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Abstract—The growing complexity and scale of Internet sys-
tems coupled with the improved capabilities of Machine Learning
(ML) methods in recent years have motivated researchers and
practitioners to increasingly rely on these methods for data-
driven design and analysis of wide range of problems in network
systems such as detecting network attacks, performing resource
management, or improving quality of service (QoS). In this
survey, we review a large number of prominent research papers
that apply ML methods to design, analysis or evaluation of
network systems. To this end, we divide these studies into the
following six groups based on the area of network systems that
they target: 1) Domain name system, 2) Application identification,
3) QoS, 4) Cloud services, 5) Network security, and 6) Traffic
prediction. Within each group, we examine the type of ML
methods as well as input datasets that are used by individual
studies, describe how they address various challenges, and
summarize their key findings. In particular, we explore how
domain knowledge in networking can inform different aspects
of applying ML techniques such as problem formulation, feature
engineering, feature selection, and deployment. We summarize
representative common practices in the networking community
along with a number of remaining challenges and research gaps.

I. INTRODUCTION

During the past two decades, we have witnessed a sig-
nificant increase in the scale and heterogeneity of network
entities, underlying applications, and protocols. Both design
and analysis of these protocols increasingly demand capturing
and understanding patterns in large scale multi-dimensional
datasets. The increase in network access speed, the appearance
of bandwidth-hungry applications (such as video streaming,
and P2P file sharing), the ISPs’ increased interest in precise
user traffic profiling to offer tailored services, and a response
to the enormous growth in the number of connected users and
IoT devices are among the main reasons for such a demand.
The early generation of networking studies have often relied on
handcrafted, statistical techniques to identify desired patterns
in different datasets solely based on known port numbers (e.g.,
21 for ftp, 80 for web), which was misleading in case of
applications with a dynamic port assignment, such as P2P.
Then, approaches evolve toward payload-based analysis, and
due to constraints of encrypted communications, flow-level
characteristics of the traffic was explored.

The scale of data and a higher level of the abstract in the
flow-level datasets compare to port- and payload-based meth-
ods set the stage for ML methods. Recently, the prevalence of
Machine Learning (ML) techniques with a proper fit for the
mentioned challenges makes them a reasonable choice and

led to growing deployments of these methods in design and
evaluation of network systems.
This survey examines a body of recent studies that leverage
various techniques in particular ML techniques for the design
and characterization of network systems. Mainly, we group
these studies by their target problem in networking that serves
as a common context and background for them. Within each
group, we further categorize based on more specific themes
when possible. For each cluster of studies, we discuss the
goal of each study and related challenges, its input dataset,
the casting of their target problem into ML technique and
associated challenges and issues, and their findings. Here,
the focus is mostly on the formulation of the techniques for
data analysis and related challenges, opportunities in particular
how domain knowledge from networking has been used to
customize any method. We select the well-received, highly
cited, and peer-reviewed papers in top tiers networking venues
such as IMC, SIGCOMM, TON, and InfoComm in the last ten
years.
Instead of focusing on details of implementation, we review
the research questions, challenges that are addressed, type of
the ML methods and how they have been used (including
features and approaches), and finally, the main findings. That
will lead to a focus on how ML techniques are used to answer
a specific question while ignoring less important details.
We categorize the prior studies into six sub-domains as fol-
lows:

1) Domain Name System (DNS): We review studies that
examine the ML-based solutions for challenges in per-
formance and security of DNS. Namely detection of
one-time-used domains to be excluded from caching [1]
fluctuation of open DNS resolvers [2], and detection of
malicious domains using decision tree models [3], and
statistical techniques [4].

2) Network Monitoring and Controlling: We grouped
studies in this section into two main sub-sections: pro-
tocol and application identification, and network control-
ling. Studies in this section, tackle various problems,
such as the accuracy of labeled data [5], the role of
different elements when applying ML techniques such as
feature set or hyper-parameters [6], considering protocols
as a language [7]. Detection of the zero-day (unknown)
applications [8], real-time protocol identification [9] and
considering only the packet length feature [10], as well as



the combined use of clustering and classification methods
for traffic labeling [11], are among the novel studies
reviewed in this section.

3) Quality of Experience (QoE): The studies in this section
mainly used the off-the-shelf ML techniques (mostly
decision trees) leveraging the network traffic features
for prediction and improving the user engagement and
satisfaction in a range of applications such as video
streaming [12], [13], [14], [15], Skype [16], and web
[17], [18]. However, not all studies benefit directly from
the ML techniques. Some studies get inspired by the
ML techniques [15], some compare the results with ML
techniques as a baseline [17], and some use them as an
enabler to capture validated dataset [18].

4) Security: While most of the studies we review in all other
sections have security implications, we group a number
of them in this section that are solely addressing security
concerns. User profiling, anomaly detection, and security
or IoT devices are the common themes of these studies.
Multiple ML methods including SVM, MLP, CNN, and
DT are applied on user’s (encrypted) web browsing data
to group them with other similar users. Such grouping
(user profiling) can be used for marketing and user seg-
mentation purposes [19], [20], [21]. Anomaly detection
methods have a wide range of flavors, such as detection
of anomaly without prior context [22], statistical methods
to detect anomalies [23] scaleable anomaly detection in
mobile networks [24], detection focusing on temporary
related traffic [25], anomaly detection based on server
profiling [26], anomaly detection in the scale of WAN
[27]. IoT related privacy challenges are summarized by
Wang et al. [28]. This subsection follows by traffic
analysis of IoT devices and related privacy and security
concerns [29], and detection DDoS attacks in IoT devices
[30] and behavior analysis of residential areas based on
IoT traffics [31].

5) Cloud and Cluster Computing: In this section we
review HUYGENS system [32] that explore the software
clock synchronization in the network by predicting one-
way propagation time, Ernest framework [33] that pre-
dicts the performance of large scale parallel analytic for
efficient scheduling and resource management, and finally
Gaia framework [34] that addresses the efficient usage of
scarce WAN bandwidth in geo-distributed ML systems.

6) Network Traffic Prediction: In this section, we review
studies in two groups: we review studies that leverage
time-series analysis on network traffic data to forecast the
traffic in the next time slot(s) along with studies with new
ideas to obtain improved results. In the first group, studies
focus on traffic prediction on mobile networks given its
limited resources and facing increasing demand using
Neural network methods [35] and unsupervised learning
[36]. In addition, capturing spatio-temporal dynamics
[37], using network traffic matrix [38], considering vari-
ations of LSTM [39], and predicting TCP output [40] are
also included in this part. In the second group, improving

LSTM by employing random connectivity trick [41],
decomposing time-series [42], analyzing the prediction
uncertainty factors [43], transforming the 1D traffic to 2D
matrices and then applying the CNN [44], [45], encoding
traffic to image [46], and utilizing statistical methods
[44], [45], [47] are covered.

The rest of this survey is organized as follows: In section II
we summarize the surveys that cover a similar topic. Then,
in the next six sections, from section III to section VIII,
we review the studies in each of the above-mentioned sub-
domains. We discuss the practical challenges in section IX
and conclude in section X by summarizing the studies and
the pros and cons of different approaches along with open
research questions that can be explored by the community.

II. SURVEYS IN THIS DOMAIN

Surveys are considered as a good starting point for
summarizing the problems, solutions, comparison factors, and
different challenges in any domain. There are a few surveys
on the application of machine learning methods in networking
that we review in this section.

In a related survey that has been done in CAIDA, Zhang et
al. [48] (Check out their interactive webpage 1), they present
a taxonomy that can be used in order to answer questions
in this domain, such as what fraction of traffic is P2P?.
To this end, they break down the classification goals into
two main set: i) Coarse classification goals, i.e., whether
it’s transaction-oriented, bulk-transfer, or peer-to-peer file
sharing, ii) Finer-grained classification goal, i.e., the exact
application generating the traffic. They categorize the methods
into 1) the exact matching, 2) heuristics, 3) supervised or 4)
unsupervised ML methods. In Figure 1 they show the trends
of applications and feature types used over time. They discuss

Fig. 1. Trends of applications and features by Zhang et al. [48]

the results in terms of annual trend, link, and location-based
ranges for P2P connections, However, they mentioned that
“they have far too little data available to make conclusive
claims beyond the general indications and insights per study”.

1http://www.caida.org/research/traffic-analysis/classification-overview/
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In a recent effort, Ashraf et al. [49] focus on applications
of ML techniques in Software Defined Networks (SDN).
They review prior studies that leverage different ML methods
to tackle related issues to SDNs. The main takeaway from
this study is the comparison of ML methods used in all
reviewed studies. Resource consumption, training time, and
over-fitting are among the main shortcomings, while accuracy
and ability to learn from sparse and noisy data considered to
form a good classifier.

Wang et al. [50] provide a survey on different networking
problems which have been addressed by machine learning
approaches in the past, including objectives such as traffic
prediction, traffic classification, network management, self-
configuration, as well as performance analysis and prediction.
They look at this as an inter-discipline domain and they try to
make a practical guide for network researchers by providing
the workflow of applying ML techniques and describe the
recent advances. They focus on a small number (less than
15) of studies to showcase different aspects of the workflow
instead of covering efforts that have been done in this domain.

In a recent study, Boutaba et al. [51] survey the evolution,
application, and research opportunities of using machine
learning in networking domain. They start with an overview
of the machine learning methods, approaches, and sources to
obtain data (network traffic), feature engineering techniques,
and evaluation methods that are used in the reviewed studies.
Then, they review the benefit of ML in traffic prediction,
classification and routing, congestion control, resource
management, fault management, and QoS/QoE management
for networking, anomaly and misuse detection for intrusion
detection in networking. In the end, they also discuss the
importance of online learning, support for secure learning,
and system architectural design to ease the use of ML
approaches for networking. Covering more than 500 studies
from different angles, they offer a uniquely comprehensive
survey on this matter.

Section Summary: We reviewed surveys that are focused
either on network traffic challenges, or applications of machine
learning on network traffic. While there are recent and related
studies on this matter, they are either so broad or specific on
the topic that can not act as a concise yet complete guide for
researchers in this domain.
In the following sections, we review the studies in each
networking sub-domain to compare and contrast their contri-
butions and summarizing the learned lessons.

III. DOMAIN NAME SYSTEM (DNS)

The Domain Name System (DNS) provides map-
ping service for Internet users by translating domain
names (e.g., www.uoregon.edu) to IP addresses (e.g.,
128.223.142.244). Serving the mapping request, AKA
DNS lookup, is done in a globally distributed fashion, for

which there is a hierarchy of DNS servers (resolvers) respond-
ing to client’s requests (DNS queries). The scale and archi-
tecture of such a system expose it to a range of challenges,
mainly performance and security. In this section, we will
review studies that applied ML methods to address challenges
related to DNS.

