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Abstract

Non-functional requirements of typical appli-

cations tend to get less attention during soft-
ware development compared to functional re-
quirements. Software performance, in particu-
lar, is one that gets less attention during devel-
opment, but ahead of shipping apparent per-
formance flaws must be fixed. Dynamic soft-
ware performance analysis attempts to assist
developers locating performance flaws or con-
firm their understanding of the overall perfor-
mance behavior.
We evaluate fundamental and recent perfor-
mance analysis techniques. @ Moreover, we
highlight the strengths and weaknesses of per-
formance analysis tools in terms of efficiency,
comprehensiveness, exploration and wunder-
standably. Finding inputs that trigger unan-
ticipated performance flaws is an area requir-
ing more work. We review machine learning,
genetic algorithms and fuzzing as the three
major approaches used to find special perfor-
mance inputs. Machine learning techniques
may be useful for finding data that triggers
poor performance.

1 Introduction

The need to understand software performance behav-
ior has long been recognized [28, 5, 1, 47]. In fact, the
need for performance satisfactory applications or al-
gorithms has been studied long before software was
written at a large scale. The problem existed since the
formalization of what is known now as the study of al-
gorithmic complexity. Software performance analysis
is still an active research area. The level of abstrac-
tion at which the solution works, the definition of the
performance issues!, the diverse nature of software
performance requirements and the decision to fix or
only highlight performance issues are a few of the fac-
tors that make the problem manifold. Moreover, the
inherent habit among the software engineering com-
munity of “fix it later” [26], makes performance anal-
ysis researchers confront a wildly complicated prob-
lem. A clear definition of the problem is necessary to

IThe phrases performance issue, performance bug and per-
formance improvement opportunity are used interchangeably
in the software performance analysis literature. All of these
refer to a spot in software in which if fixed, it will improve the
application’s overall performance. Through out this document
we will use the phrase “performance issue” to refer to such
case.

narrow down the focus of our work.

As Molyneaux [54] states, “similar to beauty, per-
formance is in the eyes of the beholder”. When the
performance of an application is satisfactory could
greatly differ from one person to another based on
their experience and expectations. Also, it could dif-
fer based on software applications’ nature. For exam-
ple, a few milliseconds delay on a web-based software
might not be as severe as the same amount of delay
for real-time software [17].

Jin et al. [38], define performance issues as bugs
that with simple solutions the software performance
is enhanced while preserving software functionality.
However, such definition introduces other issues such
as what is a simple solution and how much enhance-
ment is acceptable. We know that the actual mea-
surement is in the cost (monetary value) of having a
bad performing application on production [42]. Un-
fortunately, if such cost is used to define performance
issues, it means that it is too late to discover or fix
these issues.

For our work, we define performance issues as a
negative software performance that contradicts the
developer understanding or escape his/her anticipa-
tion. As software evolves of several modules, prior
developers understanding of how each procedure is
performing does not necessarily always hold. In ad-
dition, usage of out-source libraries introduces a risk
of misusing their interfaces [38]. And as Jin et al.
[38] highlighted that the workload mismatch between
what the developer anticipated and reality as a ma-
jor source of performance issues. Such case results
in performance issues that are only discovered after
software deployment.

There are other less common causes of introducing
performance issues (e.g. user behavior change). How-
ever, we think that software engineers understand-
ing of the code behavior and anticipation of workload
cover such cases.

As it is hard to define performance problems it is
also hard to define what performance analysis tools
are based on the published literature. The main ob-
jective of a performance analysis tool is usually to
treat performance issues. Some performance analy-
sis tools are designed to take it upon themselves to
fix performance issues [71]. Others focus on very spe-
cific but difficult known patterns of issues to highlight
them to developers [24, 82, 61, 55, 81]. Tracking the
input to understand their influence on performance is
also a different objective for some performance anal-
ysis tools [20, 45, 31, 82].




Ziyad Alsaeed - Area Exam Report

In addition to the different objectives, there are
different targeted environments. Some performance
analysis tools are focused on solutions that are only
applicable to parallel programs [21]. Others fo-
cus on analyzing software entities and their inter-
actions in the environment of distributed systems
[73, 62, 12, 35]. Such diversity on the offered tech-
niques and environments makes it hard to define what
should a performance analysis tool do. More impor-
tantly, it makes it harder to compare their effective-
ness.

One of the challenges in software performance anal-
ysis is how to compare techniques’ effectiveness in
relation to performance. Due to diverse objectives
(e.g. targeting performance anti-patterns [81], con-
sidering configuration as inputs [87], improving the
understandability of the results [23], etc), each so-
lution would emphasize its analysis goal more dur-
ing evaluation. For example, Curtsinger and Berger
[21] argue that the performance improvements op-
portunities they discover are far more effective than
those found by gprof [28] for the given benchmark.
However, it is known that profiling parallel program
was never an objective for gprof [28] as it was for
Curtsinger and Berger [21]. The overall applica-
tion speed-up after fixing the highly ranked hot-spots
could be seen as a good measurement of the tech-
nique’s effectiveness. Nevertheless, such an indicator
can be biased as the fix is highly dependent on the
developer’s experience and understanding of the ap-
plications. The technique’s added value to developers
(e.g. ease of use, root cause understandability, etc)
could be a good measurement, but hard to capture.

For software engineers, a valuable performance
analysis tool would be one that provides fine-grained
details efficiently [5], searches for new unanticipated
behaviors [48] and clearly identify the root cause of
the performance behavior [71]. Such challenging char-
acteristics of a performance analysis tool would help
software engineers assert their understanding of their
written software or reveal an anticipated performance
issue.

Collecting very detailed traces of an application run
is costly. There is a trade-off between how detailed
the information provided by a performance analysis
tool and how acceptable the overhead is. Details can
be of different types. For example, effectively collect-
ing the number of times a path is taken within an
application among all possible paths is one type [5].
Another type would be identifying possible inputs of
all executed methods [20]. Such fine-grained informa-
tion is usually associated with a high overhead cost

that could preclude their adoption in the real world.

In addition to the overhead trade-off, existing per-
formance analysis tools rarely attempt to discover
unanticipated worst case scenarios. For dynamic
analysis techniques, the major cause of such limita-
tion is the dependency on the developers written unit
tests to drive the analysis of a given application. Such
unit tests are usually written to ensure the preser-
vation of the application’s functional requirements.
Thus, the result of using such unit tests can rarely
lead to interesting performance observations. Dif-
ferent inputs alone could have a significant effect on
analysis outcomes. Many people were aware of the ef-
fect of the inputs on the performance analysis process
[20, 45, 31, 18, 82], but they either didn’t attempt to
generate new and interesting inputs to drive the test
or were limited to special cases of input generation
and permutation.

