
Verification Techniques for Low-Level Programs
Samuel D. Pollard

February 21, 2019

Mathematics Parallelism Programming

category
theory

distributed
systems

high-level
language

real
analysis

shared memory
parallelism

intermediate
representation

numerical
analysis vectorization assembly

m
or

e
ab

st
ra

ct
io

n

§ 4§ 5

§ 6

Figure 1: An overview of proposed contributions. x→ y means we use x to reason about y.

With a sudden kiss or a fiery stare
Don’t mess up my programs of love
I’ve input hellos and goodbyes so neatly
Everything comes to an end in due time

Plastic Love, Mariya Takeuchi, 1984
but also a proof assistant’s type-checker, probably

Abstract
We explore the application of highly expressive logical
and automated reasoning techniques to the analysis of
computer programs. We begin with an introduction to
formal methods by describing different approaches and
the strength of the properties they can guarantee. These
range from static analyzers, SMT solvers, deductive pro-
gram provers, and proof assistants. We then explore ap-
plications of formal methods to the analysis of interme-
diate representations, verification of floating point arith-
metic, and fine-grained parallelism such as vectorization.
Throughout, we focus on verification techniques applied
to programs written at the lowest level of abstraction in-
cluding binary, bytecode, and assembly languages.

1 Verification of Computation
Verification of the behavior of a computation predates
electronic computers. One reasonable starting point is
1940 with Alonzo Church’s invention of simply typed

lambda calculus (STLC). At first, STLC was invented to
prevent paradoxes like Curry’s paradox. Further study of
STLC inspired computer scientists and mathematicians
to develop increasingly powerful type theory. Program-
ming languages with these features not only help avoid
logical paradoxes and prevent common programming er-
rors but also have deep connections with formal proofs.
By the Curry-Howard isomorphism, proof systems in in-
tuitionistic logic—a logic in which all proofs are construc-
tive and thus computable—correspond exactly to typed
models of computation [132].

Alongside the exponential increase in the complexity
of computers, two interesting phenomena occurred. The
first is the increasing abstraction computer scientists de-
veloped to manage this complexity. The second is the
development of sophisticated type systems, logics, and
proof systems such as the Calculus of Inductive Construc-
tions (CIC), separation logic, and sequent calculus [143].
These allow incredibly expressive logical specifications of
program behavior and machine-checked proofs that im-
plementations match these specifications.

Despite this move towards the highly abstract and ex-
pressive, we cannot escape our roots: the low-level ma-
chine languages upon which computers operate. Ulti-
mately, there is still need for computer programs which
are written at the lowest level of abstraction: bootloaders,
performance-critical code, and compiler optimizations are
performed on languages which interact directly with mi-
croprocessor hardware. Additionally, the increasing het-

1

erogeneity of hardware with the advent of GPUs, FPGAs,
and other accelerators brings with it the need for more
low-level code. This hardware often has vastly different
behavior and performance characteristics which makes
correct and well-performing code difficult to write—and
correct, well-performing, portable code nearly impossible.

This survey presents the most common formal methods
techniques and how they are used to verify low-level pro-
grams. We emphasize that verifying any program hinges
on a description of what we wish to verify—the specifi-
cation. In practice, these specifications range from in-
formal English descriptions (for example, “This program
shall not crash on any input”) to more formal English
specifications (such as IETF RFCs or ISO standards) to
machine-readable and machine-checkable specifications.

Ultimately, all of formal methods fall into two domains.
These are so central to the field we distinguish them ty-
pographically:

Definition 1. Formal specification: writing precise, un-
ambiguous descriptions of what we want a program to do.

Definition 2. Formal verification: how we prove the pro-
gram is correct with respect to this specification.

Verifying any property of a program requires both do-
mains. We can think of specification as the “front end”
or user-facing part of formal methods while verification is
the “back end.”

Another bifurcation of formal methods is model check-
ing versus correct by construction programming (CBCP).
With model checking, the desired program behavior is de-
scribed using a specification language such as TLA+[97],
F? [134]. Correct by construction programming begins
with the user developing in a language with features that
allow the generation and dispatch of proofs of correct-
ness. Examples include Coq [136], HOL/Isabelle [113],
and Agda [114]. We typically get a higher level of assur-
ance with CBCP at the cost of rewriting an application
in a different language. In research, nothing is ever so cut
and dried so some approaches a blend of model checking
and CBCP.

To understand how one may go about verifying compu-
tation, this section continues with a few canonical papers
by Hoare [87], Dijkstra [61], and Reynolds [122] which lay
the foundations of proving the correctness of computer
programs. Next is a discussion on proof assistants (§ 2).
We then describe a workflow for formal methods and some
tools and languages for model checking and CBCP in § 3.

The main portion of this survey describes how these
verification techniques are applied to intermediate rep-
resentations (IRs), assembly language programs, floating
point arithmetic, and low-level parallelism such as Single-
Instruction, Multiple Data (SIMD) parallelism (§ 4–6).

We conclude the survey with some references to formal
methods’ applications and adoption (§ 7) and with a brief
description of potential future research directions.

1.1 Logical Notation
We provide a brief introduction to logic chiefly to estab-
lish a consistent notation. An excellent, more comprehen-
sive introduction is given in the Stanford Encyclopedia of
Philosophy [128].

A predicate or formula is a function mapping from some
domain into the set {True, False}. An example of a do-
main is the set of all pairs of integers (Z × Z) which an
accompanying predicate may be P (x, y) = x + y > 0.
Here, x and y are variables and may only be assigned
values from their appropriate sets.

Now that we have defined predicates, the next natural
step is reasoning about how to combine and modify them.
A branch of logic which accomplishes this is propositional
logic. Predicates in propositional logic may only contain
variables and the following logical operators. These are
also called connectives because they connect one or two
objects.

• and (∧)

• or (∨)

• exclusive or (xor)

• implies (=⇒)

• if and only if (⇐⇒)

• not (¬)

First-order logic contains all of propositional logic with
the addition of quantifiers:

• existential (∃)

• universal (∀)

These quantifiers may only be applied to objects in the
domain. For example, ∀x, y ∈ R, x + y = y + x is a
valid first-order predicate. We sometimes use a period to
separate the statements of an existential quantifier which
reads as “such that.”

Second-order logic allows these quantifiers to be applied
not just to objects in the domain but to properties (that
is, formulas consisting only of logical connectives, quan-
tifiers, and objects). For example, suppose our domain is
the set of pairs of real numbers (R × R) and we wish to
say there is some property that holds regardless of how
you pass in the arguments.

∃P (x, y). ∀x, y P (x, y) ⇐⇒ P (y, x) (1)

where the first ∃ is the second-order quantifier. An exam-
ple of such a P is the statement we can always add two
reals to get a third:

P (x, y) := ∀x, y ∃z. x+ y = z.

We know P is true by commutativity of R, and thus we
can use P to prove (1).

2

A non-example is division; 0/1 is defined but 1/0 is not.
Namely,

Q(x, y) := ∀x, y ∃z. x/y = z

is false.
Higher-order logic includes second-order logic, third or-

der logic, fourth, etc. Third order logic, for example,
would allow quantifiers to be applied to properties about
properties.

With propositional, first-order, and higher-order logic
expressiveness increases while the ability to reason about
the logic decreases. For example, specifying the rules of
chess using first-order logic requires one page of defini-
tions, whereas using propositional logic requires 100,000
pages [125]. Conversely, we can decide the satisfiability
of any propositional logic formula, but in general, this is
impossible for first-order logic.

The logics we see next form the basis of formal methods
and all works throughout use one or several of them.

1.2 Hoare Logic
Hoare logic [87] is the basis for deductive verification.
Hoare logic lays out a scheme for specifying programs via
the notation

P{Q}R
where P is a predicate called a precondition, Q is a pro-
gram, and R is a predicate called the postcondition. These
are referred to as Hoare triples. For example, the axiom
which allows sequencing of statements (a semicolon in
many languages) is described as

If ` P{Q1}R1 and ` R1{Q2}R then P{Q1;Q2}R.

Here ` is read as “entails.” The fact that nothing pre-
cedes ` means the Hoare triples require no prior assump-
tions (such as no initialization of variables). In this fash-
ion, we may specify transformer semantics for all of a
given language’s features.

Building upon Hoare logic, Dijkstra provided a scheme
of predicate transformation so given a program Q and
a postcondition R, one could compute its weakest pre-
condition wp(Q,R) such that any other precondition P
implies wp(Q,R) [61]. For example, the sequence of
two statments (separated by a semicolon) are defined as
wp(S1;S2, R) = wp(S1,wp(S2, R)).

1.3 Separation Logic
Reynolds’ work describes Separation Logic, an extension
of Hoare Logic which allows succinct proofs and descrip-
tions of correctness properties [122]. The primary ideas
in separation logic are separating connectives which de-
scribe the heap memory of a program (as opposed to stack
memory).

Separation logic is based on three primary concepts.
Throughout, p and q represent assertions which may de-
scribe things such as the value at a given memory loca-
tion.

1. Pointers into the heap, x 7→ val. Dereferencing is
denoted by [x] and null pointers by ∅.1

2. Separating conjunction, p∗q. This behaves similarly,
but not equivalently, to logical conjunction ∧.

3. Separating implication, p−∗q. This behaves similarly
to logical implication =⇒.

The separating conjunction says for some assertions p
and q, p ∗ q means we can split the heap into two dis-
joint parts such that p holds for one and q holds for the
other. The separating implication means if p holds for
some heap and we extend the heap with a disjoint part
(think malloc), then q holds for that extended heap.

One can think of ∗ as decomposing the existing heap
whereas −∗ relates to adding new resources to the heap.
For example, suppose we have some assertion which holds
given a heap with a single variable x which points to the
value 12. This is expressed

(x 7→ 12)−∗ p.

Examples of valid p are x 6= ∅ or x = 12. Now, we can
begin to see the usefulness of such a logic by considering
that a heap in a previous, different state can “become
valid” by assigning x to the correct value:

x 7→ 9 ∗ ((x 7→ 12)−∗ p).

A Hoare triple for such a statement might be

{x 7→ 9 ∗ ((x 7→ 12)−∗ p)} [x] := 12 {p}.

This just scratches the surface of separation logic. Im-
portantly, this logic has been proven sound and has been
widely extended. One example is higher-order separation
logic [35]. Additionally, researchers at INRIA encoded
subsets of separation logic in first-order logic to allow in-
tegration with existing specification languages [21].

1.4 Abstract Interpretation
Abstract interpretation was invented by Radhia and
Patrick Cousot [49] in 1977. Abstract interpretation at
its core describes a family of Galois connections between
partially ordered sets (posets). Some examples of Ga-
lois connections are crammed into a paper by Cousot &
Cousot [50]. The theoretical specifics are not necessary
for our discussion; instead, we can think of abstract inter-
pretation as “sound static analysis.” By static analysis,
we mean discovering properties of a program without ex-
ecuting it. Sound means that any property discovered
by the static analyzer will also hold when executing the
program—no false positives.

The key to abstract interpretation is choosing an ab-
stract domain over which to analyze. An example of an

1The original separation logic paper denotes a null pointer as −
but this is confusing to read alongside −∗ and ∗

3

abstract domain over the floating point numbers would
be to consider every floating point value as either zero,
nonzero, infinite, or Not-a-Number (NaN). Thus the ab-
stract domain is the set

A = {0, nnz,±∞,NaN,flt}. (2)

We require the last element “flt” to encompass “any float-
ing point value” because for some operations we cannot
know for certain what the value will be. For example,
f(x) = 1.0/x will not return finite values for all x.

With this abstract domain, we could check if a floating
point operation “behaves nicely,” depending on our defi-
nition of nice. One example might be a division operation
which always returns a finite value. Semantically, there
may not be much use for such a function but that is a
different issue.

To use (2) as our abstract domain, we must calculate
the abstract valuation for the operations we care about.
For this survey, we choose only division and show the
valuation in Table 1.

Table 1: Abstract valuation for division. The column is
the numerator and the row is the denominator. We bold
the column used in Figure 2.

/ 0 nnz NaN ±∞ flt
0 NaN ±∞ NaN ±∞ flt

nnz flt flt1 NaN ±∞ flt
NaN NaN NaN NaN NaN NaN
±∞ 0 0 NaN NaN flt
flt flt flt NaN flt flt

1 For a numerator too close to 0, underflow to 0 can
occur. For a denominator too close to 0, overflow to
±∞ can occur.

To see the use of the abstract domain A, consider the
functions in Listing 2. Each is attempting to compute
f(x) = 1.0/x with the additional goal that f returns ei-
ther 1.0/x if finite, or 0.0 in any other case. We notice
only the second column, nnz, is necessary since the nu-
merator is always 1.0. Therefore, we must consider sev-
eral cases to ensure f returns a finite value. The first,
unsafe, only considers x = 0.0. An abstract interpreter
explores both branches of the conditional and notices in
the else branch it cannot narrow down the scope of x
sufficiently, thus will state that unsafe will return some
flt.

For mostlysafe, we consider the three edge cases for
x: 0, NaN,±∞. These all behave correctly, but for some
nnz we still cannot ensure that 1.0/x is finite because the
reciprocal of sufficiently small floating point numbers can
overflow to ±∞. Therefore, mostlysafe will also return
flt.

This is somewhat of an unsatisfying result. We present
this example because, despite its relative simplicity, we
still require a more complex abstract domain to prove
correctness. We discuss the subtleties of floating point
arithmetic in further detail in § 5. But fear not, to get

#include <math.h>
float unsafe(float x) {
if (x==0.)
return 0.;

else
return 1. / x;

}

#include <math.h>
float mostlysafe(float x) {
if (x==0. ||

isnan(x) || isinf(x))
return 0.;

else
return 1. / x;

}

#include <math.h>
float reallysafe(float x) {
// Cast to int without changing bits
unsigned long c = ∗(unsigned long∗)&x;
if (isnan(x) || isinf(x) ||

(0x80000000 <= c && c <= 0x80200000) ||
(0x00000000 <= c && c <= 0x00200000))
return 0.;

else
return 1. / x;

}

Figure 2: Three functions over which an abstract domain
may be applied. However, reallysafe is the only one
guaranteed to always return a finite value.

some closure we include reallysafe which always returns
a finite value and returns the floating point approximation
1/x for exactly the set of x which do not overflow. We
found these tight bounds through an exhaustive search of
the input space.

