Methods for Accelerating Machine Learning in
High Performance Computing

Robert Lim
roblim1@cs.uoregon.edu
University of Oregon

ABSTRACT

Driven by massive dataset corpuses and advances and pro-
grammability in accelerator architectures, such as GPUs and
FPGAs, machine learning (ML) has delivered remarkable,
human-like accuracy in tasks such as image recognition,
machine translation and speech processing. Although ML
has improved accuracy in selected human tasks, the time to
train models can range from hours to weeks. Thus, accel-
erating model training is an important research challenge
facing the ML field. This work reports on the current state
in ML model training, both from an algorithmic and a sys-
tems perspective by investigating performance optimization
techniques on heterogeneous computing systems. Opportu-
nities in performance optimizations, based on parallelism
and locality, are reported and sheds light on techniques to
accelerate the learning process, with the goal of achieving
on-the-fly learning in heterogeneous computing systems.

KEYWORDS

High-performance computing, GPU programming, distributed
systems

1 INTRODUCTION

Machine learning has exceeded human capabilities in areas,
such as image recognition, natural language processing and
competitive gaming, which is attributed to the plethora of
massive datasets, the advances in high performance com-
puting (HPC) architectures and the models that learn the
latent representations from the training sets. For instance,
a relational network of entities consisting of people, places
and organizations can be constructed that describes a se-
quence of events for intelligence gathering and storytelling
purposes [30]. In addition, advances in neural machine trans-
lation (NMT) [38] have lowered communication barriers and
is transforming interactive conversations with computer-
aided translation, which has sociolological and economi-
cal impacts in society. However, the existing approaches
in model training are not sufficient for maximizing perfor-
mance. Considering a compute cluster with a number of
nodes, accelerator architectures, and its network topology,
an ideal compiler would automatically create an execution
plan that maximizes high-performance and utilization of
compute resources, eliminating pain points, such as system

configuration issues or low level assembly syntax. This report
surveys performance improvements made in the landscape
of deep learning (DL) training enabled by HPC in single node
and multi-node settings, with a focus on image recognition
and natural language processing domains.

1.1 Evolution of Neural Networks

The design of neural networks is a black-box procedure that
requires domain expertise and can vary from the number
of layers, learning rates, input sizes, non-linear activation
units, and feature maps. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [33] is an annual compe-
tition organized by the computer vision field that analyzes
over 14 million hand-annotated images. Challenge objectives
include image classification, single-object localization and
object detection.

Table 1 compares selected neural network models from
the ImageNet competition, along with the number of lay-
ers, parameters, size, operations and Top-5 accuracy. The
table was adapted from [80] and the numbers were gener-
ated from Torchvision model zoo [84]. Note that LeNet [47]
was one of the first convolutional neural networks (CNN)
developed for digit classification, but did not participate
in ILSVRC. AlexNet [44] is an 8-layer CNN that first won
ILSVRC, where the filter shapes varied from layer to layer,
resulting in significantly more weights than LeNet. VGG [72]
is a 16-layer model similar to AlexNet, but decomposes large
kernel-sized filters into smaller ones, leading to a 92.3% ac-
curacy. GoogLeNet [81] introduced an inception module
that consists of parallel connections of different sized fil-
ters to resemble processing at multiple scales, resulting in a
smaller and faster model than VGG and more accurate than
AlexNet (89.6%). Inception [82] is similar to GoogLeNet, but
applies batch normalization, which achieved 93.3% accuracy.
ResNet [28] proposes an even deeper model with 152 layers,
using shortcut modules to address the vanishing gradient
problem, achieving an accuracy of 96.4%. SqueezeNet [32] is
a light-weight CNN model providing AlexNet accuracy with
50x fewer parameters. DenseNet [31] is similar to ResNet, but
connects each layer to every other layer and concatenates
the feature maps, providing stronger gradient flow with 3x
fewer parameters, but a larger sized model. MobileNet [70]
is a lightweight network for mobile devices that applies a

Table 1: Selected neural networks for image classification throughout the years.

Year ‘ Model Layers Parameters Size Operations Accuracy
1998 LeNet5 [47] 5 1M 4 MB 60 K -
2012 | AlexNet [44] 8 60 M 240 MB 3G 84.7%
2013 VGG [72] 16 140 M 500 MB 23G 92.3%
2015 | GoogLeNet [81] 22 6 M 30 MB 3G 89.6%
2016 | Inception [82] 19 23 M 35 MB 5.6 G 93.3%
2015 ResNet [28] 152 60 M 240 MB 23G 95.5%
2016 | SqueezeNet [32] 18 24M 0.5 MB 23G 80.6%
2017 | DenseNet [31] 161 28 M 268 MB 15G 93.8%
2018 | MobileNet [70] 24 3M 74 MB 627 M 90.3%
2018 | ShuffleNet [102] 164 2M 20 MB 297 M 88.3%

depthwise separable convolution approach, resulting in a
computation reduction and a small reduction in accuracy.
ShuffleNet [102] shuffles the order of channels in grouped
convolution to alleviate bottlenecks from pointwise convo-
lution, with significant reduction in parameters.

Table 2: Evaluation matrix for best performing machine
translation system (BLEU) for WMT 2018. Table source !

Output Language

CZH X 339 X X X X X

g | X GER 484 X X X X X
S | 260 483 ENG 252 182 348 200 438

%D X X 309 EST X X X X

2| X X 256 X FIN X X X

21 X X 39 X X RUS X X

S X X 280 X X X TUR X
X X 293 X X X X CHN

The impact of neural networks can also be witnessed in
machine translation, where the dramatic shift from statistical-
to neural-based approaches occurred in 2016 [42]. Similar to
ILSVRC, the Conference on Machine Translation (WMT) is
an annual event that hosts competitions for machine trans-
lation. In addition to translation tasks, competition cate-
gories include automatic post-editing, quality estimation
and parallel corpus filtering. NMTs typically include a word
embedding matrix, a context vector, and attention mecha-
nisms [88]. An encoding and decoding phase takes in a source
sentence and aligns words for a target language, whereas
bi-directional RNNs [6] simultaneously reads the source sen-
tence in forward and reverse order to alleviate bottlenecks
from the disjoint phases and learn features from co-occuring
words. Preprocessing of the sentences include tokenization,
true casing, and byte-precision encoding. The quality of the
translation systems are evaluated based on the Bilingual
Evaluation Understudy (BLEU) score, where a score of 100.0

results in a perfect match, and 0.0 a mismatch. Table 2 dis-
plays the evaluation matrix of machine translation for the
best performing system for WMT 2018. The types of trans-
lation systems vary and can include encoder-decoder with
attention, deep models with layer normalization, weight ty-
ing, back translation, ensembles, and reranking in both di-
rections. Table 2 also indicates that current NMTs still have
strides to overcome before achieving a perfect BLEU score.

Efforts to automate the design of neural networks include
neural architecture search and hyperparameter optimization.
Neural architecture search uses reinforcement learning [105]
and evolutionary algorithms [67] toward constructing a deep
neural network from scratch, but the search space remains
vast and can take up to 2000 GPU hours [105] (3150 GPU
hours [67]). Hyperparameter optimization is a procedure
that searches for a good range of options for tuning weights
of neural networks [7, 74], where efforts include bandit-
based [49] and Bayesian [22] approaches. As indicated by
the number of parameters and layers in Table 10, neural ar-
chitecture search and hyperparameter optimization presents
a complex multi-modal exploration space to navigate.

1.2 HPC Architectures

This section briefly covers the architectures of CPU, many-
integrated core (MIC), and graphic processing units (GPU),
displayed in Table 3. Numbers were taken directly from [34,
96]. Tensor processing units (TPUs) and field-programmable
gate arrays (FPGAs) are omitted due to the proprietariness
of TPUs, the irregular compilation process of FPGAs, as well
as the inavailability of both architectures in production sys-
tems. Jouppi, et. al. compare performances of CPU, GPU
and TPU, as well as describe in-depth the operation of the
matrix processor [37], whereas Nurvitadhi, et. al. discuss
different FPGA fabrication designs for accelerating neural
networks [59]. The number of cores reported for GPUs are

!http://matrix.statmt.org

Table 3: Comparison of selected CPU, MIC and GPU architectures.

Year Name Architecture GFL (SP) GFL (DP) Cores Mem (BW) TDP Freq (MHz)
2011 Xeon 5690 Westmere 166 83 6 32 130 3470
2012 Xeon E5-2690 Sandy Bridge 372 186 8 51 135 2900
2014 Xeon E5-2699 v3 Haswell 1324 662 18 68 145 2300
2017 Xeon Platinum 8180 Skylake 4480 2240 28 120 205 2500
2018 Xeon Platinum 9282 Cascade Lake 9320 4660 56 175 400 2600
2013 Xeon Phi 7120 Knight’s Corner (KNC) 2416 1208 61 220 300 1238
2016 Xeon Phi 7290 Knight’s Landing (KNL) 6912 3456 72 600 245 1500
2017 Xeon Phi 7295 Knight’s Mill (KNM) - - 72 115 320 1500
2011 Tesla M2090 GF100 (Fermi) 1331 665 16 177 250 1300
2015 Tesla K40 GK180 (Kepler) 5040 1680 15 288 235 745
2015 Tesla M40 GM200 (Maxwell) 6844 214 24 336 250 1000
2016 Tesla P100 GP100 (Pascal) 9340 4670 56 720 250 1328
2017 Tesla V100 GV100 (Volta) 14899 7450 80 900 300 1328
Table 4: CPU memory hierarchy. Table 5: Comparison of MCDRAM and HBM.
| Sandy Bridge ~ Haswell Skylake Hardware Type Notes
L1(I) 32K, 8-w 32K, 8-w 32K, 8-w P100 GPU 3D-stacked 16 GB, 732 GB/s (HBM2),
7 LI(D)| 32K 8w 32K, 8-w 32K, 8-w SDRAM 32 GB/s (PCle)
Qg L2 256K, 8-w 256K, 8-w 1M, 16-w KNL MIC MCDRAM + 16 GB on-package, 8 chan-
A= L3 8M, 12-w 8M, 12-16-w 57M, 11-w DDR nels, 490 GB/s
27 L 45 4-5 4-5
% % L2 1 12 12 in 2016 with the introduction of additional cores in Pascal
- = L3 30 34-65 34-45 P100 and tensor cores in Volta V100. The number of FLOPs

streaming multiprocessors, and not the individual cores per
multiprocessor, to simplify the comparison with CPUs. Keep
in mind that the programming models of CPU, GPU and MIC
are vastly different. GPUs program in the single-instruction,
multiple threads (SIMT) model, where multiprocessors ex-
ecute warps of the same instruction in lock-step. CPUs, on
the other hand, program in the multiple instruction, multi-
ple data (MIMD) format that enable multi-processing and
context switching. MIC architectures are designed as a col-
lection of CPU cores with high bandwidth memory, each
with SIMT capabilities. Memory accesses also differ, where
CPUs are concerned with aligning data with the memory hi-
erarchy, whereas GPUs transfer data in a bulk-synchronous
manner. Table 4 displays memory hierarchy parameters for
CPUs with cache capacity, set associativity, and stall cycles,
whereas Table 5 compares memory specifications for the
Intel Xeon Phi and NVIDIA Pascal GPU.

The comparison of CPU, GPU and MIC architectures were
adapted from [69]. Dual-point floating point capabilities and
AVX were introduced in 2014, which pushed the CPU FLOP
capabilities closer to GPU. The gap was widen shortly after

were increased with the introduction of AXV512 vectorized
units in the Skylake architectures, which somewhat closed
the FLOP gap again. Single precision FLOPs for GPUs is
about 5x the performance of CPUs. GPUs and MICs generally
have higher thermal design power (TDP), when compared
to CPUs. The introduction of high bandwidth memory [95],
such as multi-channel DRAM (MCDRAM) for Xeon Phi and
3D high-bandwidth memory (HBM) for GPUs in Pascal in
2016, shown in Table 5, further pushed the performance of
accelerators by 3x over CPUs. Thus, any improvements to
memory bandwidth directly attributes to an increase in the
floating point capabilities.

Despite the capabilties of the Intel MIC architecture, the
product line has been discontinued ? in favor of discrete pro-
cessors, such as Nervana and Arctic Sound. 3 The Knights
Landing architecture consists of 36 tiles connected by a 2D
mesh, where each tile includes 2 Cores, 4 VPUs, and 1 MB
L2 cache capable of executing six concurrent operations (2
VPUs, 2 memory, 2 integer) [36]. This can be challenging

Zhttps://www.top500.0rg/news/intel-dumps-knights-hill-future-of-xeon-
phi-product-line-uncertain
Shttps://www.digitaltrends.com/computing/intel-provides-peek-at-what-
arctic-sound-gpu-could-look-like

M1 [n] —> { S[i.j]

i1 <=1 <=nand 1 <= j <=1 }

(b) Symbolic constants and set variables.

(a) Double-nested loop in C.

