. More-
over, for large numbers of insertions, both approaches are mag-
nitudes faster than constructing the perfect spatial hash table
of [LH06], which is initially built on the CPU, rather than the
GPU (onto which the table is copied for subsequent querying).

Alcantara et al. [AVS∗12] improved upon their original
work [ASA∗09] by introducing a generalized parallel variant of
cuckoo hashing that can vary in the number of hash functions, hash
table size, and maximum length of a probe-and-eviction sequence.
In [ASA∗09], the authors hypothesized that parallel cuckoo hash-
ing within GPU global memory would encounter performance bot-
tlenecks due to the shuffling of elements each iteration and use
of global synchronization primitives; thus, shared memory was
used extensively in the two-level hashing scheme. However, in this
follow-up work, a single-level hash table is constructed entirely in
global memory and addressed directly with the cuckoo hash func-
tions, without the first-level bucket hash. The cuckoo hashing dy-
namics remain the same, except that the probing and evicting of
elements occurs over the entire global memory hash table, as op-
posed to the shared-memory buckets of the two-level approach.

To construct a hash table of N elements, approximately N threads
will operate in SIMD parallel fashion to place their elements into
empty slots in the global table. A given thread block will not com-
plete until all of its threads have successfully placed their elements;
a smaller block size helps minimize the completion time, as the
block will likely contain fewer threads with long eviction chains.

The construction (insertion) and query performance of the
single-level hash approach is compared against that of Merril’s
radix sort plus binary search [MG10] and the authors’ previous
two-level cuckoo hashing approach. Experimental results reveal the
following:

• Insertions. For large numbers of insertions, the radix
sort [MG10] becomes increasingly faster than both hashing
methods, with a much higher throughput of insertions-per-
second. For the same size hash table, the single-level hash table
is constructed significantly faster than the two-level table, due
to shorter eviction chains on average, over all insertion input
sizes (the two-level table uses a fixed 1.42N space, while the
single-level table is variable-sized). Radix sort achieves an
upper bound of 775 million memory accesses (read and write)
per second, while the single-level hashing only attains 670

million accesses per second. This higher throughput by radix
sort is due to its more-localized memory access patterns that
enable excellent memory coalescing among threads sharing
a memory-bound instruction (up to 70% of the theoretical
maximum pin bandwidth on the tested Nvidia GTX 480 GPU,
versus 6% of the single-level hashing).

• Queries: Binary Search vs. Hashing. For random, unordered
queries, binary search probing of the radix sorted elements is
much slower than cuckoo hash probing of the elements. This
arises from uncoalesced global memory reads and branch diver-
gence for many of the threads, which use the maximum O(logN)
probes. Both cuckoo hashing approaches lookup elements in a
worst-case constant number of probes and, thus, perform signif-
icantly better than binary searching, despite these probes being
largely uncoalesced.

• Queries: Two-Level vs. Single-Level. When all queried elements
exist in the hash table, the single-level cuckoo hashing makes
a smaller average number of probes per query than the two-
level approach, leading to faster completion times. However,
when a large percentage of the queried elements do not ex-
ist in the hash table, the two-level hashing needs fewer worst-
case probes before declaring the element as not found. This is
because the single-level hashing uses four hash functions, or
probes, to lookup an element, whereas the two-level hashing
only uses three functions. By setting the number of hash func-
tions to three in the single-level hashing, the authors observe
comparable querying performance between the two approaches.

A notable performance observation in this work is that only ran-
domized queries are considered. The authors indicate, as a limita-
tion of their work, that if the elements to be queried are instead
ordered (sorted), then binary searching the radix-sorted elements
should yield improved thread branch divergence and memory co-
alescing. This work has since been incorporated into the CUDPP
library [cud17] as a best-in-class GPU hash table data structure.

3.1.3. Multi-level and Bucketized Hashing

Bucketized cuckoo hash tables (BCHT) organize groups of en-
tries into buckets (or bins), inside which cuckoo hashing is ap-
plied [EMM06]. Typically, a single allocated hash table is used and
partitioned into bucket regions, each of which may be assigned to a
single warp of threads. Thus, the size of each bucket is uniform and
proportional to the number of threads in a warp (e.g., 32 threads),
the size of the cache line in a warp (e.g., 128 bytes), or the size
of the shared memory within the warp’s streaming multiprocessor
(e.g., less than 50 kilobytes).

As presented in section 3.1.2, the bi-level design of Alcantara
et al. [ASA∗09] performs bucketized cuckoo hashing by first per-
fect hashing into buckets that are the size of a thread block’s
shared memory, and then conducting cuckoo hashing within each
bucket. Moreover, as presented in section 3.1.1, the work of Bor-
dawekar [Bor14] develops a multi-level, bounded linear probing
scheme. Sections 3.1.1 and 3.1.2 contain additional details on these
approaches.

Zhang et al. [ZWY∗15] design a modified variant of a BCHT
for use in accelerating queries of a GPU-based, in-memory key-
value (IMKV) store, whose values reside in host memory. Tradi-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 11

tionally, a bucket is the size of a thread warp or block (e.g., 512
threads) and each thread is assigned to a separate insert or query op-
eration, with varying probe sequence lengths. However, with tens
of thousands of threads operating on different buckets (warps) si-
multaneously, L2 cache (e.g., 1.5MB) contention will be high and
likely lead to frequent evictions, which will force threads to per-
form multiple memory transactions. This work addresses this issue
by sizing a bucket to a processing unit of threads, which is set as
a multiple of the memory transaction (L2 cache line) size (e.g., 32
bytes); the number of threads is the transaction size (in bytes) di-
vided by 4 bytes, assuming each thread accesses a 4 byte (32-bit)
key. Thus, a memory transaction services the entire processing unit,
enabling coalescing among the threads. In a query operation, a key
is first hashed to a bucket and given a key signature, after which
each thread in the unit compares its assigned key signature in the
bucket with the query key signature. Via a warp-wide ballot vote
primitive, all threads indicate whether they have a match or not. If
unsuccessful, the query key is hashed, via its second cuckoo hash
function, into an alternative bucket. The same processing unit then
searches for this key as before, reporting failure if it is not found.
Insert operations are performed via a modified, bucketized cuckoo
hashing routine in which a new key is only added into an empty
slot, instead of evicting a collided key.

Breslow et al. [BZG∗16] introduce an expansion of a BCHT that
allows for higher load factors, improved bucket load balancing, and
a lower expected number of bucket lookups (less than 2) for both
positive and negative queries. In this Horton table, a row is main-
tained for each bucket, which is denoted as either Type A or Type B.
Each key is hashed by its primary hash function into the primary
bucket. If the primary bucket is full, then the key either hashes,
via one of its secondary hash functions, to a secondary bucket—
after which we denote the key as a secondary item—or replaces
a secondary item in the primary bucket. If the key is a secondary
item, then it is placed in the secondary bucket that is least full;
note that several secondary hash functions (and buckets/rows) can
be specified. Then, the filled primary bucket is promoted (if not
already) to Type B and its last stored key is evicted (moved to a
secondary bucket) to make room for a compact remap entry array
that stores an index, or remap entry, to the secondary bucket of each
secondary item. This important feature permits all secondary items
to be efficiently tracked, allowing no more than two probes and
hash function evaluations per query. Additional bookkeeping and
logic is used to delete keys and handle a cascading effect where
an evicted key causes its secondary bucket to convert into Type B,
which induces another eviction, and so on.

Experimental results of large query sets reveal that most success-
ful lookups occur within the primary buckets, allowing a high load
factor with only one hashing probe. Moreover, the performance of
the Horton table is compared against that of a baseline BCHT sim-
ilar to Zhang et al. [ZWY∗15]. For all successful queries, the Hor-
ton table increases throughput (billions of keys queried per second)
over the baseline by 17 to 35 percent. For a set of all unsuccessful
queries, the Horton table increases throughput by 73 to 89 percent
over the baseline, needing only one hash probe to detect failure.
An important note regarding the design and performance of this
approach is that only the query operations are conducted in data-
parallel fashion on the GPU. The detailed insertion and construc-

tion phase is run on the CPU, which could make reconstruction
costly for use other than as a static hash table, which is sufficient for
the query-heavy usage of most key-value store systems [ZWY∗15].

Hetherington et al. [HOA15] develop a fixed-sized set-
associative hash table for scaling-up the throughput of key-value
storage and accesses. As part of a MemcachedGPU caching ser-
vice, HTTP GET requests are parsed to extract query keys that are
hashed to a hash table on the GPU. This table facilitates k-way,
set-associative hashing with each set (or bucket) entry consisting
of an 8-bit key identifier hash and a pointer to the actual memory
address (within a dynamically allocated slab of memory) at which
the key is stored. After hashing to a set, each query key compares
itself to the 8-bit hash and, if a positive match, accesses the key in
memory and instigates a return package with the associated value,
which is stored in CPU memory. If the query key does not exist in
the set, then it was previously a least-recently-used (LRU) key that
must have been evicted from the set by a colliding, more-recent
key in the same set (recent usage based on timestamp). Thus, an
HTTP SET request can reinsert this key into an empty entry in
the set or evict a LRU key that resides in the set. Each set main-
tains and updates its own local LRU array. Experiments over vary-
ing hash table sizes (number of entries) and a query-heavy distri-
bution of key-value requests (95% GET and 5% SET) reveal that
MemcachedGPU achieves an acceptable hash table miss rate with
16-way set associativity. In these experiments, each request key is
assigned to an individual warp thread for SIMT execution. Unless
requests exhibit spatial locality, branch and memory divergence are
inevitable in this approach.

Ashkiani et al. [ADMO16] design a set of multisplit data-parallel
primitives for the GPU that efficiently permute elements into con-
tiguous buckets. While this study is not focused on hashing, it rec-
ommends that the multisplit can be used to map elements into the
first level of buckets in a multi-level hash table, such as the two-
phase hash table of Alcantara et al. [ASA∗09]. Moreover, this work
contributes a reduced-bit radix sort that converges to and exceeds
the performance of state-of-the-art radix sort [MG10] as the num-
ber of buckets is increased. Thus, if the order of insertions and
queries into a bucket-based hash table are non-random and ordered,
then this sorting primitive may offer an effective substitution for
a bucketing procedure. These primitives have since been incorpo-
rated into the CUDPP library [cud17].

3.1.4. Double Hashing

Double hashing first hashes a key k to location h(k) in the hash
table and then, if the location is already occupied, computes an-
other independent hash h′(k) that defines the step size to the next
probing location [CSRL01]. Thus, the second probe location is
h(k) + i · h′(k), where i is the current i-th probe in the probe se-
quence. This hashing and probing continues until an empty slot (in-
sertion) or k itself (query) is found. Similar to linear and quadratic
probing, if h(k) is empty, then k is inserted immediately, without
probing. The choice of the second hash function has a large impact
on performance, as it dictates the locality of consecutive probes
and, thus, the opportunity for memory coalescing among threads
on the GPU.

Khorasani et al. [KBGB15] introduce a stadium hashing (Stash)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

12 Brenton Lessley / Area Exam Paper

technique that builds and stores the hash table in out-of-core host
memory, and resolves insert collisions via double hashing until an
empty slot is found. In GPU global memory, a compact auxiliary
ticket-board data structure is maintained to grant read and write
accesses to the hash table. For each hash table location, the ticket
board maintains a ticket, which consists of a single availability bit
and small number of optional info bits. The availability bit indicates
whether the location is empty (set to 1) or occupied by a key (set
to 0), while the info bits are a small generated signature of the key
to help identify the key prior to accessing its value. Within individ-
ual thread warps, a shared-memory, collaborative lanes (clStash)
load-balancing scheme is used to ensure that, during insertions,
all threads are kept busy, preventing starvation by unsuccessful
threads.

Stadium hashing is meant to address three limitations of previ-
ous GPU parallel hashing techniques, specifically in regard to the
cuckoo hashing approach of Alcantara et al. [AVS∗12]:

1. Support for concurrent, mixed insert and query operations.
Without proper synchronization, cuckoo hashing encounters a
race condition whereby a query probe fails at a location because
a concurrently-inserted key hashes to the location and evicts the
queried key, yielding a false negative lookup. Stadium hash-
ing avoids this issue by using eviction-free double hashing and
granting atomic access to a location via a ticket board ticket with
the availability bit set to 1.

2. Reduce host-to-device memory requests for large hash table
sizes. In cuckoo hashing, CAS atomics are used to retrieve the
content of a memory location, compare the content with a given
value, and swap in a new value, if necessary. When a hash table
is stored in host memory, the large number of parallel retrieval
requests from thousands of GPU threads will turn the hash-
ing into a PCIe bandwidth-bound problem and degrade perfor-
mance. Stadium hashing uses the GPU ticket board data struc-
ture to minimize retrieval requests to the host memory hash ta-
ble.

3. Efficient use of SIMD hardware. During a cuckoo hashing oper-
ation, a thread failing to insert or query a key can cause starva-
tion among the other threads in the thread warp, as they all per-
form the same instruction in lock-step. Thus, if the other threads
complete their operation early, then they will remain idle and
contribute to work imbalance. Stadium hashing uses the clStash
load-balancing routine to maintain a warp-wide, shared mem-
ory store of pending operations that early-completing threads
can claim to remain busy.