There is interest using abstract interpretation over
floating point operations for reproducible BLAS [60] in
applications such as medical diagnosis and legal cases.

1.5 Symbolic Execution
Symbolic execution is based on the idea that in a program
variables can represent logical formulas rather than con-
crete values [27, 40]. Slightly more formally, symbolic ex-
ecution for a variable of type τ generates some expression
representing how values of τ are transformed by a given
program or function. Symbolic execution is a form of
static analysis which generates formulas in propositional
logic to be dispatched to SMT solvers.

Symbolic execution is a popular technique with dozens
of packages implementing techniques ranging from pure
symbolic execution to a mix of concrete and symbolic
(concolic) execution to generate test cases for a given pro-
gram. A survey of symbolic execution techniques is given
by Baldoni et al. [9].

Some popular symbolic execution engines include
Angr [129], primarily designed for security, and
KLEE [34], primarily designed for finding bugs.

Figure 3 shows a conceptual example of how symbolic
execution proceeds. We begin by mapping x and y to
symbolic values A and B, which represent any possible

4

input. At the if statement at line 2, there is a branch in
the symbolic executor which splits the execution into two
possibilities which it must then explore completely. The
right branch is easy because we are done with the program
and no assertions have failed. The left branch is more
interesting. Consider line 4, the statement y = x - y;.
Symbolically, our previous state is

x 7→ A+B, y 7→ B

so subtracting x − y is symbolically equivalent to A +
B − B = A. This sort of transformation is the core of
symbolic execution. Proceeding down the tree and like-
wise the program, we reach the single assertion on line 6.
Substituting the symbolic values in for x and y we get an
infeasible (unreachable) path for B − A > 0 and feasible
(reachable) otherwise. This allows us to verify the asser-
tion will never fail because the only state in which it does
fail is unreachable since A > B being true at the higher
branch implies B −A > 0 is false at the lower branch.
One limitation of symbolic execution is the state space

explosion problem. This arises from the fact that sym-
bolic execution explores all potential execution paths.
This is simple in Figure 3 but for programs with un-
bounded loops it is impossible to completely explore all
paths. Even for relatively simple codes, full symbolic ex-
ecution may be intractable. Thus, researchers may max-
imize code coverage without exploring all paths or trans-
forming programs to reduce the number of branches.

1.6 SMT: Satisfiability Modulo Theories
SMT solvers are to formal methods as matrix multiplica-
tion is to scientific computing: many problems can be ex-
pressed with respect to these algorithms, much work has
gone into optimizing them, and they are often the most
computationally expensive part of a larger algorithm.

Before we get too far ahead of ourselves, we will break
down SMT. Satisfiability relates to the fact that the out-
put of an SMT solver is essentially “yes” or “no” with the
caveat that if “yes” the user may want to know how to
satisfy the formulas. Modulo Theories means the question
of satisfiability is identical but different theories can be
substituted in terms. For example, typical SMT solvers
have theories for integers, lists, arrays, and even floating
point numbers.

For example, if our SMT solver understands the theory
of integer arithmetic then

x+ 2y = 20 ∧ x− y = 2

is satisfiable because both equations are true for x = 8
and y = 6. A non-example is

x > 0 ∧ y > 0 ∧ x+ y < 0.

A good overview of SMT is given by Barrett [16].
Once a problem is reduced to a question of satisfiabil-

ity, there is often a standardized API called SMTLIB [15]

upon which a solver can take over and compute the sat-
isfiability of a given formula.

Some popular SMT Solvers include CVC4 [14], Z3 [59],
Alt-Ergo [94], and OpenSMT [32].

1.7 Summary
Hoare logic, separation logic, abstract interpretation,
symbolic execution, and SMT solvers are the building
blocks of formal methods. Every modern paper regarding
verification is influenced by at least one of these methods.
In the following section we see computer scientists’ efforts
towards a more complete formalization of mathematics
via proof assistants.

2 Proof Assistants
Attempting to cover all of type theory in a couple pages
is a silly endeavor; we instead focus on a few type theory
concepts commonly used in proof assistants. This section
is a compilation of material from Robert Harper’s [81]
and Benjamin Pierce’s [118] books on type theory and
Barendregt’s taxonomy of lambda calculi [11]. Namely,
we discuss the λ cube (a.k.a. Berendregt’s cube) with
special attention on dependent types. We mention par-
ticular proof assistants but provide a more comprehensive
taxonomy in § 3.2.4.

The λ cube shown in Figure 4 describes three dimen-
sions of the many levels of abstraction in typed pro-
gramming languages. Additionally, most proof assistants
are total; they do not allow nonterminating programs
and thus are a useful design space to ensure computable
proofs. We describe the bottom of the cube as the edge
representing our old friend the simply typed lambda cal-
culus, denoted STLC or λ→. At the top is the Calculus
of Constructions (CoC), the language upon which Coq is
based.

In the STLC, values and types are separate and are
never interchangeable. For example, a function which
returns its second argument is written

λ(x : τ1). λ(y : τ2). y (3)

We use cyan to denote types and as we move higher on
the cube types and values become increasingly connected.

A grammar for types could be

τ ::= int | bool | τ → τ . (4)

The two types int and bool are the base types of our gram-
mar and in practice there are more than two.

The following three subsections describe the three axes
starting from λ→.

2.1 λF: System F
Languages based on System F support polymorphism,
which is to say a value can depend on a type. For ex-

5

1 void f(int x, int y) {
2 if (x > y) {
3 x = x + y;
4 y = x − y;
5 x = x − y;
6 assert(x − y > 0);
7 }
8 printf("(%d,%d)\n",x,y);
9 }

x 7→ A
y 7→ B

x 7→ A+B
y 7→ B

x 7→ A+B
y 7→ A

x 7→ B
y 7→ A

x 7→ B
y 7→ A

B −A > 0

x 7→ B
y 7→ A

B −A ≤ 0

A > B

x 7→ A
y 7→ B

A ≤ B

feasible

feasibleinfeasible

Line 1

Line 3

Line 4

Line 5

Line 6Line 6

Line 7

Figure 3: Example to illustrate symbolic execution taken from Emina Torlak [138]. Line numbers in the right graph
indicate the state of the program after the given line. Symbolic execution can determine there are no values of x
and y that make the assertion fail.

λ→

λF

λP

λPF

λω

λFω

λPω

CoC

Figure 4: Three of the many dimensions of type theory.
An arrow x→ y indicates y includes the features of x.

ample, the polymorphic identity function is

∀τ λ(x : τ). x.

In English, this value means “to have a well-formed iden-
tity function, we may simply drop in any τ”. One subtlety
here is we must input a type to get a valid value. Many
modern languages allow type inference where the context
in which a value is used can cause the typechecker to in-
sert the correct type for the polymorphic function. This
allows for cleaner programs and is supported in languages
like Haskell and OCaml.

Other literature may refer to λF as λ2 because, the-
oretically, λF corresponds to second-order intuitionistic
logic via the Curry-Howard correspondence [118, p. 341].

2.2 λω: Type Operators
Type operators can be described as “types depending on
types.” That is, one can write functions which take as
input types and return types. One example would be a
function which takes as input two types and creates a pair
out of them:

λτ1. λτ2. (τ1, τ2)

This is completely cyan for a reason; this is a different λ
which cannot be interchanged with black λs. One valid
mixing would be a function which takes as input a pair,
then returns the first of the pairs.

λ(x : λτ1. λτ2. (τ1, τ2)). fst x

where fst has type (τ1, τ2)→ τ1.
In a more approachable setting, a list is a type opera-

tor. Using Haskell as an example, first consider a regular
function which always returns 0.

zero :: a −> Int
zero _ = 0

Here, a is a type variable. This can stand in for any
type, but the function still takes some value as input.
When creating type operators, there must be a distinction
between functions which take values and functions which
take types as inputs for it does not make sense to write
zero Bool.

Type operators are denoted by a function signature
with special syntax. To give the signature for the list
type operator, we write

[] :: ∗ −> ∗

6

Specifically, [] has kind * -> *; the list constructor takes
a type and returns a different type. This means [] Int
is a perfectly valid type, though this is typically written
[Int]. Similar to type variables, * is called a kind vari-
able and can stand for any type.

2.3 λFω: the Basis for HOL
The combination of type operators and polymorphism
give rise to higher-order logic. This is the basis for, and
the naming of, HOL. One important distinction here is
HOL is classical higher-order logic rather than intuition-
istic.

2.4 λP: Dependent Types
Broadly speaking, dependent types allow a program to
“compute types.” Slightly more formally, in dependently-
typed languages, we may write type definitions that take
as input not just other types but values. Other literature
may refer to dependent types as the λΠ-calculus and use
Π to refer to lambda abstractions which take as input
values and return types. Symbolically,

Π(x : τ1). τ2.

Here is where λ-calculus notation gets confusing. Pre-
viously, we had a clean separation of types and values.
In λω we had functions which accepted kinds and func-
tions which accepted values. Now, we have yet another
function denoted Π which takes values and returns types.

The canonical example of dependent typing is a vector,
or a list of a fixed length. We provide the definition of a
vector in an imaginary language similar to Agda.

data Vec {A} (A : ∗) : N→ ∗

Vec is a type constructor which takes as input some
type and some natural number n and returns the type
of lists of length n. The questions of if and how the
typechecker can know a given value is of type Vec is a
more complex question. Type inference is undecidable for
dependently typed languages [62] so a typechecker only in
some cases can infer the correct type A for polymorphism.

While not strictly required, dependently typed lan-
guages play an important role in formal methods be-
cause they allow strong specifications and theorems to
be checked alongside software development.

Some examples of actively maintained dependently
typed languages are Agda [26], Idris [28], F? [134], and
Twelf [117].

The discussion of dependent types brings up the ques-
tion of what is essential for a proof assistant? By
the Curry-Howard isomorphism, technically any Turing-
complete language will suffice. However, suggest using a
language like Bash to compute a proof and a type the-
orist will laugh (the author has tested this). The rea-
son dependent types are popular for proving properties

of a program is twofold: there is strong theoretical re-
search put into reasoning about dependent types’ proper-
ties and practicality. Also, providing sophisticated typing
systems allows the programmer to specify the properties
completely and statically. Using a dynamically typed lan-
guage to specify theorems is sort of like trying to prove
a theorem without writing down what you’re trying to
prove. This is such a misuse of Definitions 1 and 2 as to
be almost absurd.

2.5 CoC: the Basis for Coq
Dependent types, polymorphism, and type operators to-
gether yield the Calculus of Constructions. Early versions
of Coq were based on CoC (this, paired with its inven-
tor’s surname Coquand may help explain the name). The
current Coq’s core logic includes inductive types and so
is referred to as the Calculus of Inductive Constructions
(CIC) [48].

To describe the CoC, we must first expand on this dis-
tinction between types and values brought up in § 2.4.
With type operators, we distinguished between types
which describe values and kinds which describe type op-
erators. For example, in Haskell 5 has type Int and Int
has kind *. But this raises the question, what is the
“type” of *? We do not have the language to express
such a statement in Haskell, but in the CoC we do. To
describe meta-labeling of types, we use type universes.
Each type universe is distinct from the others to avoid
self-referential type signatures. If we recall, STLC was
created to prevent such self-reference in order to avoid
logical paradoxes. It turns out if you allow something
like * :: * in Haskell (Type : Type in Coq), this leads
to a paradox called Girard’s Paradox [47]. One can think
of this as the type-theoretic equivalent to Russel’s Para-
dox. Russel’s Paradox constructs a set

R = {x | x is a set, x /∈ x}

then asks the question “Is R ∈ R?” The paradox is if
R contains itself, R /∈ R. But since R /∈ R, this fits the
definition of R so R ∈ R. Coq gets around this issue by
enforcing universes; under the hood, Type_0 : Type_1
and so on.

If a logic allows such self-reference it is called impred-
icative. Formally, an object is predicative if it is defined
as a quantification over a type which does not contain
that object [48]. Impredicativity is closely tied with in-
consistency but is also more expressive. Coq has a single
impredicative type called Prop. Below is a listing of some
of the type universes:

(∀ A B : Prop, A ∧ B −> B ∨ B) : Prop
Prop : Type_0
Type_0 : Type_1
Type_1 : Type_2
(∗ And so on... ∗)

7

All the other universes are predicative. Through this
careful distinction, CoC, and therefore Coq, remain con-
sistent [37, Universes Chapter].

2.6 Tactics
Automation of formal methods is limited by three seem-
ingly insurmountable problems. First of all, discovering a
proof of a given proposition is undecidable in general. Ad-
ditionally, for programs of reasonable scale, there tends
to be a combinatorial explosion of the state space. Lastly,
the specifications of what is considered a correct program
may not even be written down (i.e. it only exists in the
mind of the developer). However, languages such as Coq
support the creation of user-specified tactics which guide
a proof assistant into finding proofs of given theorems [37].

A tactic is a program that finds a proof. The nice thing
about Coq is all tactics and proofs compile to a simple,
well-understood kernel. That means an incorrect tactic
or proof will not allow false results to be proven; instead,
generating an incorrect proof will succeed but the check-
ing of a proof will fail. This property of Coq is known
as the de Bruijn criterion. As Chlipala writes, “To be-
lieve a proof, we can ignore the possibility of bugs during
search and just rely on a (relatively small) proof-checking
kernel that we apply to the result of the search.” [37, In-
troduction Chapter]. An overview and history of proof
assistants is given by Geuvers [71], who describes tactics
as a necessary feature for a proof assistant.

Tactics are useful when the structure of a proof of cor-
rectness is dissimilar from the program itself. It is these
cases where languages without some proof automation
are difficult to use because dependent types do not suf-
fice when describing a valid specification. For example,
verifying the correctness of a compiler has very little to do
with the structure of the compiler itself. Namely, a com-
piler’s proof of correctness must refer to the semantics of
the source and target languages which have nothing to
do with how the intermediate representations are trans-
formed during each compiler pass.