Moreover, existing performance analysis tools fo-
cus on locating possible performance issues, but not
communicating these to the developer in an under-
standable use case or architectural abstraction [19].
Result understandability is a major criterion that per-
formance analysis tools should provide. Misunder-
standing a tool result would lead to wasted optimiza-
tion opportunities [60]. There is usually a significant
trade-off between how comprehensive a performance
tool is and the adaptation of it is results due to diffi-
culties in understanding its findings [71, 60]

The goal of this document is to first classify dy-
namic performance analysis efforts based on their
goals and limitations. Second, define what does
performance analysis means to software engineers.
Third, identify major limitations and the closest work
that attempted to solve it. Finally, briefly examine
unexplored and promising solutions to the defined
limitations.

2 Performance Analysis for
Software Engineers

Performance analysis techniques have been developed
with different goals in mind. In this section, we go
over the diverse approaches of software performance
analysis, identify their goals and strengths and ex-
amine how are they addressing the needs of software
engineers.
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2.1 High Level Look at the State of
Software Profiling

The basic thinking about performance usually looks
at how much time a method is taking. In the simplest
form of applications, such intuition is valid. However,
real-world programs are ever more complex. Appli-
cations are constructed of multiple modules, objects,
and methods each of which interact with each other.
Such complications require more sophisticated soft-
ware performance analysis techniques that drive the
analysis to interesting results and present them in a
meaningful way to the developers.

2.1.1 Control-Flow Based Profiling

Initial clearly identified efforts to software perfor-
mance analysis started as early as the 1980s [28, 9, 5].
Graham et al. [28] were looking at the software per-
formance analysis in its simplest form. The simplest
insight developers are looking for is to understand
the method execution time and calls counts at differ-
ent software architecture abstractions. Provided the
software control-flow graph, Graham et al. [28] col-
lected the needed information during the application
runtime.

Programs are usually composed of multiple parts
that are usually written by multiple developers. Be-
cause programs usually use external libraries to im-
plement frequently used methods (e.g. data struc-
ture libraries), such composition makes programs dif-
ficult to understand. Graham et al. [28] understood
such complications and sought to provide results that
show the performance cost of routines within the exe-
cutable program at different abstractions. Such com-
position can be easier to understand and increase the
probability that developers would find appropriate
refactoring opportunities for performance gain.

In their solution, Graham et al. [28, 29] explain
that merging the two basic measurements of method
usage count and time will highlight more meaning-
fully bottlenecks. Counts are taken within a context
(call site), provide the chance to understand the task
a method is serving along with its cost. Call site is
the identification of a method based on the location
in which it was invoked. For example, as shown in
Figure-1, if method foo() is invoked twice through
the program execution, once from within method
bar () and once from within method baz (), then we
have two different call sites of method foo(). On the
other hand, the timing profile provides an insight to
asses if a method time consumption is justified given

Caller 1
e.g. baz()

Caller 2
e.g. bar()

Method
e.g. foo()

Figure 1: A method within the context of callers and
callees.

the task it serves despite the number of times it was
called. Once all counts and times of methods are
collected and propagated, the results are presented
in two forms. A flat representation ranking methods
based on which contributed to the program execution
time the most. Second, Graham et al. [28] provide
the ability to examine methods in a sub-call graph
that shows all the given method callers and callees
(see Figure-1). Such representation allows the users
to see how the method is contributing to its callers’
time by knowing how much time it was called by a
given caller of all the times it was called. Also, it
shows which of the callees contributed to its execu-
tion time the most by examining how many times a
callee was called from that method given all the calls
to that particular callee.

Graham'’s et al. [28] efforts in profiling covers the
essential cost developers usually think about when
analyzing program performance. Moreover, it pro-
vides different levels of abstractions for the developer
to examine. The essential limitation of gprof [28] is
that it is highly dependent on the given developer
tests to drive the profiling analysis. Developers are
not usually performance testing experts. Moreover,
given unit tests for applications are usually written to
assert functional requirement soundness, it is highly
unlikely the given tests will be helpful for performance
testing. Hence, gprof would highlight bottlenecks
in the programs that are trivial and miss potential
threats to program performance. A question comes
to mind is would more detailed profiling help mitigate
such limitation?
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Ball and Larus [5] focused on the efficiency of
the profiling tool itself for fine-grained performance
analysis. Path profiling, where a profiler measures
how many times a path is executed within a method
[4, 1, 6, 47, 22, 25, 55], is much more precise than a
block or edge profiling. Moreover, it provides much
more detailed information about the method’s in-
ternal cost compared to gprof [28] by breaking a
method into paths instead of possible method calls
from the profiled method. However, detailed look into
a method introduces a significantly higher overhead.
It could even be sometimes infeasible for a broad set
of applications. Thus, it remained infeasible for a
while.

Ball and Larus [5], introduced an algorithm to en-
hance the overhead issue that assigns unique IDs
to each path within a method to keep a counter of
how many times the path was executed. More pre-
cisely, they first convert CFG (Control-Flow Graph)
of methods to DAGs (Directed Acyclic Graph). The
transformation of CFG creates dummy paths from
graph entry to a loop head and from the loop end
to the graph exit for each existing loop (backedges).
Loop transformation would reduce the size of the
graph and misrepresent loops, but it is necessary for
instrumentation. Given the DAG, each edge assigned
an integer value such that the sum of any path values
in the DAG is a unique value. Such an assignment
allows for the unique identification of each path by
calculating its ID instead of storing it in memory.
FEach time a path is taken, the algorithm calculates
the path’s ID and increment its counter. Hence, it is
possible to collect detailed information on large ap-
plications.

Duesterwald et al. [25] focus even more on pro-
filing efficiency. They argue that in some profiling
cases (e.g. just-in-time compilation), there is an even
higher demand for lower overhead. A solution is to
impose less profiling to gain more knowledge within
a smaller space and time. The key idea is to identify
a threshold to determine a path head is hot. Once
a path head is identified as hot no more profiling is
made to it and a prediction is made about its tail us-
ing dynamic optimization system. The argument is
that shorter intervals of path evaluations help reduce
the overhead while maintaining the same hot path
predictions.

The work established by Ball and Larus [5] deter-
mines bottlenecks in applications in terms of the ex-
ecution complexity. However, it does not take into
account the application usage of memory. Muddu-
luru et al. [55] consider such problem and established

,/""""’”’———_———\\\\\\\\\\\\\‘

static int female(int n) {
if (n == 0)

static int male(int n) {
if (n == 0)

return 1; return ©;
else else
return n - male(female(n-1)); return n - female(male(n-1));

} }

\

Figure 2: Java example of mutually recursive meth-
ods forming a loop based on Hofstadter female and
male sequences.

a control-flow profile (called it object-flow profile) to
track object (data) creation and access based on Ball
and Larus numbering. For each allocation, Muddu-
luru et al. [55] will preserve a control-flow graph from
the allocation site to the locations where the object
is used (maintaining a count for each edge). The in-
tuition is that hot paths in such flow profile will help
locate inefficiently used memory spaces.