Listing 1: isl set instance.

for certain applications to keep the two-issue-wide (decode,
retire) execution pipeline saturated [29]. Another reason for
discontinuing the Intel MIC can be attributed to NVIDIA’s
dominance on the GPU market and its impacts on the ma-
chine learning domain. Regardless, the trend seems to indi-
cate that the march toward Exascale computing need not
include complex processors like the Xeon Phis, but SPMD
processors with multiple discrete accelerators.

1.3 Motivation

The breakthroughs and challenges both in the neural net-
work field in achieving human-like accuracy and the high
performance computing architectures in increased floating
point capabilities motivate the current investigation in how
to accelerate machine learning training. This report aims
to bring awareness on the frontiers of accelerated learn-
ing of large datasets through the use of HPC. The problem
space is introduced in Section 2.1, which includes iteration
spaces, transformations, data operations and performance
modeling. Intermediate code generation and deployment are
discussed in Section 3, which covers HPC and machine learn-
ing compilers. Section 4 discusses parallel and distributed
approaches toward machine learning training, including op-
timization and scalable approaches. Section 5 summarizes
and concludes with future work.

2 PROBLEM SPACE

This section formulates the computation of a learning al-
gorithm for the back end compiler through the use of it-
eration spaces, code transformations, linear algebra, and
performance modeling.

2.1 Iteration Spaces

An iteration space is the set of dynamic execution instances
in a computation, or the set of combinations of values taken
on by the loop indexes. An affine function consists of one
or more variables, iy, iy, ..., i, that can be expressed as sums
of constant cy, ¢y, ..., ¢, multiples of the variables, such as
Co+C1x1 +Cox2 + ...+ CpXy. The polyhedral framework models
the iteration space of a loop as affine accesses of variables,
such as arrays and constants, and aids in assessing run time
performance without executing the application. Dependency
analysis can be carried out in order to verify that transfor-
mations result in performance gains and do not change the

logic of the program. Non-affine accesses require the extra
step of reconstructing the iteration spaces using indices and
pivots for dealing with traversal of sparse matrices.

Integer Set Library. The integer set library (isl) represents
the iteration space in a polyhedral model as bounded integer
sets [90]. Each map, or binary relation, is a finite union of
basic sets, and each mapping to a binary relation is on tuples
of integer parameters, bounded by affine constraints. Maps
have domains and ranges and can be composed with each
other and applied to sets, whereas sets are projections of in-
teger points in polyhedron. isl describes iteration domains
representative of the GPU execution model that organizes
parallel loops into grids, tiles and thread blocks. Listing 1
demonstrates how a loop is defined in isl as a set instance.
This representation allows exploration of transformations,
such as interchanging the i and j indices, or generating sched-
ules that alter the permutation order of the array accesses.

Polyhedral Representation. Polyhedral techniques can be
used to optimize an intermediate representation (IR) for data
locality and parallelism. Polyhedral extraction tool (pet) [92]
is a library that extracts C code based on Clang/LLVM source
and builds loops around the representation, allowing further
optimizations to take place [92]. Polly [27], which incorpo-
rates isl and pet, parses the static control parts (ScOP) of a
source code. A SCoP is represented as a pair (context, state-
ments), where the context is an integer set that describes
constraints on the parameters of the SCoP and the statement
is a quadruple (name, domain, schedule, accesses) that corre-
sponds to a basic block that can be scheduled independently.

DEFINITION 1. A domain D is an integer set that describes
how the statement is executed in different loop iterations.

DEFINITION 2. A schedule S is an integer map that assigns
a multi-dimensional point in time to each iteration, which
defines the execution order of different statement instances.

DEFINITION 3. An access relation A, or body, is an inte-
ger map from a domain of statements to a multi-dimensional
memory space.

Vectorization. Modern CPU architectures are equipped
with vector hardware units capable executing single instruc-
tion, multiple data (SIMD), where an issue of one instruction
causes the same operation to be applied to a vector of register

Pp——— Packing ~ Broadcasting —N'I
— — —
] —
= == =1 G —) — G 1=
E L <a,a> =hbroadeast jundef, a)
<undef, a> = pack {undef, a , 0} e
| <b,a>= pack{<undef, 2>, b, 1) — uHEng
) =y
—>[c | a |
- Unpacking o
=T — <¢,a> = shul [<b,a>, <d, >, {2, 00
—a =Y | i sl A, <d, > 42,00
B =) m—y
a =unpack [«b ,a= , Q) -m E-E »[2 | b |
b= unpack [<b , a=, 1} i <b, a>=shuf (<a , B>, {0, 1}} A

for i = 1, N, 1 for j = 1, M, 1
for j = 1, M, 1 for i = 1, N, 1
Ali, j1 = A[i, j] + ¢ Ali, j1 = A[i, j] + ¢
(a) Before (b) After

Listing 2: Loop interchange.

for y = 1, N, 1
for x = 1, M, 1
Bly. x] = Aly, x-1] + A[y, x] + Aly, x+1]
for y = 2, N-1, 1
for x = 1, M, 1
Cly., x] = B[y—-1, x] + B[y, x] + B[y+1, x]
(a) Before
for y = 2, N- 1,1
for x = 1, M, 1
for i = -1, 1
B[i] = A[ly—-1+i, x-1] + A[y—-1+x, x]
+ Aly—-1+i, x+1]
Cly, x] = B[1] + B[2] + B[3]
(b) After

Listing 4: Interleave.

for i = 1, N, 1
Ali] = B[i] + d1 for i = 1, N, 1
A[i] = B[i] + d1
for j = 1, N, 1 C[i] = A[i] + d2
Clj] = A[j] + d2
(b) After
(a) Before

Listing 3: Loop fusion.

units. Vector operations are performed in a pipeline manner,
where elements in a vector are fetched serially and computa-
tions on different elements are overlapped. A vector length
(VL) is defined as the instruction and floating point type,
where an AVX512 with 32-bit will have a VL of 16. Figure 1
shows data reorganization methods when using vectoriza-
tion, such as packing, unpacking, broadcasting, and shuffling,
which introduces overhead. To reduce data reorganization
overhead, a cost model can be used to determine whether
to vectorize or interleave operations, based on VL statement
groups that contain at least two loads or stores with consec-
utive memory accesses in the same iteration [103].

2.2 Code Transformations

A set of instructions is replaced with another set of instruc-
tions during code transformation that executes the program
faster, with the goal of reducing loop overhead, increasing
pipeline opportunities, and improving memory system per-
formance. Examples include vectorization intrinsics, multiply-
accumulate (MAC), variable type precision, loop unrolling
and replication. Common loop transformations are briefly
covered in this subsection.

Loop interchange (List 2) moves arrays from column-major
to raw-major, and vice versa, which affects the spatial and
temporal locality of the memory elements. Loop fusion (List 3)

for i = 1, N, 1 for i = 1, N — mod(N, 4), i += 4
A[i] = B[i] + C[i] A[i:i+3] = B[i:i+3] + C[i:i+3]
(a) Before (b) After

Listing 5: Strip-mining.

for i = 1, N, 2
for i = 1, N, 1 for j = 1, N, 2
for j = 1, N, 1 for ii = 1, min(i+2, N), 1
C[i] = A[i,j] = B[i] for jj = 1, min(j+2, N), 1
C[ii] = A[ii,jj] = B[ii]
(a) Before
(b) After
Listing 6: Tiling.
t1 = A[1]
for i = 2, N+ 1, 1 for i = 2, N+ 1, 1
= Ali-1] + 1 = tl + 1
Ali] = t1 =
Ali] = t1
(a) Before
(b) After

Listing 7: Scalar replacement.

combines two loops into one, whereas loop distribution per-
forms the opposite by breaking one loop into two. Interleave
allows multiple occurrences of the same operation across
consecutive iterations to be grouped together into single
SIMD instructions (List. 4). Strip-mining (List. 5) fragments a
large loop into small segments, which increases temporal and
spatial locality for reuse in subsequent passes, and reduces
the number of iterations by a factor of vector length per-
formed per SIMD operation. Tiling (List. 6), which consists
of strip-mining and loop interchanging, divides an iteration
space into tiles and transforms the iteration of the nested

Table 6: Counts for GCC optimization flag levels.

-0,-01 -02 -03 -00 -Os -Ofast -Og
45 47 16 1 6 1 12

loops. Scalar replacement (List. 7) eliminates loads and stores
for array references with use of a temporary variable.
Compiler flags enable code transformations during the
compilation process. Table 6 shows counts for various types
of GCC optimizations when turning on different levels. Re-
fer to * for different variants included in each level. The
number of transformation options increases the complexity
of the search space when generating code variants. Explor-
ing every single transformation possible would require m”
code variants, for m options and n transformations, which is
NP-complete and not feasible for code generation.

2.3 Linear Algebra

The study of high-performance generalized matrix multi-
plication (GEMM) dates back to 1979 with the release of
LINPACK, which measures the performance of a computer
solving a system of linear equations °. LINPACK utilizes basic
linear algebra subroutines (BLAS) for matrix and vector oper-
ations. To date, performance of the Top 500 Supercomputers
are measured using LINPACK °, which scales the problem
size for a given system configuration.

The operations performed in machine learning include
linear algebra and tensor decompositions, to name a few [58].
In machine learning, a high percentage of operations during
training are variants of multiply-add accumulate (MAC) of
matrices and vectors, as seen in Table 1. The ubiquitiousness
of MAC operations in scientific applications have prompted
architecture manufacturers to create dedicated hardware
units, such as Intel’s fused multiply-add (FMA), the tensor
cores in NVIDIA V100 Volta, as well as FPGAs that pro-
vides customized fabrication of logic gates, as discussed in
Sec. 1.2. High performance libraries for linear algebra include
Intel MKL [35], openBLAS [62] and Eigen [19] for CPU, and
cuBLAS [13], cuDNN [14] and MAGMA [54] for GPUs.

DEFINITION 4. The GEMM operation is defined as
C=aAxB+ fC, (1)

where A, B and C are matrices, Ais M X K,BisK XN, and C
isMXN.

GEMM Abstractions. CUTLASS provides templates and
abstractions to simplify GEMM operations in CUDA C++

“https://gce.gnu.org/onlinedocs/gec/Optimize-Options.html
Shttp://www.netlib.org/linpack/
Shttps://www.top500.org/project/linpack/

that directly maps to the backend GPUs, based on user sup-
plied input [15]. The result is partitioned into tiles that fit in
on-chip memory, where the outer product is applied to each
tile. Each thread block, partitioned by warps that are further
partitioned by block tiles, computes a portion of the result by
iteratively loading blocks of matrix data from the input ma-
trices and computing the accumulated matrix product. Once
data is written to shared memory, each warp computes a se-
quence of accumulated matrix products by iterating over the
thread block tiles, loading submatrices from shared memory
and computing the accumulated outer product.

Linear Algebra Language. BLAC, or basic linear algebra
computation, provides a language for linear algebra (LL) [75,
76], where the output is a product, addition, transposition
or a scalar. A fully tiled BLAC in LL is rewritten into 2-LL,
which captures the explicit gather and scatter operators on
matrices. Given a matrix-vector multiplication, the input is
transformed using the SInfo and Alnfo dictionaries of matri-
ces, where SInfo associates regions of a matrix to structures
and Alnfo provides information for matrix block accesses
within a region. A set of CLooG (chunky loop generator)
statements ’ is produced that defines the polyhedral domains
of the loop. Similar to Polly [27], discussed in Sec. 2.1, a
CLooG statement consists of a polyhedral set o represent-
ing the iteration space, a polyhedral map p schedule that
determines the traversal order of the domain and the body
B, which is a 2-LL expression. For the BLAS category, per-
formance was 2.5x faster than MKL when data was able to
fit in L1 cache and 1.6x for L2. For the BLAS-like category,
improvements exceeded icc-compiled code by 7x and was
1.4x faster than MKL, although MKL performed better for
bigger sized parameters.

GEMM Code Generator. A portable compiler approach,
or POCA, is a GEMM kernel generator that consists of a
p-kernel optimizer that lowers to LLVM IR [79]. The p-
kernel optimizer includes a single-iteration scheduler, a two-
iteration pipeline scheduler, and an unroll-based rotating
register allocator. A data dependence graph is used in the
single-iteration scheduler for revealing vectorization oppor-
tunities and available registers. The two-iteration pipeline
attempts to maximize CPU utilization and increase register
usage. Loops are unrolled by a factor of 2 to 8 with unroll-
based rotating register allocator. For consecutive memory
accesses, the layout strategy, whether column- or row-major,
is to pack the accesses in iterations of a loop in contigu-
ous buffers. The tile size is a multiple of vector length (VL),
which represents the maximum number of data elements in
a vector register. The first study showed that POCA outper-
formed icc and gcc for both Intel Sandy Bridge and ARM

Thttps://www.cloog.org

Cortex-A57 processors. The results also showed that Intel
MKUL is unstable for smaller matrices, but exhibits the best
performance for large matrix sizes. For instruction schedul-
ing, combining single-iteration scheduling and two-iteration
pipelining always yielded performance gains, when com-
pared to each alone, outperforming the baseline by 12.5%
on the Sandy Bridge and 16.7% on the Cortex-A57. Loop un-
rolling achieved superior performance for Cortex-A57 when
unrolled by a factor of 8, and good performance for Intel
with 4 as the unroll factor, which slightly worsened as the
unroll factors increased due to cache misses.