For an out-of-core hash table, the ticket-board with larger ticket
sizes (more info bits per key) helps improve the number of opera-
tions per second by reducing the number of expensive host memory
accesses over the PCIe bus. This improvement is especially signif-
icant for unnecessary queries of elements which do not actually
reside in the host hash table. In this case, the PCIe bandwidth from
GPU to CPU memory is the primary performance bottleneck. How-
ever, when the hash table resides in GPU memory, the underutiliza-
tion of SIMD thread warps becomes the primary bottleneck on per-
formance for low load factors (fewer collisions). The efficiency of
warps is shown to improve by using the collaborative lanes clStash
scheme in combination with the Stash hashing.

Regarding the experiments and findings in this work, the cuckoo
hashing approach of [AVS∗12] is specifically designed for hash
table construction and querying within GPU memory. Thus, the use
of this technique in out-of-core memory should not necessarily be
expected to perform optimally, and should be kept in mind when
comparing against the out-of-core performance of stadium hashing.

3.1.5. Robin Hood-based Hashing

Robin Hood hashing [Cel86] is an open-addressing technique that
resolves hash collisions based on the age of the collided keys. The
age of a key is the length of the probe sequence, h1(k),h2(k), . . . ,
needed to insert the key into an empty slot in the hash table. Dur-
ing a collision at a probe location, the key with the youngest age
is evicted and the older key inserted into that location. The evicted
key is then robin hood hashed again until it is placed in a new empty
location, incrementing its age along the new probe sequence. The
idea of this approach is to prevent long probe sequences by favor-
ing keys that are difficult to place. Even in a full table with high
load factor, this eviction policy guarantees an expected maximum
age of Θ(logn) for an insert or query key. However, the worst-case
maximum age M may still be higher and worse than the maximum
probe sequence length of cuckoo hashing, prompting a table recon-
struction in some cases. These maximum M probes will be required
during queries for empty keys (those which do not exist in the hash
table), unless they are detected and rejected early.

Garcia et al. [GLHL11] introduce a data-parallel robin hood
hashing scheme that maintains coherency among thread memory
accesses in the hash table. Neighboring threads in a warp are as-
signed neighboring keys to insert or query from a spatial domain
(e.g., pixels in an image or voxels in a volume). By specifying a
coherent hash function, both keys will be hashed near each other
in the hash table and the threads can access memory in a coalesced
fashion, i.e., as part of the same memory transaction. Thus, the se-
quence of probes for groups of threads will likely also be conducted
in a coherent manner, as nearby keys of a young age are evicted and
replaced by nearby keys of an older age.

The insertion and query performance of this techniqie is eval-
uated on both randomly- and spatially-ordered key sets from a
2D image and 3D volume. For all load factor settings, the ex-
istence of coherence in the keys and probe sequences results
in significant improvements in construction and querying perfor-
mance (millions of keys processed per second), as compared to
the use of randomly-ordered keys. Moreover, coherent hashing
achieves greater throughput than the cuckoo hashing of Alcantara
et al. [AVS∗12], which employs four hash functions for a maximum
probe sequence of length four. For load factors above 0.7, coherent
hashing maintains superior performance without failure (hash ta-
ble reconstruction) during insertions, whereas the cuckoo hashing
exhibits an increase in failures.

In absence of coherence in the access patterns, coherent hashing
brings little to no benefit compared to the random access robin hood
and cuckoo hashing. Thus, this approach is of particular use for ap-
plications with spatial coherence in the data. In one of the spatially-
coherent experiments, the task is to insert a sparse subset of pixels
from an image (e.g., all the non-white pixels) into the hash table,
and then query every pixel to reconstruct the image. Since only

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 13

non-white pixels are hashed, there will be empty queries for the
white pixel keys. Spatial and coherent ordering of keys is attained
by applying either a linear row-major, Morton, or bit-reversal func-
tion to the spatial location of elements; a non-coherent, randomized
order is attained by shuffling the keys.

Coherent hashing has some notable design characteristics that
can affect GPU performance. First, upon completing an insert or
query operation, a thread sits idle until all threads in its warp have
finished as well. The number of threads per warp (192 in this work)
and amount of branch divergence due to incoherent ordering of
keys are primary factors affecting the warp load balancing. Second,
while inserting a key, the hash table is reconstructed if the age, or
probe sequence length, of the key exceeds a threshold maximum
(15 in this work). Moreover, the hash table is not fully dynamic and
is designed to process queries after an initial build phase. Thus, if
new keys are inserted after the build phase, then the table is recon-
structed entirely, with a larger table size or load factor if necessary.

Zhou et al. [ZGJ∗16] design a modified GPU-based robin hood
hashing scheme for use in storing and extracting the top-k most
similar matches, or results, of a query (e.g. a document of words
or multi-dimensional attribute vector). In this similiarity search, a
two-level Count Priority Queue (c-PQ) data structure hashes poten-
tial candidates for the top-k results into an upper-level hash table,
as determined by a lower-level ZipperArray histogram array of ob-
ject counts, where ZipperArray[i] is the number of objects (e.g.,
word or attribute value) that appear i times in the query (count
of i). An AuditThreshold is set as the minimum index (count) of
ZipperArray whose value (number of objects) is less than k. For an
object to be inserted into the hash table, it must have a count greater
than or equal to the AuditThreshold. As new items are added, ob-
jects counts and the ZipperArray are updated, and the AuditThresh-
old may be increased. During insertion into the hash table, the
robin hood hashing scheme of Garcia et al. [GLHL11] is used,
with an additional feature that an object with a count smaller than
(AuditT hreshold−1) can be directly overwritten, and not evicted,
during a hash collision. This helps reduce the average age, or probe
length, of new insertions, as previously-inserted objects become ex-
pired due to an increase in the AuditT hreshold. This modification,
along with a lock-free synchronization mechanism, affectively con-
tributes a dynamic hash table variant of [GLHL11].

3.2. Perfect Hashing

Whereas the previous hashing categories employ imperfect hash
functions that require collision-handling and multiple probes, per-
fect hashing maps each key to a unique address in the hash table,
resulting in no collisions and enabling single-probe queries. If the
length of the hash table m is equal to the number of keys n, then a
perfect hash function over the keys is minimal and effectively scat-
ters, or permutes, the keys within the table.

In theory, obtaining a perfect hash function, especially for large
sets of keys, is a difficult, low-probability task. Given a universe
U = {0,1, . . . ,u−1} of possible keys, subset S⊂U of |S|= n keys
to be hashed, a hash table of size m, and class H of hash functions
h : U → [0,m− 1], the probability P(n,m) of randomly placing n

keys in m≥ n slots without a collision is

P(n,m) =
m(m−1) · · ·(m−n+1)

mn .

This can also be stated as the probability of a randomly-chosen hash
function h ∈ H being a perfect hash function over the set S. As a
reinterpretation of the classical birthday paradox, only one in ten
million hash functions h ∈ H is a perfect hash function for n = 31

keys mapped into m = 41 locations. When m� n, P(n,m)≈ e
−n2
2m ,

which implies that there is a very low probability of attaining a per-
fect hash when the load factor or occupancy of the hash table is very
high; i.e., m� n2. Moreover, when m = n, P(n,m) = n!

nn , which is
the probability of achieving a minimal perfect hash [Meh82]. For
larger key set sizes n, such as those seen in practical applications,
the minimal perfect hash probability decreases very rapidly and is
approximated as e−n.

In practice, a perfect hash function can be described as an im-
perfect hash function that is then iteratively corrected into a per-
fect form. One approach to doing this is to construct one or more
auxiliary lookup tables that perturb the hash table addresses of col-
lided keys into non-colliding addresses [FHCD92]. These tables are
typically significantly more compact than the hash table. Another
foundational approach, introduced by Fredman et al. [FKS84], is
the use of a multi-level hash table that hashes keys into smaller
and smaller buckets—each with a separate hash function—until
each key is addressed to a bucket of its own, yielding a collision-
free, perfect hash table with constant worst-case lookup time. Mo-
roever, a perfect hash function is most suitable for static hash ta-
bles (and key sets), in which no insertions or deletions occur after
the construction of the table. If dynamic updates are performed,
then the function will inevitably become imperfect—with colli-
sions among relocated keys—and require a reconstruction proce-
dure. Czech et al. [CHM97] survey a rich body of related work
investigating additional perfect hashing and minimal perfect hash-
ing schemes (largely non-parallel), each designed for CPU-based
storage and computation.

Lefebvre and Hoppe [LH06] introduce a perfect spatial hash-
ing (PSH) approach that is also the first GPU-specific perfect hash-
ing approach. In PSH, a minimal perfect hash function and table
are constructed over a sparse set of multi-dimensional spatial data,
while simultaneously ensuring locality of reference and coherence
among hashed points. Thus, on the GPU, spatially-close points are
queried coherently, in parallel, by threads within the same warp. In
order to maximize memory coalescing among these threads, points
are also coherently accessed within the hash table, as opposed to
via a random access pattern, which can necessitate multiple mem-
ory load instructions.

In the PSH study, the spatial domain U is a d-dimensional grid
with u points (positions), where d ∈ {2,3}. The grid serves as a
bounding box over a sparse subset S ⊂ U of n points that have
associated data records D(p), p∈ S (e.g., RGB color value for each
pixel or voxel); thus, the remaining u−n grid locations are stored in
memory without any compute value. The sparse subset D is more-
compactly stored in a dense hash table H of size m≥ n. This table
is addressed by a multi-dimensional perfect hash function h that is
composed of two imperfect hash functions, h0 and h1, and an offset

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

14 Brenton Lessley / Area Exam Paper

table Φ that “jitters” h0 into perfect form. This function is defined
as

h(p) = h0(p)+Φ[h1(p)] mod m̄,∀p ∈ S,

where h0 and h1 perform simple modulo addressing and wrap the
points S multiple times over H and Φ, respectively. Due to this
modulo, lockstep addressing by h1, spatial coherence is preserved
for accessess into Φ. However, the values Φ[h1(p)] perturb the co-
herency of the combined function h. By constructing Φ such that
adjacent offset values are locally constant, the coherency of h can
be ensured. Note that h is not strictly a minimal perfect hash func-
tion (i.e., when m = n), since the hash table size m may need to be
slightly increased to faciliate the perfect hash represented within
Φ. The number of unused table entries m− n is kept small and is
considered near-minimal. Thus, the sizing of H and the spatial co-
herency of h are both dependent on the proper construction of Φ.

The construction of the offset table Φ proceeds by first identi-
fying the smallest table size r that yields a perfect hash h. A ge-
ometric progression or binary search of r is iteratively conducted,
depending on whether faster construction or a compact representa-
tion is desired, respectively. For each size r tested, the offset values
Φ[q],0 ≤ q ≤ r are assigned via a greedy heuristic procedure that
seeks to maximize spatial coherence. Since r < n, on average b n

r c
points, h−1

1 (q)⊂ S, hash to each entry q ∈ Φ. The entries q are as-
signed in descending order by size of their point sets h−1

1 (q). Then,
each q is assigned one of the following two candidate heuristic val-
ues:

1. Same offset value as a neighboring entry, Φ[q′],‖q−q′‖< 2.
2. For each p∈ h−1

1 (q) with a neighboring point p′ ∈ S,‖p− p′‖=
1 already hashed in H[h(p′)], the offset value that places p in an
empty neighboring slot of H[h(p′)].

If Φ yields a perfect hash function h with the tested size r, then the
construction phase completes; otherwise, the routine is conducted
again with another size r.

In a SIMT fashion on the GPU, point queries q ∈U are executed
in parallel by threads, each computing h(q) and looking up an as-
sociated value from H[h(q)], which is mapped to a single point due
to the perfect hash h. If q does not exist in H, then a negative query
result is returned.

Note that the construction of Φ is an inherently sequential pro-
cess, since the assignment of offset values depends on earlier offset
values or hashed points in H. Moreover, the construction of H and
Φ is performed on the CPU in this work, due to the larger memory
requirements and presumed usage as a pre-processing step; thus H
must be copied into GPU device memory over the PCIe bus. More-
over, H is designed to be static, since insertions or deletions of
points after construction destroy the perfect hash and require Φ to
be reconstructed.

Bastos and Celes [BC08] implement a GPU-based link-less oc-
tree data structure by hashing the parent-child (node) relationships
into the perfect hash table of Lefebvre et al. [LH06]. Thus, instead
of constructing a multi-level tree with pointers over sparse spatial
data, only a compact perfect hash table needs to be built; how-
ever, updates to this data structure are costly and require the entire

table to be reconstructed, as the perfect hash is intricately data-
dependent. Since perfect hashing is collision-free, direct random-
access queries can be made on the octree, as opposed to traditional
pointer tracing in tree traversals.

Choi et al. [CJC∗09] follow-up the work of Bastos and Ce-
les [BC08] with a similar link-less octree design that avoids the
need to store extra bitmaps for the sparsity encoding of empty grid
cells in the sparse spatial domain. This encoding indicates whether
a cell contains associated data that is stored within the hash ta-
ble; if no data is present, then a query operation for the cell can
be avoided. While this latter approach significantly reduces storage
costs, it executes random-access queries much slower than similar
accesses into the benchmark pointer-based octree.