A. DNS performance

Given the large scale of DNS usage, different techniques
such as caching are used to improve the performance of
the system. In caching, the goal is to reduce the number of
repetitive requests by storing (caching) the mapping result
for frequent DNS lookups in the lower layers of the DNS
hierarchy to save higher layers from overwhelming repetitive
requests.
To this end, first, we need to know which DNS lookups are fre-
quent. Hao et al. [1] propose an ML-based method to identify
host names that are likely to be one-time-only, assuming that
not caching these domain names can improve the performance
caching in DNS. They test the DNS caching performance on
actual DNS lookups that they passively collected from 2 large
campus networks over two weeks. These datasets cover 4M
(13M) unique domain names and 3 (10)M equal to 86% (76%)
once-used names. Each includes attributes such as Query
Name (N), Structure of Domain Name (S), Query Type (K),
and Query Time-stamp (T). They cast the problem into a two-
class (re-use, once-used) classification, where decision tree
and random forest models (in R) are applied. To handle the
unbalanced nature of classes in the dataset, they have assigned
different weights to each of the classes. The set of features
used in this study includes Length of the query name, Length
of the longest subdomain name, sub-domain depth, Number
of format fields, Number of fields with unusual lengths. Their
results indicate that a caching policy that does not cache
domain names that are labeled as one-time-only, exhibits 10%
improvement compared to standard caching policies like Least
Recently Used LRU and First In First Out FIFO.

B. DNS Security

Given the distributed nature of DNS, this system has been
a target and at the same time a tool for many security threads.
In this part, we review studies that focus on illegitimate
responses to DNS lookups, constant domain name changes
(Domain Fluxing), and how DNS queries can be used to
identify benign and malicious traffics.

Open DNS Resolvers: DNS is composed of a large number of
DNS servers that are willing to resolve recursive DNS lookups
for anyone on the Internet, these servers are called ”open
DNS resolvers”. Open resolvers can respond illegitimately
and redirect users to unintended destinations for censorship,
malicious, or marketing purposes. Kuhrer et al. [2] analyze
the fluctuation of open DNS resolvers over time. They took
the viewpoint of a client system and determined the response
authenticity and integrity of malicious open DNS resolvers in
IP4 address space.
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They have done active probing by sending billions of DNS
lookup requests for 155 domains to all open DNS resolvers
in the entire IPv4 address space, over 13 months to collect an
extensive dataset on open resolvers over time. Next, they try to
pre-filter the legitimate resolvers to find a subset of resolvers
that have malicious behavior. Then, for each (domain, IP,
resolver) tuple they request an HTTP content to analyze the
differences compared to the legitimate version. To reveal the
type of response manipulation in open DNS resolvers with
an illegitimate response, they use clustering techniques. They
use unsupervised learning methods (agglomerative hierarchical
clustering) in two steps. First, to lower the scale of HTTP
payload data that they had to inspect manually, they applied
a coarse-grained clustering to group similar HTTP responses.
They apply agglomerative hierarchical clustering an unsuper-
vised clustering method using a custom distance function to
measure the similarity of two individual HTTP responses using
seven normalized features:

• Length difference of the HTTP response body
• Jaccard distance for multisets with the set of HTML tags

in the HTTP payload.
• Edit distance between the sequence of opening HTML

tags
• Edit distance on the < title > value
• Edit distance of all JavaScript code
• Jaccard distance for all embedded resources (i.e., the

values of src = ”” attributes), and for outgoing links
(i.e., the values of href = ”” attributes)

Then, a fine-grained clustering was applied to find page
modifications using the Jaccard distance of the number of
added or removed HTML tags compared to the ground truth
version of HTML documents. As a result of the manual
inspection, they assign labels to the groups to be blocking,
censorship, login, parking, misc., HTTP error, and search.
They reported that during their 13-month-long study, the
number of DNS resolvers dropped from 26.8 to 17.8 million
servers. They identified millions of resolvers that deliberately
manipulated DNS resolutions and returned unexpected
IP address information. Examples are a redirection to
censor communication channels, inject advertisements, serve
malicious files, or perform phishing. Requiring a mechanism
for validation at the application layer to protect end hosts
from manipulated responses.

Malicious Domain Names: Given the distributed nature of
DNS servers; they have always been a target for attackers
and malicious activities. For example, there is a technique
for keeping malicious botnets in operation by constantly
changing the domain name of the botnet owner’s Command
and Control (C&C) server, and it is called Domain Fluxing.
Domain Fluxing not only increases the rate of DNS lookup
requests sent out by each bot but makes it hard for network
admins to block the botnet instructions and shot down the
botnet. Bilge et al. [3] focus on detection of such malicious
domains using machine learning methods in a scalable

manner and proposed their framework called EXPOSURE.
They collect a real-world dataset of more than 100 billion
DNS queries to 4.8 million distinct domain names for two
and a half months in North America and Europe. Their
method was also deployed in an ISP to check its real-time
applicability. DNS query features are used to classify domains
as malicious or normal. They apply J48 Decision Tree (C4.5)
as an efficient and accurate option using the time (life
length, daily similarity, access ratio, and repeating pattern),
DNS response related (#distinct IP addresses, #distinct
countries, #domains with the same IP, reverse DNS result),
TTL related features (average TTL, standard deviation of
TTL, # distinct TTL values, #TTL changes), and domain
name related (%numerical characters and % of length of
longest meaningful substring) to classify malicious domains.
They discuss the feasibility and accuracy of their models in
identification of malicious domains.

This approach is similar to the study done by Yadav
et al. [4] that develop a methodology to detect “Domain
fluxes” in DNS traffic by looking for patterns inherent to
domain names that are generated algorithmically, in contrast
to those generated by humans. They leverage statistical
measures such as Kullback-Leibler divergence, Jaccard index,
and Levenshtein edit distance to decide whether a group
of domains are malicious (or algorithmically generated) or not.

DNS as an Enabler: Given the wide usage of DNS on
the Internet, DNS lookup queries can be used to collect
more information for profiling the network entities, clients
or servers. Fukuda et al. [52] suggest to use improper use
of DNS as a new source of information to detect benign
and malicious network-wide activities. A network-wide
activity is when one computer (the originator) contacts
many others (the targets). Motives for network-wide
activity may be benign (mailing lists, CDNs, and research
scanning), malicious (spammers and scanners for security
vulnerabilities), or perhaps indeterminate (ad trackers). The
knowledge of malicious activity may help to predict attacks,
and understanding benign activity help to understand the
current state of the system and characterize its future changes.
Their approach is simple: collecting DNS data, classifying
data for each originator with features based on the queries
and queriers, and then clustering originators into activities.
For their experiments, they leveraged passively collected
datasets that are available for researchers through DNS-
OARC. The goal here is to use the temporal and spatial
information of DNS queries to classify the legitimacy of
the traffic. They use a decision tree (Classification And
Regression Tree; CART), random forest (RF), and support
vector machines (SVM). Two sets of features are used: First,
to capture the temporal characteristics they relied on: queries
per querier and query persistence; Then, to capture the spatial
characteristics, they focused on local and global entropy,
unique ASes and countries, queriers per country and per AS.
They classify queries into 12 benign and malicious classes
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(multi-class) and discuss the accuracy of their models.

Section Summary: We reviewed studies that use machine
learning techniques to address some challenges in the Domain
Name Systems (DNS) mostly in recent years (after 2015). The
common theme for studies in this domain is the assessment
of integrity, authenticity, and fluctuation (security aspects) of
DNS. The decision tree and random forest are mostly used
as the main or one of their ML techniques. Mainly defined
the problem as classification with two class labels (malicious
and non-malicious or oneTimeUsedDNS and reUsedDNS).
In multi-label scenarios, SVM classifier is also considered.
Numerical features are the most common type of features.
However, features are domain specific and vary by different
studies. The main issue or weakness in this domain’s studies is
the lack of attention to feature selection approaches, reporting
the computational time/costs, and feature engineering to craft
more robust and aggregated features.

TABLE I
DT: DECISION TREE RF: RANDOM FOREST CL:CLUSTERING

Hao[1] Kuhrer[2] Fukuda[52]

Real world dataset ! ! !

ML method DT/RF CL DT/RF/SVM

Feature analysis X X X

IV. NETWORK MONITORING AND CONTROLLING

The large scale, time-sensitive, and bandwidth-hungry ap-
plications that are deployed on the Internet, require innovative
approaches for controlling and monitoring. Decision making
on the priority of different traffic classes as well as observing
the network’s routing status are at the core of network moni-
toring. In this section, we cover the efforts that have leveraged
the ML techniques to tackle network routing issues, identify
protocols or applications, and classify the network traffic in
order to offer high performance and Quality of Experience
(QoE) to clients.

A. Protocol and Application Identification

The protocol identification reveals the type of protocol and
application associated with each network flow. This enables
we to assess behavior of network flows and allocate proper
resources. As a result, network administrators can consider
tailored resource management policies in order to improve
the quality of service (QoS) for intended and high priority
protocols.

Soysal et al. focus on the classification of Internet traffic
protocol [5] by classifying the traffic into P2P (P), content
delivery (C), web (W) (HTTP), bulk (B) (FTP), service
(S) (DNS), and mail (M) (SMTP) using the Internet traffic
flow traces. They apply three supervised machine learning
methods: 1) Bayesian Networks (BN), 2) Decision Trees

(DT), and 3) Multilayer Perceptrons (MLP) on a dataset
acquired from the National Academic Network of Turkey
(ULAKNET and ULAKBIM). The accuracy of labeled data
is the main difference between this study and prior works.
Instead of relying on labels gathered from the port- or
payload-based inspection methods, they obtain the flows from
servers that serve a distinct protocol service, so the traffic
types of the flows originated from each server is known
without ambiguity. They sample the traffic flows and use
flow features such as protocol, source, and destination port,
packet size, Type Of Service (TOS), and flags to keep the
computational cost of feature engineering low. Using Weka
implementations, they suggest that DT are the most suitable
for traffic classification in terms of computational cost and
accuracy, while the performance of machine learning methods
with backpropagation was considerably lower than BN and
DT. In addition, they test the effect of an unreliable port
number in training set and explain how port-based labeling
can lead to an inaccurate evaluation.

In an effort to propose an accurate traffic classification
approach that considers real-time analysis, Michael et al.
[6] apply the Neural Network (NN) on campus-wide bi-
directional TCP/IP flows that are semantically complete, i.e.,
completed the connection setup and observed tear-down. They
use flow-level metrics (such as total bytes, inter-arrival times,
total packets), metrics related to SACK, SYN, FIN, and URG
packets, segment and window advertisement size, missed
data, payload size, and RTT statistics as features. Data was
manually labeled employing deep packet inspection (DPI)
methods as explained by Moor et al. [53] and automated by
Canini et al. [54]. Flows are divided into 10 groups, including
Bulk (ftp), Database, Interactive (SSH, telnet), Mail, Services
(imap, stmp), WWW, P2P, Attack (virus and worm attacks),
Games (Microsoft direct play), and Multimedia (real and
windows media player). Using a Multi-Layer Perceptron
(MLP) model, they consider different activation functions
(tanh, sigmoid, Relu), along with different set of attributes
(performing feature selection), and assess the temporal- (data
after a year) and spatial- (using the captured data from
different parts of the campus) stability of accuracy. The
shortcomings of the above approach are as follows: features
should be defined per protocol and labeling quality depends
on the quality of DPI tools. Therefore, their approach may
not scale.