Tensors. Tensors are the generalization of matrices to N di-
mensions. Working with tensors, rather than matrices, result
in deeper loop nests and presents optimization challenges
beyond linear algebra [43]. For instance, learning models
such as hidden Markov models, latent Dirichlet allocation
(LDA), and Gaussian mixture models can be interpreted as
performing tensor decompositions [3]. Canonical polyadic
decomposition (CPD) extends singular value decomposition
(SVD) for high order tensors. Greedy and non-linear least
squared methods are typical methods to solve CPD. The num-
ber of features are reduced in a N X M matrix, where N < M,
for N observations and M features. Low-rank approximation
can be obtained through factorizing a matrix M, which re-
sults in a summation of F singular rank-one matrices. The
problem of matricized tensor times Khatri-Rao product (MT-
TKRP) is often studied because it is the bottleneck when
computing CPD [73]. Tensor decompositions can also be
used to compress a trained network with minimal impact on
accuracy [39, 46], where 4D tensor weights are compressed
with low-rank approximation and trades off with degrading
accuracy.

2.4 Performance Modeling

A model aides the compiler in inferring the performance of
an application, either analytically, through run time mea-
surements, or with hybrid approaches. The performance of
an application refers to the amount of work accomplished,
such as instructions-per-cycle, which is estimated in terms
of efficiency, effectiveness and speed. Analytical models can
describe certain aspects of an application, such as compu-
tation and communication, which provide cost models that
augment the decision-making of the compiler. Instrumenta-
tion methods provide concrete results for measuring perfor-
mance, though, at the cost of executing an application. Since
analytical models are difficult to generalize and, in some
cases, be limited in expressivity, collecting performance mea-
surements, either via simulation or execution, may be the
only option. Hybrid approaches, such as profile-guided opti-
mization and feedback-directed optimization, make use of
analytical models with profiles of an executed application,

Model Parallel

Data Parallel

Figure 2: Parallelism strategies for distributed deep learning,.

Image source 8.

combining cost models with run time measurements to in-
form the compiler on whether code transformations yielded
performance gains or drawbacks.

2.4.1 Neural Networks Primer. A neural network consists of
an input layer, a hidden layer, and an output layer, each with
neurons connected as weights that produce a classification
result. A deep neural network is a neural network beyond
three layers, with multiple hidden layers between the input
and output layers. At each layer j in a neural network, each
neuron computes y; = f(X1_; W;j X x; + b), where W;; are
the weights, x; are the input activations, b is the bias term,
and y; are the output activations [80]. A non-linear function
f(+) generates an output activation if the inputs crosses a
threshold, and none otherwise.

Training a neural network involves updating the weights
w;j with an optimization algorithm, such as stochastic gradi-
ent descent. The gradient of the loss relative to each weight
is the partial derivative of the loss with respect to the weight
subtracted by the current weight, wit;’l = wf e aaaTLij’ where
a is the learning rate. The gradient adjusts the weights in or-
der to reduce the overall loss. Backpropagation computes the
partial derivative of the gradients, which passes the values
backwards through the network to compute how the loss is
affected by each weight. Neural networks typically employed
include fully-connected networks, convolutional neural net-
works (Sec. 3.3.1), recurrent neural networks (Sec. 3.3.2), and
dynamic neural networks. CNN operations can be performed
with either GEMM, FFT, direct convolution, or Winograd.
For RNNs, gating operations include LSTM and GRU that
are capable of tracking spatial-temporal dependencies.

2.4.2 Distributed Deep Learning. Parallelism strategies for
deep neural networks include data parallelism and model
parallelism. Data parallelism partitions the dataset across
available compute nodes and each node trains on the dataset
and maintains a local copy of the model. Model parallelism,

on the other hand, partitions the model across compute nodes
and the dataset is passed across all nodes that define the
model. Figure 2 compares the parallelism approaches.

2.4.3 Performance Models for Deep Learning. Paleo [65]
models the behavior of a neural network by counting the
number of operations with respect to the architecture of the
network. They estimate a full pass of AlexNet and VGG-16
running on TensorFlow with an NVIDIA Titan X GPU. The
authors also performed scalability studies, where they es-
timated AlexNet training with hybrid parallelism (8 GPUs
with a weak scaling strategy) and were able to predict the
execution time when scaling the number of workers, from 1
to 8. The study also showed that Paleo was able to simulate
a completely different parallelism strategy, data parallelism,
and estimate its training time, which could be useful in ex-
ploring alternatives for a given architecture.

The problem of resource allocation and task scheduling
can be formulated as a minimization problem, where the ob-
jective is to find the right number of compute resources that
maximizes execution performance, based on constraints of
the problem [99]. Design decisions include data parallelism
or model parallelism, the number of parameter servers for
weight synchronization with other nodes, the number of
workers, threads, tasks, type of communication, as well as
the neural network operations. Scalability studies revealed
that certain architectures benefited under certain parallelism
strategies (e.g. ImageNet-22K achieves 7x speedup with model-
parallelism), and that certain types of parallelism exhibited
certain characteristics (e.g. data parallelism always linear,
parameter server roughly linear). When estimating epoch
training time, comparing the number of workers, replicas,
and parameter servers, their models were also nearly accu-
rate for ImageNet-22K. However, their results did not ac-
count for the total number of epochs for convergence, which
may be non-trivial but more insightful. When comparing
computation and communication, the estimated time for
communication was generally overestimated, whereas com-
putation was nearly exact, except for weight updates where
the time was underestimated.

Scalability studies on AlexNet, GoogLeNet, and ResNet-50
neural network architectures were carried out by model-
ing GPU characteristics, such as I/O, host-to-device copies,
forward time, backpropagation time, weight update, and
iteration time [71]. For intra-node performance on multi-
ple GPUs (2 Intel Xeon E5-2650v4 CPUs, 4 NVIDIA P100
GPUs), Caffe-MPI, MXNet and TensorFlow overlapped com-
munication and computation when parallelizing gradient
aggregation and backpropagation, whereas CNTK did not
and ended up performing worse. For communication, CNTK
uses NCCL [56], MXNet uses TCP socket communication

8https://chainermn.readthedocs.io/en/stable/tutorial/overview.html

Table 7: LIFT-IL parallel patterns.

Type Pattern

Algorithmic map, reduce, id, iterate

Data layout split, join, gather, scatter, slide
Hierarchical global, local, private, map-, vec-

with key-value pairs, TensorFlow uses grpc remote process
call, and Caffe-MPI uses a decentralized method with NCCL
that runs in parallel with backpropagation. Caffe-MPI pro-
cessed more images-per-second than all other frameworks
on GoogLeNet in a multi-node setting, but did slightly worse
in single node settings, compared to CNTK and MXNet. Also,
ResNet-50, which is significantly deeper with smaller kernel
sizes, required more frequent gradient communication and
less computation, which was difficult to overlap communica-
tion with backpropagation, whereas this overlap was better
handled in AlexNet and GoogLeNet, which has larger kernel
sizes and fewer layers.

3 COMPILERS FOR HPC PLATFORMS

Deployed compilers and run times for machine learning code
generation and execution are discussed in this section, which
include abstract syntax trees, intermediate representations,
and backend code generation.

3.1 Abstract Syntax Trees

The abstract syntax tree (AST) represents a program for a
targeted backend that translates source code into machine
code for execution. An intermediate representation (IR) de-
composes a program into basic blocks that allow other trans-
formations to take place. For neural network code gener-
ation, the AST abstracts the operations, such as parallel
patterns and linear algebra, to simplify mapping between
hand-written code to backend targets.

Intermediate Language. LIFT-IL [77] provides parallel pat-
terns for the GPU thread and memory organization, where
patterns are categorized as algorithmic, data layout and
hierarchical. Algorithmic patterns are operations, such as
map, reduce, id, and iterate. Data layout patterns include
split, join, gather, scatter, and slide. Hierarchical pat-
terns represent the memory hierarchy, such as global, local
and private address spaces, in addition to map and vector
versions, such as mapGlobal, mapLocal, and so forth. Table 7
displays the parallel patterns from LIFT-IL. Array accesses
are simplified with data parallel patterns, with the proper ar-
ray indices generated from the parallel patterns. For instance,
amatrix transposition can be simplified with a join that flat-
tens the 2D matrix, a gather that rearranges the indices with

a stride, and a scatter that splits the array. A tiled convolu-
tion operation can be overlapped with s1ide and map for 2D
tiles, which consists of split, join and gather patterns. In
addition, a barrier elimination procedure looks for mapLcl
calls that do not call split, join, gather and scatter, since
those patterns require that threads share data and read from
the same memory location. With the array access simpli-
fication and barrier elimination, their approach improved
performance, especially on the matrix multiplication and
convolution benchmarks, where the relative performance
improved by 20x.

Two-level IR. Glow is a compiler for PyTorch that takes the
two-level IR approach, where a high-level IR layer represents
the neural network and a low-level IR performs machine-
specific optimizations [68]. The high-level IR is a dataflow
graph that consists of operations, such as convolution, ma-
trix multiply, and ReLU, that are connected with vertices to
indicate the flow of directions and represent dependencies.
Code transformations can be performed at the high-level IR
level. Automatic differentiation is supported in Glow, which
uses persistent tensors for phases that share intermediate
data, such as forward and backpropagation. The node low-
ering phase consists of breaking up the high-level IR into
linear algebra operations for the low-level IR phase, which
gets offloaded to the LLVM backend.

3.2 Compilation Techniques

To enable code transformations, the compiler decomposes
the basic blocks from an IR into individual instructions that
map to the backend architecture. This provides an abstrac-
tion from machine code level, since a variety of architectures
can be targeted. The dilemma is that the parameter options
remain vast, when accounting for compiler flags, code trans-
formation options, targeted hardware, thread and worker
settings, and the amount of compute resources available. Ex-
ploring all possible options during compilation would be
infeasible. Limitations to hardware resources, such as issue
widths of an architecture, also factor into performance. Con-
sidering functional units can only issue specific instructions
at a given clock cycle (integer, memory, floating point), a
poorly selected set of instructions that fail to utilize the avail-
able functional units will severely hinder performance.
Parallelism and locality factor into the overall execution
performance of a program. Parallelism describes the amount
of work that can be completed concurrently, based on the
available hardware resources and the total number of work
to complete. Data locality for an instruction issue is achieved
when data is readily available in register or L1 cache, since
a cache miss requires fetching data from the memory hi-
erarchy, and each level up the hierarchy incurs additional
latency that degrades performance. The lack of high-level

knowledge of an application may overlook any opportunities
for performance enhancements during code generation.

3.2.1 Instruction Scheduling. As discussed in Sec. 2.1, an
iteration space facilitates the compiler in reasoning about
performance at the instruction level to generate efficient
code. A schedule consists of choices of when and where
instructions get executed, which is a compiler optimization to
hide latency and increase instruction level parallelism. Since
the architectures have complicated hardware units, knowing
the number of cycles for each particular instruction can
help predict performance. For instance, a 4-way superscalar
might be limited to issuing at most 2 integer, 1 memory and
1 FP instruction, in addition to forcing stalls for a particular
instruction (2 stalls per FPU instruction). Software pipelining,
which overlap compute and memory operations, become an
important performance improvement that can be made.

Polyhedral Representation for CUDA. A C++ to CUDA-
OpenCL source-to-source transformation framework based
on the polyhedral compilation is proposed with Polyhedral
Parallel Code Generator (PPCG). A polyhedral model is ex-
tracted using pet, which consists of an iteration domain,
access relations and a schedule, as defined in Section 2.1.
Dependence analysis reveals parallel loops that can be tiled
and mapped onto GPU blocks and threads. A schedule is
generated, which maps data to several levels of the memory
hierarchy, such as global, shared or register depending on its
access needs, decides what parts of the program execute on
the CPU and GPU, and maps tiles to blocks and threads. Once
parallelism and tiling have been defined with an iteration do-
main, the final code is generated with is1. When comparing
PPCG on a M2070 Fermi GPU with Pluto 0.7 (OpenMP), Pluto
0.6.2 (C-to-CUDA), and Par4All [64], speedups were achieved
for linear algebra-related operations, such as correlation, co-
variance, 3D matrix multiplication, GEMM, and Jacobi. Since
PPCG works in the polyhedral space, there were a handful
of benchmarks where PPCG ended up hurting performance,
such as Cholesky, Durbin and triangular solver, amongst
others. Reasons included that certain applications were not
suitable for GPU execution, excessive CPU-GPU interaction,
and complicated generated code. There were no comparisons
on how Par4All performed for the applications that PPCG
performed worse, which would have been insightful, since
Par4All does not rely on the polyhedral framework.