2.7 Foundations of Mathematics
Philosophers, mathematicians, and computer scientists
have thought deeply about type theory have developed it
as an alternative foundation of mathematics in contrast
with, for example, Zermelo-Fraenkel set theory. Addi-
tionally, all proof assistants are based on intuitionistic
logic [108] which has the additional requirement of con-
structivism; that all proofs must be computable. To see
the distinction, let us consider a non-constructive proof
to the following theorem.
Theorem 1. In a class with some number of students,
there exists a student such that if s/he gets an A in the
class then everyone in the class gets an A.
Proof. We know at the end of the term one of two pos-
sibilities occur: either everyone gets an A or at least one

person does not. If everyone gets an A, then we may
choose anyone in the class arbitrarily to complete the
proof. Otherwise, that person who did not get an A is
the desired student.

If I’m in a class, my first goal is: I should find that spe-
cial student! But given a classroom we cannot find such a
student, the proof is somehow less satisfying than a con-
structive proof. Beyond this aesthetic shortcoming, the
nonconstructive proof of Theorem 1 relies on the law of
excluded middle which states for any proposition, either A
or ¬A must be true; the problem with a proof using this
law is we cannot know which is true! This has deep conse-
quences with respect to computability. Without getting
into the details, removing the law of excluded middle and
the law of double negation (¬(¬A) ⇐⇒ A) allows a logic
to be intuitionistic and therefore contains only construc-
tive proofs. Programming languages which are based on
constructivism are said to have computational type theory
or CTT [45].

One feature of proof assistants is their ability to formal-
ize a given field of mathematics. Certain combinations of
proof assistants and theories may be intractable. For ex-
ample, Sylvie Boldo et al. give a survey of practical proof
assistants for real analysis which includes HOL, PVS, and
Coq but states ACL2 is not suitable for real analysis and
languages like Agda are not even mentioned [23]. As a
rule of thumb, the more strongly a language is designed
for a particular application, the more pleasant it is to de-
sign in that particular space. Conversely, that language
is less practical for other domains.

For example, Coq has been used to formalize a large
number of theories [52]. However, programming proofs
in Coq may be unwieldy or infeasible for large programs
thus software abstractions are built on top of it such as
Bedrock [36]. Conversely, Twelf is specifically designed
for proofs relating to programming languages but has not
been expanded to domains outside of its use as a meta-
language for programming language properties [130].

2.8 Summary
In this section we described the λ cube (Figure 4) and
how some corners of it have been used as the basis for
various proof assistants. Additionally, we described proof
finding programs, or tactics, and how they contribute to
a proof assistant’s practicality.

The following section describes in further detail the
workflow of a verification researcher as well as provides a
more complete list of state of the art tools.

3 Formal Methods in Practice
Given that a user wants to verify a piece of software, s/he
must make a few design decisions. These begin intention-
ally vague.

8

1. To what degree of confidence must the software be
guaranteed?

2. What tools can be used to accomplish #1?

3. How much time can a human spend on #2? How
much time can a computer spend on #2?

Each has important considerations we address in the fol-
lowing subsections, respectively.

3.1 Degree of Confidence
Given the task of verification, at what point do we be-
come confident enough that a piece of software is cor-
rect? Donald Knuth’s famous quote hints at this chal-
lenge: “Beware of bugs in the above code; I have only
proved it correct, not tried it.” Verily, bugs in software
are ubiquitous. Additionally, verification is only as good
as the specification. One example is a security vulnera-
bility found in the WPA2 WiFi standard which had pre-
viously been proven secure [142]. The exploit did not vi-
olate the verified safety properties but instead exploited
a temporal property, of which the WPA2 specification
was ambiguous. While temporal properties are beyond
the scope of this survey, we must always remember a bug
in any part of the software toolchain, from handwritten
specifications all the way down to hardware implementa-
tions, can be the cause for failure. For example, in 1962
NASA’s Mariner I rocket crashed because of a mistake in
the handwritten formula for a radar timing system [112].
Even worse, the accumulation of errors from representing
0.1 seconds in binary using a fixed-point format resulted
in the deaths of 28 soldiers because of a timing error of a
Patriot missile [141].

Furthermore, one must also know if one can trust the
verifier; a bug in the verification software could cause
false positives or false negatives. The approach to solving
this problem taken by some proof assistants is to create a
small, well-understood kernel upon which all else is built.
The trust is further strengthened by proving existing the-
orems using this kernel, proving the kernel’s correctness
by hand, and checking the results on many computer sys-
tems. This is known as the de Bruijn criterion.

Put another way, we write a proof (which by the Curry-
Howard correspondence is equivalent to the evaluation
of a function), but we must believe the program which
performs the evaluation is correct as well. This is easier
the simpler the evaluator is. We discussed the de Bruijn
criterion in § 2 and Table 3 lists whether various theorem
provers satisfy this criterion.

Epistemology aside, a more practical approach would
be to determine what sort of properties you may want
to prove about a system. For example, consider Figure 5
which attempts to find solutions to a3 + b3 = c3.2

2We use n = 3 to keep the algorithm simple, but it is important
to note a proof for n = 3 has been known for hundreds of years.

Now, there are several questions we may want to ask
about this program. Some are basic safety guarantees.
For example, will the function ipow correctly handle all
integers? In this case, no because n < 0 will most likely
cause a stack overflow. The next question we may ask
is will the program ever pass a negative value into ipow?
We say yes because eventually the integers will overflow
into negative values and cause an error. These sorts of
questions can be answered with symbolic execution then
dispatched to SMT solvers.

A more interesting question is will this program test
every valid combination of a, b, and c? Proving this re-
quires some loop invariants which requires annotating the
source code, but otherwise manageable. Once we’ve done
this, we’ve proven partial correctness of this code. That
is, if the program terminates, then it gives us the right
answer.

The final question we may ask is: Does this program
terminate? In order to answer this question, we need a
proof of Fermat’s Last Theorem, a feat which was left
unanswered until Wiles’ proof in 1995 [146].

Thus, we see the property we wish to prove about a
program ranges from trivial to almost impossible.

int ipow(int x, int n) {
if (n==0) return 1;
return x ∗ ipow(x,n−1);

}
int main() {
int a,b,c,n;
n = 3; c = 0;
while (1) {
c++;
for (a = 1; a < c; a++) {
for (b = 1; b < c; b++) {
if (ipow(a,n)+ipow(b,n)==ipow(c,n))
return 0;

} } } }

Figure 5: A naïve attempt to find a counterexample to
Fermat’s Last Theorem for n = 3.

3.2 Methods for. . . Formal Methods
When selecting a strategy for verification, one must know
what sort of properties may be proven using that strategy.

In his 2016 Milner Award Lecture, Xavier Leroy pro-
vides an illustrative image describing the tradeoff between
interactive and automatic verification [102]. We render
this image in Figure 6.

We provide an overview in Table 2 and follow up with
a more detailed description of each.

Many formal methods concepts rely on these auto-
mated reasoning backends. This is a vast area beyond
the scope of this paper but an excellent reference on au-
tomated reasoning is provided by Harrison [83].

9

Table 2: Categories of formal methods strategies
Method Input Output Notable Example(s)
Static Analyzer source code safe array accesses Astreé [51], Clang [68]
SMT Solvers propositional, 1st-order logic satisfiable/unsatisfiable Z3 [59]
Model Checkers petri nets, büchi automata concurrency safety SPIN [88], Helena [63]
Deductive Program Provers annotated source code partial correctness Why3 [65]
Proof Assistants proof assistant program proof certificate See Table 3

Strength of Claims

A
ut
om

at
io
n

Proof Assistants

Deductive Program Provers

Model Checkers

Static Analyzers

Property-Based Testing

Domain-Specific Provers

Holy Grail

Figure 6: The landscape of formal verification, inspired
by Leroy [102]. Up and to the right is good, but the holy
grail is unattainable.

3.2.1 Static Analyzers

Corporations such as Google [126] and Facebook develop
its own static analyzers. FBInfer is an open-source static
analyzer for C, C++, Objective-C, and Java supported
by Facebook [64]. Google started using FindBugs [8] to
analyze Java programs then developed their own static
analyzer. France’s primary static analyzer is Astreé [19].
One concern of static analyzers such as Clang or FBInfer
is they can produce false positives (valid code is labeled as
invalid) or false negatives (invalid code is labeled as valid).
Tools which faithfully implement abstract interpretation
such as Astreé are sound—no false negatives. Of course,
we must temper our expectations because static analysis
cannot detect all possible errors. However, a large class of
errors such as division by zero, arithmetic overflow, array
out of bounds, and data races can be checked using static
analyzers.

Additionally, the ROSE project from Lawrence Liver-
more National Labs [127] is a source-to-source compiler
which facilitates static analysis of source code and bina-
ries.

Predicate abstraction is a form of abstract interpre-
tation wherein the abstract domain is constructed by a
user-provided collection of predicates regarding program
variables. This is a more robust method of abstraction

than loop invariants and these abstractions can generate
loop invariants. However, deductive program provers can
ultimately prove stronger properties.

The original paper on predicate abstraction uses the
PVS theorem provers [77]. However, more modern ap-
proaches apply predicate abstraction to analyze languages
like Java [66]. The Berkeley Lazy Abstraction Software
Verification Tool (BLAST) [86]. and Microsoft’s SLAM
project used to verify code used in device drivers [10], are
more examples of predicate abstraction which both take
as input C programs.

One prominent static analyzer is Frama-C [53]. This
suite of program analyzers (Frama-C calls them plug-
ins) takes as input annotated C code. These annotations
are written in a language called ANSI/ISO C Specifica-
tion Language (ACSL). The program is then run through
Frama-C which uses various methods including abstract
interpretation, Hoare Logic, as well as deductive verifica-
tion to analyze various properties of the program.

3.2.2 Model Checkers

Model checking is typically separate from the actual pro-
gram. One common use case of model checking is a
machine-readable specification which supplements both
a written description and source code implementation.
Then, the model checker verifies the behavior. To go with
the duality of Definitions 1 and 2, model checkers often
consist of a specification language and checking engine.
The following examples are for modeling and verifying
concurrent and distributed software:

• Modeling language PROMELA and the SPIN model
checker [88].

• Modeling language TLA+ and its checker TLC [97].

• Petri Nets [116] and the Helena [63] model checker.

• NuSMV [38] in its own language which is used to
express finite state machines.

3.2.3 Deductive Program Provers

Deductive Program provers seek to combine static anal-
ysis, SMT solvers, and model checkers to prove strong
properties of a program without requiring full proof as-
sistants. These tools work by annotating a program with

10

a more complete specification. These annotations are typ-
ically embedded in comments in the code. The program
with annotations is used to generate verification condi-
tions which then are dispatched to various backends such
as SMT solvers.

An example of this approach is Why3 [22] from INRIA.
With Why3, specifications are written in WhyML, an
ML-style language extending first-order logic with some
common programming bells and whistles such as alge-
braic data types, polymorphism, and pattern matching.
Why3 aims to be a front end for theorem provers and can
also dispatch verification conditions to Coq.

Additionally, Frama-C is not just a static analyzer be-
cause of its collection of plugins. It fits the description of
deductive program prover because of its reliance on anno-
tation followed by proof dispatch. Another static analyzer
which goes beyond just static analysis is SPARK [12].
SPARK is a formally defined subset of the Ada pro-
gramming language which includes code annotation and
can dispatch verification conditions to the SPADE proof
checker, whether these are proven automatically or man-
ually.

Yet another project from Microsoft Research is
Dafny [99]. which dispatches to other Microsoft projects
like Boogie [13] and Z3 [59].

All these layers of specification languages, intermedi-
ate representations, and proof checkers can get confusing,
even for professionals in the field. To this end, workflows
have been developed in order to manage these levels of
abstraction and decidability [42].

3.2.4 Proof Assistants

In § 2 we provided an overview of proof assistant concepts
while Table 3 taxonomizes several of the most mature or
popular proof assistants. Many of these draw inspiration
from what could probably be considered the first proof
assistant, AUTOMATH, way back in 1968 [55]. Further
developments came from the logic of computable func-
tions (LCF) [75] from which HOL [76], Coq [70], and
NuPRL [46] are descendants. Strictly speaking, HOL is
a family of theorem provers which includes its canonical
implementation HOL4 [131], its most active implemen-
tation Isabelle [113], and HOL Light, an implementation
with a simpler logical kernel [84].

As per Table 3, not all proof assistants satisfy the de
Bruijn criterion. However, this does not mean other au-
tomated theorem provers are untrustworthy per se, just
there are more places in which mistakes in software can
happen. In Coq, any user-generated tactic doesn’t change
the underlying kernel, but a system like ACL2 does not
satisfy the de Bruijn criterion, so extensions must be
much more carefully checked.

A popular and mature proof assistant is Coq [119]. Coq
is regarded as well-understood by the formal methods
community because of the large number of proofs which
have been written in it, most famously a proof of the four-

color theorem [73]. Programs in Coq are written using the
specification language Gallina.

LEAN is a new theorem prover from Microsoft Re-
search [58] which aims to be easily integrated with Mi-
crosoft’s specification language F?.

3.3 Human and Computer Time
Randomized property-based testing such as
QuickCheck [39] requires relatively little human time
but randomized inputs allow an arbitrary amount of
computer time to be spent. Conversely, thinking of spe-
cific, known edge cases will take more human time but
less computer time. This may be useful for Continuous
Integration (CI) scenarios where long-running unit tests
can disrupt the workflow of an active project.

The strongest guarantees such as termination typically
require proof assistants. On the other hand, unambigu-
ous specifications can also be time-consuming to define.
We also note proof assistants are not necessarily fast; a
user may have written tactics which take an unreasonable
amount of time and thus will require more human guid-
ance to have the proof terminate in a reasonable amount
of time. The simplest example of this is writing a tactic
which exhaustively checks all proofs consisting of n terms;
this is akin to attempting to prove a theorem by picking
words out of a hat.

Further automation can be achieved via domain-
specific heuristics. For example, Gappa [56] can search
through a large number of lemmas in real analysis such
as x + y = y + x to guide proofs. However, these lem-
mas are completely useless when reasoning about heap
memory so our quest toward the Holy Grail in Figure 6
is limited.

3.4 Summary
We outlined three questions a researcher must answer
when verifying a program. The first is: what is the
strength of the property we wish to verify? We used the
word strength here to mean to what degree can a program
misbehave while still maintaining our verified property.
For example, a nonterminating program is still partially
correct but we would probably not consider it correct. In
general, the stronger the claim, the more human effort is
required to prove this claim. We then listed and briefly
described popular tools for verification. Lastly, we em-
phasize this tradeoff between human time and computer
time. This section is in some sense just an explanation of
Figure 6.