To avoid the need for prior knowledge of the protocol’s
specification. Yun et al. [7] propose Securitas as a network
trace-based protocol identification system. Securitas exploits
the semantic information in protocol message formats without
relying on prior knowledge of protocol specifications. Their
method considers each protocol as a language and leverages
n-grams to find the most frequent (signature) of protocols,
using LDA (Latent Dirichlet Allocation) and approximate
inference for keyword inference and feature extraction. They
use the following supervised ML techniques for testing: SVM,
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C4.5 Decision Tree, and Bayes Network. To quantitatively
evaluate the effectiveness of their system, they use millions
of flows (75M and 156M flows) obtained from a backbone
router of a major ISP in China that contain seven typical and
stateful protocols, including BitTorrent, PPLive, SMTP, DNS,
FTP, SIP, and CIFS/SMB. Their results suggest that this
method have high accuracy on different types of protocols
(connection-oriented and connectionless) as well as short and
long-term, binary and textual flows.

In the presence of Zero-day (i.e., unknown applications),
prior knowledge about the application is often not available.
Zhang et al. [8] propose a Robust Traffic Classification
(RTC) framework to tackle the issue of zero-day applications
for network traffic classification. In the 3-module design of
their framework, they first find training samples of unknown
applications from the unlabeled data using K-means clustering
method. Then, using the new unknown class, they perform
a (N+1)-class classification (Random Forest) on the data
to label the known and unknown classes. They use a Bag
of Flow approach [55] using a 3-tuple heuristics which
applies the majority of labels as the label of all flows that
have the same destination IP, port, and protocol. The last
module of their framework is a system update that deals
with the drift in the data and sub-classes that might exist in
the unknown class. They report the performance results on
four datasets collected from a campus, an ISP, and backbone
links, discussing the F-measure, TPR, and FPR as well as
classification of flows per second compared to the other
methods. Their results demonstrate that RTC outperformed
ML methods including: random forest, correlation-based
classification, semi-supervised clustering, and one-class SVM.

In addition to the accuracy, performance of protocol
identification methods is a critical determining factor in
deployment of such methods. Specially, given the scale
and time granularity that controlling policies should be
applied. Santiago del Rio et al. [9] focus on the real-time
protocol identification where they present a software-based
traffic classification engine running on commodity multi-
core hardware. Their proposed approach is able to process
aggregates of up to 14.2 Mbps over a single 10 Gbps interface
in real-time. That is the maximum possible packet rate over
a 10 Gbps Ethernet links given the minimum frame size
of 64 Bytes. They leverage the CAIDA’s anonymized 2009
Internet traces for experiments. This significant advance in
the classification rates are achieved by (i) leveraging an
improved network driver, PacketShader, to efficiently move
batches of packets from the Network Interface Controller
(NIC) to the main CPU; (ii) deployments of lightweight
statistical classification techniques (i.e., Naive Bayes with
Gaussian density estimation) to exploit the size of the first
few packets of every observed flow; (iii) a careful tuning
of critical parameters of the hardware environment and the
software application itself. Although they utilize a custom
implementation of Naive Bayes with Gaussian density

estimation for their experiments, they propose to consider
J4.5 Decision tree since it is more efficient for online learning.

Yamansavascilar et al. [56] explore the accuracy of
different methods such as J48, Random forest, k-NN, and
Bayes Network application identification. Experiments rely
on a public (UNB ISCX Network Traffic - 15K flows) and an
internal (crawled to cover social media and music streaming
services - 4K flows) dataset. They show that k-NN (k = 1)
and random forest are the most accurate predictors. Having
14 different applications organized in a number of groups
(File transfer, Mail, P2P, Streaming, Instant Messaging, and
Social media), they use minimum, maximum, and average
packet size, and flow count as well as window and byte
related features (minimum, maximum, and average window
size). The reported accuracy on these two datasets is 94% for
the public dataset and 91% for the internal dataset.

Among the long list of features used for application
classification in the prior studies, Wang et al. [10] consider
only the packet length to classify the applications using a
decision tree. They assume that the sequence of network
packets in a flow offer a unique signature that can identify
application layer protocols, and they prove it by experiment.
Their dataset is provided by an ISP, that they label it relying
on an off the shelf program called Proto ident. Proto ident
finds application protocols according to the first four bytes
of the packet payload. Application of decision trees are
prevalent in this domain due to the simplicity of presentation
and also the ability to tolerating the noise. In this study, the
J48 tree, RandomForest, and REPTree classifiers of the Weka
framework are used. Overall, 98% accuracy is reported by
this study across all classifiers.

In a visionary paper, a fine-grained mobile application
detection framework (called Atlas) is proposed by Qazi
et al. [57]. Atlas incorporates application awareness into
Software-Defined Networking (SDN). It is capable of L2/3/4-
based policy enforcement but agnostic to higher layers.
Atlas enables fine-grained, accurate and scalable application
classification in SDN. It employs open source c5.0 decision
tree method, a crowd-sourcing approach to obtain label for
the data, and leverages SDN’s data reporting mechanism
and centralized control. They prototype Atlas on HP Labs
wireless network. Based on the first N packet sizes, port
numbers, IP address range as features, they observe 94%
accuracy on average, for top 40 Android applications.

The combined application of clustering and classification
methods for traffic labeling is suggested by Szabo et al. [11] as
a hybrid method. However, the implications of the processing
time are not discussed. They propose a framework for traffic
classification that employs machine learning techniques and
uses only packet header information. First, a combination of
clustering and classification algorithms are used to obtain
robustness when network parameters changes, e.g., when
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the test and train data are collected from different networks.
Second, they explore multiple traffic granularity levels
and propagated information between the levels to increase
accuracy and accelerate classification. Third, they customize
a set of constraints based on connection patterns to utilize
state-of-the-art clustering algorithms efficiently. Leveraging
the K-means clustering method, they group up the related
flows per application and label the flows. Then, they train one
classifier per cluster by C5.0 decision tree. They use one day
measurements from 2G and 3G networks in Asia, Europe,
and North America to have variation in type and geo-location
of their data. Individual flows are defined as bi-directional
with a 5-tuples identifier (i.e., protocol, source IP, source
port, destination IP, and destination port) and a one minute
timeout. Flows are labeled with a DPI tool and are randomly
divided into the training and testing. Selection is done
with 1/100 probability from those flows where the protocol
is recognized by the DPI tool and contained at least 3 packets.

Zander et al. [58] utilize the statistical characteristics of the
flows in order to classify their corresponding application and
protocol. They use an unsupervised Bayesian classifier (called
autoclass) that automatically learns the “natural” classes
(clusters) inherent in a training dataset with unclassified
instances. They evaluate the efficiency of their approach using
data from several traffic traces collected at different locations
of the Internet. Furthermore, they perform feature selection to
identify an optimal feature set and determine the influence of
different features on random flows with more than 3 packets
(1k flows per application). The feature selection step was
done using sequential forward selection (SFS) to find the
best attribute set because an exhaustive search is not feasible.
They examine the feature importance and show that forward
packet length variance is the most important one, following
by backward packet length variance and packet bytes. Then,
the resulting classifier can be used to classify new unseen
instances. They use three sets of datasets: Auckland-VI,
NZIXII and Leipzig-II traces from The National Laboratory
for Advanced Network Research (NLANR).

Application and protocol identification is not limited to the
classification of known groups. Glatz et al. [59] study the
classification of one-way flows that contain packets only in
one direction. They show that one-way flows form between
34% and 67% of the total number of flows. However, such
flows account for only 3.4% and 0.79% of the total number of
packets and bytes, respectively. They focused on the following
classes:

• Benign P2P: P2P applications are trying to access peers
listed in their local host cache that are not available
anymore.

• Backscatter: replies to DoS attack traffic that uses ran-
domly chosen source IP addresses to hide the real identity
of an attacker.

• Suspected Benign: one-way flows may exist as a part of
benign applications using data and control connections in

parallel for acknowledgment only. Another cause may be
a temporary failure within an otherwise valid communi-
cation.

• Bogon: one-way flows originating from bogon IP space.
• Other: one-way flows that do not match any of the above

classes.
They leverage signs (features) based on host pair, remote, and
local host behavior as well as flow features (e.g., protocol, #
packets, single packet flow). They use the decision tree and
report its inferred rules, which is an aspect seen in multiple
prior studies.

To understand how Internet service providers can benefit
from deploying ML approaches, Pietrzyk et al. [60] adopt the
perspective of an ADSL provider. Given that it is too costly to
deploy a Deep Packet Inspection (DPI) tool at each point of
presence (PoP) of an ISP, they use a statistical classification
as a complementary tool to DPI. A typical use could be
to devise a statistical classifier built upon the knowledge
(reference point) collected on the PoPs where some DPI
solutions are available, to be deployed where those DPI
solutions are missing. They focus on supervised statistical
classification where a specific ML algorithm is trained on the
training set (for which the reference point is known), using a
specific set of features. Their dataset consists of four recent
packet traces collected at three different ADSL PoPs from
the same ISP in France. Their probes are located behind a
Broadband Access Server (BAS), that route traffic to and from
the digital subscriber line access multiplexers (DSLAM) and
the Internet. They capture full packet payloads without any
sampling for over four million TCP flows. They use per-flow
features (such as average, minimum, and median packet size
in each direction) and the first four packets of individual
flows for classification. They also justify k = 4, since it is
the minimum k that offers good accuracy and precision per
application. They consider flows with a 3-way handshake,
flows with 3-way handshake plus at least 4 packets, flows
with 3-way handshake plus FIN RST flags to indicate the
end of data transmission. The statistical classification turns
out to be useful to mine the flows left unidentified by DPI
tools. However, classifiers may suffer from data overfitting.
This challenge prevents a simple strategy such as training
on the largest PoP with ground truth and deployment on all
other sites. They highlight the need to test new classifiers not
only on traces collected on a given site, but also on traces
collected on different sites. The latter needs to be done on
“homogeneous” traces in terms of the type of traffic and
capture time.