Efficient and highly-detailed profiling techniques
[5, 25, 55], made it possible to collect counts infor-
mation of path profiles regardless of the application
size or complexity. However, a more detailed view
makes it evident that designated performance testing
is necessary compared to gprof [28] as more precise
paths need to be exercised. The efficiency and pre-
ciseness of performance analysis tools do not ensure
the fruitfulness of the profiling results nor the un-
derstanding. If different, it can help highlight where
additional testing might be necessary.

2.1.2 Loop Focused Profiling

In addition to the need to overcome limitations in in-
terpreting loops based on control-flow profiling [22],
the common knowledge in the field and few study pa-
pers [38, 59] asserts that most of the complex and
hard to fixed performance issues happened within
special forms of loops. Loops can be in different
forms. For example, loops can be in the simple form
of language provided keywords such as for or while
loops, as a recursive method or even less clear as
mutually recursive methods (see Figure-2). Stud-
ies [38, 59] assert that performance issues are even
more severe within nested loops. Such conclusion
prompted different research efforts to focus the pro-
gram analysis on loops where most of the performance
issues occur.

Focusing on loops when analyzing program perfor-
mance can be beneficial from different perspectives.
First, it reduces the number of instrumented instruc-
tions to those within interesting loops. Thus, reduc-
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ing the overhead. Second, it guides the studies of
program performance toward the actual symptom of
performance issues. In this section, we go over unique
efforts [61, 82, 24, 76] that specifically studies the ef-
fect of special loop cases on performance.

Nistor et al. [61] established the general idea
of monitoring instructions behavior within loops.
In particular, they look for nested loops that do
redundant work. For instance, the code shown
in Figure-3 illustrates a severe computation redun-
dancy that is hard to find [61]. As the outer
loop iterate over all items in a data set (line 3), it
calls the method drawItem which in turn calls the
method drawVerticalltem. The inner loop within
drawVerticalItem (line 10) also iterate over all items
in the data set to find the one with maximum vol-
ume. As the volume in the data set does not change
over the different loops such computation is redun-
dant and found to be causing the rendering to freeze.
The performance issue is fixed by caching the max-
imum volume value within the outer loop to avoid
redundant work.

To automatically find redundant computations,
Nistor et al. [61] monitored the memory access within
the identified nested loops. If a group of instructions
access similar memory values across iterations, then
those instructions are probably computing similar re-
sults. Thus, there is a performance issue. Nistor et al.
[61] introduced a tool called Toddler that implements
loops monitoring. Toddler first statically analyzes the
code searching for loops and assigning unique IDs
to each loop. Then, Toddler instruments the code
by inserting triggers to identify loops at three major
stages: loop starts, loop iteration starts and loop end.
Toddler identifies a read instruction by both the static
occurrence of the instruction in the code and the dy-
namic context (call stack) in which the instruction is
executed and call it IPCS (Instruction Pointer + Call
Stack). For each loop within a nested loop structure
(outer or inner) a sequence of IPCS is collected. TPCS
sequences are eventually compared given a threshold
looking for read values similarities across loop itera-
tions. If there is any such IPCS sequence, Toddler
reports a performance issue.

Slightly different from Toddler, Song and Lu [76]
tackled the problem based on prior knowledge of the
performance issues symptoms within loops. Initially,
Song and Lu [76] studied known performance issues
that occurred within loops to provide a taxonomy of
the root causes of the inefficiencies. Their study re-
sulted in two major classifications of loop inefficiency
resultless loops and redundant loops. Resultless loops

1 // Simplified from the XYPlot class in JFreeChart

2 public void render(...) {

for (int item = 0; item < itemCount; item++) { // Outer Loop
renderer.drawltem(...item...); // Calls drawVerticalltem

N w kW

// Simplified from the CandlestickRenderer class in JFreeChart

8 public void drawVerticalltem(...) {

9 int maxVolume = 1;

10 for (inti = 0; i < maxCount; i++) { // Inner Loop

11 int thisVolume = highLowData.getVolumeValue(series, i).intValue();
12 if (thisVolume > maxVolume) {

13 maxVolume = thisVolume;

16 ... = maxVolume;

Figure 3: Computation redundancy performance is-
sue found on JFreeChart as shown in [61].

are mainly the type of loops that does a lot of com-
putations but then does not show any side effect. Re-
dundant loops are the types that does repetitive com-
putations (same inputs and outputs on some of the
iterations). Song and Lu [76] argue that using the
taxonomy to look for suspicious loops helps focus the
search on a smaller set of loops. To validate their hy-
pothesis, they developed a tool called LDoctor that
uses static analysis techniques to identify potential
loops. It also uses dynamic analysis techniques along
with sampling to analyze applications under a given
workload. The tool proves to be efficient and accu-
rate, but only for the given limited search scope.

The solution Toddler [61] and LDoctor [76] repre-
sents, provide a focused look at program performance
analysis. However, they are both passive techniques.
That is, they do not explore instrumented application
beyond what the developers have written in terms
of test cases. Thus, similar to old basic techniques
[28, 5, 25, 55] they inherit the limitation of the devel-
oper’s assumptions during analysis. As a mitigation,
the same idea of exploring loops has been explored
with the attempt to stress loops given new inputs.

In order to overcome the limitation of finding new
unanticipated performance issues within loops, Xiao
et al. [82] analyzed application given a set of test
cases. The test cases provided are assumed to be
expressing the application functionality. Xiao et al.
[82] call such test cases, scenarios. For example, for a
compression algorithm, a test case or a scenario can
be a task a user can complete and a set of param-
eters to manipulate. This restriction makes it easy
for the author to create new inputs by manipulating
the parameters and recording the ones that affect the
performance the most. However, even with such re-
striction, the approach is limited in finding scalable
inputs only. Scalable inputs are those that increase
the size of the test case but does not manipulate the
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logic of the input. For example, when compressing
files they only are capable of increasing the number
of files to compress, not the nature of the files. Thus,
they evaluate only one aspect of input manipulation.

Dhok and Ramanathan [24] presented another
technique that identifies the main limitation of Tod-
dler [61] and others. They attempt to generate more
tests based on what the developers or existing ran-
dom test generators [65] provide. First, they gener-
ate methods summaries based on the given tests. The
methods summaries are composed of information per-
taining to the presence of a loop, the objects traversed
in each loop, and the methods invoked within the
loop. Second, they identify methods with potential
nested loops. Method detection is based on looking
at the call graph for symptoms of known patterns [81]
that lead to bad performance using similar techniques
of the ones presented in [76]. Finally, they generate
performance focused tests for the given methods with
emphasis on the scale of the inputs. This approach
overcomes the manual parameter identification pre-
sented by Xiao et al. [82]. However, in addition to
finding scalable inputs only, the introduced approach
main limitation is it assumes that initial given tests
are going to lead to interesting performance issues.
Moreover, it is limited to known symptoms of bad
performance within the code. Thus, it can reveal
some performance issues, but at the same time skip
others.