Schneider and Rautek [SR17] denote sparsity encoding as a
memory overhead cost for providing unconstrained access, or
empty cell querying, in the spatial perfect hashing approach of
Lefebvre et al. [LH06]. This study proposes a compact, GPU-based
Fenwick tree data structure that supports unconstrained accesses
without additional occupancy storage to denote empty cells.

3.3. Spatial Hashing

The following two subsections present GPU-based spatial hashing
techniques for inserting and querying regular grid cells (subsec-
tion 3.3.1) and point coordinates (subsection 3.3.2) within a multi-
dimensional spatial domain.

3.3.1. Grid-based Spatial Hashing

Most real-world use cases of searching require a data structure that
can support lookups of geometric primitives — e.g., point coordi-
nates, polygonal shapes, and voxels — that exist within a multi-
dimensional spatial domain, such as R2, R3, or Rn. One approach
is to explicitly compute a bounding box over the domain and then
recursively subdivide it into smaller and smaller regions, or cells,
which contain a group of primitives or a subset of the spatial do-
main. This subdivision hierarchy can be represented by a grid (e.g.,
uniform and two-level) or tree (e.g., k-d tree, octree, or bounding
volume hierarchy) data structure (see Subsection 2.4) that conducts
a query operation by traversing a path through the hierarchy until
the queried primitive is found. While these structures are designed
for fast, highly-parallel usage, they typically do not exhibit fast re-
construction rates due to complex spatial hierarchies, and may con-
tain deep tree structures that are conducive to thread branch diver-
gence during parallel query traversals. These attributes are partic-
ularly important to real-time, interactive applications, such as sur-
face reconstruction and rendering, that make frequent updates and
queries to the acceleration structure.

An alternative approach that addresses these limitations is to
perform spatial hashing over the primitives, whereby the multi-
dimensional domain is projected, or compressed, to a single di-
mension in the form of a hash table data structure. Instead of com-
puting a bounding box over the spatial domain and explicitly stor-
ing the entire space, spatial hashing assumes an implicit, infinite
regular grid over the domain and maps each positional primitive
(e.g., a point coordinate) to a uniformly-sized and axis-aligned cell

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 15

within the grid. Each cell is uniquely addressed by unit coordi-
nates and contains a user-specified number of primitives within its
bounds [SLM04]. These coordinates are used by the hash function
to hash the cell into the hash table. Two or more cells may hash
to the same address, resulting in collisions that must be resolved.
To query a primitive (or cell), the primitive is mapped to its cell
and the cell is hashed to an address in the hash table. From this
address, the cell is searched, using more than one probe if a col-
lision occurs. Typically, to exploit sparsity, only non-empty cells
that contain computable primitive data (e.g., pixel intensity, RGB,
or density) are inserted into the hash table. A query of an empty
cell will return a negative result, as it doesn’t exist in the table.

This canonical grid-based voxel hashing approach was intro-
duced by [THM∗03] as a CPU-based search structure for detecting
colliding 3D tetrahedral cells in R3 domain space. Several follow-
up studies have since introduced GPU-based spatial hashing tech-
niques based off of this approach, and they are surveyed as follows.

Nießner et al. [NZIS13] extend the approach of Teschner et
al. [THM∗03] with more sophisticated collision handling and a 3D
voxel hashing scheme that is designed particularly for fast, real-
time hash table updates on the GPU. An infinite uniform grid sub-
divides the world space into voxel blocks, each of which consists of
83 voxels. The world coordinates of each voxel block are hashed as
an address into a bucketed hash table. During an insertion, a block
probes linearly through its assigned bucket for the first empty slot
that it can occupy. If a free slot is found, then the block is inserted.
Otherwise, if the bucket is already full, then overflow occurs and a
linked list entry in the last slot points to the next free slot in another
bucket of the hash table. The block then probes along this overflow
chain to find the next empty slot. Due to interconnection among
buckets, each hash entry contains an offset pointer to its neighbor-
ing bucket entry, which may not be adjacent in the table. A query
operation conducts similar probing to find a particular block within
the hash table. Additionally, lighweight GPU atomic primitives are
used to coordinate data-parallel insertions and deletions of blocks,
each assigned to an individual thread. While an entire bucket is
locked for writing during an insertion into the bucket, no degrada-
tion in performance is observed for a high-throughput, real-time 3D
scene reconstruction experiment. Moreover, by using a larger hash
table size, the number of collision is kept minimal and prevents
bucket overflows into other disparate buckets, which can cause un-
coalesced memory accesses among warp threads.

Kähler et al. [KPVM16] introduce a GPU-based hierarchical
voxel block hashing technique that uses multiple hash tables in a hi-
erarchy to store finer and finer resolutions of grid discretitzation for
voxel blocks (cells). Initially, each block is hashed to an entry in a
first-level hash table of coarse resolution. Then, if the voxels within
this block are represented at a finer resolution—as indicated by a
flag in the entry of each hash entry—the block is hashed again with
a different hash function into a second-level hash table. This hier-
archical hashing continues until an entry is reached that contains a
pointer to the voxel block array, which stores the actual, individual
block data. Atomic voxel block splitting and merging operations
are supported to enable the addition or removal of hash table en-
tries for finer or coarser resolutions, respectively. On scene recon-
struction experiments with signed distance function (SDF) values

for roughly 20 million points, this adaptive hierarchical representa-
tion, with 3 resolution levels and base voxel size of 2 mm, attains
greater accuracy than a fixed representation with 8 mm voxel sizes.

Note that the hierarchical voxel hashing of Kähler et
al. [KPVM16] is inspired by the general approaches of Eitz
and Lixu [EL07] and Pouchol et al. [PACT09], which them-
selves expanded upon the original spatial hashing of Teschner et
al. [THM∗03]. These studies are each CPU-based and use real-time
collision detection as a motivating application.

Chentanez et al. [CMM16] introduce a GPU-based spatial hash-
ing variant of Teschner et al. [THM∗03] for detecting and delet-
ing overlapping triangles on the surface of a 3D mesh volume,
as vertices are advected (i.e., mesh refinement). In this work,
the 3D bounding cells of triangles are inserted into a specially-
arranged hash table using the coordinate-based hash function
from [THM∗03]. The hash table consists of n buckets each with
m available slots (n ·m entries), and the first n entries of the table
are reserved to store counts of the number of slots j ≤ m that are
occupied in each bucket. Thus, the total allocated size of the table
is n(1+m). During an insertion of a cell k into bucket h(k) = b, the
thread assigned to cell k first checks the occupancy count value for
bucket b. If b has open slots, then k is inserted into the first avail-
able slot and the count for b is atomically incremented. Otherwise,
the thread examines the count for the next bucket b+1 and inserts
k into the first open slot of b+1, if possible, so on and so forth un-
til k is successfully inserted. This is a modified collision resolution
scheme whereby a bucket collision only occurs when the bucket
is full and subsequent buckets are then linearly-probed for one that
has an empty slot. During a cell query, the same linear probing over
buckets is performed, beginning with the bucket to which the cell
is hashed.

Note that, in this approach, thousands of other parallel threads
are executing the same operation on different triangle cells, likely
resulting in high contention for atomic writes for the bucket count
values and worst-case linear probing sequences that induce branch
divergence within warps. The extent of such divergence depends
on the size m of each bucket and whether locality of reference is
maintained among bucket entries when hashing spatially-nearby
cells. These performance effects are not explored in the experimen-
tal findings of this approach.

Tumblin et al. [TAHR15] expand upon traditional perfect spatial
hashing (PSH) with a compact spatial hashing (CSH) variant that
compacts a perfect hash table when it becomes too sparse, saving
unused memory on the GPU. As a larger number of keys need to be
hashed, a sufficiently large hash table must be allocated to construct
a perfect hash among the keys. Often, this large table still con-
tains many empty locations, resulting in a low occupancy and high
compressiblity, which is the ratio of available table locations to oc-
cupied locations. A compression function randomizes the original
hash locations of each key and fits them within a smaller, compact
hash table of size proportional to the number of keys divided by
a desired load factor. Since PSH is collision-free, this compaction
inevitably induces collisions, which are handled in this work by
a canonical quadratic probing open-addressing method in parallel.
The goal of the compression function, thus, is to reduce the oc-
currence of collisions via random scattering of keys. However, this

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

16 Brenton Lessley / Area Exam Paper

random re-assignment of hash locations disrupts any spatial local-
ity that existed among the keys, preventing warp-level memory coa-
lescing during accesses. Experimental results for an adaptive mesh
refinement (AMR) task show that as the perfect hash table reaches
20 to 40 times the size of the compact hash table, the CSH be-
comes the faster method. Thus, the exceedingly larger memory of
PSH offsets the extra costs (e.g., thread divergence and uncoalesced
memory) of resolving collisions and querying in CSH.

Duan et al. [DLN∗17] present an exclusive grouped spatial hash-
ing (EGSH) scheme that is optimized to compactly represent multi-
dimensional domains that contain repetitive data (e.g., duplicate
RGB or density values). The goal of this approach is to identify
all groups of points that share the same data values and then, for
each group, compress its points into a single group-wide value,
avoiding the unnecessary storage of duplicates, which are signif-
icantly prevalent in some domains. This grouped hashing is per-
formed over multiple iterations using multi-level hash tables until
each group has been exclusively hashed into a unique table loca-
tion. The logistics of this approach are discussed as follows:

• In the first iteration, all points in the input domain are hashed
into a hash table of size equal to the number of points. Then, at
each non-empty hash table location, collided points are binned
into disjoint groups based on their corresponding data values.
The data value of the group with the most points is set as the
exclusive value in this hash table location, replacing and com-
pressing the many repetitive points of the group. For subsequent
querying, the hash table ID (iteration index) of each compressed
point is stored in a global, persistent coverage table. The remain-
ing uncompressed points of the other groups are then advanced
as the input domain to another iteration of exclusive group hash-
ing. In the next iteration, all the uncompressed points (among all
hash table locations from the previous iteration) are hashed into
a smaller hash table of size approximately equal to the number
of groups from the previous iteration. The grouping and com-
pression routine is then conducted as before, and the hashing
iteratively continues until all points are compressed.
• The compression of repetitive elements contrasts with other

hashing approaches covered in this survey, which hash repetitive
keys into separate, and possibly disparate (depending on load
factor and table size) addresses of the table upon collision.

Experiments on the GPU reveal that after several iterations of
EGSH, the input domain becomes very sparse and has a rapid re-
duction in the amount of repetitive data (uncompressed groups).
Both of these traits are highly suitable for the perfect spatial hash-
ing (PSH) of Lefebvre and Hoppe [LH06], which similarily pro-
vides constant-time random accesses. Thus, an optimized variant
of EGSH performs exclusive grouped hashing for a small number,
k, of iterations—generating k levels of hash tables—and then ap-
plies the PSH on the remaining uncompressed input domain. In
this work, k = 6 is used for a set of 2D and 3D grid-based input
textures, all of which possess a high ratio of points with repetitive
data values. The results of a comparison between optimized EGSH
and PSH on these textures reveal that both schemes have similar
constant access times, while the EGSH memory cost is typically
less than half of the PSH memory cost. Takeaways of this study are
that PSH achieves best performance on sparse, slightly repetitive

domains, as opposed to sparse, highly repetitive or dense domains.
Contrarily, EGSH attains the smallest memory savings and con-
struction time for input domains with highly repetitive data.

A few important notes regarding this EGSH work are the follow-
ing:

• Thread- and warp-level GPU performance findings are not pro-
vided. Only high-level runtimes and memory usage are analyzed.
Moreover, the ESGH multi-level hash tables appear to be con-
structed on the CPU and copied over the PCIe bus to the GPU for
subsequent querying, much like that of the PSH hash table con-
struction. This is notable, since, during construction, the search
for the group with the maximal number of elements at each hash
table location is the most time-consuming task and may not be
optimally parallelized on the CPU.

• When each group has only one point, ESGH degenerates into
PSH, whereby all points are hashed to unique locations of a sin-
gle table. When the groups contain multiple repetitive points,
multiple sub-tables are needed to complete the ESGH.

3.3.2. Locality-Sensitive Hashing

Much like grid-based spatial hashing, locality-sensitive hashing
(LSH) reduces the dimensionality of high-dimensional data via
a projection to a 1D hash table. LSH hashes input elements so
that similar elements map to the same buckets with high proba-
bility, with the number of buckets in the hash table being much
smaller than the universe of possible input elements. LSH differs
from the other hashing approaches covered in this survey because
it aims to maximize the probability of collisions between similiar
items [IM98]. Similar to other approaches, LSH employs a colli-
sion resolution scheme to relocate collided elements that are in-
serted into the hash table. During a query operation, LSH is well-
suited for returning the k approximate nearest neighbors (kANN) of
the query element q, since these neighbors will likely reside in the
same bucket as q [IM98, DIIM04]. While performant GPU-based,
brute-force approaches exist to find the exact k nearest neigh-
bors [KZ09,LA15], a large body of recent research has investigated
the design and performance of LSH for kANN.