Given all the different approaches and methods used for
the classification of network traffic, there is a need for a
common ground to test and compare all these studies. A
network traffic classification benchmark is proposed by Lee
et al. [61] in order to compare the contributions and/or
limitations of traffic classification methods. They propose
NeTraMark as a benchmark based on six design guidelines,

7



Fig. 2. Application Categories [61]

namely comparability, reproducibility, efficiency, extensibility,
synergy, and flexibility/ease-of-use. They consider three
categories of performance metrics: flow accuracy (per-whole-
trace, and per-application), and computational performance.
NeTraMark incorporates a rich set of eleven state-of-the-art
traffic classification methods in its classification engine that
are listed in Fig. 2.

Summary: protocol classification is widely explored by com-
munity using supervised methods that are trained on datasets
mainly labeled by DPI tools, or unsupervised methods to
handle label uncertainty and network parameter changes. The
flow definition and features that are used have not converged
yet and varies from one study to another.

B. Network Controlling

Protocol and application identification can be beneficial
for improving the Quality of Service (QoS) and Experiment
(QoE). In addition to that, there is an increasing demand
for efficient network controlling approaches. In this part,
we review the applications of ML methods in network
controlling, affecting routing policies and congestion control
schemes.

Round Trip Time (RTT) estimation is used for various
purposes in the network protocols such as determining the
proper re-transmission time and congestion. Therefore, the
link throughput is mostly affected by the accuracy of RTT
estimation. Nunes et al. [62] proposed a novel approach
for end-to-end RTT estimation using a machine learning
technique known as the fixed-share experts[63] framework.
In their framework, each “expert” guesses a fixed value,
the weighted average of these guesses estimates the RTT.
Weights are updated after every RTT measurements based on
the deviation from the actual RTT. To evaluate the proposed

Fig. 3. Pruned decision tree for classifying down link into fast and slow
categories. [65]

framework, they perform packet level simulation using
QualNet. Results indicate 40% improvement of estimation
accuracy compare to TCP and also Eifel RTT estimator [64].

Pei et al. [65] proposes a practical approach toward
itemizing the round-trip network latency. They provide the
first systematic study on WiFi hop latency in the wild
based on the latency and WiFi factors collected from 47
APs on a university campus over two months. Focusing
on airtime utilization (AU), queue length (Q), retry ratio
(RR), transmitting physical rate (TPR) and receiving physical
rate (RPR), they train a decision tree model to understand,
troubleshoot, and optimize WiFi hop latency for WiFi APs.
For example, they use the trained model to decide whether to
move APs closer to the user equipment or not. The model’s
ruleset is depicted in Fig. 3.

Monteleoni et al. [66] apply machine learning methods
to tackle the trade-off between energy consumption and
performance of wireless devices working on IEEE 802.11.
They perform simulation with ns2 for the evaluation.
They define a “loss function” that is based on the wasted
performance for sleeping too long or wasted energy for
waking up too early or too frequently that is optimized in an
online learning manner. Their result suggest that their method
is able to save 7 to 20% energy while increasing the latency
by a factor of 1.02 to 1.2.

Lutu et al. [67] propose the BGP Visibility Toolkit, a
system for detecting and analyzing anomalous behavior
of BGP routing on the Internet. They show that inter-
domain prefix visibility can be used to single out cases
of erroneous demeanors resulting from misconfiguration or
bogus routing policies. Their dataset consists of a unique
ground-truth dataset of 20,000 Low Visible Prefixes (LVPs),
that are confirmed by network operators. They use the
decision tree (boosted classification trees) method and the
Winnowing algorithm to predict whether an LVP is intended

8



or unintended. Their proposed system reveals the patterns
of misconfiguration and bogus routing policies which are
generally hard to detect.

Cunha et al. [68] propose Sybil as a system that takes
rich queries that researchers and operators express as regular
expressions, then returns matched traceroutes even if it has
never measured a matching path in the past. Sybil offers
a diverse set of traceroute vantage points, using historical
measurements to predict which new traces are likely to match
a query, task scheduling to optimizes resource usage. They
use RuleFit, a supervised machine learning technique to
assess the confidence in each reported path.

Summary: Network controlling has different aspects. In this
section we consider studies that address challenges in RTT
estimation, itemizing RTT delay, BGP routing and visibility
checks, and traceroutes. Supervised learning methods and
mainly decision tree is a prevalent technique and simulation
a frequent approach for validation.

C. Other Related Networking Topics

There are many studies in the networking domain that are
either too specific or too unique to be grouped with other
topics. In this section, we review such studies that target
specific challenges in network monitoring and controlling.

Network Characteristics: Este et al. [69] analyze the
stability of the information carried by traffic flow features
at the packet level with respect to different capture points
(from the edge to the core of the Internet) and capture time
(from 2000 to 2008). They illustrate that packet size is stable
and the most important feature. Intuitive but was verified that
inter-arrival times are half as informative when the traffic is
captured in the Internet core as opposed to the Internet edge.
They use four classifiers: NN, GMM, K-means, and NB in
order to measure the feature importance.

Xu et al. [70] address the challenges of modeling the
mobile traffic patterns on cellular towers. Their dataset
is a month-long network traffic trace logs from an ISP in
Shanghai, China. Each entry of the trace contains detailed data
usage of 150,000 mobile users, including the ID of devices
(anonymized), start and end time of data connection, base
station ID, the address of the base station, and the amount
of 3G or LTE data usage by each connection. The trace logs
1.96 billion tuples of the described information, contributed
by approximately 9,600 base stations all over Shanghai. To
model the traffic patterns of large-scale towers deployed
in a metropolitan city, they combine three-dimensional
information (time, location of towers, and traffic frequency
spectrum) and find only five time-domain patterns, indicating
the predictability of mobile usage that can be leveraged by
providers to serve their customers better.

AS Identification: Measuring, quantifying and understanding
the access network performance have been always a challenge
due to scale and variation of patterns. Bajpai et al. [71]
leverage active measurements to investigate patterns and
trends in last mile latency by digging into longitudinal
datasets from the UK and US. Although they do not use
machine learning methods, their approach relies on techniques
that can classify ASes by network type, such as effort of
Dimitropoulos et al. [72] that provide an method to classify
ASes using ML techniques back in 2006.

Server OS Identification: Shamsi et al. [73] propose
Hershel, a stochastic model that use SYN packets to classify
the deployed OS of a remote server. From the ethical point of
view, they have a section explaining why it is not an issue on
the security side and can benefit researchers. They leverage
the “IRL fingerprinting dataset” with 37.8M samples that
contain at least one SYN-ACK packet. Shamsi et al. [74]
also propose Heshel+ as a model that can generate signatures
in the presence of noise automatically.

Correlated Flows: Zhang et al. [75] present CODA to
automatically identify and schedule Coflows [76] without
any application modifications. That makes the Coflow more
practical and usable by removing the need for manual
annotations in applications. CODA employs an incremental
clustering algorithm to perform fast, application-transparent
Coflow identification, and complements it by proposing an
error-tolerant Coflow scheduling to tolerate identification
errors. Since Coflows capture a one-off, mutual relationship
among some flows that cannot be pre-labeled and need
timely identification, they were not able to use traditional
classification methods. Therefore, the DBSCAN [77] and
incremental version (Rough-DBSCAN [78]) was used.

Frameworks and Enablers: Knowledge plane [79] is one
of the first studies on applications of AI in controlling
and operating networks. They offer to augment a network
with a knowledge plane, a new higher-level artifact that
addresses issues of “knowing what is going on” in the
network. At an abstract level, this is a system for gathering
observations, constraints, and assertions and applying these
rules to generate observations and responses. At the physical
level, this is a system built out of parts that run on hosts
and servers within the network. It is a loosely coupled
distributed system of global scope. They argue that cognitive
techniques, rather than traditional algorithmic approaches,
are best suited to meeting the uncertainties and complexity
of their objective. However, that has not been extensively
prototyped or deployed in the field yet. In response and in
order to prove that such techniques can be used.

Mestres et al. [80] discuss a new paradigm called
Knowledge-Defined Networking (KDN) to explore the
reasons for the lack of adoption and posit that the rise of two
recent paradigms: Software-Defined Networking (SDN) and
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Network Analytics (NA). They describe a new paradigm that
accommodates and exploits SDN, NA, and AI, and provide
use-cases that illustrate its applicability and benefits. For
the experimental results, they use network trace logs that
can be found here 2. In the learning process, they use the
Matlab ANN toolbox with one hidden layer, where the input
is the 86 traffic features and the output is the measured CPU
consumption.

Bremler-Barr [81] offer OpenBox, a software-defined
framework for developing, deploying, and managing
network-functions. OpenBox decouples the control plane of
network-functions from their data plane and allows reuse of
data plane elements by multiple logical network functions
(NF). In addition to easier management, orchestration,
provisioning, and scale, it provides greater flexibility in terms
of NF development and deployment, multi-tenancy support
with complete tenant isolation, and improved data plane
performance. At the core, it uses classifier boxes to make it
easy for using ML methods for firewall or intrusion detection
and prevention systems (IDPS).

In a visionary paper, Gonzalez et al. [82] propose
Net2Vec, a modular platform designed to support data
scientist in the deployment of machine learning models in
the communication network. Net2Vec includes components
for capturing, filtering, and manipulation of network data to
be analyzed with (deep) machine learning methods. They
evaluate the implementation of this platform in another study
[83], where they leverage Net2Vet to generate user profiles
at line speed from network traces without the need of storing
personal information. They use a representation learning
approach that is similar to embedding learning approaches in
the context of natural language processing. Using two days
of HTTP(s) traffic, manually labeled (based on hostnames),
they show that Net2Vec is able to accurately profile network
users while is more efficient than baseline methods.

Middleboxes: Intermediary network devices (a.k.a middlebox)
are widely used in data centers for distributing the load
(e.g., load balancers), enabling the remote connectivity (e.g.,
VPNs), improving the performance (e.g., proxies), and security
(e.g., firewalls, IDPS). However, they are responsible for a
fraction of failures. Potharaju et al. [84] perform a large-scale
empirical study of middlebox failures. They have collected
network event logs over two years (July 24, 2010-12) across
10+ datacenters hosting 100k+ servers and 2k+ middleboxes;
using a wide range of network event sources, including syslog
and SNMP alerts, configuration files, a maintenance tracking
system, trouble tickets, and traffic data. They mainly focus on
these questions:

• How reliable are middleboxes?
• How often do middleboxes fail?
• How long do repairs take?

2http://knowledgedefinednetworking.org/

• How to model failures and repairs?
To answer the last question, they took a formal (mathematical)
approach. Using Box-Cox transformation, they transformed
data such that it approximately follows the normal distribution.
Then using a two-component lognormal mixture, they found
the best fit. Then, they focused on Network tickets, analyzed
using NetSieve, and focused on main issues and resolution
actions. They list several findings that are not aligned with
the common views:

• Most failures are due to connectivity errors and link flaps
that exhibit intermittent connectivity

• Hardware faults and overload issues are not prevalent
• Misconfiguration (including incorrect rules, VLAN mis-

allocation, and mismatched keys) is a challenge for
middleboxes

• Middlebox failover is ineffective in about 33% of the
cases for load balancers and firewalls due to the con-
figuration bugs, faulty fail overs, and software version
mismatch

Given the large scale challenges, they offer that trend analysis
and SDNs are required to reduce the risks and rate of failures
due to misconfiguration.