Image Processing Pipelines. A DSL compiler for image pro-
cessing is proposed with Halide [66], which separates high-
level image functions from low-level schedule that offloads
to LLVM. Images are represented as pure functions over an
infinite integer domain and the value of a function point
represents its pixel color. Pipelines are specified as chains of
functions, which are simple expressions or reductions over

a bounded domain. The pipeline schedules are discovered
using stochastic search. The search space is vast (107%° sched-
ules for local Laplacian), and depends on the machine archi-
tecture, image dimensions, and code generation, as well as
transformation choices, such as sliding window, storage fold-
ing, vectorization, unroll, and GPU thread block dimensions.
A genetic search algorithm generates a fixed population size
of 128 individuals per generation, with mutation rules incor-
porating knowledge about imaging, such as transformations
that performed poorly. When evaluated on an Intel Xeon
W3520 CPU and NVIDIA Tesla C2070 GPU, speedups of 1.2x
to 4.4x on the CPU and 2.38 to 9.9x on the GPU were observed,
and the number of lines were significantly shorter compared
to the expert version. When auto-tuned, the schedules gen-
eralized better from low to high resolution inputs, where
slowdown was modest for low resolution inputs (0.97x-1.2x),
compared to high-resolution inputs (1.4x-16x).

3.2.2 Sparse Matrices. Sparse matrices introduce non-affine
array accesses because storing all zeros would be a waste of
memory space. Instead, an iteration space and data space are
used to track the position of non-zero locations and indices for
accessing data. Converting from non-affine to affine accesses
allow compilers to parallelize operations on bounded loops.
Inspector-executor approaches facilitate in reconstructing
the sparse matrix representation through indirect array ac-
cesses of the compressed matrices to enable loop and data
layout transformations to be performed [78]. Storage for-
mats for sparse matrices include compressed sparse row
(CSR), compressed sparse column (CSC), diagonal (DIA) and
Ellpack (ELL), which adds complexities that result from direc-
tional accesses, and the conjunctive or disjunctive merging
of sparse tensor indices.

Tensor Compiler. The Tensor Algebra Compiler (TACO) [41]
computes tensor algebra expressions on sparse and dense ten-
sors for both CPU and GPU. An iteration graph describes how
to iterate over non-zero values of a tensor expression, and
is a directed graph G = (V, P) with a set of index variables
V ={v1,....,v,} and a set of tensor paths P = {p1,....pm} - A
merge lattice comprises n lattice points and a meet operator,
where each lattice point has a set of tensor dimensions to
be merged consecutively and an expression to be evaluated.
Extensions to TACO include format abstractions [11] and
workspaces [40], used as temporary storage of intermedi-
ate results that avoids recomputing. Concrete index notation,
similar to an ScOP (Sec. 2.1), is an intermediate language
that describes the way an expression is computed. Applying
workspace optimizations to sparse vector addition with a
dense result enables partial results to be efficiently accumu-
lated and increases locality and reuse.

10

Transformations for Sparse Matrices. The CUDA-CHILL
compiler applies transformations for sparse matrices, which
includes make-dense, compact, and compact-and-pad [89].
make-dense converts a sparse matrix to a dense matrix by
adding guard conditions that replace non-affine index ex-
pressions with affine accesses. compact and compact-and-pad,
which convert matrices from dense to sparse, includes an
inspector that gathers the iteration satisfying the guard and
an executor that is the resulting transformed code. The com-
pact transformation results in non-affine loop bounds and
array index expressions, whereas compact-and-pad inserts
zeros for padding to correspond to the optimized executor.
Standard loop transformations (Sec. 3.2.2) can be applied in
all three cases. When compared on a NVIDIA Tesla K20c
Kepler with CUSP v4.0 on the Sparse Matrix Collection °,
their approach was on average within 5% the performance
of CUSP for DIA and ELL. CUSP performed better in smaller
stencil computations (3-7), whereas CHiLL performed bet-
ter for larger stencils (27). CUDA-CHILL requires a global
memory read to initialize the result vector, which is notice-
able in smaller stencils. DIA is on average 1.27x faster than
CUSP, since CUSP takes two passes to initialize and copy val-
ues, whereas CUDA-CHILL does it in one pass. For ELL, the
performance gains were 0.52x to 1.26x over CUSP without
transpose, but suffered between 0.26x to 0.40x with transpose,
due to the additional overhead.

3.2.3 Code Optimizations. Code optimizations are improve-
ments that can be made to the program either through rewrit-
ing instructions or with reordering of the code. Optimiz-
ing code can be achieved with compiler techniques, code
transformations, and efficient memory management. The
task of the code optimizer is to replace a set of instruc-
tions with a faster sequence of instructions, since high-level
constructs that are naively translated into machine code
may overlook any performance enhancement opportunities
and introduce unnecessary run time overhead. For instance,
constant-propagation analysis computes, for each point in
the program and for each variable used by the program,
whether that variable has a unique constant value at that
point, which may be used to replace variable references and
stored in registers as constant values. Since programs spend
most of the time executing loops, optimizations that improve
the performance of loops can have a significant impact in
reducing overall execution time. Locality and prefetching,
data alignment, replication, reordering of access patterns,
are strategies that can maximize performance.

https://www.cise.ufl.edu/research/sparse/matrices

Straight Line Scalar Optimizations. gpucc is a CUDA Clang
compiler that originated from Google and has been main-
lined in the LLVM branch!® [97]. Several GPU transforma-
tions proposed include memory space inference, straight-
line scalar optimizations, pointer arithmetic reassociation,
straight-line strength reduction, and global reassociation.
Memory spaces are inferred by noting all pointers declared
in a program and reassociating previously declared ones.
Straight-line scalar optimization (SLSO) exposes partially re-
dundant computations typical in scientific applications that
access multidimensional arrays using pointer and integer
arithmetic. Straight-line strength reduction looks for partial
redundancy in straight line code, whereas global reassoci-
ation rewrites expressions for better performance. Pointer
arithmetic can be folded with addressing mode that adds
or subtracts an integer constant from the expression of the
pointer addresses. reg + immOff is an addressing mode by
NVIDIA NVPTX, where reg is a register and immOff is a
constant byte offset. Explicit variables for a memory loca-
tion, such as shared load, can be emitted with NVPTX, which
results in 10% faster executing instructions, compared to a
standard load. On 5 end-to-end benchmarks (ML, image clas-
sification, NLP, mnist) evaluated on a NVIDIA Tesla K40c,
gpucc achieved a 22.9% geometric mean speedup over nvcc,
due to performing 64-bit divides in 32-bit, and better SLSO,
but performed worse in others. SLSO optimization may help
ML-related applications, as indicated by the 22.9.% geometric
mean, but may perform worse, due to its aggressive approach
in seeking partial redundancies and performing global re-
association. As described in the paper, a limitation of SLSR
is that it cannot optimize instructions not dominating one
another. A fallback mechanism that decides between gpucc
and nvcc based on static code analysis would be useful.

Active Learning. The optimal set of compilation parame-
ters for a program can be discovered with active learning
that builds up a program-specific model to predict the run
time from a given set of optimizations [60]. The algorithm
constructs a model with training examples chosen from po-
tential examples. At each iteration, the candidate combines
random unobserved points and previously seen examples.
The next training example is chosen based on a scoring func-
tion and the run time is measured to update the model. The
static models used with the dynamic tree framework is a
decision tree with regression. A set of rules recursively par-
titions the search space into a set of hyper-rectangles, such
that the training examples with the same or similar output
values are contained within the same leaf node. Dynamic
trees change over time as new information is introduced by
a stochastic process, avoiding the need for pruning at the

Ohttps://releases.llvm.org/3.9.1/docs/CompileCudaWithLLVM.html

11

end. Two heuristics include estimating variance of the max-
imized output relative to other candidates and selecting a
candidate that reduces the predicted average variance across
other candidates. Sample size is also accounted for, since not
all samples may need to be evaluated in order to gain good
choices, speeding up the learning process.

3.2.4 Compilation of ML Models. Techniques for ML compi-
lation for improved performance include mapping iteration
spaces that define schedule trees, learning to optimize the
input size of tensor operations, mixed precision training, and
dataflow analysis for distributed memory communication.
With the proliferation of programming frameworks for deep
learning [17], vendors have also released inference engines
to allow exchangability amongst frameworks and portability
across architecture backends. Inference engines allow neu-
ral network models, typically trained in data centers, to be
deployed on mobile embedded devices that are constrained
for performance and power consumption. The process takes
as input a pretrained model in the form of a shared for-
mat, such as ONNX [61], that defines a computation graph
model, as well as definitions for built-in operators and stan-
dard data types. The optimizer performs rewriting and code
transformations for targeted backends, including precision
calibration, layer fusion, kernel auto-tuning, dynamic ten-
sor memory and multi-stream execution. The solution is
deployed on a targeted device and real-time inferencing is
performed, such as object detection in autonomous vehicles,
image captioning, or speech translation.

Tensor comprehensions (TC) is a language for expressing
element-wise computations of tensors, such that a JIT com-
piler can algorithmically search for an efficient execution
schedule [87]. Affine maps are schedule trees that communi-
cate properties of a high-level language (TC) to a downstream
compiler with target-specific information. A schedule band
is a tuple of functions that can interchange while preserving
the semantics of a program. A context node provides addi-
tional information on variables and parameters, such as ten-
sor extents or GPU grid/block sizes, which may also include
local scopes and parameters within a subtree. The transfor-
mation engine is based on a polyhedral scheduler, which
solves an integer linear program to compute piecewise affine
functions that form schedule bands. The schedule is further
tiled to facilitate mapping and temporal reuse on GPUs with
PPCG [91], with added support for complex and imperfectly
nested structures. A data-dependence graph is built, where
nodes correspond to statements and edges express depen-
dencies, annotated with a set of typed dependence relations.
The experiments ran on 2-socket 8 GPU nodes with Caffe
and ATen and compared transposed matrix multiplication,
transposed batched matrix multiplication, grouped convo-
lutions, and fused MLP. For all cases, the largest problem

Table 8: Selected compilers that support machine learning-related operations and whether polyhedral, GPU or LLVM-based.

Name Description Poly GPU LLVM Transformations
PPCG [91] CUDA/OpenCL source-to-source trans- v/ v v/ Tiling, strip-mining, loop fusion,
formation framework, exploits GPU fission, affine scheduling
thread and memory hierarchy
TACO [41] Compiler for dense and sparse tensor v Workspaces, CSR to CSC conver-
matrices sion
Halide [66] DSL compiler for image processing v v/ Interleave, fusion, tiling, sliding
pipelines, learns to optimize schedule window
TVM [9] ML compiler for CNN, MLP, others, v v Fusing, tiling, data layout, re-
learns to optimize schedule and tensor duced precision, operator opti-
size, Halide IR mizer
Glow [68] Compiler for PyTorch that has high- v v Kernel fusion, automatic differen-
level IR (computation graph, conv, tiation, graph optimizer, IR opti-
ReLU, etc.) and low-level IR (linear al- mizer, quantization
gebra operations)
gpucc [97] Performs optimizations at NVPTX level, v v/ Loop unroll, straight-line scalar
looks for partial redundancies typical in optimizations, pointer arith-
HPC, treats as constants, infer memory metic reassociation, straight
spaces line strength reduction, global
reassociation
Latte [85] DSL for CNN based on Intel compiler, Kernel pattern matching, loop
high level info gets propagated to back- tiling, fusion, parallelization, vec-
end torization
Tensor Comprehen- DSL for machine learning, polyhedral v v v Fused, tiled, sunk, mapped, com-
sions [87] and Halide IR bination of all
CHILL [89] Inspector executor for sparse matrices v v make dense, compact, compact
and pad, permute, skew, shift, tile,
unroll, scalar expand, coalesce
TensorFlow XLA [98] Linear algebra compiler for TensorFlow, v/ v v/ CSE, operator fusion, buffer anal-
cuDNN support ysis
NVIDIA TensorRT [83] Performs auto-tuning when loading v Batching, streaming, layer fusion,
model, native cuDNN, CUDA support, MLP fusion
optimized for GPU backends
Intel OpenVINO [63] Supports ONNX, TensorFlow, Caffe, v Linear operation fusing, stride op-

MNNet layers for Intel architectures

timization, grouped convolution
fusing

size was 4.2x on Maxwell (3.4x on Pascal) slower than Caffe2
with CUBLAS. TC was not implemented with register tiling,
so performance was bounded by shared memory bandwidth,
whereas CUBLAS operates at close to peak with larger input
sizes.

Tensor virtual machine (TVM) is a ML compiler that takes
as input a computation graph, lowers the nodes into a Halide-
based IR for code generation [66], and targets multiple back-
ends, such as GPU, TPU, and embedded devices [9]. A tensor
expression consists of operations described in an index for-
mula language. The loop structure and other information are
tracked as schedule transformations get applied. Low-level
code is generated for the final schedule, which uses the loop
program AST and primitives for optimizing on GPUs and

12

accelerators. The selection of operators for each layer in a
neural network can also be automated with TVM [10], where
the search space includes tiling size, loop unroll factor, loop
order traversal, and overlapping compute and memory oper-
ations. The schedule optimizer utilizes XGBoost, a gradient
boosted tree model that maps architecture-specific features
to alow-level AST, such as memory access counts, data reuse
ratio, vectorization, unrolling and thread binding. On the
GPU, the performance speedup was between 1.6x to 3.8x, due
to the graph and schedule optimizers that were able to fuse
kernels and identify operators to optimize. For the convolu-
tion study on ResNet-18 and MobileNet, TVM outperformed
Tensor Comprehensions (TC) [87], which generated 2000 tri-
als per operator (10 generations x 100 population x 2 random

seeds), whereas in MobileNet, TC performed slightly better
than TVM in the deeper layers.