More formally, canonical LSH proceeds as follows, beginning
with the construction of the LSH hash tables. Given a set of
D-dimensional points S ⊂ RD, M < D different hash functions
hi(p) = b(ai ·p+bi)/Wc are used to project each point p⊂ S to a
cell within a ZM lattice space, the size of which is determined by M
and W (ai ∈ RD and bi ∈ [0,W) are randomly generated). This cell
location, or LSH projection, is specified as a M-dimensional vector
H j(p) = 〈h1(p),h2(p), · · · ,hM(p)〉 and then mapped into a single
value g j(H j(p)) known as the LSH code. This code represents the
bucket index of the hash table G j into which p is then inserted. To
decrease the collision probability of false neighbors, p is projected
and hashed into j = L different and independent hash tables, with
each instance of H j and G j being randomly generated. During a
query for arbitrary point v ∈ RD, v first computes its L different
LSH codes into the L different hash table buckets. Then, a candi-
date set of nearest neighbors of v is composed of the union A(v) of
all points hashed into the same L buckets as v. A short-list search
over A(v) calculates the subset k ⊂ A(v) of k neighbor points that
are closest in distance to v. This short-list is typically implemented

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 17

with a max-heap data structure and requires the most computation
with LSH [IM98, DIIM04, PLM10].

Two surveys led by J. Wang et al. [WSSJ14, WLKC16] review
additional CPU-based techniques related to LSH. The following
studies exclusively focus on data-parallel, GPU-based LSH ap-
proaches.

Pan et al. [PLM10] design a data-parallel GPU-based variant of
the canonical LSH method that simulates the L different hash ta-
bles with a single cuckoo hash table of Alcantara et al. [ASA∗09].
In SIMT parallel fashion, threads execute insert and query opera-
tions on their assigned D-dimensional points. During an insertion,
all of the LSH codes of points are data-parallel radix sorted in a lin-
ear array. Then, the sorted codes are partitioned into buckets, based
on unique code values. A data-parallel prefix-sum scan identifies
the starting and ending indices of each bucket. The LSH code and
its bucket interval define a key-value pair that is inserted into the
cuckoo hash table, or indexing table. Multiple points may have the
same LSH code/key and thus collide at the same index table loca-
tion. These collisions are resolved via a set of L≥ 3 hash functions
that define the probe sequence needed to relocate points upon evic-
tion. Note that the L functions simulate hashing a point into the
L separate hash tables (or buckets) of traditional LSH. Finally, a
query operation on a point computes the LSH code of the point,
probes for the corresponding key in the indexing table, and then
extracts the associated bucket interval value. The points within this
bucket define the candidate set of neighbor points. A data-parallel
search over a max-heap of these points returns the kANN. Experi-
ments on real-time motion planning data reveal that this approach
is both faster and more accurate than comparable tree-based kANN
approaches. Also, the accuracy, or spatial locality, of the nearest
neighbor hashing increases as the number of cuckoo hash functions
L increases.

Pan and Manocha [PM11] follow-up their original GPU-based
LSH approach [PLM10] with bi-level LSH that adds the following
four components:

1. Random projection (RP) tree: In the first level, an RP tree is
constructed in parallel over the input data points by iteratively
partitioning the points into smaller and smaller clusters until a
desired tree depth is reached, with leaf nodes containing small
subsets of likely spatially-similar points. The tree is similar to
a k-D tree, but splits the points along random directions instead
of along coordinate directions [DF08]. This addition to the LSH
helps generate more compact and accurate LSH codes.

2. Hiearchical LSH table: In the second level, an LSH table is con-
structed for each different RP tree leaf node and its subset of
points. Unlike the previous LSH approach, two additional steps
are performed prior to computing LSH codes. First, each point
in the leaf node is projected into a more compact E8 lattice space
that produces more accurate projections for high-dimensional
data. Then, these LSH projections are mapped to 1D Morton
curve values that preserve neighborhood relationships. These
values are efficiently constructed on the GPU, via the approach
of Lauterbach et al. [LGS∗09], and serve as LSH codes.

3. Bi-level LSH code: A modified Bi-level LSH code for a point v is
specified by the pair H̃ = (RP-tree(v),H(v)), where RP-tree(v)
is the index of the leaf node to which v belongs and H(v) is the

Morton curve value (or LSH code). These bi-level codes are then
data-parallel radix sorted and bucketed, producing the bucket
intervals. Similar to the previous approach, the LSH codes H(v)
and their corresponding bucket intervals form key-value pairs
for cuckoo indexing table.

4. Work queue: Instead of extracting the kANN of a query point
v from a global memory max-heap of size k, a global memory
work-queue is used to perform a clustered sort that arranges the
candidate set of neighbors in ascending order of distance from v.
This sort works in data-parallel across multiple queries and can-
didate sets, and employs radix sorting, which can benefit from
the high-speed GPU shared memory. Moreover, this queueing
approach increases parallel throughput and avoids thread branch
divergence inherent in the max-heap tree traversals.

A set of experiments on an image dataset with nearly 2 million
images, each represented as a 512-dimensional point, demonstrate
that the Bi-level LSH can provide higher quality ANN results than
the previous LSH method, given the same computational budget.
Each of the algorithmic improvements discussed above attain ac-
celerated GPU performance over the original methods.

Gieseke et al. [GHOI14] introduce a buffer k-d tree data structure
for massively-parallel ANN search on the GPU. While hashing is
not used in this study, the authors state a weakness of the Pan and
Manocha [PM11] approach is that it possibly yields inexact an-
swers, as compared to those of a serial benchmark. While a reason
was not provided, this inaccuracy may be due to either the RP-tree
spatial partitioning of points or the hiearchical LSH code calcu-
lation, which involves consecutive mappings to lower-dimensional
spaces.

Lukač and Žalik [LŽ15] implement a GPU-optimized variant of
multi-probe LSH (MLSH) that was originally introduced by Lv et
al. [LJW∗07]. In this approach, L hash tables are constructed, one at
a time, on the GPU using the unique LSH codes of projected multi-
dimensional points as bucket indices (the LSH code is a function
of K different LSH projections to a line). The points within each
bucket are sorted in ascending order by ID using the data-parallel
radix sort of Merrill et al. [MG10]. During point queries, the can-
didate sets are composed using query-directed probing to first visit
buckets that possess a high success probability of containing near-
est neighbors. Given the properties of LSH, these neighbors are
likely to be in buckets that only differ slightly in distance in the
table. A scoring criteria assigns a threshold for each bucket, de-
termining whether it should be probed, based on its likelihood of
containing a nearest neighbor of the query point. In this work, a
simplified multi-probe scheme assigns a scoring criteria to the im-
mediate left and right buckets of the bucket into which the query
point is hashed. Thus, the points of at most 3 buckets combine to
form the candidate set. In order to quickly extract the kANN for
the query point, a deterministic skip-list (DSL) search structure is
built in global memory. This structure arranges the candidate set
points in multiple levels of sorted linked lists, or subsequences,
each of increasing size and in order of distance from the query
point [MPS92,MCP17]. The resulting kANN is copied back to host
CPU memory, and then the LSH procedure is iteratively repeated
for the remaining L− 1 hash tables, after which L different sets of

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

18 Brenton Lessley / Area Exam Paper

kANN reside on the host. From these L · k points, a final kANN is
determined.

3.4. Separate Chaining

Separate chaining is a classic collision resolution technique that
uses a linked list or node-based data structure to store multiple col-
lided keys at a single hash table entry. Each hash table entry con-
tains a pointer, or memory address, to a head node of a linked list,
or chain. Each node in the linked list consists of a key, associated
value (optional), and a pointer to the next node in the list, if any.
If a single key hashes to an entry, then the linked list consists of a
single node with a null pointer to the non-existent next node. Oth-
erwise, if multiple keys collide and hash to the same location, then
the linked list forms a chain of these keys, each represented by a
separate node in the list. During a query operation, a key hashes
to an entry in the table and then iterates through each of the nodes
of the chain referenced at the entry, searching for a matching key.
This iterative search is similar in nature to open-addressing linear
probing (refer to subsection 3.1.1), where a key hashes to an initial
table entry and then probes each subsequent entry until a matching
key is found. Both techniques can result in degenerate, worst-case
queries that require a non-constant number of probes. Unlike sepa-
rate chaining, linear probing is prone to primary clustering of col-
lided keys and performs lazy deletion of keys that renders unoccu-
pied table entries heavily fragmented and may require re-hashing or
compaction. However, linear probing is more amenable to caching,
as probes are conducted within a contiguous block of memory, in-
stead of over the scattered memory of linked list nodes.

Moreover, separate chaining is a form of open hashing in which
keys and values are stored in allocated linked lists outside of the
hash table and then referenced by head node pointers that are stored
inside the table. Contrarily, open addressing collision resolution
follows closed hashing, whereby each hashed key (and value) is
inserted directly into the hash table.

In the context of parallel hashing, separate chaining must syn-
chronize collisions during key insertions to ensure that the linked
list data structures are properly allocated and constructed. More-
over, a dynamic memory allocation scheme must ensure that con-
current threads conducting insert operations properly synchronize
their requests for new available blocks of memory. Similar design
challenges exist for the deletion of keys, and the simultaneous ex-
ecution of queries by threads must avoid reader-writer race condi-
tions that result in faulty memory accesses to incorrect or deallo-
cated nodes (keys).

A large body of research has investigated concurrent hash ta-
bles for separate chaining on multi- and many-core CPU sys-
tems [Gre02, Mic02, PGB∗05, SS06, GHS∗10]. Each of these hash
tables is designed to support dynamic§updates and resizing with
lock-based methods (e.g., mutexes or spin-locks) or lock-free (non-
blocking) hardware atomics, such as compare-and-swap (CAS).
Since the majority of these hash tables are linked list-based data
structures, they are not designed for scalable, high-performance on
massively-parallel GPU architectures. In particular, when ported to
the GPU, the performance of these approaches may degrade due to
several reasons:

• Lock-based methods induce substantial thread contention dur-
ing blocking operations for shared resources and are not scalable
with increasing numbers of concurrent threads. This contention
creates starvation for blocked threads and warp underutilization,
since each thread must wait for its other warp threads to finish
acquiring and releasing the lock. Moreover, lock-free hardware
atomic primitives prevent deadlock, but still neglect the sensitiv-
ity of GPUs to global memory accesses and thread branch diver-
gence.

• Lack of coalescing among memory accesses due to the scattering
of linked list node pointers in memory and random addressing of
keys by threads within the same warp, which can lead to addi-
tional global memory transactions (cache line loads).

• Dynamic memory management and pointer chasing required for
the linked lists on the GPU is challenging for traditional CPU-
based synchronization schemes, due to the massive thread par-
allelism. This performance challenge is similarly observed in
pointer-heavy spatial search tree structures that are ported to the
GPU.

The following studies introduce GPU-based separate chaining
hashing approaches that attempt to address these performance chal-
lenges.

Moazeni and Sarrafzadeh [MS12] and Misra and Chaud-
huri [MC12] deploy some of the earliest lock-free, separate
chaining-based hash tables on a GPU architecture. Using CUDA
atomic CAS operations (atomicCAS and atomicInc), both ap-
proaches support batches of concurrent query and insert opera-
tions, with only [MC12] also supporting delete operations. [MS12]
achieves a significant execution time speedup for queries over
counterpart lock-based and OpenMP-based CPU implementations.
However, the lock-free table only attains significantly higher
throughput (operations per second) than the OpenMP implemen-
tation for query-heavy batches (80% queries and 20% inserts).
Additionally, this work does not focus on larger, scalable batch
sizes and provides little analysis regarding thread- or warp-level
performance. [MC12] demonstrates that a GPU lock-free hash ta-
ble leverages a much higher degree of concurrency and through-
put than a CPU implementation for both query-heavy and update-
heavy workload batches. This performance increase is largely due
to spreading the thread contention and atomic comparisons over
multiple different hash locations, as threads work in SIMT data-
parallel fashion to conduct mixed operations at random locations.

Stuart and Owens [SO11] and newer versions of the Nvidia
CUDA C library [Nvi17b] both introduce new efficient synchro-
nization and atomic primitives (e.g., warp-level and share memory
atomics) for CUDA-compatible GPUs. These primitives likely sat-
isfy the inefficiencies of atomics for pointer-based data structures
cited in Misra and Chaudhuri [MC12].

Steinberger et al. [SKKS12] design ScatterAlloc, an efficient
GPU-based dynamic memory allocator that is significantly faster

§ Some implementations are aware of future insertions at compile-time
and preallocate sufficiently-large additional memory. These hash tables are
semi-dynamic since they do not dynamically allocate new memory at run-
time for unknown insertions.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 19

than the built-in CUDA toolkit allocator and the first-published
GPU allocator, XMalloc, of Huang et al. [HRJ∗10]. This scheme
maintains a linked-list memory pool of super blocks and organizes
the blocks into larger fixed-size pages, which are addressed via a
hash function. For usage in separate chaining hashing on the GPU,
linked list collision chains can be dynamically allocated or deal-
located as super blocks to large numbers of threads in parallel, as
part of update operations (e.g., insert or delete). Due to the hash-
based addressing of available memory pages, threads can minimize
contention for the same block of memory and scatter their block as-
signments for efficient random access (with a possible tradeoff of
memory fragmentation). Vinkler and Havran [VH15] survey and
experimentally compare existing GPU dynamic memory allocation
schemes. The performance of each scheme varies across different
criteria, including fragmentation of available memory blocks, per-
block thread contention for atomic allocation requests, size and co-
alescing of requested memory by inter-warp threads, uniformity of
the number of allocation requests per inter-warp thread, and depen-
dence on the number of user-specified registers available to threads
in each SM of the GPU.