An overview of the ML techniques that are used by each
of the studies in this subdomain is provided in Table IV-C.

TABLE II
SUMMARY OF THE ML METHODS USED IN EACH STUDY

ML technique Studies used

DT [5], [65], [7], [9], [56], [10], [57]

MLP [5], [6]

SVM [7]

BN [5], [7],[69], [56]

RF [8], [56], [10]

k-NN [56],[69]

Clustering [11], [58],[69]

Section Summary: A wide range of approaches for protocol
and application identification and network controlling was
reviewed and discussed. It seems that almost in all methods,
they focus on solving the issue from a research perspective,
without understanding the requirements of implementation in
the real world, the type of challenges Internet providers are
dealing with, resources they have available, and schemes that
are viable. Features selection, training and testing time and
computational resource consumption, and approach compar-
ison, given these metrics are still unknown to the research
community. We only found a network traffic classification
benchmark [61] that propose a benchmark as there is no com-
mon ground to compare the contributions and/or limitations
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of traffic classification methods. Other researchers also found
comparison difficult in the absence of a universally agreed
metrics and dataset types [85].

V. QOE ON THE WEB AND VIDEO STREAMING SERVICES

In this section, we focus on the approaches that applied
ML techniques on the network traffic in order to improve the
Quality of Experience (QoE) measures. Such studies mainly
assess the effect of various network measures on the QoE and
as a result, improving the rate of user engagement in video
streaming, Skype, and web applications.

Improving the user experience while streaming video on
mobile platforms has attracted much attention by mobile
network providers as a result of a large number of mobile users
who are interested in video streaming services. Shafiq et al.
[12] consider the characterization of mobile video streaming
performance to model the impact of performance on user
engagement from the perspective of network operators. They
suggest that network features exhibit a strong correlation
with the abandonment rate and skip rate in video streaming
sessions. They assess the correlation using ML techniques to
model the relationships between network features and user
engagement metrics. They collect 37 million anonymized
flow-level logs, from almost half a million users in one month
from a tier-1 cellular network in the United States. Their
results suggest that decision tree algorithm with bootstrap
aggregation (or bagging) is the best choice for both nominal
(classification) and continuous (regression) user engagement
metrics. They enumerate why they picked DT model: it does
not require feature independence assumption and can handle
non-linearities by employing multiple splits/breaks for each
feature. Furthermore, decision tree models comprise simple
if-then-else branches, which can process data efficiently.

Balachandran et al. [13] develop a predictive model for
Internet video QoE. They discuss two key requirements for
the QoE model: 1) it has to be tied into observable user
engagement and 2) it should be actionable to guide practical
system design decisions. In this study, they systematically
highlight challenges in obtaining a robust video QoE model.
Then, design a road map for developing Internet video
QoE that leverages machine learning. Furthermore, they
provide a methodology for identifying and addressing the
confounding factors that affect engagement. They also have a
practical demonstration of the utility of their QoE model to
improve engagement. They pick decision tree as an accurate,
intuitive, and actionable model because it can directly be
mapped into event processing rules that system designers
are typically familiar with them. The data used in this paper
was collected on Conviva.com in real time using a client-side
instrumentation library. This library gets loaded when users
watch video on Conviva.com’s affiliate content providers’
websites. They collect all the quality metrics described earlier
as well as play time for each session. In addition, they
collect a range of user-specific (e.g., location, device, and

connectivity), content (e.g., live vs. Video On Demand, VOD,
and popularity), and temporal attributes (e.g., the hour of the
day). The dataset that is used for various analysis in this
paper is based on 40 million video viewing sessions collected
over three months from two popular US based video content
providers. The first provider serves mostly VOD content that
is between 35 minutes and 60 minutes long. The second
provider serves sports events that are broadcast while the
event is happening. Their study is limited to clients in the
United States. They categorize engagement into different
classes based on the fraction of video that the user viewed
before quitting. For example, when the number of classes is
set to 5, the model tries to predict the portion of video that
was watched before quitting in 20% size bins. They begin by
using standard machine learning approaches to build a basic
predictive model and also to extract the key confounding
factors. Having identified the confounding factors, they refine
their predictive model to improve accuracy. They consider
two different approaches to corroborate confounding features:
i) use them as a new feature, ii) split the data and use a new
model per feature and combine the model, in which the latter
reported to be more accurate.

Sun et al. [14] fill the gap between the prediction of the
optimal throughput and obtaining the QoE by offering the
CS2P framework. CS2P leverages data-driven approach to
learn i) clusters of similar sessions, ii) an initial throughput
predictor, and iii) a Hidden-Markov-Model based midstream
predictor modeling the stateful evolution of throughput. One
of the main advantages of CS2P is that it can be easily
plugged into the bitrate selection logic of client- and server-
side adaptation algorithms. They use a proprietary dataset of
HTTP throughput measurement from the operational platform
of iQIYI (an online video content provider). The dataset
consists of over 20 million sessions covering 3 million unique
client IPs and 18 server IPs over eight days in September
2015. The clients span over 736 cities and 87 ISPs in China.
They show CS2P improves QoE by 14% over buffer-based
adaptation algorithm.

Jiang et al. [15] propose CFA (Critical Feature Analytics)
as a practical prediction system for video QoE optimization.
Although they do not directly use ML methods, similar to
the idea of feature selection in ML techniques, they aim
to find the best critical features “per” video stream that is
dominant, instead of finding the optimal set of features for
“all” streams. They develop an algorithm that is based on a
domain-specific insight: video quality is typically determined
by a subset of critical features, which tend to be persistent.
They consider two main properties for prediction models:
1) to be expressive enough to capture complex relationships
among video quality and observed session features, and 2)
capable of updating quality predictions in near real-time.
Their dataset consists of 6.6 million quality measurements
collected from 2 million clients using three large public CDNs
distributed across 168 countries and 152 ISPs. They benefit
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from QoE formulation based on buffer ratio and average
bitrate, QoE = 370BufRatio+AvgBitrate/20), as defined
by Dobrian [86]. They utilize the buffer ratio, average bitrate,
join time, and video start failure as quality metrics, and ASN,
city, connection type, player, site, Live or VOD, content name
, and CDN as features associated with each session. The main
insights they share are as follows:

• At a given time, video sessions having the same value on
every feature have similar video quality.

• Each video session has a subset of critical features that
ultimately determines its video quality.

• Critical features tend to persist on long timescales of
tens of minutes.

The importance of user engagement and QoE in the video
domain is not limited to downstream video applications.
Spetebroot et al. [16] offer a new methodology based on
machine learning which can link expected QoE to network
and device level measurements outside the applications’ traffic
to predict QoE using Skype platform. They use end-to-end
delay, packet loss rate, and end-to-end available bandwidth
on both up and downstream directions as feature set. The
Skype quality meter that is available after 15 seconds helps
them to distinguish three different quality classes on 393
different Skype voice calls as follow: 1) Good when the call
has no noticeable trouble; 2) Medium when call quality is
acceptable but presents minor troubles; 3) Poor when calling
quality is terrible with numerous troubles; 4) No call class,
that indicates that Skype is not able to establish a voice call
because of severe network conditions. Although they mention
nine different ML methods that they use for experiments,
including DT, ensemble models, and probabilistic models,
they only discuss the details of the DT method due to its
readability and interpretability.

Toward assessing and improving the Quality of Experience
(QoE) on the Web, Da et al. [17] aim to thoroughly
investigate a mapping between established and recently
proposed objective metrics and user QoE. They obtain ground
truth QoE via user experiments where they collect and
analyze 3,400 Web accesses annotated with QoS metrics
and explicit user ratings in a scale of 1 to 5. Their main
goal is to narrow the gap between QoS and QoE for Web
applications. Their main contributions are 1) method to
compute the approximated Above The Fold (ATF) time, 2)
dataset collection, and 3) systematically compare expert vs.
data-driven models based on a set of QoS metrics. Focusing
on the expert models, they compare the results with regression
ML methods including Support Vector Regression (SVR),
Classification And Regression Tree (CART), and AdaBoost
with CART (BOOST) and show the performance of their
method is superior compared to these ML methods.

In some cases, ML methods are not the main focus and
tool that researchers used. Kelton et al. [18] gather label for

their dataset by leveraging a ML-enabled eye tracker. They
present WebGaze, a system that optimizes explicitly for the
user-perceived page load time (uPLT) metric. The critical
insight in WebGaze is that user attention and interest can be
captured using a user’s eye gaze and can, in turn, be used
to improve uPLT. They collect eye gaze data from 50 users
across 45 Web pages and find that there is a commonality
in user attention across users. Specifically, users are drawn
to specific regions on the page, that they call regions of
high collective fixation. WebGaze prioritizes loading objects
that exhibit a high degree of collective fixation to improve
user-perceived latency.

Section Summary: We reviewed the studies that use the ML
techniques as an enabler, a tool, or a baseline to improve the
Quality of Experiment (QoS) and as a result user engagement
through processing of network measurements. Decision trees
and regression methods are the most frequent methods that
have been used, mainly due to interpretability or the formula-
tion of the research questions.

VI. SECURITY

The ML techniques have a wide variety of applications in
the network security domain. In this section, the advantages of
using ML methods in topics such as user profiling, anomaly
detection, and security of IoT devices are covered.

A. User Profiling on the Web

User profiling and fingerprinting techniques have been
widely studied for a variety of purposes, mainly marketing.
Fingerprinting is defined as network level analysis in order
to either classify or identify the visited websites based on
timing, direction, and volume characteristics of encrypted
traffic between a web client and a proxy.
Gonzalez et al. [19] examine whether the advent of HTTPS
makes profiling harder for anyone beyond the communicating
end-points. To this end, they first explain that by knowing
the domain that a user visits, either through the server
name indication of the TLS protocol or through DNS,
an eavesdropper can already derive necessary profiling
information, especially for domains whose content is
homogeneous. For domains carrying a variety of categories
that depend on the particular page that a user visits, e.g., news
portals and e-commerce sites, the basic profiling technique
fails. Still, accurate profiling remains possible through
the transport layer fingerprinting that uses network traffic
signatures to infer the exact page that a user is browsing,
even under HTTPS. The features they extract from the traffic,
when downloading a page, include: the number of incoming
packets and the number of outgoing ones, the total size of
incoming packets and the total size of outgoing ones, and
a trace defined over the size and the order of the observed
packets. SVM classifier with an RBF kernel is considered for
their experiments. For each monitored website, they capture
with TCP-dump the traffic generated by fetching each of the
first-level pages 50 times and measure the accuracy of the
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classifier using 10-fold cross validation. They consider the
model’s freshness and its effect on the model’s accuracy.
Considering daily epochs, they train the model on data from
a day and then test it on six consecutive days. As shown in
the study, the model degrades faster for dynamic contents
over time compare to static websites. They demonstrate that
transport fingerprinting remains robust and scalable despite
hurdles such as caching and dynamic content for different
device types. Overall, their results indicate that although
HTTPS makes profiling more difficult, it does not make user
profiling unfeasible.