The next three sections describe applications of these
verification techniques.

4 Intermediate Representations
Before discussing verification techniques for intermediate
representations (IRs) we answer the question: why would

11

Table 3: Characterization of specification and proof languages. Versions and release dates as of January 2, 2019

System de Bruijn
Criterion

Dependent
types Tactics ver-

sion Date Code
generation

Coq yes yes yes 8.8.2 9/’18 OCaml, Scheme, Haskell1
HOL/Isabelle yes no no 2018 8/’18 Scala, OCaml, Haskell, SML2

ACL2 no no yes 8.1 9/’18 N/A
PVS yes3 partial4 yes 7.0 11/’15 Java [100]
Twelf no partial5 no 1.7.1 3/’11 N/A
F? yes6 yes7 yes 0.9.6 5/’18 OCaml, F#
NuPRL no yes yes 58 12/’02 N/A
Agda no yes no 2.5.4.2 10/’18 Haskell
Lean yes yes yes 3.4.1 4/’18 N/A
1 Code generators are not verified; OCaml is much better supported than others.
2 HOL/Isabelle generates code only for certain classes of programs. See Isabelle’s documentation [79] for details.
3 Depends on your definition of simple; Coq and HOL are relatively simple, PVS involves propositional logic solvers
4 Dependent types must be a normal type and a predicate over that type. For example, list may be the normal type, and
the predicate may be the last has nonzero length.

5 Types only compute on a monomorphic λ-calculus
6 If you trust their translation from a λ-calculus extension into the CiC [134].
7 F* is functional but has imperative aspects. Imperative terms are not dependently typed.
8 Metatheory version. NuPRL is in the process of being implemented in Coq [5].

we not just reason about high-level languages or binaries
instead? For one, IRs may have nicer properties than
assembly languages; for example, LLVM’s IR is typed
and has a formal semantics. The translation from IRs to
binary is straightforward so the cost of proving correct
translation is not prohibitively difficult. Despite being
straightforward, this difficulty is non-negligible. However,
one IR can have several different front ends (high-level
languages) and back ends (ISAs). Thus, we get a uni-
fied format to reason about a program which generalizes
easily to multiple programming languages and architec-
tures, depending on the IR used. Additionally, compiler
transformations often operate on source code or an IR
itself so we can more easily verify code transformations
and compilers by verifying the IR.

4.1 Reasoning about Assembly Language
One important contribution to the design of assembly lan-
guages which allows better reasoning about programs is
static single assignment form (SSA), first proposed by
Rosen et al. [123]. SSA is widely used in intermediate
representations (IR) and most of the IRs we describe
throughout this report are in SSA, notably GCC and
LLVM [98]. The defining characteristic of SSA is each
variable is only written to once. SSA facilitates many op-
timizations such as common subexpression elimination.
This is accomplished by introducing φ-nodes in the con-
trol flow graph (CFG). Wherever two or more vertices in
the CFG join, we insert a φ node by replacing the assign-
ment of a variable with φ to indicate the assigned variable
can take one of several values. For example, a join point
can be at the end of an if-then-else statement shown in
Figure 7.

Mechanically verified assembly languages have been
researched since 1989 with the Piton assembly lan-

// initialization
if x < 5 then

x = y + 1
else

x = z + 2
fi
w = x

// initialization
if x1 < 5 then

x1 = y1 + 1
else

x2 = z1 + 2
fi
w1 = φ(x1, x2)

Figure 7: SSA example

guage [106] [107]. However, the most popular IR is
the language used by LLVM IR [98], which surprisingly,
doesn’t have a name other than “LLVM IR.”

After the success of LLVM, Zhao et al. formalized
LLVM’s IR with Vellvm in Coq (Verified LLVM) [149].
Key contributions of Vellvm were formalizing the non-
determinism which arises from the fact that LLVM can
be underspecified (using the undef keyword) as well as
allowing for arbitrary memory models.

4.2 Compilers
As early as 1967, compilation algorithms have been ver-
ified with respect to the source semantics are trans-
lated into a target semantics [91]. However, there is
still the concern whether a programmer’s implementation
matches the algorithm written on paper. In 2000, verified
transformations were applied to GCC [110]. However, it
wasn’t until several years later that a more complete com-
piler verification story was undertaken by Xavier Leroy.

The most prominent project striving for complete
formal verification of a compiler is CompCert, writ-
ten in Coq [101]. In addition, there is an ambitious
project led by Andrew Appel called the Verified Software
Toolchain [6] (VST), of which CompCert is one step. In

12

the VST, the goal is the formal verification of the input
code (viz. static analysis), the compilation (viz. Com-
pCert), and a runtime system (viz. operating system) to
verify a program’s behavior. The VST ultimately also
aims to support concurrent behavior via shared-memory
semaphores.

CompCert and the VST assume the same exact com-
piler is used on all parts of the program. However, modern
software simply is not developed this way because of the
heavy reliance on standard libraries coded in multiple lan-
guages. Amal Ahmed’s research group seeks to address
these issues [115].

Other verification efforts for compiler optimizations in-
clude the Alive project from Microsoft Research [103],
more optimization passes in CompCert [109], and local
optimizations using SMT solvers [33].

4.3 IRs in Practice
Microsoft Research focuses heavily on verification
through domain-specific languages and IRs. For example,
CIVL is a concurrent intermediate verification language
which extends the Boogie intermediate language for con-
current programs [13]. CIVL looks similar to a markup
language for assembly IRs [85].

A project from CMU called the Binary Analysis Plat-
form (BAP) [31] consists of an intermediate language
which makes all side effects of a given assembly instruc-
tion (such as setting condition codes) explicit. BAP sup-
ports subsets of Intel x86 and ARM ISAs and can gener-
ate verification conditions in a weakest-precondition style
specification. BAP can also be used to mine general infor-
mation about a binary such as instruction mixes. Once
the desired postcondition is described, BAP dispatches
the verification of the weakest precondition to an SMT
solver.

One drawback to BAP is its limited support of ISAs.
The complete x86-64 along with vectorized instructions
consist of thousands of instructions so it is difficult for
projects to keep up.

A feature of many binary analyzers is their use of
intermediate representations or intermediate languages
(IR/IL). For example, BAP has its own IL, Valgrind has
VEX. These ILs/IRs are often formally specified (as with
BAP and Vellvm) to remove any ambiguities. Another
benefit of ILs/IRs are the increased portability; support
for a new ISA requires only adding a new parser.

A common theme throughout verification tools is that
the workflow consists of three steps:

1. Annotation of a program, either hand-written or au-
tomatically generated

2. Transformation of this program into an IR via some
semantics such as Hoare logic-style predicate trans-
formers

3. Transform this IR into a common format such as
SMTLib then dispatching to an SMT

In between these steps is often optimization to mitigate
the state space explosion problem.

Other work includes verification of an extension of
MIPS assembly language [2]. Recently, WebAssembly has
been formalized and its type system proved sound in Is-
abelle [144]. WebAssembly is meant to be a target for
high-level languages which can run on web clients and
servers while also using the local machine’s hardware di-
rectly to improve performance. In the trend of hardware
corporations adopting formal methods much better than
software corporations, ARM is also in the process of con-
verting their semantics to a machine-checkable represen-
tation [121].

Microsoft Research has a recent project to combine its
specification language F? and a subset of the Intel x86-64
assembly language to verify hand-optimized code [69].

Last but not least, we give special mention to Val-
grind [111], a tool which consistently surprises people
with its features. Valgrind also has static and dynamic
analysis, concurrency error detection, memory leak check-
ing, and profiling.

5 Floating Point Arithmetic
After the previous discussion on formal methods and ver-
ification, this section may seem out of place. We go
into great detail describing floating point representations
which may seem pedantic. Floating point arithmetic is a
remarkably successful and popular abstraction for good
reason; floating point numbers behave as expected most
of the time. However, situations where they do not be-
have like the real line can be disastrous; floating point
errors have been the cause of some of the most expen-
sive bugs in engineering history [89]. It is only at a high
level of detail can we see some of the subtleties which
make floating point arithmetic difficult to reason about
completely.

5.1 Floats, Bits, and the Real Line
Floating point arithmetic is the workhorse of scientific
computation yet is fundamentally an approximation since
it represents an uncountably infinite set, the real numbers
(denoted R), in a fixed number of bits. While this approx-
imation is usually good enough, we wish to describe when
and how the approximation fails.

The most common encoding of R is the IEEE 754 stan-
dard. We refer to its most recent specification, the 2008
revision [148]. The IEEE 754 standard for floating point
arithmetic is the most ubiquitous standard by far, but we
wish to understand other formats in a unified way. IEEE
754 was first standardized in 1985, so before then float-
ing point arithmetic varied across hardware. We describe
these in § 5.4.

While popular, IEEE floats certainly have their quirks.
For example, having the same bit pattern is neither nec-
essary nor sufficient for two IEEE floats to be considered

13

equal. For example, the bit pattern 0 . . . 0 and 10 . . . 0
represent −0 and +0, respectively, and are equal but
whose bit patterns are not the same. Conversely, Not-
a-Numbers (NaNs) may have the same bit pattern but
are defined to be not equal to every other float, including
the same NaN bit pattern.

A good introduction to the concerns when represent-
ing floating point numbers is described in 1991 by Gold-
berg [72]. From Goldberg, we describe the accuracy of a
floating point operation in terms of units in the last place
or ulp. For example, if the true value of an operation is
1.1 and the floating point representation is 1.125, then
the error is 0.25 ulp. We also use relative error which in
the previous example is

1.125− 1.1/1.124 ≈ 0.147.

When reasoning about floats, naïvely treating floating
point properties as instances of a Satisfiability Modulo
Theories (SMT) can lead to pitfalls [43]. For example,
(5) gives an unsatisfiable proposition; proving this propo-
sition unsatisfiable equates to proving if x ≤ y then it is
impossible for y + z < x+ z for some small z:

(−2 ≤ x ≤ 2)
∧(−2 ≤ y ≤ 2)
∧(−1 ≤ z ≤ 1)
∧(x ≤ y)
∧(y + z < x+ z). (5)

Treating these variables as vectors of bits (“bit blast-
ing”) takes an unreasonable amount of time with even so-
phisticated SAT solvers. This example will be discussed
further in § 5.5

Broadly speaking, formalizations of floating point
arithmetic either treat floating point numbers as sub-
sets of real numbers or as a collection of bits. While
not strictly true (we shall give special attention to a Coq
library called Flocq [24]), this provides a good character-
ization.

Using the “floats as bits” interpretation, bit pattern
quirks of IEEE floats can be easily handled but properties
of real numbers can be intractable to specify.

Using the “floats as reals” interpretation, one can ex-
press any theorem of real analysis and determine how
floating point operations map to these theorems. Li-
braries instead focus on operations on R and how well
floats approximate these operations via the semantics of
rounding. Conversely, real analysis is not understood by
the lowly transistor and real-world code may do strange
things to the bits of a float while still being correct.

5.2 Floating Point Representations
A floating point number is represented as

±kβp

where β > 1 is the radix, p is the exponent, and k is the
mantissa. To make notation a bit3 clearer we use β = 2,
though β = 10 is also widely used.
While we could pick any range for k, in reality ei-

ther 0 ≤ k < 1 or 1 ≤ k < 2. This means we have
k = (1.k1k2k3 · · · kn)b or k = (1.k1k2k3 · · · kn)b. Here the
subscript b indicates the number is expressed using a bi-
nary radix. Since we know the first bit is either 0 or 1
these are omitted with a binary representation and we say
a number is normalized with an implied 1 and subnormal
with an implied 0.

5.3 IEEE 754
The IEEE 754-2008 allows both normalized and subnor-
mal values, though subnormal behave more predictably
because they sacrifice lower precision to represent num-
bers closer to 0.
With IEEE floats, the exponent is an e-bit number.

Values of e are shown in Table 4. Given some bit pattern
representing an unsigned integer p, we compute the actual
exponent as p− bias, where bias = 2e − 1.
One would think this means we have representable ex-

ponents in the range {−2e′−1 − 1, . . . , 2e′−1} (for 32 bits
this is {−127, . . . , 128}) but in reality this range is 2
smaller because an exponent pattern of all 1’s signals
Infinity (Inf) or Not a Number (NaN) and an exponent
pattern of all 0’s signals a subnormal number.
For example, with IEEE 754 half precision, the follow-

ing indicates the smallest normalized float and the largest
subnormal float.

0 00001 0000000000 7→ 2−14 × 1.0b
0 00000 1111111111 7→ 2−14 × 0.1111111111b.

IEEE 754 is implemented such that the result of a float-
ing point operation should be the result of the operation
applied to real numbers (i.e. with infinite precision), then
rounded to fit in the correct number of bits. Practically,
the rounding aspect is the most difficult to reason about
and is the cause of the most insidious floating point bugs.
The IEEE standard defines five exceptions:

1. Invalid Operation, e.g. 0.0×∞

2. Division by Zero

3. Overflow, i.e. to either +∞ or −∞

4. Underflow, i.e. to +0 or −0

5. Inexact, e.g.
√

2

The GNU C library manual describes how they handle
this [137]. Typically if one of the five exceptions occur,
a status word is set and the program continues as nor-
mal. However, one can override this to throw a SIGFPE
exception which can be trapped.

3pun intended

14

Another subtle feature of IEEE 754 is the difference
between quiet and signaling NaNs, (qNaN and sNaN).
Distinguishing between these types of NaNs is hardware-
dependent but are typically differentiated by the most
significant bit of the mantissa. For example, the canonical
sNaN and qNaN for RISC-V are:

#define qNaNf 0x7fc00000
#define sNaNf 0x7f800001

Thus, there is a wide range of valid signaling and quiet
NaNs (252 − 1 different bit patterns are valid NaNs for
double precision floats).

While this is an IEEE specification, not all implemen-
tations (for example, Java) make this distinction between
quiet and signaling because it requires hardware support
and the five exceptions paired with traps sort of already
handle this. Additionally, the behavior of sNaNs is quite
messy because the compiler may optimize away instruc-
tions which would generate these sNaNs, thus not throw-
ing an exception.