Ashkiani et al. [AFO17] propose a dynamic slab hash table on
the GPU that is built upon an array of linked-lists, or slab lists,
each of which represent a chain of one or more slabs, or memory
units, that store collided keys. Each slab of memory is roughly the
size of a warp memory transaction width (128 bytes), or the num-
ber of warp threads (32) times the size of a key (4 bytes). Thus,
each warp is aligned to perform operations over the keys stored in
a single slab. As part of a novel work-cooperative work sharing
(WCWS) strategy, each warp maintains a work queue that stores
all the arbitrary operations assigned to the different threads in the
warp. In a round-robin fashion, each batch of the same operation
type in the queue is fully and cooperatively executed by the threads.
For a given operation type, all threads perform a warp-wide ballot
instruction to denote the active threads that were assigned this op-
eration. For each active thread, the entire warp cooperates to ex-
ecute the active thread’s operation and its corresponding key. If
the operation is a query for a key q, then the warp hashes q to a
slab list bi = h(q) in the slab hash table H. The first warp-sized
slab, bi0, of the slab list at H[bi] is loaded from global memory via
a single memory transaction. This slab memory unit contains the
same number of keys as threads in the warp. So, each warp thread
then compares its corresponding key k with the query key q. If any
thread has k = q, then a successful result is returned. Otherwise, the
warp follows a next pointer stored in bi0 to load the next connected
slab bi1, in which q is cooperatively searched again. This search
ends when either q is found or the last slab in bi has been searched.

An insert operation proceeds similarly, except the threads search
for an empty slab spot into which a new key can be atomically
inserted. If no empty spot is found in any of the slabs of the slab
list, then a new slab must be atomically and dynamically allocated
(since other warps may also be trying to allocate). This allocation
is efficiently performed via a novel warp-synchronous SlabAlloc
allocator (see [AFO17] for further details).

This warp-cooperative approach differs from previous GPU sep-
arate chaining in which the threads of a warp execute a SIMT query
or update operation for different keys, each of which likely require

a random, uncoalesced memory access. WCWS ensures memory
coalescing for each operation by perfectly aligning the threads of a
warp with the keys of a slab, both of the same size. Thus, the same
block of cache-aligned global memory is loaded in a single transac-
tion for every operation by the warp, exposing increased through-
put (millions of operations per second). Moreover, while being in-
serted, keys are always stored at contiguous addresses within a slab
memory unit. This contrasts with traditional linked list storage in
which keys are inserted as new nodes at random memory locations.

The performance of the dynamic slab hash table is compared
to the static cuckoo hash table of Alcantara et al. [ASA∗09]—
which must be rebuilt upon updates—and the semi-dynamic lock-
free hash table of Misra and Chaudhuri [MC12]. For static bulk
builds, cuckoo hashing consistently achieves a higher throughput
of insertions per second, while slab hashing achieves higher query
throughput only when the average number of slabs per slab list is
less than 1 (i.e., approximately a single “node” list). Over all con-
figurations, cuckoo hashing attains the better query throughput. In
the best case scenario, it only makes a single atomic comparison
for an insertion and a single random memory access for a query;
contrarily, in the best case, slab hashing requires both a memory ac-
cess (to load a slab) and an atomic comparison for an insertion. For
dynamic updates, slab hashing significantly outperforms cuckoo
hashing, in terms of execution time, as the number of inserted keys
increases. This is due to the rebuilding of the static cuckoo hash
table each time a new batch is inserted. Additionally, slab hashing
significantly outperforms lock-free hashing across different distri-
butions of mixture operations and increasing numbers of slab lists
(i.e., the size of the hash table).

4. Hashing Applications

The following section highlights a variety of real-world applica-
tions of the GPU-based hashing techniques presented in this survey.
These applications can be broadly divided into six categories, many
falling within the domains of computer graphics and database pro-
cessing. The majority of the studies cited within each application
area also introduce a novel hashing technique and are discussed in
section 3; the remaining studies strictly apply one of the hashing
techniques.

Collision detection: Teschner et al. [THM∗03] and Eitz and
Lixu [EL07] use spatial hashing to detect real-time intersections
between deformable objects in a scene and tetradedral cells in 3D
mesh volumes. Lefebvre and Hoppe [LH06] use perfect spatial
hashing to detect collisions among surfaces of 3D objects. Pouchol
et al. [PACT09] use spatial hashing to model the interaction be-
tween solid objects (e.g., spheres) and fluid. Choi et al. [CJC∗09]
use perfect spatial hashing to detect interference between char-
acters and obstacles in a free space mapped virtual environment.
Chentanez et al. [CMM16] use spatial hashing to detect and delete
overlapping, or intersecting, triangles on the surface of 3D mesh
volumes.

Adaptive mesh refinement (AMR): Tumblin et al. [TAHR15] use
compact perfect hashing to search for neighboring cells in cell-
based AMR for a shallow-water hydrodynamics simulation (e.g.,
AMR at the boundary of a water wave). Chentanez et al. [CMM16]

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

20 Brenton Lessley / Area Exam Paper

use spatial hashing to perform AMR on 3D mesh volumes, as ver-
tices are advected in real-time.

Surface rendering: Lefebvre and Hoppe [LH06] use perfect spa-
tial hashing to render the color surfaces of 3D volumetric tex-
tures. Alcantara et al. [ASA∗09,AVS∗12] (open-addressing cuckoo
hashing), Garcia et al. [GLHL11] (open-addressing robin hood
hashing), Nießner et al. [NZIS13] (spatial hashing), and Duan et
al. [DLN∗17] (spatial hashing) all perform real-time surface ren-
dering and reconstruction of 3D volumes within voxelized grids.
Bastos and Celes [BC08] use perfect hashing to perform isosur-
face rendering and morphing of adaptively sampled distance fields
(ADFs). Kähler et al. [KPVM16] use spatial hashing to render vox-
elized 3D scene models of signed distance fields (SDFs).

Interactive drawing and painting: Lefebvre and Hoppe [LH06]
use perfect spatial hashing to interactively paint over 3D volumetric
textures. Garcia et al. [GLHL11] use open-addressing robin hood
hashing to interactively draw on 2D surfaces, such as an atlas.
Eyiyurekli and Breen [EB11] use spatial hashing to interactively
edit and draw over 3D level-set surfaces.

Database processing: Hetherington et al. [HOA15] and Choud-
hury et al. [CPK16] use open-addressing cuckoo hashing to cache
most-recently used, or working set, queries in a key-value store.
Karnagel et al. [KML15] use open-addressing linear probing to
perform group-by and aggregation queries from a key-value store.
Zhang et al. [ZWY∗15] and Breslow et al. [BZG∗16] use open ad-
dressing bucketized cuckoo hashing to accelerate queries and up-
dates in key-value stores.

Similarity search: Zhou et al. [ZGJ∗16] use open-addressing
robin hood hashing to extract the top-k most similar matches for
query records in real-world document and relational datasets. Al-
cantara et al. [ASA∗09] use open-addressing cuckoo hashing to
perform geometric hashing, which is a form of 2D image match-
ing. Pan et al. [PLM10], Pan and Manocha [PM11], and Lukač
and Žalik [LŽ15] each use locality-sensitive hashing to find the
k approximate nearest neighbors (kANN) of query points within
multi-dimensional record sets. Pouchol et al. [PACT09] use spa-
tial hashing to perform particle neighbor search within fluid and
solid interaction simulations. Todd et al. [TTD∗16] use multi-level
bucketized hashing to identify genes with similar k-motifs, or DNA
subsequences of length k.

5. Analysis and Future Work

This section analyzes the findings of the surveyed hashing tech-
niques and identifies opportunities for future work. Table 1 enu-
merates a set of 17 hashing use case attributes and suggests the
most-suitable or performant hashing technique(s) for each attribute.
Due to the large number of possible subsets of use case attributes,
a technique is only suggested for a single attribute. A practitioner
can consult the table for a set of desired attributes, identify over-
lapping suggested techniques, and then investigate the suitability
of these techniques for a specific task. Table 2 evaluates the most-
suitable hashing techniques from Table 1 based on their ability to
address optimal GPU performance criteria and utilize performant
GPU hardware features. This evaluation assesses performance as
it pertains to arbitrary access patterns for insertions and queries.

Thus, special cases such as empty queries or ordered accesses are
not considered unless a technique is specifically designed to per-
form well for such cases; for example, CoherentHash [GLHL11]
achieves best-in-class throughput and memory coalescing among
open-addressing techniques only when coherence exists among in-
put elements and their hash table locations. The GPU performance
criteria and hardware features are described as follows:

• Sufficient Parallelism: The hashing technique experimentally
demonstrates a sufficient throughput of insertion and query op-
erations (millions per second) to hide global memory access la-
tency.
• Memory Coalescing: All the threads in a warp access addresses

within the same fetched cache line of contiguous memory. These
memory requests are necessary to execute the given SIMT in-
struction.
• Control Flow: All the threads in a warp follow the same execu-

tion path for a SIMT instruction.
• CPU↔GPU Data Transfers: The hash table is constructed and/or

stored in CPU memory and then accessed from or copied onto
the GPU via the interconnection bus (e.g., PCI-e); thus, the hash-
ing experiences data transfer bandwidth latency.
• Shared Memory: Per-thread-block GPU memory space that is

smaller in size than global DRAM memory, but offers faster
memory accesses.
• Atomic Operations: Lightweight hardware atomic functions,

such as compare-and-swap (CAS), that guard and manage hash
table entries during parallel insertions, probing evictions (e.g., in
cuckoo hashing), and deletions.
• Warp-wide Voting: Lightweight functions used by all the threads

in a warp to communicate data and perform collaborative execu-
tion, such as when all warp threads query the hash table for the
same key.

For arbitrary, random access patterns, CuckooHash2 cuckoo
hashing [AVS∗12] offers best-in-class throughput performance
among the surveyed hashing techniques (subsection 3.1.2). This
is due to the small constant number of probes necessary in both
the best- and worst-case scenarios. In the worst-case insertion sce-
nario of not finding an empty slot, the cuckoo hash table demon-
strates fast reconstruction rates. In the presence of spatially-ordered
access patterns, the CoherentHash robin hood hashing [GLHL11]
achieves greater throughput than cuckoo hashing and is robust to
higher load factors (subsection 3.1.5).

In the ideal, “fast-path,” scenario, an open-addressing technique
only requires a single atomic CAS operation for an insertion and
a single random global memory access for a query. However, in
a typical scenario, a variable number of probes are needed to in-
sert and query a key, often spanning non-contiguous regions of
memory. This induces non-coalesced memory accesses and con-
trol flow divergence among threads of a warp. Thus, most of the
open-addressing techniques assessed in Table 2 cannot guarantee
to attain memory coalescing and control flow.

The combination of radix sorting and binary searching is a very
effective alternative to searching via hashing when access patterns
are ordered or the data is already in near-sorted order prior to sort-
ing. However, for interactive use, this approach naively requires a

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 21

Use Case Attribute/Hashing Category Open-
Addressing

Perfect
Hashing

Spatial Hashing Separate
Chaining

Access Patterns:
– Ordered queries CoherentHash

[GLHL11]
– Random insertions and queries CuckooHash2

[AVS∗12]
– Duplicate insertions and queries PerfectHash

[LH06]
EGSH
[DLN∗17]

– Query-heavy operation mix HortonHash
[BZG∗16];
MemcachedGPU
[HOA15]

– Update-heavy operation mix SlabHash
[AFO17]

– Unsuccessful (empty) queries PerfectHash
[LH06]

Data Type:
– Grid-based spatial primitives VoxelHash

[NZIS13]
– Integer or index-based CuckooHash2

[AVS∗12]
– Multi-dimensional attribute vector BiLevelLSH

[PM11]
Hash Table:
– Collision-free PerfectHash

[LH06]
– Fast construction CuckooHash2

[AVS∗12]
– Dynamic SlabHash

[AFO17]
– Low occupancy CompactHash

[TAHR15]
– High occupancy; maximum load CoherentHash

[GLHL11]
Hardware:
– Use of CPU memory (PCIe bound) StadiumHash

[KBGB15];
Horton-
Hash [BZG∗16]

– Use of GPU shared memory CuckooHash1
[ASA∗09]

BiLevelLSH
[PM11]

– Efficient use of atomics CuckooHash2
[AVS∗12]

Table 1: Suggested hashing technique(s) for different use case attributes. For each attribute, the most suitable or best-performing technique
from one or more of the four hashing categories is denoted. Additional details regarding a technique can be found within the section of its
encompassing hashing category.

re-sort of a larger array each time new data is added. Additional re-
search is needed to investigate more-efficient data-parallel schemes
for accommodating dynamic data.