Oh et al. [20] incorporate deep neural network to analyze the
network traffic and investigate the fingerprinting challenges.
They propose three different applications, automated feature
engineering, fingerprinting attacks, and fingerprintability
prediction. They study the performance of MLP and CNN
classifiers on top Alexa websites as well as random websites
in binary and multi-class classification, on Onion service
fingerprinting, TKS encrypted website fingerprinting, search
query fingerprinting, and against four known traffic padding
schemes (BuFLO, Tamaraw, WTF-PAD, Walkie-Talkie).
In addition, they explain that as a feature extractor, lower
dimensional representations, learned by an autoencoder,
made recent website fingerprinting attacks more effective and
efficient.

As users browse the web, a large list of domains are
intentionally (target domains) or unintentionally (domains
that host files or provide advertisements) visited. Vassio et
al. [21] propose a machine learning methodology to extract
the services intentionally requested by users, which turn out
to be necessary for the profiling purposes. They consider
three similarity measures including Jaccard index, maximum
likelihood estimation, and cosine similarity based on TF-IDF
on the set of domains visited by users to compute their
similarity with other users. Among the domains user visits,
they call the primary domain that is visited intentionally as
core and the rest that host the related contents, as support.
They leverage decision tree to identify the core and support
domains. Their features include the length and the content
type of the main HTML document (if present); the number
of objects of the page and domains contacted by the browser
to fetch all objects; HTTP response code (e.g., 2xx, 3xx
and 4xx); and whether the browser has been redirected to
an external domain. To get the set of features, they perform
active crawling and visit the home page of each domain
by means of Selenium automatic browser to extract page
features. The model’s rule set describes the core domains as
those with a) the main HTML document size must be bigger
than 3357B and b) the browser must not be redirected to an
external domain.

Summary: Multiple ML methods including SVM, MLP, CNN,
and DT are applied on user’s (encrypted) web browsing
data in order to group them with other similar users. Such

grouping (user profiling) can be used for marketing and user
segmentation purposes.

B. Anomaly Detection

Deviation from the normal behavior can be a strong signal
for detecting attacks in networks. Anomalies can also emerge
as a result of routing issues or hardware failure. In all of
these case, network providers are interested in detection of
anomalies in order to minimize the resulting damage.
Carter et al. [22] present a method of detecting anomalous
network activities without providing any historical context,
using hierarchical clustering. However, it is an O(N2)
operation, meaning that it will not purely scale to large
N. This is why they operate their system on a per-service
basis, focusing on port 80 in this study. They also used a
decision tree to identify the common theme of the detected
clusters. To this aim, they labeled data for each cluster
as a positive label and all others as negative. DT was
able to find the rule mostly based on byte ratio (byte per
packet), IP ratio (flow/unique source IP), and outgoing
bytes/packet. They experiment and report accurate results on
a window of 5 minutes Netflow on port 80 where the server
was known to be under SYN flood DDoS attack in that period.

As mentioned by Himura et al. [23] the modeling and
characterization of Internet traffic are essential for simulations,
traffic classification, anomaly detection, and QoS. Focusing
on quantifying host-based application, they use a statistical
method (multi-scale gamma model) to label anomalies
produced in the network in the presence of Internet worms.
Using real network traffic traces, they show that applications
show consistent behavior over time, however, vary as
bandwidth changes. Applications can be characterized using
statistical parameters and be distinguished from anomalous
behaviors.

Casas and Vanerio [24] leverage the big data analytics and
platforms to perform the automatic detection of anomalies
in mobile networks. Using Big-DAMA, a big data analytics
framework for network monitoring, they apply the Super-
learner model [87] (a loss-based ensemble-learning method
that finds the optimal combination of a collection of base
predictors). They note and tackle two main challenges for the
application of ML in anomaly detection: 1) nearly real-time
expectation 2) model selection. The first issue is tackled
using the Big-DAMA framework, which uses Spark for batch
(pre-) processing, and Cassandra for storage. The benefit of
using such a framework is that it is distributed, with no single
point of failure, it will be fast and scalable, with the ability
to handle unstructured data. To tackle the second issue, they
overview the ensemble techniques (bagging, boosting, and
stacking) and argue that ensembling can address the issue of
selecting the best predictor as we can benefit from multiple
predictors. They apply Super learner as a stacking learning
algorithm and compare the results with individual ML
methods such as decision tree, naive bayes, neural network,
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Fig. 4. A high-level representation of the classification framework used by
Marnerides [88]

SVM, and k-NN, showing the superiority of ensembling
models.

Nevat et al. [25] consider the temporally correlated traffic
and apply anomaly detection methods. Their dataset is
75-minute TCP traffic of 10th December 2014 from MAWI
repository. A statistical method (Markov chain) was used
for detection. Their goal is anomaly detection in temporally
correlated traffic. They formulate the problem as the optimal
statistical test, known as the Likelihood Ratio Test (LRT),
using the Cross-Entropy (CE) method. As a result, not only it
finds the anomaly but also finds the subset of flows causing
it.

In another study, Marnerides et al. [88] propose a
measurement-based classification framework (illustrated in
Fig. 4) that exploits unsupervised learning to categorize net-
work anomalies in specific classes accurately. They introduce
the combinatorial use of two-class and multi-class unsuper-
vised Support Vector Machines (SVM) to first distinguish
normal from anomalous traffic and to further classify the latter
category to individual groups depending on the nature of the
anomaly, respectively. The features they have used are as
follows:

• Initial flow classification is based on seven packet header
characteristics; the IP source/destination addresses, the
transport protocol, the transport source/destination ports,
the mean packet inter-arrival time and the size of the first
ten packets

• During the second stage, only four packet header
features are used; the source/destination IP addresses
and transport source/destination ports.

Anomaly detection and QoS customization require to know
the underlying traffic types. Canini [26] uses flow features
to create server profiles and then identifies potential proxies
within the observed servers. Their methodology consists
of four stages: 1) service identification to identify HTTP
and HTTPS services, 2) server profiling - the features are
based on the packets’ inter-arrival times and payload sizes.

A profile consists of the average and standard deviation
of this features-, 3) proxy identification using K-means as
an unsupervised technique, and 4) host cache management,
which is a practical need of storing, updating and deleting
service profiles. In this visionary paper, they share preliminary
results of experiments on two proxies: guardster.com
and anonymouse.org, where they recorded the traffic
to browse a dozen of popular websites using the direct
connection and through the proxies, reaching a total of
81 servers. Results show that their method can profile and
distinguish among these servers accurately.

Aqil et al. [27] consider the network intrusion detection
at the scale of a wide area network (WAN) using the ML
methods. First, they focus on creating packet summaries
that are concise, but sufficient to draw highly accurate
inferences. Then, they transform traditional IDS rules to
handle summaries instead of raw packets. Using the network
traces from MAWI group, they inject five different network
attacks such as SYN flooding and extensive port scans at a rate
of less than 10% of benign traffic. Showing that Jaal reduces
overheads by over 65% compared to sending raw packets
while achieving a detection accuracy of over 98% in ISP scale.

Summary: Various techniques including stacking baseline
models, statistical methods, and supervised and unsupervised
methods leverage in this section to detect anomaly in
the the network traffic. Real time processing and being
independence from prior knowledge are among the system
design requirements in this domain.

C. Security and Privacy of IoT

As development and deployment of the Internet of Things
(IoT), ranging from a simple body or environmental sensors
to home appliances, grow rapidly, the related security
and privacy issues become a major concern. As a single
penetration to an IoT would lead to a large scale attack. An
example would be Mirai malware that used IoT devices such
as digital cameras to launch destructive DDoS attacks on the
Internet. The main concerns regard the devices and protocols,
type of attacks, and implications are reviewed in the “Special
Issue on Security and Privacy of IoT” [28].

Apthorpe et al. [29] analyze the privacy concerns related to
traffic analysis of smart IoT devices, even when the content
of the traffic is encrypted. They considered a sleep monitor,
security camera, smart switch, and Amazon Echo connected
to a Raspberry PI as a wireless hotspot. They report that only
by analyzing the DNS queries, one can detect what kind of
IoT devices are used, although detection specific products
with the similar brand will be challenging as their server IP
address will be the same. Then, they show that by analyzing
the traffic patterns, one can detect when the user is asleep
or awake, when is commanding the Amazon Echo, when the
switch is turned on or off, or when the camera detected a
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motion. However, first, we need to group flows based on their
target addresses. This kind of information along with the rest
of the analysis that can be done on the users’ traffic will
provide information about user behaviors and living patterns.

From the same research group, Doshi et al. [30] suggest
that IoT devices usually communicate to a limited number
of endpoints with a rather fixed time intervals between the
packets they send. Therefore, they suggest that by focusing on
the stateless features (such as packet size, inter-packet interval,
and protocol) and stateful features (such as bandwidth and
destination IP address cardinality and novelty) DDoS attacks
can be accurately be detected in IoT devices using a wide
range of ML techniques: K-nearest neighbors, support vector
machine with linear kernel (LSVM), decision tree using Gini
impurity scores, random forest using Gini impurity scores,
and neural network (4-layer fully-connected feedforward
neural network) and reported effective accuracy measures
(F1, accuracy, precision, and recall) across almost all methods.

Dhakal et al. [31] propose a system that is customized
to perform online learning of the behavior of residents in
a home or business. They use sensor inputs (keypads and
camera) to detect whether one of the residents is around or
an intruder. They leverage four classifiers on four different
data inputs: 1) They use the time difference between the
activation of different sensors (time between moving from
door to kitchen) to train a K-NN classifier, 2) They apply
OpenFace face recognition software to assess the faces from
the camera pictures, 3) They consider the number of times
the user enters the pin before a successful entry, 4) They
focus on the time needed by homeowners to deactivate the
alarm and complete the entry event. Finally, the stability and
scalability of their method is discussed.

Section Summary: We reviewed studies that leverage ML
techniques in the security and privacy domain. Statistical
methods as well as decision tree, SVM, and ML-inspired
frameworks are leveraged and proposed in order to detect
anomalies and perform user profiling with personalization and
security implications.

VII. CLOUD/CLUSTER COMPUTING

Cloud computing is a response to today’s computational-
hungry applications with real time and scalability
requirements. In this section, we review studies on cluster
processing and cloud computing that benefit from utilizing
different ML methods.