The loops focused technique provides a more valu-
able understanding of the performance issues in gen-
erals. However, they either are not exploring unan-
ticipated issues or mainly provide scalable inputs to a
small set of known performance issues patterns [81].
These efforts [61, 76, 82, 24] along with basic ones
[28, 5, 25, 55] are limited in asserting developers un-
derstanding of the program by profiling applications
based on developer’s test cases. If an unanticipated
performance issue exists, neither passive nor active
presented performance analysis tools would help to
capture them.

2.1.3 Model Based Profiling

Even more than functional requirements, non-
functional requirements (e.g. performance) are hard
to understand and test. Such nature of performance
requirements made it necessary to explore methods
that would assist in establishing some boundaries that
define the system performance goals. For example, in
a word processing application, it is expected for a let-
ter to appear instantly on the screen as soon as the

main = = = behavior #1
’ A - N behavior #2
55.0% = 20.5%: 24.5% | === behavior #3
\4 i selected edges
ap_mpm_run
55.0% & . 19.0%
/ %,
I
el e ¢

| Aw‘“‘zo.S% 5.5%

proc_mutex_sysv_acquire| |proc_mutex_sysv_release

T

55.0% '\

.

R

*,20.5% 24.5%

Figure 4: Performance model of calls to method
__semop in Apache 2.0.64 [14].

user hits the letter key in the keyboard. However,
in addition to the difficulty of thinking about every
possible scenario in the application in terms of per-
formance, it is hard to put a number that defines the
performance needs in such cases. Moreover, if a task
becomes the focus of the developers, it is usually eas-
ier to understand if the current performance is accept-
able given some prior knowledge than writing specifi-
cations that define the expected performance. Perfor-
mance modeling is one of the formal ways to mitigate
the issue and establish rules about program expected
performance (oracles) [7]. Performance models define
precise performance boundaries of an application or
module of the application. Given the help it would
provide to the developers, many [14, 36, 7, 44] at-
tempted to automatically find such models.

Briinink and Rosenblum [14] made a notable effort
in this area. They automate the finding of perfor-
mance models based on actual runs of the program
then summarize these models to maintain perfor-
mance assertions about the program. The intuition
is that such assertions would help monitor the perfor-
mance of the application and triggered at any perfor-
mance deviations. To find these performance models,
Briinink and Rosenblum [14] monitor an application
during a given run (usually a deployed application) to
obtain runtime insight of given methods (usually hot
methods). Then they analyze the collected runtime
data to check if it fits different clusters of runtimes
and stable (i.e. no new unclassifiable data is further
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showing up). If such data for a given method exists,
then they collect call stack information to relate them
to these different runtimes’ clusters. The process then
repeats for the given method callers until no further
interesting methods are introduced. The generated
performance models are usually large and hard to un-
derstand. Therefore, Briinink and Rosenblum [14] in-
troduced the idea of finding performance assertions.
These performance assertions are the shortest possi-
ble descriptive paths in the form of an expression to
the given method and the time it took relative to the
path. The resulting set of assertions is maintained for
future tests or actual use monitoring. Any execution
that breaks a given assertion is a performance issue.

An example of the generated model given Briinink
and Rosenblum [14] approach is illustrated in Figure-
4. The model shows the different summarized context
to the method __semop in Apache v2.0.64. This au-
tomatically learned model state that calls that does
not involve edge e or es take less than 70ms. Other-
wise, executions would take less than 70ms in 41.9%
of the cases if it includes edge e; and in 35.5% of the
cases if it includes edge e;. Hence, assertion about
the method __semop for newer versions can be as sim-
ple as if e; A —ey then t < 70ms in 41.9% of the cases,
if =e; A ey then t < 70ms in 35.5% of the cases and if
—e1 A —es then t < 70ms in 99% of the cases where ¢
is the time spent to call the method __semop. Using
the expression to capture the system behavior given
new changes to the code is precise and meaningful to
developers.

Briinink and Rosenblum [14] approach provide a
method that would generate test oracles. However,
obtaining useful values for the test oracles occurs only
if the tool used with deployed applications. Valuable
workloads are only present when actual users are us-
ing the system. Therefore, actual performance in-
sights appear only if the application is in use. And
as stated before, at this stage of the application life
cycle, performance issues are usually unaffordable.

Hoefler et al. [36] presented a method to build
performance models for parallel applications. Never-
theless, the essence of their work is also applicable
to non-parallel applications. Hoefler et al. [36] of-
fer to introduce performance-modeling techniques in
every software development stages (e.g., design, im-
plementation, testing, etc.). Although such an ap-
proach is unrealistic for more agile? project manage-
ment methodology as design efforts are minimal, the

2 Agile is a widely adapted software development approach
under which requirements and artifacts grow and change to-
gether.

(7 i :(j [(&# x 70=((74) [(4 A ) [(106) [(6 A ) ) ;7))
([Nt J1(&((# x ?70x=(9](13) [(10) | A | D) ;7) |
tab ;) |( newline ;) ) ) ) *( a [(&# x ?0%((65) |
(41) 1(97) [(61) ) 37) ) ([N t 11(&((# x 70x(9](13)
[(10) | A | D) 3?7) |( tab ;) [( newline ;) )) )
#( v [(&# x 70x((86) [(56) [(118) [(76) ) 57)) ([\
t ]I (&((# x 70x(9[(13) [(10) | A | D) ;?) | ( tab
;) | mewline ) ) ) ) *( a |[(&# x ?70x((65) | (41)
[(97) 1(61) ) 57) ) ([\ t J[(&((# x 70x(9](13)
[(10) | A | D) 3?) |( tab ;) |( newline ;) ) ) ) =
(s [(&# x 70%((83) [(53) [(115) [(73) ) :7) ) ([\
t (& ((# x ?70x(9|(13) [(10) | A | D) ;?7) | ( tab
) 1( newline ;) ) ) ) =( c |[(&# x 70%((67) | (43)
[(99) 1(63) ) 57) ) ([\ t JI(&((# x 70x(9](13)
|[(10) | A | D) ?) |( tab ;) |( newline ;) ) ) ) x*
(r [(&# x 20%((82) [(52) [(114) [(72) ) ;7) ) ([\
t ]I (&((# x 70x(9](13) [(10) | A | D) ;?) |( tab
;) 1( mewline ) ) ) ) +( i [(&# x ?70x((73) [(49)
[(105) [(69) ) 57) ) ([\ t J[(&((# x 70x(9](13)
[(10) | A | D) 37) |( tab ;) |( mnewline ;) ) ) )
*( p [(&# x 70%((80) [(50) [(112) [(70) ) :7) )([\
t J1(&((# x ?70x(9|(13) [(10) | A | D) ;?7) |( tab
)1 newline ;) ) ) ) *( t |(&# x 70x((84) |(54)
[(116) [(74) ) 57) ) ([\ t J[(&((# x 70x(9](13)
[(10) | A |'D ) ;2) |( tab ;) |( newline ;) ) ) )
*(;\(&((# x 70%((58) (3 A ) ) ;?7) [( colon 3)) ) )

Listing 1: Input generated by SlowFuzz [67] to
demonstrate a special input that causes a slowdown
in PCRE [66] regular expression matching library.

guidelines they introduced from their study apply to
user-based applications. They obtained the guide-
lines from experimenting with performance modeling
on a set of subject applications. These guidelines can
differ based on the point of view when looking at an
application. For example, identifying input parame-
ters that influence the runtime considers application
workload, but determining communication patterns
considers applications structure. Although no au-
tomation proposed to generate performance models,
they established a foundational systematic approach
of performance modeling for others to use (e.g., the
work developed by Briinink and Rosenblum [14]).