Latte [85] is a domain-specific language (DSL) that takes
in a computation graph and targets heterogeneous code gen-
eration, parallelization and optimization. Dataflow analysis
informs the code generator to map shared variables to mem-
ory regions accessible to neurons that share dependencies.
Compute analysis looks for ensembles with identical oper-
ations and performs transformations, such as converting
array-of-structs to struct-of-arrays. Optimizations include
kernel pattern matching, which invokes a high-performance
implementation (e.g. Intel MKL), loop tiling, fusion and par-
allelization. Metadata, provided in loop transformations, can
prevent illegal optimizations from taking place, whereas par-
allelization batches processing to run data independently.
Julia AST is used in code generation and applies transfor-
mations as specified, which gets offloaded to the Intel C++
compiler. Julia’s parallel accelerator consumes a node that
indicates the explict parallel for-loop, which also contains
information about the collapsed loop nests, schedules, chunk
sizes, as well as pragmas to inform the compiler to ignore vec-
tor dependencies and aliasing. Speedups were achieved over
Caffe (5-6x for AlexNet and VGG, 3.2x OverFeat) and Mocha
(37.5x AlexNet, 16.2x OverFeat, 41x VGG) when applying
individual optimizations, such as parallelization, tiling, and
fusion to the neural network models. The numbers were
significant for Mocha, which does not use parallelization and
does not invoke Intel MKL. The results also showed that 50%
additional throughput (img/s) can be achieved by adding a
Xeon Phi co-processor.

Inference Engines. TensorFlow Accelerated Linear Algebra
(XLA) [98] is a domain-specific compiler for linear algebra
that optimizes computations, memory usage and portabil-
ity on server and mobile platforms. The input language to
XLA is a high level optimizer (HLO) IR, which gets compiled
into primitive linear algebra operations for various architec-
tures, including x64, ARM64 and NVIDIA GPU. Optimiza-
tions include common subexpression elimination, operation
fusion and buffer analysis for run time allocation of mem-
ory. XLA sends HLO to the backend and performs further
target-specific optimizations, such as fusing operators and
partitioning computation into streams for GPUs.

NVIDIA TensorRT [83] is an inference engine that includes
an inference optimizer and run time that delivers low latency
and high-throughput. TensorRT supports ONNX formats, as
well as accelerated TensorFlow RunTime and PyTorch, with
a conversion to TensorRT format. INT8 and FP16 optimiza-
tions are also performed for production deployments of deep
learning inference applications, where reduced precision in-
ference significantly reduces application latency. TensorRT

13

also includes an auto-tuning component for performance
optimization.

Intel OpenVINO [63] is a lightweight inference engine and
model optimizer for convolutional neural networks, with
support for ONNX, Caffe, TensorFlow, and MXNet frame-
works, that targets Intel architecture backends, such as FP-
GAs, GPUs and x86. The model optimizer facilitates in de-
ploying trained models and includes static analysis to adjust
the model for targeted backends. The inference engine is a
C++ library that infers results from input data that is opti-
mized for deployed devices. An API to allows users to read
the IR, set the input and output formats and execute the
model on targeted backends.

3.3 Optimizing Neural Networks

This subsection covers how neural networks, particularly
CNNs and RNNs, can be optimized for high performance.
Techniques include memory layout strategies, computing
the convolution in the Fourier domain and the unrolling and
fusing of computations.

3.3.1 Convolutional Neural Networks. Convolutional neu-
ral networks consist of a convolution layer, a pooling layer,
and a softmax layer. A convolutional layer extracts various
features, such as oriented edges, corners and crossings from
input feature maps via convolutional filters and combines
them into more abstract output feature maps. 2D input fea-
ture maps, or channels, get convolved, resulting in a 3D filter.
Pooling consists of downsampling, or summarizing the neigh-
boring features. The softmax layer is the classifier that finds
the maximal possibility over previous layers, with all inputs
shifted toward the maximum. Data layouts for CNNs typ-
ically include NCHW and CHWN, amongst others, where each
letter represents the feature map or input dimension and its
traversal order of the convolution operation. For instance, N
is the outermost loop and W is the innermost loop in NCHW.

Memory Efficiency for CNNs on GPUs. Considering thread
grids and blocks in the GPU execution paradigm, data layout
strategies can significantly impact performance and memory
efficiency for convolutional neural networks [48]. Caffe and
cuDNN uses the NCHW layout, whereas cuda-convnet uses
the CHWN layout. cuDNN 4 provides FFT as an option for the
convolution operation, whereas cuda-convnet implements
the direct convolution method. The benchmarks evaluated
selected layers from LeNet on MNIST and CIFAR10 datasets,
and AlexNet, ZFNet, and VGG on ImageNet datasets on an
NVIDIA Titan Black and GTX Titan X GPUs. Table 9 sum-
marizes the results of the two data layouts for CNN. When
comparing speedups for data layouts, the first set of layers,
which were inputs, had 1 < C < 64, whereas the second
set of layers, which were hidden, had 32 < N < 64. When
varying C and N, CHWN outperformed NCHW when N > 64. In

Table 9: Comparing memory layouts for CNNs.

NCHW (Caffe, cuDNN)

CHWN (cuda-convnet)

Speedup 32 < N < 64 (hidden C = {1,3} (inputs)
layers)

Vary N N <128 128 < N < 256, warps

process N /warp images

Vary C 32 < C < 512, collapse C < 16, fixed perfor-
HW (cuBLAS) mance across

FFT MM, F large, N large, or Small C
many C

Pooling Poor, HW in low dimen- Best performer (16.3x)

sion, works on consecu-
tive memory

GPUs, warps of 32 threads were allocated to process 32 im-
ages, and increasing N to 128 enabled each thread to process
four images, improving reuse and locality. On the other hand,
cuBLAS requires a matrix collapse along H and W and exhib-
ited overhead when C < 32, but performance gains were seen
when C > 32. FFT-based implementations require significant
memory for padding and storing the intermediate results
and will not work if the GPU memory is insufficient. The
FFT method performed well for the set of convolution layers
that NCHW performed well in the previous study, and better
than the matrix multiplication case, notably when F or N
were large. For the pooling layers, CHWN outperformed NCHW
significantly (16.3x speedup), since NCHW accesses memory
in a strided and redundant manner inherent in the pooling
operation. Kernel fusion was applied to the softmax layers,
which consists of five separate GPU kernel launches for NCHW
to ensure data dependencies, which yielded an average of
2.81x speedup.

FFT-based Convolutional Nets. Proposed as an alternate to
the zero-padding requirement of cufFFT, fbFFT [86] imple-
ments the Cooley-Tukey FFT algorithm [93], which elimi-
nates a full data transpose by returning the kernel in a form
where the two innermost data dimensions are transposed.
Complex twiddle factors, or roots of unity, are computed
to perform butterfly operations by recursively combining
smaller DFTs into one large DFT. All threads in a warp load
one element and computes a complex twiddle factor, then ex-
changes data with another thread within the warp in parallel
to produce a new value. Next, all threads within the warp
exchange twiddle factors with another thread in parallel to
produce a new value. These bulk synchronous exchanges
can be written with one warp-wide instruction, where input
n < 32 can be implemented with one warp shuffle. When
32 < n < 256, the computation is distributed amongst
threads within a warp that manage multiple registers. After
log,n steps, the FFT is computed in a bit reversed manner

14

within one register across a warp. The Hermitian symmetry
performs half the computation [94], each twiddle factor is
distributed by copying from register to register, and a bit
reversal, where high-order bits represent the register and
low-order bits represent the warp, is implemented in shared
memory. Their experiments ran on a NVIDIA Tesla K40m
GPU. Results show that fbFFT is 1.5x to 5x faster than cuFFT
for various batch sizes. Speedups were generally seen for
batch size of 128 and input sizes of 32 and 64. For the 2D case,
performance gains were modest, but showed that smaller
input sizes (8-32) and smaller batch sizes (32, 128) performed
better. In general, the FFT method benefited from larger prob-
lem sizes. Performance suffered for small kernels (3x3) due to
the overhead of zero-padding and multiple streams for mem-
ory management. For larger kernel sizes (13x13), maximum
speedup of 23.54x can be attained.

Vectorizing Convolutional Neural Network on SIMD. A JIT-
based (just in time) approach toward generating convolu-
tional kernels applies vectorization, cache blocking, and
prefetching schemes [24]. Register blocking was applied in
the spatial domains of the output tensor, since points in
the spatial tensor can be computed independently, whereas
cache blocking was applied on the feature map and spatial
domain operations, which alleviated memory accesses when
activations and weight tensors did not fit in cache. A 2-layer
prefetching strategy, with a tunable prefetch distance, con-
sisted of a first layer that fetched data in L1 cache to be used
by the same microkernel, and a second layer that fetched
data in L2 cache to be used by a future kernel invocation. The
feature map dimensions are vectorized with JIT representing
a multiple length of VL. Small matrix-vectors are converted
into a sequence of small GEMMs with blocking according to
the width dimension, where 1ibxsmm [29] and Intel MKL are
invoked. In the backward pass, the gradient input tensor is
computed by convolving the gradient output tensor with the
weight tensor. The input gradients in back propagation can
be rewritten to match the access patterns of the optimized
forward propagation. In the update pass, the gradient weight
tensor is computed by convolving the gradient output tensor
with the input tensor, where each microkernel invocation
computes a VL X VL sub-tensor of the weight gradient. The
experiments ran on a 28-core Intel Xeon 8180 Skylake and a
72-core Xeon Phi 7295 Knights Mill (KNM) processor. For the
Skylake architecture, forward propagation on ResNet-50 in
GFLOPS nearly matched Intel MKL and speedups of 1.1x-1.2x
were gained for selected layers. For spatial dimensions R = 1,
S = 1, the peak operational intensity was 70%, and for R = 3,
S = 3, the operational intensity was ~ 80%. On the KNM
architecture, R = 1, S = 1 achieved 55%, and R = 3,5 = 3
achieved = 70%. The differences were due to the hardware
design, where the KNM has a higher core peak performance

(192 GFLOP) but lower L2 read and write bandwidth (54
GB read, 27 GB write), whereas the Skylake has lower core
peak performance (147 GFLOP), but higher L2 read and write
bandwidth (147 GB read, 74 GB write).

3.3.2 Recurrent Neural Networks. Recurrent neural networks
(RNN) handle variable length sequences by capturing un-
bounded context dependencies typical in natural language
comprehension and speech recognition systems.

DEFINITION 5. For inputs x; and y;, connection weight ma-
trices Wi, Whp, Wy, indicating input-to-hidden, hidden-
to-hidden and hidden-to-output, respectively, and activation
function f, the recurrent neural network can be described as

follows:
he = fa(Winx; + Wyph;_q)
Yr = fO(Whoht)

RNNs learn a probability distribution over a sequence
by being trained to predict the next symbol in a sequence.
The output at each timestep ¢ is the conditional distribution
p(xe|xe-1, .., x1). Wpphy_y is a weight matrix shared over all
timesteps that can be unrolled into one two-dimensional
matrix, whereas Wp,,h;_; involve outputs of each connected
neuron to inputs of the current timestep. Released in cuDNN
v5 [14], unrolling an RNN combines independent weight
operations into one large step [5], which then invokes high-
performance libraries, such as cuBLAS [13]. Combining in-
put GEMMs give more parallelism in that operation, but also
prevents overlap with recurrent GEMMs. Propagation of re-
current GEMMs depend on the completion of input GEMMs,
so dependencies need to be considered in order for rolling
to work.

Persistent RNN. Current neuron inputs from previous out-
put timesteps, or h;, is computationally expensive because
of the output dependencies and explicit synchronization.
Provided that weights fit in register files, efficient partition-
ing of the GPU memory hierarchy enables persistent access
to weights and activations for RNNs [18]. Matrix multipli-
cation is most efficient when the mini-batch size is large
(N>64, per GPU), since recurrent weights loaded once from
off-chip memory can be reused over each sample in the mini-
batch. When working on a subset of the network weights,
GPU threads require communication and synchronization
between each timestep for aggregated partial results and up-
dated activations, which adds additional overhead, especially
in a scaled setting. Preemptive multitasking on the GPU was
used, where threads attempted to synchronize using a global
barrier and, if unsuccessful, eventually timed out and exited.
DeepSpeech is a 5-layer RNN model, where the first three
layers are non-recurrent and operate on the spectrogram
frame, the fourth layer is a bi-directional RNN with two

15

hidden units, and the fifth layer outputs to a softmax layer.
Scalability studies of 1-128 GPUs compared cuBLAS and Ner-
vana and varied mini-batch sizes, which showed near linear
scaling of 250 TFLOPS on 128 GPUs.