In distributed systems, clock synchronization is essential to
obtain consistency and performance. Geng et al. [32] present
HUYGENS, a software clock synchronization system that uses
a synchronization network. They consider CPU and bandwidth
usage as well as deployment overhead in their system design.
The key ideas are as follows: 1) filtering data received from
probes which suffer from queuing delays, random jitter, and

Network Interface Card (NIC) timestamp noise, 2) processing
the purified data with SVM to accurately estimate one-way
propagation times and achieve clock synchronization to within
100 nanoseconds, 3) exploiting a natural network effect -
assuming pairwise sync leads to transitively synchronized
entities - to detect and correct synchronization errors even
further. They use soft-margin SVMs which can tolerate
points in the forbidden zone and other noise and delays.
Experimenting on two real-world testbeds with different
configurations, they have achieved the accuracy to 10s of
nanoseconds even at high network load while utilizing less
than half a percent of bandwidth and CPU across the network.

Some studies explore the optimization of the whole parallel
computing process. In a shared distributed environment,
predicting the duration of each job is essential for resource
management and job scheduling. Ernest was proposed
by Venkataraman et al. [33] as a performance prediction
framework for large scale analytics. They offer a high
accuracy and low training overhead using optimal experiment
design, which is a statistical technique that allows operators to
select the most useful data points for training. At a high level,
the user provides a parallel job (written using any existing
data processing framework) and a pointer to the input data for
the job. Without any dependency on prior knowledge, Ernest
first determine what training data points to collect, then the
features should be derived from the training data, and finally,
it performs feature selection to pick the simplest model that
best fits the data. They use regression - non-negative least
squares (NNLS) model (in SciPy) - leveraging the number of
machines used to run the job and the scale (number of rows)
of the input data, as well as the overhead of scheduling and
communication (as a fraction of number of machines).

Hsieh et al. propose Gaia [34] a geo-distributed ML system
that 1) employs an intelligent communication mechanism
over Wide Area Networks (WAN) to efficiently utilize the
scarce WAN bandwidth, while retaining the accuracy and
correctness guarantees of an ML algorithm; and 2) is generic
and flexible enough to run a wide range of ML algorithms,
without requiring any changes to the algorithms. They present
a new ML synchronization model, Approximate Synchronous
Parallel (ASP), in which the key idea is to dynamically
eliminate insignificant communication between data centers
while still guarantee the correctness of ML algorithms. They
prototype across 11 Amazon EC2 global regions and a cluster
that emulates EC2 WAN bandwidth. Gaia can perform ML
methods within the 0.94-1.4 of running ML methods on LAN
while reducing the cost significantly.

Canali et al. [89] analyze the problem of identifying groups
of VMs in a cloud infrastructure that exchange information
to support a network-aware VMs allocation without having
access to a detailed model of the data transfer among
them. Due to the popularity and challenges of horizontally
replicated vertical stacks, they focus on this scenario. In this
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case, each VM in a vertical stack corresponds to a tier of an
application, so the scalability is achieved through replication.
In order to discover communicating VMs, they leverage the
correlation between the time series of network traffic of each
VMs and later on clustering algorithms for identifying the
vertical stacks of VMs. Their experiments show that the use
of ranking-based techniques (as in the Spearman correlation
index) outperforms traditional correlation metrics, such as the
Pearson index. They compare three clustering algorithms to
identify the most suitable alternative for detecting the vertical
stack, indicated that Spectral clustering far outperforms the
alternatives. Finally, they point out that fine-grained network
data collection is essential to achieve high accuracy in the
identification of communicating VMs, based on the sensitivity
analysis they have performed.

In a related study, Morales et al. [90] consider the challenge
of over-provisioning in statically managed virtual network
topologies (VNT), which are designed to cope with the
traffic forecast. Their method (VENTURE)’s goal is to reduce
expenses (number of required transponders) while ensuring
the expected quality of service (maximum bit rate). They
propose to reconfigure the VNT based on the predicted
traffic, thus adapting the topology to both the current and the
predicted traffic volume and direction. To provide a robust
and adaptive traffic model, they utilize neural network (ANN)
model with an algorithm to set the associated parameters.
The reconfiguration problem is modeled mathematically, and
a heuristic is proposed to solve it in practical times. their
simulation results in SYNERGY test-bed show 8% to 42%
improvement in the number of required transponders.

Section Summary: The application of machine learning meth-
ods in cloud and cluster computing was reviewed. Studies
use a range of ML techniques such as regression (SVR) and
clustering (Spectral clustering) to tackle issues such as clock
synchronization and predicting the performance of large scale
parallel tasks. Some also considered the challenges of applying
ML learning in distributed manner and addressed issues such
as bandwidth usage in geo-distributed WAN systems.

VIII. NETWORK TRAFFIC PREDICTION

The time-series are defined as data points with temporal
ordering. Such data points are available in a wide range
of domains such as weather, bio-medical and bio-metrics,
financial (stock and exchange rates), industrial sensors,
and also video and music streaming, for which the time-
series analysis is applicable. Time-series analysis mainly
includes prediction/forecasting, classification, and clustering
techniques.

A. Network Traffic Forecasting

Nikravesh et al. [35] focus on the importance of resource
management for the mobile network providers as the number
of subscribers is increasing, and efficiency has become a

must-have quality. They apply data analysis techniques to
predict the future behavior of mobile network traffic and
support network operators to maximize resource usage;
preventing both under-provisioning and over-provisioning.
They employ a real-life dataset from a commercial trial mobile
network composed of a million rows and 27 features, each
row representing aggregated (per hour) traffic of one specific
cell in the network from 6K different wireless network cells.
Although, for their experiments, they only focused on one
network cell with the most data points and applied feature
selection to exclude non-correlating features, ended up using
only 168 data points and 24 features. The problem was
formulated as a supervised regression. Their experiment has
two folds: 1) to show if the values of attributes can be used
to predict the value of a single unknown attribute (as target
class), and 2) if prior values of each attribute can be used to
predict its next step’s value. They compare the accuracy of
a fully-connected Neural network in the prediction of future
behavior of mobile networks (number of active pieces of
equipment in downlink), compare to SVM and Multi-Layer
Perceptron with Weight Decay (MLPWD). They show that
MLPWD with sliding window is the best choice if the traffic
data is uni-dimensional. Otherwise, SVM is a better option.

Nie et al. [91] propose a deep belief network and Gaus-
sian model based traffic prediction. The proposed method
first adopts discrete wavelet transform to extract the low-
pass component of network traffic, describing the long-range
dependence of traffic. The low-pass component is modeled
by learning a deep belief network. The rest high-pass com-
ponent that expresses the fluctuations of network traffic, is
modeled by a Gaussian model. Maximum likelihood method
is used for estimation of the parameters of the Gaussian
model. Their dataset is not described in details, but they use
the first 2000 data points for training and 16 data points
for test. They compare their model with two older studies
(principal component analysis (PCA) method [92] and the
Tomogravity method [93]), as well as the Sparsity Regularized
Matrix Factorization method (SRMF) by Roughan et al. [94].
Their proposed prediction method outperforms three existing
methods based on spatial and temporal relative errors (SRE,
TRE).

Zang et al. [36] propose a framework for cellular traffic
prediction by pre-processing the time-series using wavelet
transformation. First, they apply K-means with the Euclidean
distance between base stations as the distance metric,
to identify geographically correlated base stations. Then,
they apply the wavelet transformation to obtain the low
and high-frequency components. They utilize Elman-NN
to predict each of these four components and then using
them, reconstruct the predicted frequency. Their goal is to
predict the next hour traffic value. A real-world traffic data
measurement is used to test their framework. Having data
from 358 BSs at a particular district in a metropolitan, that
each of the BSs records the volumes of GPRS flows over
time (hourly). After K-means clustering, the shape of traffic
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becomes a 50168 matrix with 144 columns for training and
the last 24 columns for prediction and testing. For evaluation,
Normalized Mean Square Error (NMSE), Normalized Mean
Absolute Error (NMAE), and Mean Absolute Percentage
Error (MAPE) was utilized. They discuss the superiority of
wavelength transformation over traditional methods.

In another study on cellular traffic prediction, Wang et al.
[37] capture the spatial-temporal dynamics of cellular traffic
by in-cell and inter-cell decomposition using a graph-based
deep learning approach. For example, in a transit station, the
inter-cell traffic surges at a particular time while in other
locations the in-cell traffic can easily dominate. They employ
GNN toolkit to implement their experiments and compared
the results with LSTM, ARIMA and NAIVE (that predicts
the traffic at time t, based on the traffic at time t of the last
day). They study the characteristics of urban cellular traffic
with large-scale cellular data usage dataset covering 1.5
million users and 5,929 cell towers in a major city of China.
Their dataset has the flow-level data per user and covers the
app-ID and device-ID for 14 days. They use the first 12 days
data (aggregated every half an hour) for training and the
last two days for testing. Evaluation is performed using the
Mean Absolute Error (MAE) and Mean Absolute Relative
Error (MARE). Based on their experiments, they conclude
that spatial dependency and the interaction of spatial and
temporal factors play an important role in accurate and robust
prediction.

Azzouni et al. [38] consider the Network Traffic Matrix
(TM) prediction to estimate the future network traffic
from the previous network traffic data using Long Short-
Term Memory (LSTM) models. Considering the linear
models such as ARMA (Autoregressive Moving Average),
ARIMA (Autoregressive Integrated Moving Average), ARAR
(Autoregressive Autoregressive) and HW (HoltWinters)
algorithm, they compare the results with nonlinear time series
prediction with neural networks. They incorporate a real
traffic data provided by GEANT3 backbone networks, which
is the pan-European research network. Using the 15 minutes
intervals over three days, they have 309 matrices of network
traffic. Using the traffic matrix of N nodes in the network
(NxN ) over time T (NxNxT ), they concatenate rows from
top to bottom to create a vector of size (NxN ) per time
t. A learning window is used to avoid high computational
complexity (as the total number of time slots become too
big over time). Mean Square Error (MSE) is their evaluation
metric for the prediction accuracy. MSE is a scale-dependent
metric which quantifies the difference between the forecasted
values and the actual values. They discuss the MSE over a
different number of hidden layers and hidden units.

Given the wide usage of RNNs for traffic prediction,
Vinayakumar et al. [39] analyze the variation of Recurrent

3https://www.geant.org/Projects/GEANT Project GN4/

Neural Networks (RNNs) to obtain the optimum flavor along
with optimal parameters. Considering different layer numbers,
hidden units, and learning rates, on multiple flavors of RNNs,
they propose an architecture of traffic matrix with a sliding
window on layers of stacked LSTM. Choosing the parameters
to be five layers with 500 units and a learning rate of 0.1.
They use the GEANT public dataset for their experiments.