Because of this, one might ask the question “Why
would I even bother with signaling NaNs?” One reason
would be to catch floating point errors earlier on. For ex-
ample, one could set an uninitialized floating point value
to a sNaN to raise an exception in all cases rather than
potentially propagating a garbage value. Signaling NaNs
allows catching of some operations in which qNaNs do
not propagate; for example

min(x,NaN) = min(NaN, x) = x

for all x which aren’t NaNs (including ∞!).
The last and most important concept with IEEE floats

is the rounding mode. IEEE 754 specifies four rounding
modes:

1. Round to nearest, ties break to even

2. Round to zero

3. Round to positive infinity

4. Round to negative infinity

The default behavior is typically round to nearest.

5.4 Other Floating Point Formats
We briefly describe other floating point formats which
seek to either address issues with IEEE 754 floats, sim-
plify their implementation for performance, or were in-
vented before IEEE 754’s standardization in 1985.

5.4.1 Posits

Posits are a new floating point format invented by John
Gustafson with strong claims for better performance and
accuracy without actually being implemented in hard-
ware nor much empirical evidence [78]. However, it is an
interesting format which if the claims are correct could
usurp IEEE 754 as the dominant floating point format.

5.4.2 MIL-STD-1750A

MIL-STD-1750A is an open instruction set architecture
describing an instruction set architecture including two
floating point formats [140]. One interesting feature of
the floats of MIL-STD-1750A is since all floating point
values are subnormal, to prevent multiple representations
of the same number all mantissa must be in the range
[−0.5, 0.5]. This means a large number of bit patterns
are invalid floats.

5.4.3 Modifications to IEEE 754

Hardware manufacturers in the interest of performance
may simplify aspects of IEEE floats. For example,
NVIDIA allows flags which do not give full accuracy for
division and square root as well as flushing subnormal
numbers to zero [145]. Additionally, on a GPU traps for
floating point exceptions are typically not supported.

Machine learning hardware may implement a nonstan-
dard 16-bit floating point format called a bfloat (brain
float) which has 8 bits for the exponent and 7 bits for the
mantissa (contrasted with 5 and 10 for IEEE half preci-
sion) [135].

5.5 Formalizations of Floats
One early formal description of floating point arithmetic
was introduced in 1989 [17] defined using the specification
language Z [133] but this formalization is not maintained.

Another formalization of IEEE 754-2008 floats is an ex-
tension to the SMT-Lib Standard done by Brain, Rümmer
and Wahl [124, 30]. This extension supports exceptions,
the usual mathematical operations, and rounding modes.
However, SMT representations are limited because they
essentially only think of floats as their bit-level repre-
sentations and not how they relate to R. This means
an SMT solver when determining bounds of some oper-
ation has no good way to estimate them and in many
cases must exhaustively check all floating point values.
For example, it is difficult to represent a property like
x + y = y + x for floating point arithmetic. Another
example that SMT solvers struggle with was previously
shown in Equation (5).

To address some of these limitations, Brain et al.
developed an Abstract Conflict-Driven Clause Learning
(ACDCL) [29]. This method is based on choosing an
abstract domain over which to apply the CDCL algo-
rithm [104]. ACDCL is one part of an effort to unify ab-
stract interpretation with SAT techniques. As it applies
to floating point arithmetic, ACDCL creates abstract do-
mains for interval arithmetic. So for example, the formula
x = y+ z may restrict y, z ∈ [0, 10]. Thus, interval arith-
metic states x ∈ [0, 20]. This also cannot solve even a
simple problem such as (5) easily because the abstract
domain is not precise enough. Thus, the community re-
quires more expressive theories about floating point op-
erations.

15

Table 4: Some important values for floating point representations
Name Bits Radix e m emin emax
IEEE n 2 e m −2e−1 + 2 2e−1 − 1
half 16 2 5 10 −14 15
single 32 2 8 23 −126 127
double 64 2 11 52 −1022 1023
quad 128 2 15 113 −16, 382 16, 383
posit n 2 e n− 3− e1 −(n− 2)× 2e (n− 2)× 2e
posit 32 2 3 261 −240 240
posit 64 2 4 571 −992 992
1750A 32 2 8 16 −128 127
1750A 48 2 8 32 −128 127

1 Tapered precision; maximum is shown here

Formal verification of floating point arithmetic and nu-
merical algorithms primarily comes from the Toccata re-
search group [1]. One example is creating a specification
of floating point numbers in Coq, called Flocq [24]. Boldo
& Melquiond also wrote a book describing verification of
some numerical algorithms using Flocq [25]. Flocq allows
reasoning about arbitrary rounding modes and is generic
enough to define other floating point formats. However,
there is no concept of overflow since exponents can be of
arbitrary size in Flocq. The authors acknowledge this and
mention it is easier to reason about overflow separately
from correct rounding and error analysis. However, this
still distinguishes Flocq as a library on the side of “floats
as reals.”

In addition to Flocq, there are PFF, Gappa, and
Coq.Interval which accomplish related goals. PFF focuses
on arithmetic without rounding errors and has been sub-
sumed by Flocq [54]. Gappa more closely resembles nu-
merical code written in a C-like language and is designed
to be easily machine-checkable [56, 57]. Coq.Interval is a
library to formalize interval arithmetic and is also mostly
subsumed by Flocq.

The limitations of SMT solvers when reasoning about
real numbers caused Conchon et al. [44] to develop a
method which uses both Gappa and the Alt-Ergo SMT
solver [94]. However, this efficiency comes at the cost
of automation; while Gappa can reason about high-level
properties of floating point arithmetic (e.g. x+y = y+x),
Gappa typically requires source code annotation.

While the most mature package for reasoning about
floats is Flocq, hardware manufacturers have been early
adopters of formal methods and floating point programs
are no exception. Work at AMD [4] using the ACL2
prover focuses on register transfer logic. Additionally at
Intel, Harrison worked on floating point verification using
HOL Light [82]. However, these works are not publicly
available so we do not know if their projects are still ac-
tive.

5.6 Notation
It may also be useful to distinguish between interpreta-
tions of floating point values and R. To the best of our
knowledge, the following set describes all possible float-
ing point values. We use some notation from Flocq [24]
such as f2r but most of this formalization is novel in an
attempt to unify “floats as bits” and “floats as reals.”

F ={NaN, 0,−0,−∞,∞,±∞} (6)
∪ {βe × k0.k1k2 · · · kn | n, e, β ∈ Z, ki ∈ Zβ , β > 1}.

Note that both mathematically and practically speaking
F * R. For any floating point format f which is repre-
sented using n bits, we write a floating point number x
as a string of n bits and so 0 ≤ x < 2n. Henceforth we
write x ∈ Z2n .

The second portion of (6) is a subset of the rational
numbers. This precludes the possibility of irrational num-
bers like

√
2, or π from being represented exactly. This

is an issue, because one would wish floating point arith-
metic in some sense remember its rationality, such as√
x×
√
x = x. Alas, this does not in general hold. As we

have seen with the division example in Table 1 we cannot
even guarantee 1.0

x × x = 1.0 for all finite nonzero x ∈ F.
However, approximations must suffice both for efficiency
and decidability. That not all real numbers are not com-
putable has been proven more generally by a relatively
distinguished computer scientist [139].

We now introduce some mathematical formalizations
similar to Flocq. We begin with some floating point rep-
resentation f . While Flocq does not concern itself with
bitwise representation, we roll this into f . One moti-
vation for this is hardware; specifications such as MIL-
STD-1750A specify floating point operations with respect
to masking, shifting, and adding bits. Similarly, built-in
hardware operations such as tests for equality, absolute
value, or negation could be used on floating point values
as potential optimizations. We present a list of the float-
ing point representations we consider (the set of f ’s) in
Table 5.

We also need three more pieces of notation to under-

16

stand f . Notice in (6) we do not specify an n. We do
this to ensure a float can be represented by some finite
number of bits. This is to allow for the development of
rounding schemes which may need extra bits to compute
the correct rounding but also for generality.

If we must specify exactly the set of representable floats
for a given f we write Ff . For example, with 32-bit posits

Fposit32 = {±∞, 0}∪
{2e × 1.k1k2 · · · k26 | ki ∈ Z2, e ∈ {−240, . . . , 240}}

because there is no NaN, only a single value for infinity,
and mantissas have at most 26 bits. In reality, posits have
tapered precision which means for larger e the mantissa
is shorter (thus requiring the a portion of the least sig-
nificant ki to be 0) but this is a sufficient description for
illustrative purposes.

Next, we need some function interpreting binary as a
float:

b2ff : Z2n → F

and a function interpreting a float as a real

f2rf : F→ R.

These may be quite complicated and messy. For example,
b2ff may be neither total nor injective. In IEEE 754,
many bit strings map to NaN and in MIL-STD-1750A
there are many bit patterns which are not valid floats.
On the other hand, f2rf is typically neither total (NaN
does not map to a real) nor injective (+0 and −0 map to
0 ∈ R).

Along with f we have operators on floats denoted with
a subscript: <f ,=f ,×f , etc. We expect these to behave
similarly to their corresponding operators on real num-
bers but there are important differences.

Lastly, one may wish to have inverses of b2f and f2r.
This is in general impossible because they are usually nei-
ther injective nor surjective. However, analysis of floating
point arithmetic correctness requires us to think of how
R embed into floats. This is done through the various
rounding modes. For some rounding mode r associated
with a floating point format we define

roundr : R→ F.

In contrast with f2r, all rounding functions are total. For
practical reasons, roundr has a canonical binary represen-
tation for each float to which it rounds. To keep notation
cleaner, we overload roundr to map both into F and Z2n ;
the former codomain is preferred when reasoning about
floats more theoretically and the latter when you actually
need to push some bits around.

5.7 Properties of Floating Point Repre-
sentations

We present some examples of properties that help with
reasoning about floating point numbers. A small piece

Table 5: Floating Point Representations
Name NaN Infinite Subnormal Zero(s)
IEEE Yes +∞, −∞ Yes +0,−0
Posit No ±∞ No 0
1750A No No Always 0

of notation is 2C means “two’s complement.” Addition-
ally, while we typically write + these properties are also
desired for multiplication.

1. Monotonicity: if x, y ∈ Z2n ,

x <2C y =⇒ f2r(b2f(x)) <R f2r(b2f(y)).

Intuitively, we wish typical two’s-complement inte-
ger comparison operators to work with floating point
values.

2. Correct Rounding: this is the lofty goal that round-
to-nearest paired with some arithmetic operation,
rounding error doesn’t accumulate. This is in general
false, but knowing the situations in which rounding
error accumulates, and what is the bound on that
error, is incredibly useful for verification.

3. Sterbenz Lemma: informally, if two numbers are suf-
ficiently close then we can exactly represent their dif-
ference (without rounding error).
Formally, Sterbenz Lemma holds for a given floating
point scheme f if

∀x, y ∈ R,
y

2 ≤ x ≤ 2y =⇒

round(x− y) = round(x)−f round(y).

4. Associativity: if x, y, z ∈ Ff ,

(x+ y) + z = x+ (y + z)

This does not hold in general, but we might want to
know what further conditions must hold on x, y, z to
ensure associativity, either with addition or multipli-
cation.

5.8 Summary
Reasoning about floating point arithmetic beyond just the
well-behaved cases is difficult. There exists no complete
unification of the dual interpretation of “floats as bits”
and “floats as reals.” However, packages such as Flocq
are a step in the right direction and we expanded on some
formalizations given in Flocq as a starting point to future
work.

Subsequently, we mention a concept which goes hand-
in-hand with floating point arithmetic on the newest pro-
cessors: SIMD parallelism.

17

6 SIMD Parallelism
We describe efforts toward verification of Single-
Instruction, Multiple-Data parallelism from Flynn’s tax-
onomy of parallel computing [67]. We choose SIMD be-
cause of its increasing prevalence in modern ISAs.

The first approach to describing parallelism formally
was by Robert Keller in 1976 [92]. He described a pro-
gram as a set of states Q and a transition relation →, a
binary relation on Q. Importantly, for some q ∈ Q, there
may be many q′ such that q → q′; these represent the in-
terleavings of execution traces. The groundwork laid by
Robert Keller has influenced verification techniques such
as TLA+ [97]. However, the verification of only SIMD
parallelism is much more limited and most research is
done with the KLEE symbolic execution engine.

Existing symbolic execution tools such as KLEE have
been used to verify the correctness of vectorized code us-
ing a technique called symbolic crosschecking [41]. With
this approach, the vectorized code is expressed as sym-
bolic operations, then checked against a serial equivalent.
This approach is conservative because it ensures the ex-
act same operations are performed with SIMD code and
symbolic code. Interestingly, Collingbourne et al. claim
there exists no floating point constraint solvers available.
However, in 2001 Michel et al. presented a floating point
constraint solver [105]. Collingbourne may not have no-
ticed or considered the work by Michel because of its lack
of mechanization and focus on test pattern generation.
Another related project is called FloPSy, a floating-point
constraint solver for symbolic execution, the underlying
technique of KLEE [96]. Regardless, there is not a large
amount of work being done in this area.

Instead, researchers interested in performance focus
more on higher level error analysis rather than efficient
translation of SIMD operations. For examples of such ef-
forts, we direct the reader to the Correctness Workshop at
Supercomputing [95] and the US Department of Energy’s
summit on Correctness for HPC [74].

A common strategy for SIMD parallelization is through
compiler directives such as OpenMP or Intel Thread
Building Blocks (TBB). Blom, Darabi, and Huisman cre-
ate a separation logic-based approach to prove indepen-
dence between loop iterations [20].

Intermediate representations (IRs) are at a surface
level attractive for handling verification of parallel pro-
grams: heterogeneity of hardware and programming mod-
els should hopefully not require different verification tech-
niques when the underlying concepts (happens-before re-
lations, synchronization, atomic operations) are the same.
In practice, IRs are often less mature than source pro-
grams. Additionally, the implementer must know yet an-
other programming model.

One attempt at using IRs is a symbolic execution-based
model checker called CIVL [150]. This compiles vari-
ous parallel programming paradigms into an intermedi-
ate representation, CIVL-C, as long as the input pro-

gram is written in a C-like language such as CUDA-C,
MPI, OpenMP, and can handle hybrid parallelism. This
should not be confused with the aforementioned CIVL
project from Microsoft Research used to reason about the
correctness of concurrent programs [85].