If data will be updated at run-time, then SlabHash [AFO17] of-
fers best-in-class dynamic hashing, achieving a significant increase
in throughput over cuckoo hashing, which must be reconstructed

after each batch of updates (section 3.4). Moreover, as seen in
Table 2, this technique addresses each of the criteria for optimal
GPU performance. Further research is needed to compare the per-
formance of slab hashing with that of CoherentHash robin hood
hashing [GLHL11] in the presence of coherent access patterns.

When data must be stored and accessed off-device in CPU

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

22 Brenton Lessley / Area Exam Paper

GPU Performance Criteria GPU Hardware Features
Hashing Technique Sufficient

Parallelism
Memory

Coalescing
Control

Flow
CPU↔GPU

Data Transfers
Shared

Memory
Atomic

Operations
Warp-wide

Voting

Open-addressing:
– CoherentHash [GLHL11] 3 3 5 5 5 3 5

– CuckooHash1 [ASA∗09] 3 5 5 5 3 3 5

– CuckooHash2 [AVS∗12] 3 5 5 5 5 3 5

– HortonHash [BZG∗16] 3 5 3 3 5 5 5

– MemcachedGPU [HOA15] 3 5 5 3 3 3 5

– StadiumHash [KBGB15] 3 5 5 3 3 3 3

Perfect Hashing:
– PerfectHash [LH06] 3 3 3 3 5 5 5

Spatial Hashing:
– BiLevelLSH [PM11] 3 5 5 5 3 3 5

– EGSH [DLN∗17] 3 5 3 3 5 5 5

– VoxelHash [NZIS13] 3 5 5 5 5 3 5

Separate Chaining:
– SlabHash [AFO17] 3 3 3 5 5 3 3

Table 2: Select hashing techniques and their ability to address GPU criteria for optimal performance and utilize performant GPU hardware
features. The techniques are grouped by category and represent the subset of techniques that are identified as highly-suitable for different
use-case attributes in Table 1.

memory, the use of ticketing, or key bit signatures, is beneficial
to save expensive accesses for obvious non-matches during prob-
ing/querying. Future hashing approaches should assess the perfor-
mance benefits of ticketing even when off-device accesses do not
occur. Maintaining the ticketing structure in shared memory ap-
pears to be particularly beneficial, as demonstrated by the Stadi-
umHash open-addressing technique [KBGB15].

Regardless of the data use case, shared memory should be lever-
aged as much as possible to perform warp operations and faster
memory accesses (not necessarily coalesced). This is facilitated
by sizing buckets to the size of a thread block, such as in Cuck-
ooHash1 cuckoo hashing [ASA∗09]. If data must be accessed out-
side of shared memory, warps should be modeled as collaborative
processing units the size of a memory transaction. Each thread is
assigned to an entry within the loaded cache line and all threads
then compare their entries (possibly empty) to the query or insert
key via a warp-wide voting function. CuckooHash1 [ASA∗09], Sta-
diumHash [KBGB15], and SlabHash [AFO17] make particularly
good use of shared memory and warp-wide voting (Table 2).

Fast hash table construction enables larger load factors, accep-
tance of insertion failure, and dynamic usage in interactive appli-
cations. CPU-constructed hash tables face two bottlenecks: slower
construction on the CPU and copying over the PCIe bus to the GPU.
Both bottlenecks render these tables infeasible for updates or re-
constructions. From Table 2, the HortonHash [BZG∗16], Perfec-
tHash [LH06], and EGSH [DLN∗17] techniques are bandwidth-
bound by the transfer of the hash table from CPU to GPU prior
to querying. Additionally, MemcachedGPU [HOA15] and Stadi-
umHash [KBGB15] must service data transfers during querying,
as hash table data resides on the CPU. Further research is needed

to redesign CPU-constructed hash tables for efficient data-parallel
construction on the GPU.

Perfect hashing (section 3.2), PerfectHash [LH06], avoids colli-
sion resolution, but is not well-suited for updates, since the hash ta-
ble must be reconstructed on the CPU and remain PCIe bandwidth-
bound. A trade-off arises: either use multiple separate hash tables
(and multiple probes), or use a single addressable hash table and
construct the offset table, which is the primary bottleneck during
construction. Further research towards constructing the offset table
in data-parallel on the GPU is needed to make perfect hashing a
more dynamic, interactive solution.

Compact spatial hashing (subsection 3.3.1), Com-
pactHash [TAHR15], offers the useful feature of downsizing
a perfect hash table that contains a significant number of unused
entries, which arises often in spatial hashing. This comes with the
trade-off of new hash collisions that must be resolved. Further
research should assess the viability of this approach for other types
of hash tables and varying load factors.

The BiLevelLSH [PM11] locality-sensitive hashing technique
takes advantage of fast on-device data-parallel operations to sort
key-value pairs and hash them into a cuckoo hash table. Further
work is needed to design a dynamic variant that supports updates
to the hash table and sorted key-values. Moreover, future research
should investigate the use of LSH for approximate surface render-
ing and reconstruction tasks. For instance, instead of querying the
data to render for each point in a grid, select points can be queried
and return, in a single operation, the approximate data for an entire
k-point bounding box in the form of the kANN.

Finally, prospective avenues for future research exist for a Hash-
Fight technique that is introduced by Lessley et al. [LBMC16,
LMLC17] as part of a platform-portable, GPU-compatible hash-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Brenton Lessley / Area Exam Paper 23

ing approach. This approach employs an iterative winner-takes-all
collision resolution technique that does not use hardware atomic
primitives to synchronize writes to the hash table. Instead, race
conditions are a fundamental and non-detrimental feature of re-
solving collisions. However, HashFight does not maintain a per-
sistent hash table, but rather reconstructs a new, smaller-sized table
at the beginning of each iteration. Thus, additional work is needed
to expand the technique to support query and insert operations,
with accompanying throughput analyses. Then, the build speed of
HashFight can be compared against the build times of the best-in-
class static cuckoo and robin hood hashing techniques, particularly
CuckooHash2 [AVS∗12] and CoherentHash [GLHL11].

6. Conclusion

This paper provides a survey of parallel hashing techniques for
GPU architectures. These techniques are categorized according to
the method of collision resolution: open-addressing, perfect hash-
ing, spatial hashing, and separate chaining. Each of the surveyed
studies offer various design choices and patterns that help inform
a more-general set of best practices for performant hashing on
the GPU. These best practices and the most-suitable hashing tech-
niques for different use-case factors are analyzed and used to reveal
opportunities for future research.

References

[ADMO16] ASHKIANI S., DAVIDSON A., MEYER U., OWENS J. D.:
Gpu multisplit. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (New York, NY, USA,
2016), PPoPP ’16, ACM, pp. 12:1–12:13. URL: http://doi.acm.
org/10.1145/2851141.2851169, doi:10.1145/2851141.
2851169. 5, 6, 11

[AFO17] ASHKIANI S., FARACH-COLTON M., OWENS J. D.: A Dy-
namic Hash Table for the GPU. ArXiv e-prints (Oct. 2017). arXiv:
1710.11246. 7, 19, 21, 22

[ALF∗17] ASHKIANI S., LI S., FARACH-COLTON M., AMENTA N.,
OWENS J. D.: GPU LSM: A dynamic dictionary data structure for the
GPU. CoRR abs/1707.05354 (2017). URL: http://arxiv.org/
abs/1707.05354, arXiv:1707.05354. 6

[Amd67] AMDAHL G. M.: Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, Spring Joint Computer Conference (New York, NY, USA,
1967), AFIPS ’67 (Spring), ACM, pp. 483–485. 2

[ASA∗09] ALCANTARA D. A., SHARF A., ABBASINEJAD F., SEN-
GUPTA S., MITZENMACHER M., OWENS J. D., AMENTA N.: Real-
time parallel hashing on the gpu. In ACM SIGGRAPH Asia 2009 Papers
(New York, NY, USA, 2009), SIGGRAPH Asia ’09, ACM, pp. 154:1–
154:9. 5, 6, 7, 9, 10, 11, 17, 19, 20, 21, 22

[AVS∗12] ALCANTARA D. A., VOLKOV V., SENGUPTA S., MITZEN-
MACHER M., OWENS J. D., AMENTA N.: Chapter 4 - Building an
efficient hash table on the {GPU}. In {GPU} Computing Gems Jade
Edition, Hwu W.-m. W., (Ed.), Applications of GPU Computing Series.
Morgan Kaufmann, Boston, 2012, pp. 39 – 53. 5, 6, 7, 10, 12, 20, 21,
22, 23

[BC08] BASTOS T., CELES W.: Gpu-accelerated adaptively sampled dis-
tance fields. In 2008 IEEE International Conference on Shape Modeling
and Applications (June 2008), pp. 171–178. 14, 20

[Ble90] BLELLOCH G. E.: Vector models for data-parallel computing,
vol. 75. MIT press Cambridge, 1990. 2, 5

[Boo03] BOOST C++ LIBRARIES: Boost.Iterator Library, 2003.
http://www.boost.org/doc/libs/1_65_1/libs/
iterator/doc/index.html. 5

[Bor14] BORDAWEKAR R.: Evaluation of parallel hashing techniques.
In GPU Technology Conference (Mar. 2014). 8, 9, 10

[Bre74] BRENT R. P.: The parallel evaluation of general arithmetic ex-
pressions. J. ACM 21, 2 (Apr. 1974), 201–206. 2

[BS05] BLIKBERG R., SÃŸREVIK T.: Load balancing and openmp im-
plementation of nested parallelism. Parallel Computing 31, 10 (2005),
984 – 998. OpenMP. 2

[BZ07] BOTELHO F. C., ZIVIANI N.: External perfect hashing for very
large key sets. In Proceedings of the Sixteenth ACM Conference on Con-
ference on Information and Knowledge Management (New York, NY,
USA, 2007), CIKM ’07, ACM, pp. 653–662. 1

[BZG∗16] BRESLOW A. D., ZHANG D. P., GREATHOUSE J. L.,
JAYASENA N., TULLSEN D. M.: Horton tables: Fast hash ta-
bles for in-memory data-intensive computing. In Proceedings of the
2016 USENIX Conference on Usenix Annual Technical Conference
(Berkeley, CA, USA, 2016), USENIX ATC ’16, USENIX Association,
pp. 281–294. URL: http://dl.acm.org/citation.cfm?id=
3026959.3026986. 11, 20, 21, 22

[CCT12] CEDERMAN D., CHATTERJEE B., TSIGAS P.: Understanding
the performance of concurrent data structures on graphics processors. In
Proceedings of the 18th International Conference on European Parallel
Processing (August 2012), Euro-Par 2012, pp. 883–894. 6

[Cel86] CELIS P.: Robin Hood Hashing. PhD thesis, Waterloo, Ont.,
Canada, Canada, 1986. 12

[CHM97] CZECH Z. J., HAVAS G., MAJEWSKI B. S.: Perfect hashing.
Theoretical Computer Science 182, 1 (1997), 1 – 143. 1, 13

[CJC∗09] CHOI M. G., JU E., CHANG J.-W., LEE J., KIM Y. J.: Link-
less octree using multi-level perfect hashing. Comput. Graph. Forum 28
(2009), 1773–1780. 14, 19

[CKWT14] CHENG L., KOTOULAS S., WARD T. E., THEODOROPOU-
LOS G.: Design and evaluation of parallel hashing over large-scale data.
In 2014 21st International Conference on High Performance Computing
(HiPC) (Dec 2014), pp. 1–10. 1

[CMM16] CHENTANEZ N., MÜLLER M., MACKLIN M.: GPU acceler-
ated grid-free surface tracking. Computers & Graphics 57, Supplement
C (2016), 1 – 11. URL: http://www.sciencedirect.com/
science/article/pii/S0097849316300152, doi:https:
//doi.org/10.1016/j.cag.2016.03.002. 15, 19

[CPK16] CHOUDHURY Z., PURINI S., KRISHNA S. R.: A hybrid
cpu+gpu working-set dictionary. In 2016 15th International Symposium
on Parallel and Distributed Computing (ISPDC) (July 2016), pp. 56–63.
7, 20

[CSRL01] CORMEN T. H., STEIN C., RIVEST R. L., LEISERSON C. E.:
Introduction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001. 6, 7, 8, 11

[cud17] CUDA Data Parallel Primitives Library. http://cudpp.
github.io, Nov. 2017. 5, 6, 10, 11

[DF08] DASGUPTA S., FREUND Y.: Random projection trees and low di-
mensional manifolds. In Proceedings of the Fortieth Annual ACM Sym-
posium on Theory of Computing (New York, NY, USA, 2008), STOC
’08, ACM, pp. 537–546. 17

[DHM13] DICE D., HENDLER D., MIRSKY I.: Lightweight contention
management for efficient compare-and-swap operations. In Proceedings
of the 19th International Conference on Parallel Processing (Berlin, Hei-
delberg, 2013), Euro-Par’13, Springer-Verlag, pp. 595–606. 2

[DIIM04] DATAR M., IMMORLICA N., INDYK P., MIRROKNI V. S.:
Locality-sensitive hashing scheme based on p-stable distributions. In
Proceedings of the Twentieth Annual Symposium on Computational Ge-
ometry (New York, NY, USA, 2004), SCG ’04, ACM, pp. 253–262. 16,
17