In general performance modeling approaches [14,
36, 7, 44] are essential in identifying boundaries that
would help in testing the performance of the appli-
cations. However, those boundaries can be vague or
difficult to understand. Hence, difficult to commu-
nicate them with developers to solve a performance
issue. Moreover, identifying those boundaries is dif-
ficult. Automating such task require thorough unit
tests and workloads that would lead to potential per-
formance issues within a given application.

2.1.4 Actionable Profilers

An essential strength in any given profiling technique
is its ability to simplify its results to facilitate its com-
prehensibility by developers. Simplifying the results
is not an easy task since it requires predicting the
developer’s needs. Moreover, results need to be at
a level of abstraction where the developer is think-
ing. For example, Listing-1 shows a special input
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that exhibits a 20% slowdown in the PCRE [66] reg-
ular expression matching library. From the example,
it is clear how it is hard to link the input to the root
cause of the performance issue. Lack of improving
the result understandability could lead to losses in
performance optimization opportunities. Therefore,
efforts [60, 71, 23] to analyze applications were made
with the goal of understandability in mind.

A simple method to measure the understandability
of the results is to make them actionable. Actionable
results are automatic syntactically valid suggestions
of performance issues fixes a developer can approve
or reject. If a developer, based on his longtime un-
derstanding of the code, agrees that the change does
not break any functional requirements, then he can
approve the fix without worrying about completely
understanding the performance issue. Such recom-
mendations take out the barrier of explaining the per-
formance issue by providing a code change that guar-
antees performance improvement. In this section, we
discuss essential efforts in making performance anal-
ysis tools more actionable and the limitations of such
efforts.

Nistor et al. [60], are the first to ask the question of
how likely are developers to fix a detected performance
issue? They study the question in relation to many
attributes such as how likely is fixing a performance
bug would introduce a functional bug or break a good
coding practice. Most importantly, they study the
behavior of the developers given the effort and time
needed to understand the performance issue as well as
understanding the trade-off on other modules of the
software if any. They found that it is less likely to fix
performance issues if it is hard to understand the is-
sues or relate them to other modules in the software.
Given this understanding, they settle on statically
finding bugs that have non-intrusive fixes. Primar-
ily, they focus on loops that waste computation after
a certain condition is satisfied. The fix for such per-
formance issues is simple and a developer needs only
to check if a condition is satisfied to break off the
loop. Nistor et al. [60] showed that their reported
issues have a high fixing rate given that they are easy
to understand. However, even if the found perfor-
mance issue would introduce a significant speedup in
the software, the search scope is very limited. Thus,
it is clear that there is a trade-off between the perfor-
mance analysis tool comprehensibility and the result
understandability.

Performance analysis tools that does not sacrifice
the potential of finding the most significant and most
complicated performance issues, usually have an em-

bedded understandability limitation. Thus, the value
of using the developed technique could be lost. To
mitigate such limitations, there have been perfor-
mance analysis techniques that focused on improving
the comprehensibility of their results. The primary
method in which these techniques solve this issue is
by making their findings actionable. Actionable pro-
filers simplify the results and increase the probability
of adopting it.

An important question comes to mind when pro-
vided with a solution that makes change suggestions
is why would not the profilers make the changes with-
out even going back to the developer? As the profiler
ensures performance enhancement, they should make
the change. To the contrary of compiler optimization,
profilers cannot ensure preserving the program in-
tegrity if a change is applied. The suggested changes
are always syntactical sound but not necessarily se-
mantically. Preserving semantic safety means the
performance analysis technique would be too limited.
Performance analysis techniques targets changes that
are beyond the compiler ability to optimize. There-
fore, human judgment is necessary to approve the
changes.

Selakovic et al. [71] present a notable effort in pro-
viding actionable results. The focus of the technique
is on finding the optimal order of logical expressions.
Given a logical expression (e.g. if or switch state-
ments), what would be the optimal order of the ex-
pressions to evaluate and reach a decision. For ex-
ample, if we have the statement if (a > 0 && b ==
1), based on the program executions which expres-
sion”a > 0” or ”b == 1” would be false most of the
times. Whatever expression that usually yields false
more frequently, should be evaluated first. The intu-
ition is that if a low-cost expression evaluates mostly
to false, you would want to check it first to avoid
wasting calculations on other expressions that regard-
less of their results the branch will not be taken. The
given example is trivial and changing its order would
not affect the performance. However, other logical
expressions could be large and have a tangible oppor-
tunity. In addition, the cumulative gain from these
small changes is what the authors [71] are looking for.

Selakovic et al. [71] first instrument a program to
capture logical expressions. For each logical expres-
sion, the profiler will run all available checks (expres-
sions) after preserving the program state. Given the
available test suite, the profiler will collect data about
the expressions’ cost as well as results for each traced
execution. The cost is measured by the number of ex-
ecuted branching points within each expression rather
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than time. Measuring the time for such expression is
hard as these are usually fast operations. Given the
expressions’ common results (True or False) and the
execution cost, the profiler will compute the compu-
tational cost of all possible orders of the expressions.
Once they chose a given order and it proved to be
making the program faster by executing it, the au-
thor will suggest the new order to the developer as
an actionable suggestion.

The work introduced by Selakovic et al. [71]
achieves a high degree of result simplification and un-
derstandability. However, the trade-off between the
understandability of the results and efficiency is sig-
nificant. Based on the authors’ evaluation of the tech-
nique, the enhancement when applying all the seman-
tics preserving changes is between 2.5% and 6.5% at
the application-level. Given the significant size of the
evaluated applications (e.g. Apache Struts), this is
a very low improvement. Moreover, these changes
are highly dependent on the given workload in the
unit tests. As we know, a significant issue is that it
is hard for developers to anticipate real-world work-
loads. Thus, any change in the workload at deploy-
ment might render the performance changes obsolete.