7 Conclusion
We presented a survey of verification techniques for low-
level programs. By low-level, we mean code written in
binary, assembly, intermediate representations and pro-
grams which interact directly (or nearly-directly) with
hardware. We began by describing the logics and canon-
ical verification techniques used in all of formal methods
(§ 1). In § 2, we discussed proof assistants and some
type-theoretical bases for them. In § 3, we listed formal
methods tools and how they are used. These provided the
background information to explain three applications of
formal methods, each to important abstractions in com-
puter science. The first was intermediate representations
§ 4, the second was floating point arithmetic § 5, and the
final was SIMD parallelism § 6. Key abstractions such as
high-level programming languages, compilers, and float-
ing point arithmetic have allowed programmers to man-
age the incredible complexity of modern hardware and
software. In this survey, we provided a more complete
picture of how computer scientists reason about the cor-
rectness of programmers on programs which do not use
these critical abstractions.

7.1 Other Formal Methods Surveys
Formal verification encompasses a wide range of disci-
plines including mathematical logic, type theory, soft-
ware engineering, and programming languages. A survey
of formal methods is described by Woodcock et al. in
2009 [147]. A brief introduction to formal proofs is given
by Hales [80]. A previous area exam by Johnson-Freyd fo-
cuses on formal methods using temporal logic [90]. Tem-
poral logic refers to logical systems whose propositions
are temporally dependent and properties. For example, a
temporal invariant for a job scheduler would be, “for all
n less than the total nodes of a cluster, a job of size n in
the queue will eventually be scheduled.”

With large codebases, it often becomes intractable to
formerly verify behavior. In these cases, hybrid tech-
niques such as automatic test pattern generation can be
employed. A survey of these approaches is provided by
Bhadra et al [18].

Additionally, Sandia National Laboratories has pub-
lished a survey of existing verification tools for both hard-
ware and software [7].

7.2 Formal Methods in the Wild
One complaint about formal methods in general is it is too
expensive, either in computer or human time [93]. One

18

factor in this complaint is many approaches to formal
methods are either exponential, such as checking satisfi-
ability, or undecidable, such as proving total correctness.
While not considered formal methods, even the effect of
statically versus dynamically-typed languages on produc-
tivity and code quality is unclear [120] and has a limited
amount of research.4
Software engineering and formal methods are ulti-

mately human endeavors but to the best of our knowl-
edge, there is no academic study relating code quality,
human effort, and the degree of formal methods used. Ev-
idence of its efficacy can be found in the avionics industry
which is heavily dependent on formal methods, both in
practice and by regulation [102]. That huge companies
such as Airbus, AMD, and Intel as well as the French
and United States [3] governments support formal meth-
ods hints not only at its profitability but of its value to
society.

Slowly but steadily, the percolation of computing into
our lives is causing computer scientists and software en-
gineers alike to realize the importance of writing correct
software and formal methods’ central role in achieving
this goal.

7.3 Future Work
One thing which is lacking with floating point verification
is the unification of “floats as bits” and “floats as reals.”
Flocq seems like a nice formalization but also has a lot of
overhead in order to get the nice theorems we want; the
binary representation of IEEE 754 is 2,100 lines of Coq,
describing when something is NaN, infinity, finite, etc.
but also providing semantics and proving correctness of
square root, negation, absolute value, comparison, trun-
cation, rounding, multiplication, division, addition, and
subtraction. For strictly “floats as bits,” SMT solvers
may suffice but must be reconciled with the real analysis
of Flocq. Additionally, I’m interested in applying Ltac,
Coq’s tactic language, to make the generation of these
proofs less painful for the MIL-STD-1750A. Ultimately, I
aim to formalize floating point numbers such that IEEE
754, MIL-STD-1750A, and Posit representations can all
be described using the same representation.

My summer research at Sandia in 2018 focused on a
project called Quameleon which translates assembly and
binary programs into its own intermediate representation
QIL, then runs analyses using various backends such as
symbolic executors or Hoare logic-style predicate trans-
formers. As of January 2019, Quameleon supports to var-
ious degrees the M6800, MIL-STD-1705A, and MIPS32
instruction set architectures.

In the longer term, my goal is to look at floating point
SIMD compiler transformations which are error-aware
since existing approaches are either too conservative by

4A collection of other surveys are given at https://danluu.com/
empirical-pl/

enforcing identical ordering, or are too liberal by assum-
ing associative floating point arithmetic [41]. We direct
the reader once again to Figure 1 and its three arrows,
each roughly corresponding to a chapter of my proposed
dissertation. Quameleon will be a tool and IR used to
reason about assembly language programs in a hardware-
agnostic fashion. Formalization of floating point arith-
metic will use numerical analysis and formal methods to
reason about assembly language programs. Vectorization
techniques require both numerical analysis and knowl-
edge of assembly language semantics to reason about the
correctness of parallel programs while also maintaining
the best efficiency. These together will provide computer
scientists with better techniques to verify low-level pro-
grams.

Acknowledgements
I am grateful to Philip Johnson-Freyd and Geoff Hulette
for taking a chance hiring me as an intern, funding me,
and for first getting me hooked on formal methods. Of
course, thanks to my advisor Boyana Norris for support-
ing me while I veer (mostly) away from HPC. Thanks also
Zena Ariola and Hank Childs for reviewing my work.

References
[1] Toccata: Formally verified programs, certified tools

and numerical computations. Website at http://
toccata.lri.fr/fp.en.html.

[2] Affeldt, R., and Marti, N. An approach to
formal verification of arithmetic functions in assem-
bly. In 11th Asian Computing Science Conference
(Tokyo, Japan, Dec. 2006), M. Okada and I. Satoh,
Eds., Advances in Computer Science — ASIAN
2006. Secure Software and Related Issues (LNCS
4435), Springer, pp. 346–360.

[3] Amla, N., Banerjee, A., Chaudhary, V.,
Cosley, D. R., Donlon, J., Fisher, D. L.,
Greenspan, S., and Khan, S. Formal methods
in the field (FMitF): Program solicitation. Tech.
rep., Alexandria, VA, USA, Sept. 2018.

[4] an Arthur Flatau, D. M. R. Mechanical ver-
ification of register-transfer logic: A floating-point
multiplier. In Computer-Aided Reasoning: ACL2
Case Studies, M. Kaufmann, P. Manolios, and J. S.
Moore, Eds. Kluwer Academic Publishers, Dor-
drecht, Netherlands, June 2000.

[5] Anand, A., and Rahli, V. Towards a for-
mally verified proof assistant. In Interactive
Theorem Proving (Vienna, Austria, July 2014),
G. Klein and R. Gamboa, Eds., ITP (LNCS

19

https://danluu.com/empirical-pl/
https://danluu.com/empirical-pl/
http://toccata.lri.fr/fp.en.html
http://toccata.lri.fr/fp.en.html

8558), Springer International Publishing, pp. 27–
44. Repository available at https://github.com/
vrahli/NuprlInCoq.

[6] Appel, A. W. Verified software toolchain.
In Proceedings of the 20th European Conference
on Programming Languages and Systems (Saar-
brücken, Germany, Mar. 2011), ESOP/ETAPS
(LNCS 6602), Springer, pp. 1–17.

[7] Armstrong, R. C., Punnoose, R. J., Wong,
M. H., and Mayo, J. R. Survey of existing tools
for formal verification. Tech. rep., Sandia National
Laboratories, Albuquerque, NM, USA, Dec. 2014.

[8] Ayewah, N., Hovermeyer, D., Morgen-
thaler, J. D., Penix, J., and Pugh, W. Using
static analysis to find bugs. IEEE Software 25, 5
(Sept. 2008), 22–29.

[9] Baldoni, R., Coppa, E., D’Elia, D. C., Deme-
trescu, C., and Finocchi, I. A survey of sym-
bolic execution techniques. ACM Computing Sur-
veys 51, 3 (July 2018), 50:1–50:39.

[10] Ball, T., Majumdar, R., Millstein, T., and
Rajamani, S. K. Automatic predicate abstrac-
tion of C programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation (Snowbird, UT, USA,
June 2001), PLDI ’01, ACM, pp. 203–213.

[11] Barendregt, H. P. Lambda calculi with types. In
Handbook of Logic in Computer Science, S. Abram-
sky, D. M. Gabbay, and S. E. Maibaum, Eds., vol. 2.
Oxford University Press, Inc., New York, NY, USA,
1992, pp. 117–309.

[12] Barnes, J. High Integrity Software: The SPARK
Approach to Safety and Security. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[13] Barnett, M., Chang, B.-Y. E., DeLine, R.,
Jacobs, B., and Leino, K. R. M. Boogie: A
modular reusable verifier for object-oriented pro-
grams. In Formal Methods for Components and Ob-
jects (Amsterdam, Netherlands, Nov. 2006), F. S.
de Boer, M. M. Bonsangue, S. Graf, and W.-P.
de Roever, Eds., FMCO (LNCS 4111), Springer,
pp. 364–387.

[14] Barrett, C., Conway, C. L., Deters, M.,
Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., and Tinelli, C. Cvc4. In 23rd
International Conference on Computer Aided Veri-
fication (Snowbird, UT, USA, 2011), G. Gopalakr-
ishnan and S. Qadeer, Eds., CAV (LNCS 6806),
Springer, pp. 171–177.

[15] Barrett, C., Fontaine, P., and Tinelli, C.
The SMT-LIB standard: Version 2.0. In Proceed-
ings of the 8th International Workshop on Satisfia-
bility Modulo Theories (Edinburgh, UK, July 2010),
CAV 2010 and SAT 2010, pp. 1–14.

[16] Barrett, C., and Tinelli, C. Satisfiability mod-
ulo theories. In Handbook of Model Checking, E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem,
Eds. Springer International Publishing AG, Basel,
Switzerland, 2018, pp. 305–343.

[17] Barrett, G. Formal methods applied to a
floating-point number system. IEEE Transactions
on Software Engineering 15, 5 (May 1989), 611–621.

[18] Bhadra, J., Abadir, M. S., Wang, L.-C., and
Ray, S. A survey of hybrid techniques for func-
tional verification. IEEE Design Test of Computers
24, 2 (Mar. 2007), 112–122.

[19] Blanchet, B., Cousot, P., Cousot, R.,
Feret, J., Mauborgne, L., Miné, A., Mon-
niaux, D., and Rival, X. Design and Imple-
mentation of a Special-Purpose Static Program An-
alyzer for Safety-Critical Real-Time Embedded Soft-
ware. LNCS 2566. Springer, Berlin, Heidelberg,
2002, pp. 85–108.

[20] Blom, S., Darabi, S., and Huisman, M. Ver-
ification of loop parallelisations. In Fundamen-
tal Approaches to Software Engineering (London,
UK, 2015), A. Egyed and I. Schaefer, Eds., FACE
(LNCS 9033), Springer, pp. 202–217.

[21] Bobot, F., and Filliâtre, J.-C. Separation
predicates: A taste of separation logic in first-order
logic. In Formal Methods and Software Engineering
(Kyoto, Japan, Nov. 2012), T. Aoki and K. Taguchi,
Eds., ICFEM (LNCS 7635), Springer, pp. 167–181.

[22] Bobot, F., Filliâtre, J.-C., Marché, C., and
Paskevich, A. Why3: Shepherd your herd of
provers. In 23rd International Conference on Au-
tomated Deduction (Wroclaw, Poland, 2011), First
International Workshop on Intermediate Verifica-
tion Languages: Boogie, pp. 53–64.

[23] Boldo, S., Lelay, C., and Melquiond, G. For-
malization of real analysis: A survey of proof as-
sistants and libraries. Tech. rep., Laboratoire de
Recherche en Informatique, Université Paris-Sud,
Apr. 2013. Working paper.

[24] Boldo, S., and Melquiond, G. Flocq: A uni-
fied library for proving floating-point algorithms in
coq. In Proceedings of the 20th IEEE Symposium
on Computer Arithmetic (Tübingen, Germany, July
2011), E. Antelo, D. Hough, and P. Ienne, Eds.,
ARITH ’11, IEEE Computer Society, pp. 243–252.

20

https://github.com/vrahli/NuprlInCoq
https://github.com/vrahli/NuprlInCoq

[25] Boldo, S., and Melquiond, G. Computer Arith-
metic and Formal Proofs: Verifying Floating-Point
Algorithms with the Coq System, 1st ed. ISTE Press
- Elsevier, UK, Nov. 2017.

[26] Bove, A., Dybjer, P., and Norell, U. A
brief overview of agda – a functional language
with dependent types. In Theorem Proving in
Higher Order Logics (Munich, Germany, Aug.
2009), S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, Eds., TPHOLs (LNCS 5674), Springer,
pp. 73–78.

[27] Boyer, R. S., Elspas, B., and Levitt, K. N.
SELECT–a formal system for testing and debug-
ging programs by symbolic execution. In Pro-
ceedings of the International Conference on Reli-
able Software (Los Angeles, CA, USA, Apr. 1975),
ACM, pp. 234–245.

[28] Brady, E. Idris, a general-purpose dependently
typed programming language: Design and imple-
mentation. Journal of Functional Programming 23,
5 (2013), 552âĂŞ–593.

[29] Brain, M., D’Silva, V., Griggio, A., Haller,
L., and Kroening, D. Deciding floating-point
logic with abstract conflict driven clause learn-
ing. Formal Methods in System Design 45, 2 (Oct.
2014), 213–245.

[30] Brain, M., Tinelli, C., Ruemmer, P., and
Wahl, T. An automatable formal semantics for
IEEE-754 floating-point arithmetic. In IEEE 22nd
Symposium on Computer Arithmetic (Lyon, France,
June 2015), ARITH 22, pp. 160–167.

[31] Brumley, D., Jager, I., Avgerinos, T., and
Schwartz, E. J. BAP: A binary analysis plat-
form. In 23rd International Conference on Com-
puter Aided Verification (Snowbird, UT, USA, July
2011), CAV (LNCS 6806), Springer, pp. 463–469.

[32] Bruttomesso, R., Pek, E., Sharygina, N.,
and Tsitovich, A. The OpenSMT solver. In
Proceedings of the 16th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems (Paphos, Cyprus, Mar. 2010),
TACAS ’10, Springer-Verlag, pp. 150–153.

[33] Buchwald, S. Optgen: A generator for local op-
timizations. In Proceedings of the 24th Interna-
tional Conference on Compiler Construction (Apr.
2015), B. Franke, Ed., CC (LNCS 9031), Springer,
pp. 171–189.