Sparse Persistent RNNs. For cases where RNNs are sparse
and cannot fit in registers, representing the RNNs as key-
value pairs indicating the location of non-zero elements can
further improve performance [104]. When dealing with spar-
sity, the operate phase assigns each thread to n nonzero
weights (n < index, value > pairs) and executes d+ = v; *
h_shm[idx[i]] computations n times in series. Wide mem-
ory loads (1d.shared.v4) supports 4x the amount of threads
loaded (128 vs. 32 threads) and incurs 8, instead of 32, bank
conflicts in the worst case. A bank-aware layout transform
assigns a color to each of n <index, value> pairs, with a
colored bank indicating an occupied location. Row-balanced
pruning assumed each row per layer had the same amount of
nonzeros, and x% lowest magnitude amount of parameters
were pruned. Lamport timestamps marked each output value
to indicate whether or not the value had been computed,
which is an alternative to preemptive multitasking and al-
lows threads to progress individually. The experiments ran
on an NVIDIA Volta V100 and performed the English to Ger-
man translation tasks using the WMT15 dataset for training
and newstest2013 for the test set using OpenNMT. When
varying density from 1% to 30%, layer size from 1152 to 5632,
batch size from 1 to 64, and timesteps from 16 to 256, the
sparse persistent network outperformed dense GEMM, dense
persistent [18], and sparse GEMM in all cases, except when
layer size increased to 5632, due to increased pressure on
shared memory and a global synchronization.

LightRNN. Performance improvements for RNNs can also
be made at the word embedding layer, where a 2-component
shared embedding for vocabularies in natural language pro-
cessing [51] allows a simpler lookup, decreasing storage
space by ZW , with |V| vocabulary size. Large vocabulary
embeddings directly impact training convergence, which also
leads to low recall in inferencing. For instance, the ClueWeb
dataset has a vocabulary of over 10M words, which easily oc-
cupies about 40 GB as a word embedding matrix, beyond the
current GPU capability (16 GB). Every word in the vocabu-
lary is allocated in a table, where each row is associated with
a vector and each column is associated with another vector.
Depending on the position in the table, a word is jointly
represented by two components via a row vector and a col-
umn vector. Another improvement was a bootstrap word
allocation procedure, which learned the best vocabulary em-
bedding for all vocabularies. This procedure trained the input
and output embedding vectors until a convergence criterion,
by repeatedly fixing the embedding vectors and refining the

word allocation in the table to minimize the loss function
over all words. The 2-Component embedding approach re-
duced perplexity, PLL = exp(NLL/T), for large sized datasets,
where a lower PLL lower is better, while significantly requir-
ing less parameters for word embeddings. For instance, the
model size of the BillionW dataset, which consists of 799M
tokens and 793K vocabulary, reduced by a factor of 40 over
the previous approach. Combined with Kneser-Ney (KN) 5-
gram smoothing, their approach achieved a perplexity of 43,
a 36% improvement over a stand-alone KN approach.

4 PARALLEL AND DISTRIBUTED APPROACHES

The use of HPC in scaling up ML training provides com-
pute power and dynamic flexibility of scheduling tasks as
nodes become available. Performance factors include syn-
chronization, fault tolerant and resiliency. Run time systems
for ML typically include a client, a master, and worker(s). A
client initiates a session that defines a computation graph
to execute. The master receives a session object from the
client, who schedules the job over one or more workers and
coordinates the execution of the graph. Training at scale
also requires modifications to the learning rate schedules,
as will be discussed in Section 4.3, to offset the amount of
communication frequency of gradient updates across nodes.

Distributed machine learning workflows include the pa-
rameter server approach, the dataflow approach, and dy-
namic run time systems [101]. The parameter server approach
assigns computation to workers during training, where work-
ers push and pull updates to and from parameter servers. The
dataflow approach takes a functional programming approach
toward state transformations, reducing complexity of model
design with larger datasets. Dynamic run time systems al-
low mutable states, where the dataflow graph is changed for
performance and flexibility purposes, and scheduled across
available compute nodes.

4.1 Parameter Server

Parameter servers maintain weights on a collection of clus-
ters, where workers are a collection of nodes that train on
a local model replica that communicate weight updates to
the parameter server. The parameter server maintains the
weights as a distributed table with parameters within the
cells. There is no communication amongst workers. Flgure 3,
left, shows the parameter server architecture for downpour
SGD [16].

DistBelief [16] proposes distributed model parallelism
methods for parameter server training, based on downpour
SGD and Sandblaster L-BFGS. Downpour SGD partitions
the data into shards and individual workers train and keep
a copy of the model, while updating the parameter server
which synchronizes all models from the nodes. Sandblaster
L-BFGS distributes the storage of parameters across nodes,

16

which caches the gradients and coordinates with the param-
eter server via small messages, alleviating communication
bottlenecks with the parameter server and enables train-
ing of larger and deeper models. The issues associated with
downpour SGD include node failures, stale gradients, and
inconsistent timestamps of gradients, since the gradients
may be pushed in a different order. In practice, the authors
found that relaxing these consistencies did not affect overall
performance. Scalability studies show that Downpour SGD
with 200 workers with Adagrad had the best accuracy, and
Sandblaster L-BFGS with 2000 workers had similar perfor-
mance. Both approaches were compared to a single GPU and
a naive SGD implementation. When scaling the number of
workers, Downpour SGD had the best performance but was
limited to under 2000 cores, due to the inherent parameter
server design, whereas Sandblaster L-BFGS was able to scale
beyond 10000 cores, but took longer to achieve the same 16%
accuracy.

Enhancements to the parameter server approach included
key-value pairs, range-based push-pull updates, and vector
clocks for efficient communication, scalability and fault toler-
ance [50]. The parameter server architecture uses key-value
vectors as data structures, which induces sparsity and en-
ables highly optimized linear algebra libraries to be invoked.
Push-and-pull operations send data between nodes, whereas
range-based push-pull groups updates, alleviating network
bandwidth efficiency. Servers store parameters as key-value
pairs using consistent hashing. Entries are replicated for
fault tolerant and compressed on both data and range-based
vector clocks. Each key-value pair is associated with a vector
clock, which tracks aggregation status. Any modifications
on the master node is copied with its timestamp to the slave
nodes, where modifications are pushed synchronously to
slaves. Sparse logistic regression was evaluated on 1000 ma-
chines, each with 16 cores, 192 GB DRAM, connected with
10 GB ethernet. L-BFGS and delayed block proximal gradient
was compared with their approach, which was a parameter
server running delayed block proximal gradient with KKT fil-
ter. The Krush-Kuhn Tucker (KKT) filter estimates the global
gradient based on local information and enables a bounded
delay, which requires more computation but minimal waiting,
since the constraints are relaxed and updates can be made
asynchronously. In general, the overall time spent computing
and waiting for the logistic regression was decreased, when
compared with the other two approaches. For evaluating
LDA, which learned topics over a 500M dataset where each
topic represents a user interest, 4x speedup in convergence
was observed when increasing the number of machines from
1000 to 6000.

) —
Parameter Server W = W - 77Aw

0000000

o/ 1N
Model () 04

an
wie (0 (OO0 100
ol i s B

Worker Node

Driver Program
SparkContext # Cluster Manager
Worker Node

ﬁ' Sxcoutor \—C&:he

Executor | Cache

Figure 3: Left: Downpour SGD parameter server (image source [16]). Right: Spark cluster (image source [4])

4.2 Distributed Dataflow Programming

Apache Spark provides a framework that distributes a dataflow
graph across all compute nodes, where frequently used data
is cached in memory, with support for checkpointing and
fault tolerance [4]. Resilient distributed datasets (RDD) are
data structures of records, which are distributed across com-
pute nodes for replication, checkpointing and fault tolerance.
An RDD can be transformed with parallel primitives, such as
map and join. A job, such as word count, gets triggered with
an action. A client driver accepts requests from the master
for submitted jobs, which is distributed amongst available
workers. RDD employ lazy evaluation, where a transform is
performed after the dataflow graph is constructed. Figure 3,
right, shows the Spark execution environment [4]. The de-
sign of Spark with one driver becomes a bottleneck when
scaling the problem to millions of parameters, where updates
need to be communicated across workers.

SystemML is a declarative machine learning (DML) frame-
work built on top of Spark that provides a MATLAB-like
programming environment for linear algebra and numer-
ical methods, and support for distributed training of ma-
chine learning [8]. The optimizer integration includes Spark-
specific rewrites, memory budgets and constraints, operator
selection, and extended parallel for (ParFor) loop. Spark-
specific rewrites perform caching and checkpoint injection,
which allows RDDs to persist at various storage levels, whereas
checkpoints are inserted after persistent reads to prevent re-
peated lazy evaluation. Memory budgets and constraints
perform an upper bound for memory requirements, based on
the driver memory, executor memory, number of executors,
data fraction, and shuffle fraction. Operator selection seeks
patterns in linear algebra, where fusing physical operators
would yield performance. ParFor was extended with three
physical operators that consists of a local executor for mul-
tithreads, a remote executor for a Spark job, and a remote
disjoint executor that partitioned the matrices. The run time

17

integration includes distributed matrix representation, which
partitions both dense and sparse matrices, based on its com-
pressed storage format, and buffer pool integration, which
manages all reads and writes of matrix objects and RDDs
with lineage tracking. When evaluated on a 6 node cluster
with 2x6 Intel E5-2440 CPU on various ML algorithms (K-
means, alternating least squares, naive Bayes), MapReduce
performed better on smaller datasets, whereas SystemML
outperformed for bigger sized problems (120 GB).

To fit large datasets in memory, SystemML compresses the
column groups of matrices and performs linear algebra oper-
ations over the compressed representations [20, 21]. Various
input formats, such as CSR, are supported and internally
converted to tiles and blocks for matrix multiplication. The
ratio of column cardinality (# distinct values) to the number
of rows quantifies redundancy, independent of the actual
values. Column co-coding partitions column groups, such
that columns within each group are highly correlated and co-
coded as a single unit. The column encoding formats include
offset-list encoding (OLE) and run-length encoding (RLE).
OLE divides the offset range into segments of fixed length
(e.g. two bytes per offset), where each offset is mapped to
its corresponding segment and encoded as the difference
between the current and the beginning segment. In RLE, a
sorted list of offsets are encoded as a sequence of runs for
starting offset and run length. The compressed approach was
compared with uncompressed linear algebra and Snappy on
MNIST and ImageNet, and showed that the compressed ap-
proach outperformed both when data did not fit in memory,
whereas the uncompressed approach performed well when
data was able to fit in memory. This is attributed to the over-
head of the column encoding format, which can be mitigated
with larger problem sizes.

4.3 Dynamic Run Time Systems

Factors to consider when training on large scale systems
include resource allocation, control flow and synchroniza-
tion. This becomes challenging for dynamic neural networks,
which allow individual cells and architectures to change as
training progresses. Examples include variable-length neural
networks, tree-structured neural networks, and graph neural
networks. Frameworks that support static neural networks
include CNTK, Theano and TensorFlow, whereas examples
that support dynamic neural networks include Chainer [1],
DyNet, and PyTorch. Static neural networks are based on
the “define-and-run” scheme, where a network is fixed and
mini-batches are fed in as input, whereas dynamic neural
networks take the “define-by-run” scheme, where the net-
work is defined dynamically as the forward computation
takes place. Due to the overhead of creating dataflow graphs,
dynamic neural networks are slower, but the flexibility of
having networks that change makes learning certain types of
tasks more achievable. Techniques to mitigate the overhead
of dynamic graph creation include batching similar or in-
dependent operations and adding constructs for distributed
model training.

Constructs. TensorFlow Fold [53] is a dynamic batching
technique that supports variable length neural networks,
where each graph is defined statically and generated dy-
namically as the program is being executed. A depth-based
batching approach batches nodes with identical depth and
signature, where nodes in the same depth have no depen-
dencies and signatures identify nodes with similar or in-
dependent operations. Source nodes are constant tensors,
whereas non-source nodes are operations, such as convolu-
tion and ReLU. concat and gather operations are inserted
during the dataflow graph generation process as necessary
for synchronization purposes. A combinator library, similar
to LIFT-IL (Table 7), enables execution of parallel patterns on
distributed systems. The dynamic batching technique was
compared with manual batching on both an Intel Xeon 8-
core CPU and a NVIDIA GTX 1080 GPU on the Tree-LSTM
benchmark, where the tree size was 128 and LSTM state size
was 1024. The dynamic batch size performed well for small
batch sizes up to 128, but the manual technique worked bet-
ter for larger batch sizes. Several reasons, which were not
stated, could be that larger batch sizes may have induced
compute bound behavior, e.g. convolution, and that dynamic
batching may have adversely affected performance, due to
its aggressiveness in grouping together operations.

Distributed Control Flow. To enable distributed execution
of neural networks, the dataflow graph is partitioned across
multiple nodes, and control flow primitives, such as switch,
merge, enter, exit, and nextIteration are embedded in

18

the dataflow graph. Edges are replaced with send and receive
communication operations that share a key. Since there is
no synchronization with devices, an is_dead signal commu-
nicates to other devices of an untaken branch at a receive
node. A stack architecture overlaps compute and memory
operations that pushes gradients and input operations, and
popped off and copied to host and device for gradient com-
putation and automatic differentiation. Their experiments
ran on a cluster with NVIDIA K40 GPUs and a NVIDIA DGX
cluster. Their memory management scheme, which evalu-
ated a single-layer LSTM with 512 units, was able to train a
sequence length beyond 1000 in the same amount of time as a
sequence length of 100, whereas disabling memory swapping
ran out of memory beyond a 500-length sequence. Dynamic
RNN was also able to handle a single layer of LSTM model
with batch size 256 and sequence length 256, whereas static
unrolling ran out of memory at length 128.