Another distinguishable work that attempts to be
actionable is established by Della Toffola et al. [23].
In addition to being an actionable profiler, Della Tof-
fola et al. [23] introduced a technique called Memo-
izelt to look for memoization opportunities. As code
might suffer from redundant computations that lead
to program performance degradation, these are im-
portant opportunities to optimize the code. Tradi-
tional profilers might miss or low-rank such opportu-
nities. Locating such redundant computations based
on the given inputs and outputs of methods could
reveal memoization opportunities that enhance the
programs overall performance [23, 32, 83].

Memoizelt narrows-down the tracked elements into
the target object, parameters, and return results.
Nevertheless, such profiling technique can be sig-
nificantly expensive. Therefore, the authors intro-
duced an iterative approach to monitoring the pro-
gram. First, run the program with light profiling that
records the execution time of each method. A method
that does not have an expensive computation, is dis-
carded as less likely to be optimized even further.
Second, increase the depth of object exploration grad-
ually looking for structure inconsistencies based on a
flattened object representation (flattened representa-
tion is nothing but representing objects’ types and
values in nested arrays). For example, if a method
foo() is called twice wherein the first call returned

an object with two fields but in the second an ob-
ject with three fields, then the method is dropped
from the list for further analysis. Such iterative trim-
ming and depth increasing allows Memoizelt to main-
tain efficiency while increasing accuracy gradually. It
is important to note that as the depth can be un-
bounded, for Memoizelt the authors observed that
object exploration of depth-2 is sufficient to be ac-
curate. Third, Memoizelt computes a cache-hit rate
as it iteratively monitors candidate methods. Mem-
oizelt discards methods that go below a user-defined
hit-rate threshold (defaulted to 50%) for each itera-
tion. Such computation helps to maintain a list of
potential methods that is more likely to benefit from
memoization.

In addition to profiling methods based on their in-
put and output, cluster them, and rank the method
based on their potential performance gain, Memoizelt
suggests a fix to the developer to simplify the result
and be actionable. In order to provide a suggestion on
how to fix a method, Memoizelt simulates different
ways of fixes while validating the program integrity
after applying the fix based on the given unit tests.
Memoization fixes usually happen globally or locally
(instance level) and are of multi (storing more than
one input and output value) or single cached input-
output pairs. Combining these possibilities required
the authors [23] to simulate four different fixes. Given
the result with the highest hit-rate, Memoizelt con-
siders it as the best possible change and suggests it
to the developer.

There are other memoization techniques [58, 83,
37], but taking only Memoizelt [23] as a representa-
tive technique we can identify the major limitations
in memoization. First, given the conducted tests by
Della Toffola et al. [23], it is clear that the number of
such memoization opportunities is very small. From
eight different applications from the DeCapo bench-
marks [11], Della Toffola et al. [23] found only nine
distinct memoization opportunities. Second, most of
the found memoization opportunities are workload
dependent. Thus, the fix, regardless of its perfor-
mance gain, might not be of significance when deploy-
ing the applications. We can generalize these limita-
tions to all memoization techniques.

The general observation of actionable profilers [60,
71, 23] is that there is a clear trade-off between the re-
sult understandability and performance optimization
opportunities. To make results actionable, they had
to be simple. Moreover, simple fixes are less likely
to capture significant or unanticipated performance
issues.
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2.1.5 Other non-related but Distinguishable
Performance Analysis Techniques

Some performance analysis techniques have been tar-
geting specific domains such as mobile devices or su-
percomputing. Nevertheless, the essential challenges
are usually the same. In this section, we are going
to cover techniques that target different but tightly
related systems to our work. The two main targeted
performance analysis platforms are those that focus
on mobile applications and parallel programs or sci-
entific computing.

Given that smartphones are widely popular nowa-
days, the challenges smartphone applications devel-
opers face in tuning the performance of their applica-
tions is fundamentally similar to known performance
analysis challenges [49]. However, the focus of the
developer in parts of the applications where perfor-
mance issues might appear is slightly different. For
example, many of the performance issues found on
smartphone applications are Ul related. Because the
UI actions trigger asynchronous executions in many
different ways, Kang et al. [40, 41] introduced a
method to track and profile these executions by cate-
gorizing them into small sets. Similarly, Brocanelli et
al. [13] focus their effort on the expensive operation
that happens on threads other than the applications
main thread but cause performance issues. These
techniques are different in directing the analysis to
specific areas of the application but are fundamentally
similar to all other performance analysis techniques
in data collection and analysis.

Performance analysis of supercomputers or more
generally distributed systems has its own different
emphasis on what to profile. However, techniques
that target supercomputers are also fundamentally
similar to techniques that target sequential applica-
tions. Frameworks like TAU [73], in addition to pro-
viding a performance analysis of distributed systems,
they target providing an architecture specific insight
about the application performance [62, 12]. There
are techniques that try to measure the software per-
formance given the supercomputer capabilities [62]
and highlight if the systems have been used to its
full extent or not. Other [12] tackle the issue of col-
lecting and unifying the knowledge about the data in
a more modular supercomputer environment. Some
techniques like the one presented by Herodotou and
Babu [35] focus on providing an insight to the de-
veloper about the system performance under a given
workload by manipulating multiple configuration op-
tions.

More focused on parallel programs, Curtsinger and
Berger [21] attempt to provide developers with in-
formation about the expected performance gain if a
particular method is fixed. They show that by slow-
ing other threads whenever the method executed on
one of the tracked threads. The slowdown of threads
simulates the performance gain of fixing the targeted
part of the code.

A fundamental difference in performance analysis
techniques for supercomputer or closely related ap-
plications is that the results’ understandability is not
a significant concern. Users of supercomputer analy-
sis tools (e.g. [46]) are usually more experienced and
knowledgeable about their applications. Moreover,
the use case for those systems like what Herodotou
and Babu [35] presented is usually task oriented.
That is, the user has a given location in mind about
the software and needs comprehensive insight about
its interactions and cost. Thus, there is less to no
emphasis on understandability in such techniques.

The work focused on mobile devices or supercom-
puters is essentially similar to other performance
analysis techniques designed for sequential comput-
ers. They are distinguishable in that they are do-
main specific. Given the knowledge about a given do-
main and the probability of where performance issues
might appear, they tailor the fundamental methods of
profiling to exploit such performance issues. However,
these established works does not provide a solution to
overcome the essential challenge of identifying prob-
lematic workloads. Moreover, they do not provide a
method for communicating the profiler’s findings with
developers. In fact, the work established for super-
computing does not look at these two challenges as
major issues. They usually know the expected work-
loads with high accuracy. In addition, users are usu-
ally having a goal in mind that leverage the result
communication issue. Thus, we do not see our work
highly related or specific to these fields.

2.2 Goal for Software Engineers

Software performance has been a dominating qual-
ity of software compared to other non-functional at-
tributes during design (e.g., usability, modifiability,
security, etc.). Software engineers design their sys-
tem with performance in mind regardless of the re-
quirements. For example, in file management appli-
cations, the performance requirements might not be
formally stated. However, there is a general under-
standing that it is not acceptable for a file creation
to take minutes or even seconds. Software engineers
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usually relay on formal software architecture tactics
[8] or even on the experience of the developers to meet
the performance constraints.