[34] Cadar, C., Dunbar, D., and Engler, D.
KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference

on Operating Systems Design and Implementation
(San Diego, CA, USA, Dec. 2008), OSDI ’08,
USENIX Association, pp. 209–224.

[35] Chlipala, A. Mostly-automated verification of
low-level programs in computational separation
logic. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and
Implementation (San Jose, CA, USA, June 2011),
PLDI ’11, ACM, pp. 234–245.

[36] Chlipala, A. The bedrock structured program-
ming system: Combining generative metaprogram-
ming and hoare logic in an extensible program ver-
ifier. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Program-
ming (Boston, MA, USA, Sept. 2013), ICFP ’13,
ACM.

[37] Chlipala, A. Certified Programming with Depen-
dent Types: A Pragmatic Introduction to the Coq
Proof Assistant. The MIT Press, 2013.

[38] Cimatti, A., Clarke, E., Giunchiglia, E.,
Giunchiglia, F., Pistore, M., Roveri, M., Se-
bastiani, R., and Tacchella, A. Nusmv 2:
An opensource tool for symbolic model checking.
In Computer Aided Verification (Copenhagen, Den-
mark, July 2002), E. Brinksma and K. G. Larsen,
Eds., CAV (LNCS 2404), Springer, pp. 359–364.

[39] Claessen, K., and Hughes, J. Quickcheck: A
lightweight tool for random testing of haskell pro-
grams. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Program-
ming (Montreal, Canada, Sept. 2000), ICFP ’00,
ACM, pp. 268–279.

[40] Clarke, L. A. A system to generate test data and
symbolically execute programs. IEEE Transactions
on Software Engineering 2, 3 (Sept. 1976), 215–222.

[41] Collingbourne, P., Cadar, C., and Kelly,
P. H. J. Symbolic crosschecking of floating-point
and simd code. In Proceedings of the Sixth Con-
ference on Computer Systems (Salzburg, Austria,
Apr. 2011), EuroSys ’11, ACM, pp. 315–328.

[42] Conchon, S., Contejean, E., Kanig, J., and
Lescuyer, S. Lightweight integration of the ergo
theorem prover inside a proof assistant. In Proceed-
ings of the Second Workshop on Automated For-
mal Methods (Atlanta, GA, USA, 2007), AFM ’07,
ACM, pp. 55–59.

[43] Conchon, S., Iguernelala, M., Ji, K.,
Melquiond, G., and Fumex, C. A three-tier
strategy for reasoning about floating-point num-
bers in smt. In 29th International Conference

21

on Computer Aided Verification (Heidelberg, Ger-
many, July 2017), V. Kuncak and R. Majum-
dar, Eds., CAV (LNCS 10426, 10427), Springer,
pp. 419–435.

[44] Conchon, S., Melquiond, G., Roux, C., and
Iguernelala, M. Built-in treatment of an ax-
iomatic floating-point theory for smt solvers. In
10th International Workshop on Satisfiability Mod-
ulo Theories (Manchester, United Kingdom, June
2012), P. Fontaine and A. Goel, Eds., SMT ’12,
pp. 12–21.

[45] Constable, R. L. Computational type theory.
Scholarpedia 4, 2 (2009), 7618. revision #130876.

[46] Constable, R. L., Allen, S. F., Bromley,
H. M., Cleaveland, W. R., Cremer, J. F.,
Harper, R. W., Howe, D. J., Knoblock,
T. B., Mendler, N. P., Panangaden, P.,
Sasaki, J. T., and Smith, S. F. Implement-
ing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1986.

[47] Coquand, T. An analysis of girard’s paradox.
Tech. Rep. RR-0531, INRIA, May 1986.

[48] Coquand, T., and Huet, G. The calculus of
constructions. Information and Computation 76, 2
(1988), 95–120.

[49] Cousot, P., and Cousot, R. Abstract inter-
pretation: A unified lattice model for static anal-
ysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (Los Angeles, CA, USA,
Jan. 1977), POPL ’77, ACM, pp. 238–252.

[50] Cousot, P., and Cousot, R. A galois connection
calculus for abstract interpretation. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (2014),
POPL ’14, ACM, pp. 3–4.

[51] Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., Monniaux, D.,
and Rival, X. The ASTREÉ analyzer. In Euro-
pean Symposium on Programming Languages and
Systems (Edinburgh, UK, Apr. 2005), M. Sagiv,
Ed., ESOP (LNCS 3444), Springer, pp. 21–30.

[52] Cruz-Filipe, L., Geuvers, H., and Wiedijk,
F. C-CoRN, the constructive coq repository at
nijmegen. In Proceedings of the 3rd International
Conference on Mathematical Knowledge Manage-
ment (Bialowieza, Poland, Sept. 2004), MKM,
pp. 88–103. Available at http://corn.cs.ru.nl.

[53] Cuoq, P., Kirchner, F., Kosmatov, N., Pre-
vosto, V., Signoles, J., and Yakobowski,
B. Frama-c. In Software Engineering and For-
mal Methods (Thessaloniki, Greece, Oct. 2012),
G. Eleftherakis, M. Hinchey, and M. Holcombe,
Eds., SFEM (LNCS 7504), Springer, pp. 233–247.

[54] Daumas, M., Rideau, L., and Théry, L. A
generic library for floating-point numbers and its
application to exact computing. In 14th Interna-
tional Conference on Theorem Proving in Higher
Order Logics (Edinburgh, United Kingdom, Sept.
2001), R. J. Boulton and P. B. Jackson, Eds.,
TPHOLs (LNCS 2152), Springer, pp. 169–184.

[55] de Bruijn, N. G. AUTOMATH, a Language
for Mathematics, vol. 2, 1967–1970 of Automation
of Reasoning: Classical Papers on Computational
Logic. Springer, Berlin, Heidelberg, 1983, pp. 159–
200.

[56] de Dinechin, F., Lauter, C., and Melquiond,
G. Certifying the floating-point implementation of
an elementary function using gappa. IEEE Trans-
actions on Computers 60, 2 (Feb. 2011), 242–253.

[57] de Dinechin, F., Lauter, C. Q., and
Melquiond, G. Assisted verification of elementary
functions using gappa. In Proceedings of the ACM
Symposium on Applied Computing (Dijon, France,
2006), SAC ’06, ACM, pp. 1318–1322.

[58] de Moura, L., Kong, S., Avigad, J.,
Van Doorn, F., and von Raumer, J. The lean
theorem prover (system description). In Interna-
tional Conference on Automated Deduction (Berlin,
Germany, Aug. 2015), CADE-25, Springer, pp. 378–
388.

[59] de Moura, L. M., and Bjørner, N. Proofs and
refutations, and Z3. In 7th International Workshop
on the Implementation of Logics at the 15th In-
ternational Conference on Logic for Programming,
Artificial Intelligence and Reasoning (Doha, Qatar,
Nov. 2008), IWIL LPAR 2008.

[60] Demmel, J., Ahrens, P., and Nguyen, H. D.
Efficient reproducible floating point summation and
blas. Tech. Rep. UCB/EECS-2016-121, EECS De-
partment, University of California, Berkeley, June
2016.

[61] Dijkstra, E. W. Guarded commands, nondeter-
minacy and formal derivation of programs. Commu-
nications of the ACM 18, 8 (Aug. 1975), 453–457.

[62] Dowek, G. The undecidability of typability in the
lambda-pi-calculus. In Typed Lambda Calculi and
Applications (Utrecht, Netherlands, Mar. 1993),
M. Bezem and J. F. Groote, Eds., TLCA (LNCS
664), Springer, pp. 139–145.

22

http://corn.cs.ru.nl

[63] Evangelista, S. High level petri nets analysis
with helena. In Proceedings of the 26th Interna-
tional Conference on Applications and Theory of
Petri Nets (Miami, FL, USA, June 2005), ICATPN
’05, Springer-Verlag, pp. 455–464.

[64] Facebook Open Source Community. Infer: A
tool to detect bugs in java and c/c++/objective-
c code before it ships. Available at https://
fbinfer.com, 2019.

[65] Filliâtre, J.-C., and Paskevich, A. Why3
— where programs meet provers. In 22nd Euro-
pean Symposium on Programming: Programming
Languages and Systems (Rome, Italy, Mar. 2013),
M. Felleisen and P. Gardner, Eds., ESOP (LNCS
7792), Springer, pp. 125–128.

[66] Flanagan, C., and Qadeer, S. Predicate ab-
straction for software verification. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Portland,
OR, USA, 2002), POPL ’02, ACM, pp. 191–202.

[67] Flynn, M. J. Some computer organizations and
their effectiveness. IEEE Transactions on Comput-
ers C-21, 9 (Sept. 1972), 948–960.

[68] Foundation, L. Clang static analyzer. https:
//clang-analyzer.llvm.org. Accessed 15 Jan.
2018.

[69] Fromherz, A., Giannarakis, N., Hawblitzel,
C., Parno, B., Rastogi, A., and Swamy, N. A
verified, efficient embedding of a verifiable assembly
language. Proceedings of the ACM on Programming
Languages 3, POPL (Jan. 2019), 63:1–63:30.

[70] Gérard Huet, G. K., and Paulin-Mohring,
C. The Coq Proof Assistant A Tutorial. Inria, Roc-
quencourt, France, Sept. 2018.

[71] Geuvers, H. Proof assistants: History, ideas and
future. Sādhanā: Academy Proceedings in Engi-
neering Sciences 34, 1 (Feb. 2009), 3–25.

[72] Goldberg, D. What every computer scientist
should know about floating-point arithmetic. ACM
Computing Surveys 23, 1 (Mar. 1991), 5–48.

[73] Gonthier, G. Formal proof — the four-color theo-
rem. Notices of the AMS 55, 11 (2008), 1382–1393.

[74] Gopalakrishnan, G., Hovland, P. D., Iancu,
C., Krishnamoorthy, S., Laguna, I., Lethin,
R. A., Sen, K., Siegel, S. F., and Solar-
Lezama, A. Report of the HPC correctness sum-
mit, jan 25-26, 2017, washington DC. Tech. rep.,
Department of Energy, 2017. Available at https:
//arxiv.org/abs/1705.07478.

[75] Gordon, M., Milner, R., and Wadsworth, C.
Edinburgh LCF. Springer, Berlin, Heidelberg, 1979.

[76] Gordon, M. J. C. VLSI Specification, Verifica-
tion and Synthesis, vol. 35 of The Kluwer Inter-
national Series in Engineering and Computer Sci-
ence. Springer, Boston, MA, USA, 1988, ch. HOL:
A Proof Generating System for Higher-Order Logic,
pp. 73–128.

[77] Graf, S., and Saidi, H. Construction of abstract
state graphs with PVS. In Computer Aided Ver-
ification (Haifa, Israel, June 1997), O. Grumberg,
Ed., CAV (LNCS 1254), Springer, pp. 72–83.

[78] Gustafson, J., and Yonemoto, I. Beating float-
ing point at its own game: Posit arithmetic. Super-
computing Frontiers and Innovations 4, 2 (2017),
71–86.

[79] Haftmann, F., and Bulwahn, L. Code
generation from isabelle/hol theories. Available
at https://isabelle.in.tum.de/doc/codegen.
pdf, Dec. 2013.

[80] Hales, T. C. Formal proof. Notices of the AMS
55, 11 (2008), 1370–1380.

[81] Harper, R. Practical Foundations for Program-
ming Languages, 2nd ed. Cambridge University
Press, New York, NY, USA, 2016.

[82] Harrison, J. Floating-point verification using
theorem proving. In Formal Methods for Hard-
ware Verification (Bertinoro, Italy, May 2006),
M. Bernardo and A. Cimatti, Eds., SFM (LNCS
3965), Springer, pp. 211–242.

[83] Harrison, J. Handbook of Practical Logic and Au-
tomated Reasoning. Cambridge University Press,
Cambridge, UK, 2009.

[84] Harrison, J. Hol light: An overview. In Theorem
Proving in Higher Order Logics (Munich, Germany,
Aug. 2009), S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, Eds., TPHOLs, (LNCS 5674), Springer,
pp. 60–66.

[85] Hawblitzel, C., Petrank, E., Qadeer, S.,
and Tasiran, S. Automated and modular re-
finement reasoning for concurrent programs. In
27th International Conference on Computer Aided
Verification (San Francisco, CA, USA, July 2015),
D. Kroening and C. S. Păsăreanu, Eds., CAV
(LNCS 9207), Springer, pp. 449–465.

[86] Henzinger, T. A., Jhala, R., Majumdar, R.,
and Sutre, G. Lazy abstraction. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Portland,
OR, USA, 2002), POPL ’02, ACM, pp. 58–70.

23

https://fbinfer.com
https://fbinfer.com
https://clang-analyzer.llvm.org
https://clang-analyzer.llvm.org
https://arxiv.org/abs/1705.07478
https://arxiv.org/abs/1705.07478
https://isabelle.in.tum.de/doc/codegen.pdf
https://isabelle.in.tum.de/doc/codegen.pdf

[87] Hoare, C. A. R. An axiomatic basis for computer
programming. Communications of the ACM 12, 10
(Oct. 1969), 576–580.

[88] Holzman, G. J. The model checker SPIN. IEEE
Transactions on Software Engineering 23, 5 (May
1997), 279–295.

[89] Intel Corporation. Statistical analysis of float-
ing point flaw: Intel white paper. Tech. rep., Intel,
July 2004.

[90] Johnson-Freyd, P. A. Refinement and composi-
tion in formal modeling of temporal systems. Avail-
able at http://www.cs.uoregon.edu/Reports/
AREA-201511-Johnson-Freyd.pdf, 2015. Area
Exam.

[91] Kaplan, D. M. Correctness of a compiler for
algol-like programs. Tech. rep., Stanford University,
1967. Stanford Artificial Intelligence Memo No. 48.

[92] Keller, R. M. Formal verification of parallel pro-
grams. Communications of the ACM 19, 7 (July
1976), 371–384.

[93] Kneuper, R. Limits of formal methods. Formal
Aspects of Computing 9, 4 (July 1997), 379–394.

[94] Laboratoire de Recherche en Informatique
and Inria Saclay Ile-de-France. The alt-
ergo automated theorem prover, version 2.2.0, Apr.
2006–2018. https://alt-ergo.ocamlpro.com.