Operation Batching. An agenda-based batching approach
in the DyNet framework orders the dataflow graph execu-
tion, which adds a signature to nodes with the same oper-
ations and maintains a count of unresolved dependencies
for available nodes [57]. Nodes with no incoming inputs are
added during the initialization process. While nodes remain
to be processed, available nodes with the same signature are
grouped into a single batch operation. As nodes are removed
from the agenda, the dependency counter of successors is
decremented and nodes with zero dependencies are added.
The process is repeated until no nodes are left. Padding and
masking operations are required for variable length neural
networks, which incurs overhead. Manual batching aggre-
gates inputs that share the same timestep, whereas operation
batching aggregates nodes that can be executed in batches,
such as operations with the same names (e.g. tanh, soft-
max) or matrices within a dimension size and range. The
experiments compared with TensorFlow Fold (depth-based
batching) and evaluated a bi-directional LSTM sequence la-
beler on synthetic data on a Tesla K80 GPU and Intel Xeon
2.30GHz E5-2686v4 CPU. Results show that the agenda-based
approach without manual batching resulted in a 11-fold in-
crease and was faster than the depth-based approach by
15-30%. However, agenda-based with manual batching expe-
rienced slowdown, due to the overhead of dataflow graph
construction and batch scheduling. When evaluated on Tree-
LSTM and the sequence labeler, the agenda-based approach
with operation batching was able to process significantly
more sentences per second, 3.6x-9.2x on the CPU and 2.7x-
8.6x on the GPU, compared to the manual batching approach.

Asynchronous Model-Parallel Training. AMPNet [23] dis-
tributes the computation graph across nodes on multicore
CPUs for dynamic neural network training, where updates

are communicated via message passing. A dynamic con-
troller executes the static IR graph by issuing operations and
gathering intermediate results. Each message consists of a
payload and a state, where a payload is a tensor and a state
is model-specific that keeps track of algorithm and control
flow information. The final loss layer initializes backpropa-
gation through the IR graph. max_active_keys represents
the maximum number of active instances in flight. A con-
dition node queries the state of an incoming message and,
based on the response, routes input to one of the successor
nodes. Phi nodes join propagated messages received from
each of its ancestor nodes and records the origin of back-
propagation to the correct origin. Aggregation and disag-
gregation combinators, similar to TensorFlow Fold, provide
constructs, such as group, split and broadcast, that are carried
out across incoming messages. The frequency of updates can
be set with min_update_frequency, which trades off stal-
eness of the gradient with frequency of sending messages.
The authors compared their approach with TensorFlow Fold
on a 4-layer perceptron on MNIST dataset and Tree-LSTM
on the Stanford Sentiment Treebank dataset. The perfor-
mance of AMPNet was slower for the MNIST experiment
(44s, vs 34.5s) than TensorFlow. Asynchrony was tested on
an 8-replica RNN model on the list reduction dataset and
showed that min_update_frequency cannot be too large or
too small, and that increasing max_active_keys increased
performance up to the number of affinitized heavy opera-
tions (8 replicas), but suffered beyond that.

Scaled Up Approaches. When training neural networks at
scale, the hyperparameters get altered due to delays from
synchronization across all nodes. Updates to the learning rate
schedules compensate for scalability and communication of
gradients. Table 10 compares different approaches for scaling
ImageNet, which was taken from [2] for reference.

Using 256 GPUs, the authors reduced the training time
for ResNet-50 to 1 hour [26], while achieving near linear
speedups when scaling from 8 to 256 GPUs (0.9x). A large
mini-batch size of 8,192 images was used, which fully ex-
ploited the GPUs and made training run faster. Using large
mini-batches introduces noise that may impact gradient up-
dates, which slows convergence or may converge to a non-
optimal solution. Additionally, multiple GPUs require syn-
chronization of weights after each mini-batch update, where
smaller mini-batches require more communication, leading
to overhead. To compensate for noise, a linear scaling rule
was applied, where the learning rate was multiplied by the
mini-batch size, which enabled the accuracy between small
and large mini-batches to match. According to the authors,
the assumption that the two gradients are similar does not
hold during the initial training, when the weights are rapidly
changing and only for a large, but finite, range of mini-batch

19

sizes. The authors devised a “warmup” strategy to mitigate
the problems with divergence during initial training, where
the model used less aggressive learning rates and switched
to the linear scaling rule after a few epochs. Their approach
was evaluated on 8 NVIDIA Pascal P100 GPUs intercon-
nected with NVLink, comparable to NVIDIA DGX machines.
For communication, NCCL [56] was used for buffers of size
256 KB or more. Scaling up training to 256 GPUs and a large
batch sizes contributed to the accelerated training. This work
demonstrates that if the capabilities of learning features dras-
tically increases, larger datasets can be injested, where the
added observations could result in even higher accuracies.

The ResNet-50 training time was reduced to 31 minutes [100]
with a layer-wise adaptive rate scaling (LARS) algorithm that
calculated the learning rate for each layer, based on available
compute resources. As discussed in [26], the challenges of
large batch scaling can be addressed with linear scaling of the
learning rate 1 and a warm up scheme for earlier phases of
training. In LARS, different layers may have different . LARS
first gets the local 5 for each learnable parameter, then gets
n for each layer. The gradients, acceleration term, and the
weights are updated. Their approach was evaluated on Intel
Xeon Platinum 8160 processors (Stampede2 supercomputer),
which consists of 4,200 KNL nodes, where each KNL node
is a 68-core processor. With LARS, along with the warmup
technique, the authors were able to scale up the batch sizes to
32,000 as the baseline. This work demonstrates that through-
put on large scale model training can be achieved by scaling
the number of compute cores and the size of batches, in
addition to the KNLs ability to divide on-chip memory for
increased memory bandwidth.

To follow up, the authors in [2] devised an RMSprop warm-
up scheme, batch normalization without moving averages,
and a slow-start learning rate schedule for ResNet-50. The
warmup scheme first trained using RMSProp, then switched
to SGD to address the difficulty of initial training. Their ap-
proach was evaluated on 1024 P100 GPUs with a mini-batch
size of 32,768 using Chainer with NCCL and OpenMPI. Al-
though their Top-1 accuracy was lower (74.9%), the training
time for ResNet-50 was drastically reduced to 15 minutes.

5 SUMMARY AND DIRECTIONS

The behavior of learning algorithms in single node and multi-
node settings, and inherent tradeoffs associated with model
design and code transformation options, presents a complex,
multi-modal landscape for exploring suboptimal state space
solutions. The problem space was dissected, in terms of iter-
ation spaces, code transformations, data operations, and per-
formance modeling. Compilation techniques for improving
execution performance, both at the machine-independent
and architecture-specific level, were covered. Distributed

Table 10: ResNet-50 for ImageNet. Table source [2].

Team Hardware Software Minibatch Time Top-1

He, et al. [28] Tesla P100 x 8 Caffe 256 29 hr 75.3%

Goyal, et al. [26] Tesla P100 x 256 Caffe2 8,192 1 hr 76.3%

You, et al. [100] Xeon 8160 x 2048 Intel Caffe 32,000 20 min 75.4%

Akiba, et al. [2] TeslaP100 x 1024 Chainer 32,768 15 min 74.9%
methods for scaling up model training were presented after- REFERENCES

ward.

Opportunities for improved model training exist at the
algorithmic and systems level, where a guided approach that
incorporates algorithmic meta-information can inform deci-
sion making during code generation. Latte [85] propagates
properties of DL routines to the back end, but is currently
tied to the Intel compiler. Abstractions, such as Lift [77], pro-
vide building blocks for generating efficient ML code, but a
unified approach is needed that accounts for the computation
requirements of model training. Variable-length precision op-
erations are another way to increase instruction throughput,
at the cost of accuracy degradation and data reorganization
overhead. Performance measurement and analysis of DL ap-
plications is another direction, since current tools lack the
ability to tie a model description with system-level execution
bottlenecks that may surface. MLPerf [55] is a benchmark
suite for measuring perfomance for ML software frameworks,
but more proxy applications [12] will be needed to continue
the hardware/software co-design process.

Given that similar patterns exist in scientific codes, pattern
matching for code optimization [52] could possibly reduce
the search space complexity. Prior knowledge on how trans-
formations work on particular patterns could explain why
certain transformation patterns lead to performance gains,
or never succeeds. This can avoid any unnecessary experi-
mentation and analysis, providing hints to the compiler in
making informed decisions.

Quantifying the error bounds of model accuracy also needs
further investigation, not only for evaluation purposes, but
for identifying blind spots that may exist in classification. For
instance, adversarial machine learning provides a secure and
robustness measure against attacks [25], critical in areas such
as self-driving cars, where a tainted stop sign can delude a
model into making wrong, perhaps unsafe decisions. Scaled
up approaches have been proposed [45], but as attacks evolve,
the process of how attacks are constructed will need to be
understood. Error propagation of fault injection attacks can
also aid in understanding confidence intervals, as well as
error regions where decisions may go haywire, which can
reveal vulnerabilities and provide robustness for learning
systems.

20

[1] Takuya Akiba, Keisuke Fukuda, and Shuji Suzuki. 2017. ChainerMN:

Scalable Distributed Deep Learning Framework. In Proceedings of Work-

shop on ML Systems in The Thirty-first Annual Conference on Neural

Information Processing Systems (NIPS).

Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. 2017. Extremely

large minibatch SGD: training resnet-50 on imagenet in 15 minutes.

arXiv preprint arXiv:1711.04325 (2017).

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and

Matus Telgarsky. 2014. Tensor Decompositions for Learning Latent

Variable Models. The Journal of Machine Learning Research 15, 1 (2014),

2773-2832.

Apache Spark 2019. Apache Spark. (2019). https://spark.apache.org.

Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. 2016. Opti-

mizing Performance of Recurrent Neural Networks on GPUs. In GPU

Technology Conference. NVIDIA.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural

machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473 (2014).

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl.

2011. Algorithms for hyper-parameter optimization. In Advances in

neural information processing systems. 2546-2554.

Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexan-

dre V Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold

Reinwald, Frederick R Reiss, Prithviraj Sen, Arvind C Surve, et al. 2016.

SystemML: Declarative Machine Learning on Spark. Proceedings of the

VLDB Endowment 9, 13 (2016), 1425-1436.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Haichen Shen, Megan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Au-

tomated End-to-End Optimizing Compiler for Deep Learning. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI).

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,

Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learn-

ing to Optimize Tensor Programs. In Advances in Neural Information

Processing Systems (NIPS).

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. For-

mat Abstraction for Sparse Tensor Algebra Compilers. ACM on Pro-

gramming Languages 2, OOPSLA (2018), 123:1-123:30.

[12] Coral-2 Benchmarks 2019. CORAL-2 Benchmarks. (2019).
//asc llnl.gov/coral-2-benchmarks.

[13] cuBLAS 2019. NVIDIA cuBLAS. (2019). https://developer.nvidia.com/
cublas.

[14] cuDNN 2019. NVIDIA cuDNN. (2019). https://developer.nvidia.com/
cudnn.

[15] CUTLASS 2019. CUTLASS: Fast Linear Algebra in CUDA C++. (2019).
https://github.com/NVIDIA/cutlass.

[16] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.

[2

—

3

[t

—
(=)
—

(7]

[8

[}

[9

—

[10]

[11]

https:

https://spark.apache.org
https://asc.llnl.gov/coral-2-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/NVIDIA/cutlass

[22

(23

(24

[25

[26

[27

[28

[29

(30

(31

[32

(33

—

—

]

[l

=

=

—

[t

[’

]

—

—

[t

2012. Large Scale Distributed Deep Networks. In Advances in Neural
Information Processing Systems (NIPS). 1223-1231.

Deep Learning 2019. Comparison of Deep Learning Software.
(2019). https://en.wikipedia.org/wiki/Comparison_of_deep-learning_
software.

Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski,
Adam Coates, Erich Elsen, Jesse Engel, Awni Hannun, and Sanjeev
Satheesh. 2016. Persistent RNNs: Stashing Recurrent Weights On-Chip.
In International Conference on Machine Learning. ICML, 2024-2033.
Eigen 2019. Eigen. (2019). http://eigen.tuxfamily.org.

Ahmed Elgohary, Matthias Boehm, Peter] Haas, Frederick R Reiss, and
Berthold Reinwald. 2016. Compressed Linear Algebra for Large-Scale
Machine Learning. Proceedings of the VLDB Endowment 9, 12 (2016),
960-971.

Ahmed Elgohary, Matthias Boehm, Peter] Haas, Frederick R Reiss, and
Berthold Reinwald. 2017. Scaling Machine Learning via Compressed
Linear Algebra. ACM SIGMOD Record 46, 1 (2017), 42-49.