Developers make decisions early on the application
development cycle about software performance. Ac-
cording to the most cost-efficient, the design might in-
clude hardware or software solutions. Solutions that
involve hardware are usually limited to financial con-
straints. Moreover, the hardware solutions have their
own limitations and often are applicable if the re-
quirements are guaranteed to exceed individual hard-
ware capabilities [1, 63]. For example, a web-based
application that processes tens of millions of requests
in a few seconds might replicate the software on mul-
tiple machines to handle more requests on time. How-
ever, many performance issues are fixable within the
software design. In fact, some performance issues are
not solvable even if replicated over many pieces of
hardware.

Established design tactics based on accumulated
experiences help mitigate the severity of possible
software performance issues [8]. For example, pro-
cess time and blocked items are the two major con-
tributors to web-application performance. The pro-
cessing time of software might involve excessive use
of hardware (e.g., CPU or memory) that needs to
be carefully designed to ensure efficiency. Blocked
items might emerge from resource contention, re-
source availability, or computation dependency. Soft-
ware engineers need to consider each of these cases at
the software level design to avoid introducing perfor-
mance issues.

How to decide on what is acceptable as perfor-
mance is another factor software engineers need to
tackle. Most frequently, it is clear what would be
the satisfactory execution or response time. How-
ever, as applications become functionally complete,
previous measures might not hold. For example,
developers need to anticipate the user’s short-term
memory in completing a task [54]. If a given sys-
tem provides multi-steps to complete a job, a user
has a short-term memory about the tasks they are
carrying from one-step to another. If the accumu-
lative time exceeds a defined threshold of the user’s
short-term memory, then the application’s usability
gets lower. Thus, previously identified acceptable
responses change. Consequently, finding and fixing
those tasks becomes harder.

An even more complicated problem is the devel-
oper anticipation of workload. Most of the reported
performance issues arise from unanticipated workload
or library use misunderstanding [38, 84]. Regardless

of the developer’s experience, it is hard to know how
users will use the application. Any unanticipated use
of the system could create severe performance issues.
Even harder is finding these performance issues on
deployed applications.

Software engineers need (and looking for) tools that
help them identify what has been done, when, and
by whom as applications evolve [75]. Widely used
continuous integration tools proved their usefulness
for software engineers. These tools provide different
perspectives on how the application is performing.
Moreover, they introduce the opportunity for the de-
velopers to fix any highlighted issue as they appear.
Similar to the code coverage measure of functional
testing, for example, a performance analysis tool that
continuously monitors and clearly report the applica-
tion performance is necessary.

The techniques we covered in the previous section
(Section 2.1) provide different methods to explore
the system given existing workloads. However, these
tools are either does not explore unanticipated per-
formance issues or lack providing an easy way of un-
derstanding the results.

Understandability of a performance analysis tool
results is a major barrier [39, 2, 33]. From the efforts
we presented, it is clear that there is usually a trade-
off between how valuable the findings of a perfor-
mance analysis tool and its results understandability.
There have been efforts to bridge such gap by relat-
ing the found performance issues to the architectural
representation of the system [19]. Nevertheless, even
if such a tool is bridging the gap, perceiving the re-
sults at a later point in the development process (e.g.,
before going live) could make such effort obsolete as
the architectural state might have already deviated
from how they initially designed. A tool that brings
clarity and continues insight about the performance
of the applications to software engineers is necessary
to preserve desired application performance.

A more significant limitation found in performance
analysis tools is their lack of reporting unanticipated
performance issues. The tools presented in the last
section assume developers are performance-testing
experts, and they have a well-established set of per-
formance test cases. Hence, they mostly focus on how
to measure performance or where to look for the is-
sues. However, as stated before a significant gap is in
providing developers with unanticipated workloads.
There is a need for tools that generate new workloads
given the application’s invariants to expose possible
performance issues. Moreover, tools that allow devel-
opers to match their understanding of the application
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performance with the new findings to either prevent
such cases (through validation) or assert the perfor-
mance state.

In the next section, we go through a set of efforts
that either try to provide an insight about the ap-
plication’s performance or provide new exploratory
workloads. These efforts do not focus on the under-
standability of the results. However, they only tackle
the workload issue as we see it the more significant of
the two problems.

3 Input Based Performance
Analysis

Inputs are an essential factor in any software analysis
tool. However, the issue of expressive inputs absence
within the performance analysis field is even more
complicated. Different sets, sizes, and orders of in-
puts can express different limitations of a method.
Moreover, the performance of a given method based
on a given input can significantly differ according
to the whole program state. For instance, Mozilla
Bug #490742 [38] illustrates such a performance is-
sue. The reported (and fixed) performance issue ap-
peared only when users tried to bookmark 20 or more
pages at once using the Bookmark-All functionality
on Mozilla Firefox. Without going into details of how
the performance issue was introduced and fixed, it is
easy to see how a given case could escape the software
testing designed toward testing the functionality of
the method. The given example shows how perfor-
mance issues with a relatively low number of inputs
could escape testing. Load testing [86, 15, 16] could
be a probable solution for such simple performance
issues. However, the dimensionality of inputs is only
assumed to be larger in most cases. Also, there ex-
ists performance issues that does not occur because
of the size of the inputs. Thus, the issue of having a
meaningful input that expresses the application per-
formance is significantly difficult.

The number of different possible paths within an
application can be significantly large. Static and dy-
namic analysis tools provide insightful feedback [79]
and module classification [30] about the application
under test. For example, code coverage tools [79] can
easily report that the path ABDE in Figure-5 has never
been taken. Such insight allows the developers to
write tests that express the functionality of such a
path. However, presented performance analysis tools
do not help the user distinguish how differently tested
paths ACE and ABCE from Figure-5. Because of the

m—pp-  Expressive Load
—— Inexpressive Load

e Untaken

Figure 5: Example of different paths traversed based
on testing data.

given input data by the user, a passive performance
analysis tool could mislead the developer into believ-
ing that path ACE has a performance issue and thereby
miss actual performance optimization opportunities.

In this section, we present proposed performance
analysis tools that look into the influence of the in-
put data on the performance of applications under
test. There are two major types of input-based per-
formance analysis tools. One tries to provide insight
on how the inputs influence the application perfor-
mance based on the given inputs by the developer
(e.g. [61, 85]). While the other tries to explore new
inputs that would express the performance of the
application beyond what the developer anticipated
(31, 72, 48].