[95] Laguna, I., and Rubio-González, C., Eds. In-
ternational Workshop on Software Correctness for
HPC Applications (Denver, CO, USA, Nov. 2017),
ACM.

[96] Lakhotia, K., Tillmann, N., Harman, M.,
and de Halleux, J. FloPSy — search-based
floating point constraint solving for symbolic execu-
tion. In IFIP International Conference on Testing
Software and Systems (Natal, Brazil, Nov. 2010),
A. Petrenko, A. Simão, and J. C. Maldonado, Eds.,
ICTSS (LNCS 6435), Springer, pp. 142–157.

[97] Lamport, L. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engi-
neers. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[98] Lattner, C., and Adve, V. LLVM: A compi-
lation framework for lifelong program analysis &
transformation. In Proceedings of the International
Symposium on Code Generation and Optimization
(Palo Alto, CA, USA, Mar. 2004), CGO ’04, IEEE
Computer Society.

[99] Leino, K. R. M. Dafny: An automatic pro-
gram verifier for functional correctness. In Logic for

Programming, Artificial Intelligence, and Reason-
ing (Dakar, Senegal, Apr. 2010), E. M. Clarke and
A. Voronkov, Eds., LPAR (LNCS 6355), Springer,
pp. 348–370.

[100] Lensink, L., Smetsers, S., and van Eekelen,
M. Generating verifiable java code from verified
pvs specifications. In Proceedings of the 4th In-
ternational Conference on NASA Formal Methods
(Norfolk, VA, USA, Apr. 2012), NFM’12, Springer,
pp. 310–325.

[101] Leroy, X. Formal verification of a realistic com-
piler. Communications of the ACM 52, 7 (July
2009), 107–115.

[102] Leroy, X. In search of software perfection. Avail-
able at https://youtu.be/lAU5hx_3xRc, Nov.
2016.

[103] Lopes, N. P., Menendez, D., Nagarakatte,
S., and Regehr, J. Provably correct peephole
optimizations with alive. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Portland, OR,
USA, 2015), PLDI ’15, ACM, pp. 22–32.

[104] Marques-Silva, J., Lynce, I., and Malik, S.
Conflict-driven clause learning sat solvers. In Hand-
book of Satisfiability, A. Biere, M. Heule, H. van
Maaren, and T. Walsch, Eds. IOS Press, Amster-
dam, Netherlands, 2008, ch. 4, pp. 127–148.

[105] Michel, C., Rueher, M., and Lebbah, Y. Solv-
ing constraints over floating-point numbers. In
Principles and Practice of Constraint Programming
(Paphos, Cyprus, 2001), T. Walsh, Ed., CP (LNCS
2239), Springer, pp. 524–538.

[106] Moore, J. S. A mechanically verified language
implementation. Journal of Automated Reasoning
5, 4 (Dec. 1989), 461–492.

[107] Moore, J. S. Piton: A Mechanically Verified
Assembly-Level Language, 1st ed., vol. 3 of Au-
tomated Reasoning Series. Springer Netherlands,
1996.

[108] Moschovakis, J. Intuitionistic logic. In The Stan-
ford Encyclopedia of Philosophy, E. N. Zalta, Ed.,
winter 2018 ed. Metaphysics Research Lab, Stan-
ford University, 2018.

[109] Mullen, E., Zuniga, D., Tatlock, Z., and
Grossman, D. Verified peephole optimizations
for compcert. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (Santa Barbara, CA,
USA, June 2016), PLDI ’16, ACM, pp. 448–461.

24

http://www.cs.uoregon.edu/Reports/AREA-201511-Johnson-Freyd.pdf
http://www.cs.uoregon.edu/Reports/AREA-201511-Johnson-Freyd.pdf
https://alt-ergo.ocamlpro.com
https://youtu.be/lAU5hx_3xRc

[110] Necula, G. C. Translation validation for an opti-
mizing compiler. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (Vancouver, BC, Canada,
2000), PLDI ’00, ACM, pp. 83–94.

[111] Nethercote, N., and Seward, J. Valgrind: A
framework for heavyweight dynamic binary instru-
mentation. In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (San Diego, CA, USA,
June 2007), PLDI ’07, ACM, pp. 89–100.

[112] Neumann, P. Mariner i — no holds BARred. Fo-
rum on Risks to the Public in Computers and Re-
lated Systems 8, 75 (May 1989).

[113] Nipkow, T., Wenzel, M., and Paulson, L. C.
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, Berlin, Heidelberg, 2002.

[114] Norell, U. Towards a Practical Programming
Language Based on Dependent Type Theory. PhD
thesis, Department of Computer Science and Engi-
neering, Chalmers University of Technology, Göte-
borg, Sweden, September 2007.

[115] Perconti, J. T., and Ahmed, A. Verify-
ing an open compiler using multi-language seman-
tics. In European Symposium on Programming
Languages and Systems (Grenoble, France, Apr.
2014), Z. Shao, Ed., ESOP (LNCS 8410), Springer,
pp. 128–148.

[116] Petri, C. A., and Reisig, W. Petri net. Schol-
arpedia 3, 4 (2008), 6477. revision #91647.

[117] Pfenning, F., and Schürmann, C. System de-
scription: Twelf — a meta-logical framework for
deductive systems. In 16th International Confer-
ence on Automated Deduction (Trento, Italy, July
1999), CADE (LNCS 1632), Springer, pp. 202–206.

[118] Pierce, B. C. Types and Programming Languages,
1st ed. The MIT Press, 2002.

[119] Pierce, B. C., de Amorim, A. A., Casinghino,
C., Gaboardi, M., Greenberg, M., Hriţcu,
C., Sjöberg, V., and Yorgey, B. Software
Foundations Volume 1: Logical Foundations. Uni-
versity of Pennsylvania, 2018. Updated 25 Aug
2018.

[120] Ray, B., Posnett, D., Filkov, V., and De-
vanbu, P. A large scale study of programming
languages and code quality in github. In Pro-
ceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing (Hong Kong, China, Nov. 2014), FSE 2014,
ACM, pp. 155–165.

[121] Reid, A. Trustworthy specifications of ARM v8-A
and v8-M system level architecture. In Proceed-
ings of Formal Methods in Computer-Aided Design
(Mountain View, CA, USA, Oct. 2016), FMCAD,
FMCAD Inc, pp. 161–168.

[122] Reynolds, J. C. Separation logic: A logic for
shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in
Computer Science (Copenhagen, Denmark, July
2002), LICS ’02, IEEE Computer Society, pp. 55–
74.

[123] Rosen, B. K., Wegman, M. N., and Zadeck,
F. K. Global value numbers and redundant compu-
tations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages (San Diego, CA, USA, Jan. 1988),
POPL ’88, pp. 12–27.

[124] Rümmer, P., and Wahl, T. An smt-lib theory
of binary floating-point arithmetic. In 8th Interna-
tional Workshop on Satisfiability Modulo Theories
(SMT) (Edinburgh, UK, July 2010), pp. 151–165.

[125] Russell, S. Unifying logic and probability. Com-
munications of the ACM 58, 7 (July 2015), 88–97.

[126] Sadowski, C., Aftandilian, E., Eagle, A.,
Miller-Cushon, L., and Jaspan, C. Lessons
from building static analysis tools at google. Com-
munications of the ACM 61, 4 (Mar. 2018), 58–66.

[127] Schordan, M., and Quinlan, D. A source-to-
source architecture for user-defined optimizations.
In Modular Programming Languages (Klagenfurt,
Austria, Aug. 2003), L. Böszörményi and P. Scho-
jer, Eds., JMLC (LNCS 2789), Springer, pp. 214–
223.

[128] Shapiro, S., and Kouri Kissel, T. Classical
logic. In The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed., spring 2018 ed. Metaphysics Re-
search Lab, Stanford University, 2018.

[129] Shoshitaishvili, Y., Wang, R., Salls, C.,
Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel,
C., and Vigna, G. SoK: (state of) the art of war:
Offensive techniques in binary analysis. In 37th
IEEE Symposium on Security and Privacy (San
Jose, CA, USA, May 2016), SP, IEEE Computer
Society.

[130] Simmons, R. J. Research projects using twelf.
Available at http://twelf.org/wiki/Research_
projects_using_Twelf, Mar. 2015.

[131] Slind, K., and Norrish, M. A brief overview of
hol4. In Theorem Proving in Higher Order Logics
(Montreal, Canada, Aug. 2008), O. A. Mohamed,

25

http://twelf.org/wiki/Research_projects_using_Twelf
http://twelf.org/wiki/Research_projects_using_Twelf

C. Muñoz, and S. Tahar, Eds., TPHOLs (LNCS
5170), Springer, pp. 28–32.

[132] Sørensen, M. H., and Urzyczyn, P. Lec-
tures on the Curry-Howard Isomorphism, vol. 149
of Studies in Logic and the Foundations of Mathe-
matics. Elsevier, July 2006.

[133] Spivey, J. M. Understanding Z: a Specification
Language and Its Formal Semantics. Cambridge
Tracts in Theoretical Computer Science 3. Cam-
bridge University Press, Cambridge, UK, 1988.

[134] Swamy, N., Chen, J., Fournet, C., Strub,
P., Bhargavan, K., and Yang, J. Secure dis-
tributed programming with value-dependent types.
In Proceeding of the 16th ACM SIGPLAN Inter-
national Conference on Functional Programming
(Tokyo, Japan, Sept. 2011), M. M. T. Chakravarty,
Z. Hu, and O. Danvy, Eds., ACM, pp. 266–278.

[135] Tagliavini, G., Mach, S., Rossi, D.,
Marongiu, A., and Benin, L. A transprecision
floating-point platform for ultra-low power comput-
ing. In Design, Automation Test in Europe Con-
ference Exhibition (Dresden, Germany, Mar. 2018),
DATE, pp. 1051–1056.

[136] The Coq Development Team. The coq proof
assistant, version 8.8.0, Apr. 2018.

[137] The Free Software Foundation. The GNU C
library manual. Tech. rep., Aug. 2018.

[138] Torlak, E. Symbolic execution. Lecture Slides
at the University of Washington, 2016. Avail-
able at https://courses.cs.washington.edu/
courses/cse403/16au/lectures/L16.pdf.

[139] Turing, A. M. On computable numbers, with an
application to the entscheidungsproblem. Proceed-
ings of the London Mathematical Society s2-42, 1
(1937), 230–265.

[140] United States Department of Defense. Mili-
tary standard: Sixteen-bit computer instruction set
architecture. Tech. Rep. MIL-STD-1750A, 1980.

[141] U.S. Government Accountability Office.
Patriot missile defense: Software problem led to
system failure at dhahran, saudi arabia. Tech. Rep.
IMTEC-92-26, Feb. 1992.

[142] Vanhoef, M., and Piessens, F. Key reinstal-
lation attacks: Forcing nonce reuse in wpa2. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (Dal-
las, TX, USA, Oct. 2017), CCS ’17, ACM, pp. 1313–
1328.

[143] von Plato, J. The development of proof theory.
In The Stanford Encyclopedia of Philosophy, E. N.
Zalta, Ed., winter 2018 ed. Metaphysics Research
Lab, Stanford University, 2018.

[144] Watt, C. Mechanising and verifying the we-
bassembly specification. In Proceedings of the 7th
ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs (Los Angeles, CA, USA,
Jan. 2018), CPP, ACM, pp. 53–65.

[145] Whitehead, N., and Fit-Florea, A. Pre-
cision and performance: Floating point and
IEEE 754 compliance for NVIDIA GPUs. Tech.
rep., NVIDIA Corporation, Oct. 2018. Available
at https://docs.nvidia.com/pdf/Floating_
Point_on_NVIDIA_GPU.pdf.

[146] Wiles, A. Modular elliptic curves and fermat’s
last theorem. Annals of Mathematics 141, 3 (1995),
443–551.

[147] Woodcock, J., Larsen, P. G., Bicarregui,
J., and Fitzgerald, J. Formal methods: Prac-
tice and experience. ACM Computing Surveys 41,
4 (Oct. 2009), 19:1–19:36.

[148] Working Group for Floating-Point Arith-
metic. Ieee standard for floating-point arithmetic.
IEEE Std 754-2008 (Aug. 2008), 1–70.

[149] Zhao, J., Nagarakatte, S., Martin, M.
M. K., and Zdancewic, S. Formalizing the
LLVM intermediate representation for verified pro-
gram transformations. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Philadel-
phia, PA, USA, Jan. 2012), POPL ’12, ACM,
pp. 427–440.

[150] Zheng, M., Rogers, M. S., Luo, Z., Dwyer,
M. B., and Siegel, S. F. CIVL: Formal ver-
ification of parallel programs. In Proceedings of
the 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (Wash-
ington, DC, USA, 2015), ASE ’15, IEEE Computer
Society, pp. 830–835.

26

https://courses.cs.washington.edu/courses/cse403/16au/lectures/L16.pdf
https://courses.cs.washington.edu/courses/cse403/16au/lectures/L16.pdf
https://docs.nvidia.com/pdf/Floating_Point_on_NVIDIA_GPU.pdf
https://docs.nvidia.com/pdf/Floating_Point_on_NVIDIA_GPU.pdf

	Verification of Computation
	Logical Notation
	Hoare Logic
	Separation Logic
	Abstract Interpretation
	Symbolic Execution
	SMT: Satisfiability Modulo Theories
	Summary

	Proof Assistants
	F: System F
	: Type Operators
	F: the Basis for HOL
	P: Dependent Types
	CoC: the Basis for Coq
	Tactics
	Foundations of Mathematics
	Summary

	Formal Methods in Practice
	Degree of Confidence
	Methods for…Formal Methods
	Static Analyzers
	Model Checkers
	Deductive Program Provers
	Proof Assistants

	Human and Computer Time
	Summary

	Intermediate Representations
	Reasoning about Assembly Language
	Compilers
	IRs in Practice

	Floating Point Arithmetic
	Floats, Bits, and the Real Line
	Floating Point Representations
	IEEE 754
	Other Floating Point Formats
	Posits
	MIL-STD-1750A
	Modifications to IEEE 754

	Formalizations of Floats
	Notation
	Properties of Floating Point Representations
	Summary

	SIMD Parallelism
	Conclusion
	Other Formal Methods Surveys
	Formal Methods in the Wild
	Future Work