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust
and efficient hyperparameter optimization at scale. arXiv preprint
arXiv:1807.01774 (2018).

Alex Gaunt, Matthew Johnson, Maik Riechert, Daniel Tarlow, Ry-
ota Tomioka, Dimitrios Vytiniotis, and Sam Webster. 2017. AMPNet:
Asynchronous Model-Parallel Training for Dynamic Neural Networks.
arXiv preprint arXiv:1705.09786 (2017).

Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj
Kalamkar, Greg Henry, Hans Pabst, and Alexander Heinecke. 2018.
Anatomy of High-Performance Deep Learning Convolutions on SIMD
Architectures. In International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (SC). IEEE.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and Harnessing Adversarial Examples. In Proceedings of the
International Conference on Learning Representations (ICLR).

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangging Jia, and Kaiming
He. 2017. Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour. arXiv preprint arXiv:1706.02677 (2017).

Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.
Polly: Performing Polyhedral Optimizations on a Low-Level Interme-
diate Representation. Parallel Processing Letters 22, 04 (2012), 1250010.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770-778.
Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. 2016. LIBXSMM: accelerating small matrix multiplications by
runtime code generation. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 84.

M Shahriar Hossain, Patrick Butler, Arnold P Boedihardjo, and Naren
Ramakrishnan. 2012. Storytelling in Entity Networks to Support Intel-
ligence Analysts. In International Conference on Knowledge Discovery
and Data Mining (SIGKDD). ACM, 1375-1383.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. 2017. Densely connected convolutional networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
4700-4708.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv
preprint arXiv:1602.07360 (2016).

ImageNet Challenge 2012. ImageNet Large Scale Visual Recognition
Challenge. (2012). http://image-net.org/challenges/LSVRC.

21

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Intel CPU 2019. WikiChip Intel Processors. (2019). https://en.wikichip.
org/wiki/intel.

Intel MKL 2019. Intel Math Kernel Library. (2019). https://software.
intel.com/en-us/mkl.

James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon
Phi Processor High Performance Programming: Knights Landing Edition.
Morgan Kaufmann.

Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. 2018.
A Domain-Specific Architecture for Deep Neural Networks. Commun.
ACM 61, 9 (Aug. 2018), 50-59. https://doi.org/10.1145/3154484
Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Grund-
kiewicz, Hieu Hoang, Kenneth Heafield, Tom Neckermann, Frank
Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, et al.
2018. Marian: Fast Neural Machine Translation in C++. arXiv preprint
arXiv:1804.00344 (2018).

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang,
and Dongjun Shin. 2016. Compression of deep convolutional neural
networks for fast and low power mobile applications. In Proceedings
of the International Conference on Learning Representations (ICLR).
Fredrik Kjolstad, Peter Aherns, Shoabib Kamil, and Saman Amarsinghe.
2019. Sparse Tensor Algebra Optimizations with Workspaces. In In-
ternational Symposium on Code Generation and Optimization (CGO).
ACM.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The Tensor Algebra Compiler. ACM on
Programing Languages 1, OOPSLA (2017), 77:1-77:29.

Philipp Koehn. 2017. Neural machine translation. arXiv preprint
arXiv:1709.07809 (2017).

Tamara G Kolda and Brett W Bader. 2009. Tensor Decompositions and
Applications. SIAM Rev. 51, 3 (2009), 455-500.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems (NIPS). 1097-1105.
Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial
Machine Learning at Scale. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and
Victor Lempitsky. 2015. Speeding-up convolutional neural networks
using fine-tuned cp-decomposition. In Proceedings of the International
Conference on Learning Representations (ICLR).

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278-2324.

Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou.
2016. Optimizing Memory Efficiency for Deep Convolutional Neural
Networks on GPUs. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE, 633—-644.
Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2016. Hyperband: A novel bandit-based approach to
hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016).
Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI). USENIX Association, Berkeley, CA, USA, 583—
598. http://dl.acm.org/citation.cfm?id=2685048.2685095

Xiang Li, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. LightRNN: Memory
and Computation-Efficient Recurrent Neural Networks. In Advances
in Neural Information Processing Systems (NIPS). 4385-4393.

Robert Lim, Boyana Norris, and Allen Malony. 2018. A Similarity
Measure for GPU Kernel Subgraph Matching. In 31st International
Workshop on Languages and Compilers for Parallel Computing (LCPC).

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
http://eigen.tuxfamily.org
http://image-net.org/challenges/LSVRC
https://en.wikichip.org/wiki/intel
https://en.wikichip.org/wiki/intel
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://doi.org/10.1145/3154484
http://dl.acm.org/citation.cfm?id=2685048.2685095

=

— o

=

[t

—

—

= =

=

—

[

—

-

—

[53] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter

Norvig. 2017. Deep Learning with Dynamic Computation Graphs.
In Proceedings of the International Conference on Learning Representa-
tions (ICLR).

MAGMA 2019. MAGMA: Matrix Algebra on GPU and Multicore
Architectures. (2019). https://icl.cs.utk.edu/magma.

MLPerf 2019. MLPerf Benchmark Suite. (2019). https://mlperf.org.
nccl 2019. NVIDIA Collective Communications Library (NCCL). (2019).
https://developer.nvidia.com/nccl.

Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017. On-the-Fly
Operation Batching in Dynamic Computation Graphs. In Advances in
Neural Information Processing Systems (NIPS). 3974-3984.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy
Gabrilovich. 2016. A Review of Relational Machine Learning for Knowl-
edge Graphs. Proc. IEEE 104, 1 (2016), 11-33.

Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr,
Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Sri-
vatsan, Duncan Moss, Suchit Subhaschandra, et al. 2017. Can FPGAs
beat GPUs in accelerating next-generation deep neural networks?.
In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 5-14.

William F Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. Minimizing the Cost of Iterative Compilation with Active Learn-
ing. In International Symposium on Code Generation and Optimization
(CGO). IEEE, 245-256.

ONNX 2019. ONNX: Open Neural Network Exchange Format. (2019).
https://onnx.ai.

OpenBLAS 2019. OpenBLAS: An optimized BLAS library. (2019).
https://www.openblas.net.

OpenVINO 2019. Intel OpenVINO Toolkit. (2019). https://software.
intel.com/openvino-toolkit.

Par4All 2019. Par4All An Automatic Parallelizing and Optimizing
Compiler for C and Fortran Sequential Programs. (2019). http://
par4all.github.io.

Hang Qi, Evan R Sparks, and Ameet Talwalkar. 2017. Paleo: A Perfor-
mance Model for Deep Neural Networks. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. ACM SIGPLAN Notices 48, 6
(2013), 519-530.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019.
Regularized evolution for image classifier architecture search. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 4780~
4789.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman
Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Satish
Nadathur, Jakob Olesen, et al. 2018. Glow: Graph Lowering Compiler
Techniques for Neural Networks. arXiv preprint arXiv:1805.00907
(2018).

Rupp, Karl 2013. CPU, GPU, MIC Hardware Characteristics over
Time. (2013). https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-
hardware-characteristics-over-time/.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4510-4520.

Shaohuai Shi and Xiaowen Chu. 2018. Performance Modeling and
Evaluation of Distributed Deep Learning Frameworks on GPUs. In
16th International Conference on Dependable, Autonomic and Secure
Computing. IEEE, 949-957.

[72] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolu-

tional networks for large-scale image recognition. In Proceedings of
the International Conference on Learning Representations (ICLR).
Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and
George Karypis. 2015. SPLATT: Efficient and Parallel Sparse Tensor-
Matrix Multiplication. In International Conference on Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 61-70.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical
bayesian optimization of machine learning algorithms. In Advances in
neural information processing systems. 2951-2959.

Daniele G Spampinato and Markus Piischel. 2014. A Basic Linear
Algebra Compiler. In International Symposium on Code Generation and
Optimization (CGO). ACM, 23.

Daniele G Spampinato and Markus Piischel. 2016. A Basic Linear
Algebra Compiler for Structured Matrices. In International Symposium
on Code Generation and Optimization (CGO). ACM, 117-127.

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift:
A Functional Data-Parallel IR for High-Performance GPU Code Gener-
ation. In Proceedings of the International Symposium on Code Generation
and Optimization (CGO). IEEE Press, 74-85.

Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018.
The Sparse Polyhedral Framework: Composing Compiler-Generated
Inspector-Executor Code. Proc. IEEE 99 (2018), 1-15.

Xing Su, Xiangke Liao, and Jingling Xue. 2017. Automatic Generation
of Fast BLAS3-GEMM: A Portable Compiler Approach. In International
Symposium on Code Generation and Optimization (CGO). IEEE, 122-
133.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017.
Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE 105, 12 (2017), 2295-2329.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1-9.
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2818-2826.

TensorRT 2019. NVIDIA TensorRT Programmable Inference Accelera-
tor. (2019). https://developer.nvidia.com/tensorrt.

Torchvision Models 2019. Torchvision Models. (2019). https://pytorch.
org/docs/stable/torchvision/models.html.

Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick
Markley, Armando Fox, and Tatiana Shpeisman. 2016. Latte: A Lan-
guage, Compiler, and Runtime for Elegant and Efficient Deep Neural
Networks. ACM SIGPLAN Notices 51, 6 (2016), 209-223.

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, and Yann LeCun. 2015. Fast Convolutional Nets with
fbfft: A GPU Performance Evaluation. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. arXiv
preprint arXiv:1802.04730 (2018).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural information processing
systems. 5998-6008.

Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data
Transformations for Sparse Matrix Code. In ACM SIGPLAN Notices,
Vol. 50. ACM, 521-532.

https://icl.cs.utk.edu/magma
https://mlperf.org
https://developer.nvidia.com/nccl
https://onnx.ai
https://www.openblas.net
https://software.intel.com/openvino-toolkit
https://software.intel.com/openvino-toolkit
http://par4all.github.io
http://par4all.github.io
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://developer.nvidia.com/tensorrt
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

[90] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral
Model. In International Congress on Mathematical Software. Springer,
299-302.

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Igna-
cio Gomez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
Parallel Code Generation for CUDA. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 4 (2013), 54.

Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral Extraction
Tool. In International Workshop on Polyhedral Compilation Techniques.
Wikipedia 2019. Cooley-Tukey FFT Algorithm. (2019). https://en.
wikipedia.org/wiki/CooleyaASTukey_FFT_algorithm.

Wikipedia 2019. Hermitian Function. (2019). https://en.wikipedia.org/
wiki/Hermitian_function.

Wikipedia 2019. High Bandwidth Memory. (2019). https://en.wikipedia.
org/wiki/High_Bandwidth_Memory.

Wikipedia 2019. List of NVIDIA Graphic Processing Units.
(2019). https://en.wikipedia.org/wiki/List_of Nvidia_graphics_
processing_units.

[97] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris
Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng,
and Robert Hundt. 2016. gpucc: An Open-Source GPGPU Compiler. In
International Symposium on Code Generation and Optimization (CGO).
ACM, 105-116.

XLA 2018. TensorFlow Accelerated Linear Algebra (XLA). (2018).
https://www.tensorflow.org/performance/xla.

[91]

[92]
(93]
[94]
[95]

[96]

(98]

23

[99] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. 2015.
Performance Modeling and Scalability Optimization of Distributed
Deep Learning Systems. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (SIGKDD). ACM, 1355-1364.

[100] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt
Keutzer. 2018. ImageNet Training in Minutes. In International Confer-
ence on Parallel Processing (ICPP). ACM, 1.

[101] Kuo Zhang, Salem Alqahtani, and Murat Demirbas. 2017. A compari-
son of distributed machine learning platforms. In 2017 26th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 1-9.

[102] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shuf-
flenet: An extremely efficient convolutional neural network for mobile
devices. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 6848-6856.

[103] Hao Zhou and Jingling Xue. 2016. Exploiting Mixed SIMD Paral-
lelism by Reducing Data Reorganization Overhead. In International
Symposium on Code Generation and Optimization (CGO). ACM, 59-69.

[104] Feiwen Zhu, Jeff Pool, Michael Andersch, Jeremy Appleyard, and
Fung Xie. 2018. Sparse Persistent RNNs: Squeezing Large Recurrent
Networks On-Chip. In Proceedings of the International Conference on
Learning Representations (ICLR).

[105] Barret Zoph and Quoc V Le. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578 (2016).

https://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Hermitian_function
https://en.wikipedia.org/wiki/Hermitian_function
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://www.tensorflow.org/performance/xla

	Abstract
	1 Introduction
	1.1 Evolution of Neural Networks
	1.2 HPC Architectures
	1.3 Motivation

	2 Problem Space
	2.1 Iteration Spaces
	2.2 Code Transformations
	2.3 Linear Algebra
	2.4 Performance Modeling

	3 Compilers for HPC Platforms
	3.1 Abstract Syntax Trees
	3.2 Compilation Techniques
	3.3 Optimizing Neural Networks

	4 Parallel and Distributed Approaches
	4.1 Parameter Server
	4.2 Distributed Dataflow Programming
	4.3 Dynamic Run Time Systems

	5 Summary and Directions
	References