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/2851141.2851169
http://doi.acm.org/10.1145/2851141.2851169
http://dx.doi.org/10.1145/2851141.2851169
http://dx.doi.org/10.1145/2851141.2851169
http://arxiv.org/abs/1710.11246
http://arxiv.org/abs/1710.11246
http://arxiv.org/abs/1707.05354
http://arxiv.org/abs/1707.05354
http://arxiv.org/abs/1707.05354
http://www.boost.org/doc/libs/1_65_1/libs/iterator/doc/index.html
http://www.boost.org/doc/libs/1_65_1/libs/iterator/doc/index.html
http://dl.acm.org/citation.cfm?id=3026959.3026986
http://dl.acm.org/citation.cfm?id=3026959.3026986
http://www.sciencedirect.com/science/article/pii/S0097849316300152
http://www.sciencedirect.com/science/article/pii/S0097849316300152
http://dx.doi.org/https://doi.org/10.1016/j.cag.2016.03.002
http://dx.doi.org/https://doi.org/10.1016/j.cag.2016.03.002
http://cudpp.github.io
http://cudpp.github.io

24 Brenton Lessley / Area Exam Paper

[DLN∗17] DUAN W., LUO J., NI G., TANG B., HU Q., GAO Y.:
Exclusive grouped spatial hashing. Computers & Graphics (2017).
doi:https://doi.org/10.1016/j.cag.2017.08.012. 16,
20, 21, 22

[DTGO12] DAVIDSON A., TARJAN D., GARLAND M., OWENS J. D.:
Efficient parallel merge sort for fixed and variable length keys. In Inno-
vative Parallel Computing (May 2012), p. 9. 5, 6

[EB11] EYIYUREKLI M., BREEN D. E.: Data structures for interactive
high resolution level-set surface editing. In Proceedings of Graphics
Interface 2011 (School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, 2011), GI ’11, Canadian Human-Computer
Communications Society, pp. 95–102. 20

[EL07] EITZ M., LIXU G.: Hierarchical spatial hashing for real-time
collision detection. In Shape Modeling and Applications, 2007. SMI ’07.
IEEE International Conference on (June 2007), pp. 61–70. doi:10.
1109/SMI.2007.18. 15, 19

[EMM06] ERLINGSSON Ã., MANASSE M., MCSHERRY F.: A cool
and practical alternative to traditional hash tables. In 7th Workshop on
Distributed Data and Structures (WDAS’06) (Santa Clara, CA, January
2006), pp. 1–6. 10

[FHCD92] FOX E. A., HEATH L. S., CHEN Q. F., DAOUD A. M.: Prac-
tical minimal perfect hash functions for large databases. Commun. ACM
35, 1 (Jan. 1992), 105–121. 13

[FKS84] FREDMAN M. L., KOMLÓS J., SZEMERÉDI E.: Storing a
sparse table with 0(1) worst case access time. J. ACM 31, 3 (June 1984),
538–544. 9, 13

[Fly72] FLYNN M. J.: Some computer organizations and their effective-
ness. IEEE Trans. Comput. 21, 9 (Sept. 1972), 948–960. 2

[GHOI14] GIESEKE F., HEINERMANN J., OANCEA C., IGEL C.: Buffer
k-d trees: Processing massive nearest neighbor queries on GPUs. 172–
180. 17

[GHS∗10] GOODMAN E. L., HAGLIN D. J., SCHERRER C.,
CHAVARRÍA-MIRANDA D., MOGILL J., FEO J.: Hashing strategies for
the cray xmt. In 2010 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW) (April 2010),
pp. 1–8. 1, 18

[GLHL11] GARCÍA I., LEFEBVRE S., HORNUS S., LASRAM A.: Co-
herent parallel hashing. ACM Trans. Graph. 30, 6 (Dec. 2011), 161:1–
161:8. 7, 12, 13, 20, 21, 22, 23

[Gre02] GREENWALD M.: Two-handed emulation: How to build non-
blocking implementations of complex data-structures using dcas. In
Proceedings of the Twenty-first Annual Symposium on Principles of Dis-
tributed Computing (New York, NY, USA, 2002), PODC ’02, ACM,
pp. 260–269. 1, 18

[GTW15] GAO H., TANG J., WU G.: Parallel surface reconstruction on
gpu. In Proceedings of the 7th International Conference on Internet Mul-
timedia Computing and Service (New York, NY, USA, 2015), ICIMCS
’15, ACM, pp. 54:1–54:5. 6

[Gus88] GUSTAFSON J. L.: Reevaluating amdahl’s law. Commun. ACM
31, 5 (May 1988), 532–533. 2

[HAP12] HE X., AGARWAL D., PRASAD S. K.: Design and implemen-
tation of a parallel priority queue on many-core architectures. In 2012
19th International Conference on High Performance Computing (Dec
2012), pp. 1–10. 6

[Har14] HARRIS M.: Maxwell: The Most Advanced CUDA GPU Ever
Made. https://devblogs.nvidia.com/parallelforall/
maxwell-most-advanced-cuda-gpu-ever-made/, 2014. 3,
4

[Her91] HERLIHY M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13, 1 (Jan. 1991), 124–149. 2

[HOA15] HETHERINGTON T. H., O’CONNOR M., AAMODT T. M.:
Memcachedgpu: Scaling-up scale-out key-value stores. In Proceedings
of the Sixth ACM Symposium on Cloud Computing (New York, NY, USA,
2015), SoCC ’15, ACM, pp. 43–57. 11, 20, 21, 22

[HRJ∗10] HUANG X., RODRIGUES C. I., JONES S., BUCK I., M. HWU
W.: XMalloc: A scalable lock-free dynamic memory allocator for many-
core machines. In 2010 10th IEEE International Conference on Com-
puter and Information Technology (June 2010), pp. 1134–1139. 19

[IM98] INDYK P., MOTWANI R.: Approximate nearest neighbors: To-
wards removing the curse of dimensionality. In Proceedings of the Thir-
tieth Annual ACM Symposium on Theory of Computing (New York, NY,
USA, 1998), STOC ’98, ACM, pp. 604–613. 16, 17

[Int17] INTEL CORPORATION: Introducing the Intel Threading Building
Blocks, May 2017. https://software.intel.com/en-us/
node/506042. 5

[JR15] JEFFERS J., REINDERS J.: High Performance Parallelism Pearls
Volume Two: Multicore and Many-core Programming Approaches,
1st ed., vol. 2. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2015. 2

[Kar12] KARRAS T.: Maximizing Parallelism in the Construction of
BVHs, Octrees, and k-d Trees. In Eurographics/ ACM SIGGRAPH
Symposium on High Performance Graphics (2012), Dachsbacher C.,
Munkberg J., Pantaleoni J., (Eds.), The Eurographics Association,
pp. 33–37. 6

[KBGB15] KHORASANI F., BELVIRANLI M. E., GUPTA R., BHUYAN
L. N.: Stadium hashing: Scalable and flexible hashing on gpus. In
2015 International Conference on Parallel Architecture and Compila-
tion (PACT) (Oct 2015), pp. 63–74. 11, 21, 22

[KBS11] KALOJANOV J., BILLETER M., SLUSALLEK P.: Two-level
grids for ray tracing on gpus. Computer Graphics Forum 30, 2 (2011),
307–314. 6

[KCS∗10] KIM C., CHHUGANI J., SATISH N., SEDLAR E., NGUYEN
A. D., KALDEWEY T., LEE V. W., BRANDT S. A., DUBEY P.: Fast:
Fast architecture sensitive tree search on modern cpus and gpus. In Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data (New York, NY, USA, 2010), SIGMOD ’10, ACM,
pp. 339–350. 6

[KDB12] KALDEWEY T., DI BLAS A.: Large-scale gpu search. 3–14. 6

[KML15] KARNAGEL T., MUELLER R., LOHMAN G. M.: Optimizing
gpu-accelerated group-by and aggregation. In ADMS@VLDB (2015). 8,
20

[Knu98] KNUTH D. E.: The Art of Computer Programming, Volume 3:
(2nd Ed.) Sorting and Searching. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1998. 1

[KPVM16] KÄHLER O., PRISACARIU V., VALENTIN J., MURRAY D.:
Hierarchical voxel block hashing for efficient integration of depth im-
ages. IEEE Robotics and Automation Letters 1, 1 (Jan 2016), 192–197.
doi:10.1109/LRA.2015.2512958. 15, 20

[KRD∗03] KAPASI U. J., RIXNER S., DALLY W. J., KHAILANY B.,
AHN J. H., MATTSON P., OWENS J. D.: Programmable stream proces-
sors. Computer 36, 8 (Aug. 2003), 54–62. 3

[KS09] KALOJANOV J., SLUSALLEK P.: A parallel algorithm for con-
struction of uniform grids. In Proceedings of the Conference on High
Performance Graphics 2009 (New York, NY, USA, 2009), HPG ’09,
ACM, pp. 23–28. 6

[KU86] KARLIN A. R., UPFAL E.: Parallel hashing—an efficient
implementation of shared memory. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing (New York, NY, USA,
1986), STOC ’86, ACM, pp. 160–168. 1

[KZ09] KUANG Q., ZHAO L.: A practical GPU based KNN algo-
rithm. In Proceedings of the Second Symposium on International Com-
puter Science and Computational Technology (ISCSCT ’09) (Dec. 2009),
Academy Publisher, pp. 151–155. 16

[LA15] LI S., AMENTA N.: Brute-force k-nearest neighbors search on
the gpu. In Proceedings of the 8th International Conference on Similarity
Search and Applications - Volume 9371 (New York, NY, USA, 2015),
SISAP 2015, Springer-Verlag New York, Inc., pp. 259–270. 16

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/https://doi.org/10.1016/j.cag.2017.08.012
http://dx.doi.org/10.1109/SMI.2007.18
http://dx.doi.org/10.1109/SMI.2007.18
https://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/
https://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/
https://software.intel.com/en-us/node/506042
https://software.intel.com/en-us/node/506042
http://dx.doi.org/10.1109/LRA.2015.2512958

Brenton Lessley / Area Exam Paper 25

[Lam78] LAMPORT L.: Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (July 1978), 558–565. 2

[LBMC16] LESSLEY B., BINYAHIB R., MAYNARD R., CHILDS H.:
External Facelist Calculation with Data-Parallel Primitives. In Pro-
ceedings of EuroGraphics Symposium on Parallel Graphics and
Visualization (EGPGV) (Groningen, The Netherlands, June 2016),
pp. 10–20. 6, 22

[LD08] LAGAE A., DUTRÉ P.: Compact, fast and robust grids for ray
tracing. In ACM SIGGRAPH 2008 Talks (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 20:1–20:1. 6

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast bvh construction on gpus. Computer Graphics
Forum 28, 2 (2009), 375–384. 6, 17

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. In ACM SIG-
GRAPH 2006 Papers (New York, NY, USA, 2006), SIGGRAPH ’06,
ACM, pp. 579–588. 7, 9, 10, 13, 14, 16, 19, 20, 21, 22

[Lit11] LITTLE J. D. C.: Or forum—little’s law as viewed on its 50th
anniversary. Oper. Res. 59, 3 (May 2011), 536–549. URL: http:
//dx.doi.org/10.1287/opre.1110.0940, doi:10.1287/
opre.1110.0940. 2, 4

[LJW∗07] LV Q., JOSEPHSON W., WANG Z., CHARIKAR M., LI
K.: Multi-probe lsh: Efficient indexing for high-dimensional similar-
ity search. In Proceedings of the 33rd International Conference on Very
Large Data Bases (2007), VLDB ’07, VLDB Endowment, pp. 950–961.
17

[LMLC17] LESSLEY B., MORELAND K., LARSEN M., CHILDS H.:
Techniques for Data-Parallel Searching for Duplicate Elements. In Pro-
ceedings of IEEE Symposium on Large Data Analysis and Visualization
(LDAV) (Phoenix, AZ, Oct. 2017), pp. 1–5. 6, 22

[LWL12] LUO L., WONG M. D. F., LEONG L.: Parallel implementation
of r-trees on the gpu. In 17th Asia and South Pacific Design Automa-
tion Conference (Jan 2012), pp. 353–358. doi:10.1109/ASPDAC.
2012.6164973. 6

[LŽ15] LUKAČ N., ŽALIK B.: Fast Approximate k-Nearest
Neighbours Search Using GPGPU. Springer Singapore, Sin-
gapore, 2015, pp. 221–234. URL: https://doi.org/
10.1007/978-981-287-134-3_14, doi:10.1007/
978-981-287-134-3_14. 17, 20

[MC12] MISRA P., CHAUDHURI M.: Performance evaluation of con-
current lock-free data structures on gpus. In Proceedings of the 2012
IEEE 18th International Conference on Parallel and Distributed Systems
(Washington, DC, USA, 2012), ICPADS ’12, IEEE Computer Society,
pp. 53–60. 18, 19

[MCP17] MOSCOVICI N., COHEN N., PETRANK E.: A GPU-friendly
skiplist algorithm. In 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT) (Sept 2017), pp. 246–
259. 6, 17