In a study on prediction of TCP throughput, Mizana et al.
[40] leverage Support Vector Regression (SVR) to predict the
TCP throughput based on basic path characteristics including
available bandwidth (AB), queuing delays (Q), and packet
loss (L). They experiment with passive measurements with
multi-configuration testbed. Comparing the accuracy of SVR
to the exponentially weighted moving average (EWMA)
History-Based Predictor (HB) reveals that for bulk transfers
in heavy traffic, TCP throughput is predicted within 10% of
the actual value for 87% of the time. Overall, their results
suggest approximately a 60% improvement over history-based
methods with a much lower impact on end-to-end paths. They
use the relative prediction error as evaluation metric, which
is the predicted throughput (R1) minus actual throughput (R)
over minimum of R1 and R. They conclude that while AB
feature is not necessary for accurate prediction, a combination
of queuing delays (Q), and packet loss (L) is sufficient.

Summary: Network traffic prediction is a complex question to
be answered, hence, various techniques (traffic matrix, spatial
and temporal separation) and a wide range of models (CNN,
LSTM, NN, ARIMA, HW, SVR) applied on the network traffic
data in order to predict the future behavior of the network
accurately.

B. Ideas to Improve the Prediction

In addition to traditional studies that address a challenge
in the system by forecasting the network traffic and explain
how ML methods can lead to more accurate models, there
are studies that are inspired by tricks and concepts from
other domains and their goal is to improve the forecasting
performance. In this subsection, we review such ideas.

Inspired by the idea of Convolutional Neural Networks
(CNN) with a sparse neural connection that shows comparable
performance compared to the conventional CNNs, Hau et al.
[41] propose Random Connectivity LSTM (RCLSTM) that
contains fewer parameters (35% less neural connections) and
show competitive performance. In their model, they initialize
a random graph, where neurons connections are established
independently in a stochastic manner with a probability of
p. The connection is established if p[i → j] ≥ T where
threshold T indicates the sparsity of neural connectivity.
Their experiments are based on GEANT backbone network
traffic data from 75 workdays, normalized by average over
standard deviation. They compare the effect of the number of
training samples and length of input traffic (range of 10 to
55) on MSE and MAE accuracy measures, reporting accurate
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models on larger and longer input traffic.

De-trending is a well-known method to decompose the
time series for statistical analysis. Recently, Dai et al. [42]
propose that de-trending can improve the performance of
LSTM models. Therefore, they decompose the traffic into a
trend (capturing the fixed temporal pattern) and residual (used
for prediction) series. They propose DeepTrend as a deep
hierarchical neural network. Their model has two layers: a) a
fully connected NN called extraction layer and b) an LSTM
layer used to make flow prediction. To calculate the trend, they
calculate the average of the periodic traffic flow time series
collected in the same station and subtract it from the actual
time-series. Their dataset is collected from 3.9K stations
every 5 min in district 4 of freeway systems across California.
Using the first 12 weeks for training and four weeks for
testing. They consider stations wit less than 1% loss and also
normalized the data per station to be 0 mean and 1 standard
deviation. Using mean square error (MSE) and mean absolute
error (MAE). DeepTrend was able to model the time-series
more accurate compared to LSTM models without detrending.

The prediction uncertainty is essential for assessing how
much to trust the forecast produced by the model and has a
profound impact on anomaly detection. Zhu and Laptev [43]
focus on estimating the uncertainty in time-series predictions
using neural networks on Uber data. They mention that
focusing on Bayesian Neural Networks; the prediction
uncertainty can be decomposed into three types: model
uncertainty, inherent noise, and the model misspecification.
For each, they have proposed a way for calculation for
example: For the model uncertainty, given a new input x, they
compute the neural network output with stochastic dropouts
at each layer. That is, randomly dropout each hidden unit with
certain probability p. This stochastic feed-forward is repeated
B times. Then, the model uncertainty can be approximated by
the sample variance. The model mis-specification deals with
the uncertainty when predicting unseen samples with very
different patterns from the training dataset. To address that,
they use an encoder-decoder. Using the encoder, they extract
the representative features from a time series (decoder will,
later on, reconstruct the time series from the encoded space).
Then, at test time they measure how close is the encoding
of the test samples to the training samples. Using the trip
data from Uber on eight representative large US cities with
three years for training and the following four months for
validation and eight months for testing. They log-scales the
data, removed the first-day value from the rest (to remove the
trend) and fed the data to four models (including a two-layer
stacked LSTM with 128 and 32 units and tanh activation).
They use the sliding window with a 1-day step size and the
Symmetric Mean Absolute Percentage Error (SMAPE) as the
performance metric.

Given the proved performance of Convolutional Neural
Networks (CNNs) in image classification domain, researchers

considered different approaches to convert time series to
images and benefit from CNNs. However, there are a small
number of studies related to this approach in network domain.

Using the 1D time series signals as the input of a modified
CNN architecture, transforming the 1D to 2D matrices and
then applying the CNN [44], [45], and also using multiple
CNNs and using a fully connected NN to leverage multiple
features are among the most popular approaches.

Focusing on road traffic, Ma et al. [46] present a method
of predicting network-wide traffic based on encoding a day
of traffic as an image. This encoding maps time to the x-axis,
sampled network locations to the y-axis and represents the
traffic at a given (location, time)-point as a single-dimensional
“color” value. A convolutional neural network is then trained
over previous images and used to predict future network
behavior based on past network behavior. A comparison with
other machine learning methods is performed using traffic
data collected from taxis on two subnetworks of the Beijing
road system demonstrating an improved accuracy of up to
43% within acceptable execution time.

Encoding of time-series signals to images using Gramian
Angular Fields (GAF) and Markov Transition Fields (MTF)
and then using a tiled CNN is used by Wang et al. on
multiple datasets [44], [45]. Hatami et al. [47] propose to
use the Recurrence Plots (RP) to transform the time-series
into 2D texture images and then take advantage of a deep
CNN classifier (with two hidden layers followed by a fully
connected layer). Results suggests a boost in performance of
Time-series classification rate.

Section Summary: Traffic prediction in mobile networks is
necessary as the number of clients is increasing over time
and resource management becomes more challenging. We
reviewed the applications of ML methods on network traffic
prediction as well as ideas on how to improve the accuracy of
utilized methods. As mentioned, network traffic prediction is
a complex question to be answered, hence, various techniques
(traffic matrix, spatial and temporal separation) and a wide
range of models (CNN, LSTM, NN, ARIMA, HW, SVR)
applied on the network traffic data in order to predict the future
behavior of the network accurately. To improve the accuracy,
novel ideas from other domains, including randomized con-
nection in LSTM, 2D data structure, and conversion to image
and benefiting from CNN models are utilized.

IX. DISCUSSION

There are a large number of studies that leverage ML
techniques or statistical approaches to provide monitoring and
controlling services for network administrators. However, very
small number of such methods are used in the real world
scenarios. Liu et al. [95] explore the root causes and report
that requiring paramter tuning in a manual and iterative way
and configuration of thresholds are among the main reasons
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Fig. 5. Opprentice work process [95]

that offered monitoring services are not practical. This paper
tackles this challenge by Opprentice (Operators’ apprentice),
that operators’ only manual work is to periodically label the
anomalies in the performance data with a convenient tool.
Multiple existing detectors are applied to the performance
data in parallel to extract anomaly features. The Opprentice
architecture is shown in Figure 6 and its work process is
depicted in Figure5. Then the features and the labels are
used to train a random forest classifier to automatically
select the appropriate detector-parameter combinations and the
thresholds. With only 2 parameters and robust in existence of
noise. For simplicity, no feature selection was done. Recall
and precision are used as accuracy criteria and reported to by
above 66% for three different service KPIs in a top global
search engine, as follows:

• search page view (PV)
• slow responses of search data centers (#SR), which is an

important performance metric of the data centers.
• search response time (SRT) This KPI has a measurable

impact on the users’ search experience
In a detailed study [96] (find slides here4) the reasons

behind the limited application of ML-based approaches for
intrusion detection in large-scale and operational environments
are discussed. However, such limitation in some cases can be
applied to all of the discussed domains. They explain how
the ML approaches are not suitable for the task of intrusion
detection:

• lack of training data;
• a very high cost of errors;
• a semantic gap between results and their operational

interpretation;
• enormous enormous variability in input data; and (v) fun-

damental difficulties for conducting the sound evaluation.
They have provided examples of why ML approaches work

in some domains and why not for intrusion detection. For

4Slides: HTTP://oakland10.cs.virginia.edu/slides/anomaly-Oakland.pdf

Fig. 6. Opprentice Architecture [95]

example, since the variation of attacks/anomalies are known
in recommender systems or spamming, there will be enough
training data on both (all) classes, therefore, ML approaches
can be used effectively in the real world.
In terms of High cost of errors, they compare with Product
recommendation systems, OCR technology, and Spam
detection to make the point that in these cases the error
of false positives/negatives are not as vital as it is in the
intrusion detection domain.
The semantic gap refers to the fact that in the intrusion
detection domain, operational expectations are more than
what a current ML technique can deliver. Instead of a large
number of false positives that only mark unseen behaviors
(that can be legitimate or attack), it is expected that the
results be interpreted for the operators.
The local and internal policies should also be considered in
addressing the semantic gap. Addressing such policies as well
as vague guidelines described by an imprecise legal language
are the main issues.
In terms of Diversity of Network Traffic, as network
characteristics are variable over short time ranges (seconds to
hours), it will be hard to predict them. Aggregating network
traffic (time of the day, the day of the week) can be a better
solution and work better.

Summary: All in all, very small number of studies proposed
a practical approach for utilizing the benefits of ML in
networking system, each either focused on a very specific task
or do not discuss and address the limitations of real-world
scenario deployment.
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X. CONCLUSION

This survey reviewed a collection of networking studies
that employ ML techniques. We summarized them into groups
based on their context and then primarily examine how they
use ML techniques and described related issues. Our exam-
ination has led to a number of observations in how these
methods are used by the networking community in recent years
as follows:

• Hyper-parameter tuning and generalization are not dis-
cussed. Therefore, reproducibility will be an issue.

• Feature selection either based on feature importance
analysis or sequential forward selection techniques is not
considered in most of the studies.

• Real-time and link-rate analysis are one of the most criti-
cal system design requirements. ML models are expected
to be interpretable and insights to be actionable.

• Data enrichment approach using external sources and
aggregated available features are considered as a way to
improve the quality of data.

• Performance and security are the most frequently ob-
served areas that these methods have been deployed.

• Recent studies have a tendency toward 1) using real-world
data for evaluation, and 2) Deep learning methods, and
3) and end to end system design that covers the whole
pipeline, from data collection to deployment.

• Supervised learning ( 2-classes classification) is more
prevalent compare to unsupervised methods.

• Quality of labeled data is an issue because it is difficult to
obtain labels in a reliable and scalable manner. The most
common approach is DPI where packet payload is used
to label flows. However, this approach often has limited
coverage as the content is not available or is encrypted.
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