[Meh82] MEHLHORN K.: On the program size of perfect and universal
hash functions. In 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982) (Nov 1982), pp. 170–175. doi:10.1109/SFCS.
1982.80. 13

[MG10] MERRILL D. G., GRIMSHAW A. S.: Revisiting sorting for
gpgpu stream architectures. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques (New
York, NY, USA, 2010), PACT ’10, ACM, pp. 545–546. URL: http://
doi.acm.org/10.1145/1854273.1854344, doi:10.1145/
1854273.1854344. 5, 6, 10, 11, 17

[Mic02] MICHAEL M. M.: High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the Fourteenth An-
nual ACM Symposium on Parallel Algorithms and Architectures (New
York, NY, USA, 2002), SPAA ’02, ACM, pp. 73–82. URL: http:
//doi.acm.org/10.1145/564870.564881, doi:10.1145/
564870.564881. 1, 18

[ML75] MAURER W. D., LEWIS T. G.: Hash table methods. ACM Com-
put. Surv. 7, 1 (Mar. 1975), 5–19. 1

[MPS92] MUNRO J. I., PAPADAKIS T., SEDGEWICK R.: Deterministic
skip lists. In Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms (Philadelphia, PA, USA, 1992), SODA ’92, Society
for Industrial and Applied Mathematics, pp. 367–375. 17

[MRR12] MCCOOL M., REINDERS J., ROBISON A.: Structured Par-
allel Programming: Patterns for Efficient Computation, 1st ed. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2012. 2

[MS12] MOAZENI M., SARRAFZADEH M.: Lock-free hash table on
graphics processors. In 2012 Symposium on Application Accelerators
in High Performance Computing (July 2012), pp. 133–136. doi:
10.1109/SAAHPC.2012.25. 18

[MSU∗16] MORELAND K., SEWELL C., USHER W., LO L., MERED-
ITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L., CHILDS
H., LARSEN M., CHEN C.-M., MAYNARD R., GEVECI B.: VTK-
m: Accelerating the Visualization Toolkit for Massively Threaded Ar-
chitectures. IEEE Computer Graphics and Applications (CG&A) 36, 3
(May/June 2016), 48–58. 5

[Nvi17a] NVIDIA CORPORATION: CUDA C Best Prac-
tices Guide. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html, 2017. 3,
4

[Nvi17b] NVIDIA CORPORATION: CUDA C Program-
ming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html, 2017. 2, 3,
4, 5, 18

[Nvi17c] NVIDIA CORPORATION: Parallel Thread Execution
ISA Version 6.0. http://docs.nvidia.com/cuda/
parallel-thread-execution/index.html, 2017. 3,
4

[Nvi17d] NVIDIA CORPORATION: Thrust, Nov. 2017. http://
thrust.github.io. 5, 6

[NZIS13] NIESSNER M., ZOLLHÖFER M., IZADI S., STAMMINGER
M.: Real-time 3d reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (TOG) (2013). 7, 15, 20, 21, 22

[OLG∗07] OWENS J. D., LUEBKE D., GOVINDARAJU N., HARRIS M.,
KRÃIJGER J., LEFOHN A. E., PURCELL T. J.: A survey of general-
purpose computation on graphics hardware. Computer Graphics Fo-
rum 26, 1 (2007), 80–113. doi:10.1111/j.1467-8659.2007.
01012.x. 6

[PACT09] POUCHOL M., AHMAD A., CRESPIN B., TERRAZ O.: A
hierarchical hashing scheme for nearest neighbor search and broad-phase
collision detection. Journal of Graphics, GPU, and Game Tools 14, 2
(2009), 45–59. doi:10.1080/2151237X.2009.10129281. 15,
19, 20

[PGB∗05] PEIERLS T., GOETZ B., BLOCH J., BOWBEER J., LEA D.,
HOLMES D.: Java Concurrency in Practice. Addison-Wesley Profes-
sional, 2005. 1, 18

[PH08] PATTERSON D. A., HENNESSY J. L.: Computer Organization
and Design, Fourth Edition, Fourth Edition: The Hardware/Software In-
terface (The Morgan Kaufmann Series in Computer Architecture and De-
sign), 4th ed. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008. 2, 3, 4

[PLM10] PAN J., LAUTERBACH C., MANOCHA D.: Efficient nearest-
neighbor computation for gpu-based motion planning. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (Oct 2010),
pp. 2243–2248. doi:10.1109/IROS.2010.5651449. 17, 20

[PLMS00] PLAUGER P., LEE M., MUSSER D., STEPANOV A. A.: C++
Standard Template Library, 1st ed. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000. 5

[PM11] PAN J., MANOCHA D.: Fast gpu-based locality sensitive hash-
ing for k-nearest neighbor computation. In Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (New York, NY, USA, 2011), GIS ’11, ACM,
pp. 211–220. 17, 20, 21, 22

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1287/opre.1110.0940
http://dx.doi.org/10.1287/opre.1110.0940
http://dx.doi.org/10.1287/opre.1110.0940
http://dx.doi.org/10.1287/opre.1110.0940
http://dx.doi.org/10.1109/ASPDAC.2012.6164973
http://dx.doi.org/10.1109/ASPDAC.2012.6164973
https://doi.org/10.1007/978-981-287-134-3_14
https://doi.org/10.1007/978-981-287-134-3_14
http://dx.doi.org/10.1007/978-981-287-134-3_14
http://dx.doi.org/10.1007/978-981-287-134-3_14
http://dx.doi.org/10.1109/SFCS.1982.80
http://dx.doi.org/10.1109/SFCS.1982.80
http://doi.acm.org/10.1145/1854273.1854344
http://doi.acm.org/10.1145/1854273.1854344
http://dx.doi.org/10.1145/1854273.1854344
http://dx.doi.org/10.1145/1854273.1854344
http://doi.acm.org/10.1145/564870.564881
http://doi.acm.org/10.1145/564870.564881
http://dx.doi.org/10.1145/564870.564881
http://dx.doi.org/10.1145/564870.564881
http://dx.doi.org/10.1109/SAAHPC.2012.25
http://dx.doi.org/10.1109/SAAHPC.2012.25
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://thrust.github.io
http://thrust.github.io
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1080/2151237X.2009.10129281
http://dx.doi.org/10.1109/IROS.2010.5651449

26 Brenton Lessley / Area Exam Paper

[PR04] PAGH R., RODLER F. F.: Cuckoo hashing. J. Algorithms 51, 2
(May 2004), 122–144. 9

[PR13] POLYCHRONIOU O., ROSS K. A.: High throughput heavy hitter
aggregation for modern simd processors. In Proceedings of the Ninth
International Workshop on Data Management on New Hardware (New
York, NY, USA, 2013), DaMoN ’13, ACM, pp. 6:1–6:6. 7

[SF15] SCOGLAND T. R., FENG W.-C.: Design and evaluation of scal-
able concurrent queues for many-core architectures. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineer-
ing (New York, NY, USA, 2015), ICPE ’15, ACM, pp. 63–74. 6

[SGL09] SCHLEGEL B., GEMULLA R., LEHNER W.: K-ary search on
modern processors. In Proceedings of the Fifth International Workshop
on Data Management on New Hardware (New York, NY, USA, 2009),
DaMoN ’09, ACM, pp. 52–60. 6

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing effi-
cient sorting algorithms for manycore gpus. In Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed Process-
ing (Washington, DC, USA, 2009), IPDPS ’09, IEEE Computer Society,
pp. 1–10. URL: https://doi.org/10.1109/IPDPS.2009.
5161005, doi:10.1109/IPDPS.2009.5161005. 5, 6, 10

[SJC17] SINGH D. P., JOSHI I., CHOUDHARY J.: Survey of gpu based
sorting algorithms. International Journal of Parallel Programming (Apr
2017). 6

[SKKS12] STEINBERGER M., KENZEL M., KAINZ B., SCHMALSTIEG
D.: ScatterAlloc: Massively parallel dynamic memory allocation for the
GPU. In 2012 Innovative Parallel Computing (InPar) (May 2012), pp. 1–
10. 18

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The Visual-
ization Toolkit: An object-oriented approach to 3D graphics. Kitware,
2004. 15

[SO11] STUART J. A., OWENS J. D.: Efficient synchronization prim-
itives for GPUs. CoRR abs/1110.4623, 1110.4623v1 (Oct. 2011).
arXiv:1110.4623v1. 4, 18

[SR17] SCHNEIDER J., RAUTEK P.: A versatile and efficient gpu data
structure for spatial indexing. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (Jan 2017), 911–920. 6, 14

[SS06] SHALEV O., SHAVIT N.: Split-ordered lists: Lock-free extensible
hash tables. J. ACM 53, 3 (May 2006), 379–405. 1, 18

[STKT06] SUZUKI K., TONIEN D., KUROSAWA K., TOYOTA K.: Birth-
day Paradox for Multi-collisions. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, pp. 29–40. 6

[TAHR15] TUMBLIN R., AHRENS P., HARTSE S., ROBEY R. W.: Par-
allel compact hash algorithms for computational meshes. SIAM Jour-
nal on Scientific Computing 37, 1 (2015), C31–C53. doi:10.1137/
13093371X. 15, 19, 21, 22

[THM∗03] TESCHNER M., HEIDELBERGER B., MUELLER M.,
POMERANETS D., GROSS M.: Optimized spatial hashing for collision
detection of deformable objects. Proceedings of Vision, Modeling, Visu-
alization (VMV 2003) (2003), 47–54. 15, 19

[TTD∗16] TODD A., TRUONG H., DETERS J., LONG J., CONANT G.,
BECCHI M.: Parallel gene upstream comparison via multi-level hash
tables on gpu. In 2016 IEEE 22nd International Conference on Parallel
and Distributed Systems (ICPADS) (Dec 2016), pp. 1049–1058. 20

[Ull72] ULLMAN J. D.: A note on the efficiency of hashing functions. J.
ACM 19, 3 (July 1972), 569–575. 1

[VH15] VINKLER M., HAVRAN V.: Register efficient dynamic memory
allocator for gpus. Computer Graphics Forum, 8 (2015), 143–154. 19

[Vol16] VOLKOV V.: Understanding Latency Hiding on GPUs.
PhD thesis, EECS Department, University of California, Berkeley,
Aug 2016. URL: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-143.html. 4

[vtk17] VTK-m. https://gitlab.kitware.com/vtk/vtk-m,
Nov. 2017. 5

[WBS∗14] WIDANAGAMAACHCHI W., BREMER P. T., SEWELL C., LO
L. T., AHRENS J., PASCUCCIK V.: Data-parallel halo finding with vari-
able linking lengths. In 2014 IEEE 4th Symposium on Large Data Anal-
ysis and Visualization (LDAV) (Nov 2014), pp. 27–34. 6

[WLKC16] WANG J., LIU W., KUMAR S., CHANG S. F.: Learning to
hash for indexing big data—A survey. Proceedings of the IEEE 104, 1
(Jan 2016), 34–57. doi:10.1109/JPROC.2015.2487976. 1, 17

[WSSJ14] WANG J., SHEN H. T., SONG J., JI J.: Hashing for simi-
larity search: A survey. CoRR abs/1408.2927 (2014). URL: http:
//arxiv.org/abs/1408.2927, arXiv:1408.2927. 1, 17

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-
time concurrent linked list construction on the gpu. In Proceedings of the
21st Eurographics Conference on Rendering (Aire-la-Ville, Switzerland,
Switzerland, 2010), EGSR’10, Eurographics Association, pp. 1297–
1304. 6

[ZGHG11] ZHOU K., GONG M., HUANG X., GUO B.: Data-parallel
octrees for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics 17, 5 (May 2011), 669–681. 6

[ZGJ∗16] ZHOU J., GUO Q., JAGADISH H. V., LUAN W., TUNG A.
K. H., YANG Y., ZHENG Y.: Generic inverted index on the GPU. CoRR
abs/1603.08390 (2016). URL: http://arxiv.org/abs/1603.
08390, arXiv:1603.08390. 13, 20

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time kd-
tree construction on graphics hardware. In ACM SIGGRAPH Asia
2008 Papers (New York, NY, USA, 2008), SIGGRAPH Asia ’08, ACM,
pp. 126:1–126:11. 6

[ZWY∗15] ZHANG K., WANG K., YUAN Y., GUO L., LEE R., ZHANG
X.: Mega-kv: A case for gpus to maximize the throughput of in-
memory key-value stores. Proc. VLDB Endow. 8, 11 (July 2015),
1226–1237. URL: http://dx.doi.org/10.14778/2809974.
2809984, doi:10.14778/2809974.2809984. 7, 10, 11, 20

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://arxiv.org/abs/1110.4623v1
http://dx.doi.org/10.1137/13093371X
http://dx.doi.org/10.1137/13093371X
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
https://gitlab.kitware.com/vtk/vtk-m
http://dx.doi.org/10.1109/JPROC.2015.2487976
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1603.08390
http://arxiv.org/abs/1603.08390
http://arxiv.org/abs/1603.08390
http://dx.doi.org/10.14778/2809974.2809984
http://dx.doi.org/10.14778/2809974.2809984
http://dx.doi.org/10.14778/2809974.2809984