3.1 Input Influenced Insight

There is a number of performance analysis techniques
that realize the significant influence of the inputs on
how applications are performing [51, 50, 20, 3, 72, 45,
85, 87, 74]. These approaches differ in how they define
the inputs and analyze them. For example, some ef-
forts [20, 85, 18] try to define the cost functions of the
analyzed methods based on the given inputs. Some
others [74, 87], narrowly define input as the possible
configuration a user could change for a given appli-
cation and provide insight about which set of com-
binations maximizes the performance. Others [45, 3]
try to find application bottlenecks based on the given
inputs and provide the developer with insightful feed-
back to manually provide better inputs. Despite their
differences, all of these techniques are either passive
where they do not look for new interesting inputs or
rely on the developer to drive the input search.
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3.1.1 Defining Cost Functions

Algorithm researchers and software engineers for sci-
entific applications usually use cost functions when
analyzing algorithms complexity. Cost functions are
usually asymptotic lower and upper bound represen-
tations of the algorithm time or space cost. Such in-
sight can be useful to understand what inputs could
lead the application under test into an unsatisfying
performance. Using cost functions, software engi-
neers overcome the input anticipation issue by con-
firming whether the inputs they expect fall within
a bad performance portion of the cost function or
not. Cost functions are not necessarily trivial to
obtain. Moreover, they are even harder when the
number of inputs is unlimited for complicated ap-
plications. Hence, performance analysis researchers
[27, 20, 85, 18] attempted to find these cost functions
automatically based on the program runs.

Automating the construction of cost functions is
not trivial. One of the most essential problems is
how to determine the inputs of an algorithm. Za-
paranuks and Hauswirth [85] established a technique
that identifies all loops in a control-flow graph and
recursions in the program’s call graph to locate ar-
eas where performance issues might occur. Moreover,
they use the execution count of loops as the cost in-
stead of measuring time to avoid large overhead. Za-
paranuks and Hauswirth [85] essential shortcoming is
in determining the algorithm/method inputs. Either
they limit what they considered inputs on field refer-
ences to data structures accessed within the method
execution or external input files. Even more, their
approach has issues with algorithm inputs based on
primitive data. Because the cost interpretation of
primitive data types can differ (e.g. an integer can be
seen as a number of digits on the schoolbook multipli-
cation algorithm or a wvalue on a factorial algorithm),
their approach focuses on one aspect only.

Conceiving primitive inputs is not the only es-
sential limitation on Zaparanuks and Hauswirth [85]
work. Experimental algorithmic techniques such as
Zaparanuks and Hauswirth [85] take portions of the
code and test it extensively on different input sizes.
While such approaches can provide valuable insight
about the code portion, it suffers from studying those
small portions out of their context (the system as
a whole) [78, 88]. Much of the performance issues
that escape testing are those that combine multiple
and complex interactions between different portions
of the system. Taking a method out of its context or
looking at it within a static context does not provide
complete insight into the application performance.

Coppa et al. [20] understood the context issues for
performance analysis in general and for approaches
that try to generate cost functions in particular. They
mitigated the limitations of existing approaches that
automatically measure the performance of the rou-
tines as a function on their input size by looking at
it within the actual context of the software.

Before looking into the context issue, it is impor-
tant to look into how Coppa et al. [20] approached the
essential challenge of defining the inputs to track for
performance analysis. To solve this problem Coppa
et al. [20] introduced a metric called Read Memory
Size (RMS). They define RMS as the number of dis-
tinct memory cells first accessed by a method (call it
foo()), or by a descendant of the method in the call
tree, with a read operation. They obtain such infor-
mation using tools such as Valgrind [57]. The authors
argue that calls to memory by a function for the first
time (never accessed before) with a read operation
contain the input values of the routine. Conversely,
if a cell value is first written and then read by the
routine, the value is not part of the input as it was
determined by the routine itself.

Although the definition of the RMS can limit the
number of tracked inputs, we think this is an impor-
tant contribution on how to define inputs in the field.
This approach in defining inputs solves the issue of
understanding complex user-defined objects by rep-
resenting them in their simplest form. The overhead
of the technique is significantly high, but that is an
expected trade-off between the details and cost of any
software analysis tool.

Having the RMS defined, Coppa et al. [20] de-
fine the performance analysis technique as the col-
lection of RMS for each method encountered in the
program. For example, for method foo(), they find
the set Noo = {n1,no, ...} of distinct RMS values on
which foo () is called during the execution of the pro-
gram. For each estimate of the input size n; € Ny,0(),
they collect the number of times the method is called
under that input, the maximum and minimum cost
for the routine to be executed based on the observa-
tion regardless of the definition of the cost, the sum
of all the costs observed for the given method and
RMS(n;) and the sum of the costs’ square.

This definition of how Coppa et al. [20] collect
inputs makes their approach context sensitive. Be-
cause they separated how they collect input infor-
mation from where the method under observation is
located, they were able to capture the whole program
context. As the ultimate goal of the complexity anal-
ysis of an algorithm (or a method) is to find a closed
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form expression for the cost (e.g. running time) on
the input size, Coppa et al. [20] used curve fitting
and curve bounding to generate cost functions.

In line with expectations, the overhead of Coppa’s
et al. [20] approach is significantly high. Compared to
other tools, their approach requires an average of 30
times the normal run (the peak was 78.3x). For space
requirements, their approach on average requires 2
times the normal space. It is normal to have such
high overhead given the fine granularity of collected
information.

Coppa et al. [20] state that a single run of the sys-
tem under test is mostly sufficient to use their tool.
The key observation they highlight is that the num-
ber of distinct RMSs for each method will not increase
under the same input. Distinct RMSs are more im-
portant than RMSs with different values because they
expose different paths within the same method. Nev-
ertheless, we think this is the essential limitation on
such approaches [20, 85], as low distinct RMSs are
possible given that developer’s inputs usually target
functional testing.

Closely related to these two major techniques
[20, 85], Chen et al. [18] generate cost functions for
selected paths. Based on given inputs, they clas-
sify paths into high-probability and low-probability
paths. The high-probability paths are those that ex-
ecute under most of the given inputs. Respectively,
low-probability paths represent the corner cases of
the program that found based on a small number
of inputs. Chen et al. [18] use symbolic execution
[68] to classify the given paths and use loops unfold-
ing to ensure the scalability of the technique. The
high-probability paths are a representation of the pro-
gram normal execution. Understanding the program
performance under these cases helps developers un-
derstand the state of the program normal behavior.
Low-probability paths, on the other hand, represent
the usually untested cases by developers. Highlight-
ing these cases, bring developers’ attention to unan-
ticipated issues. Given the symbolic inputs and the
high-probability and low-probability paths, Chen et
al. [18] generate cost functions.

Symbolic inputs are efficiently translatable to ac-
tual inputs in theory [80]. However, given how Chen
et al. [18] treated loops to prevent an explosion on
the number of possible paths, interesting performance
insights are not explored since the majority of per-
formance issues occur within loops as discussed in
Section-2.1.2. Moreover, the inputs generated by the
symbolic inputs are not pathological inputs. Mean-
ing they express the change in the input scale rather

than the inputs’ nature. Thus, also missing impor-
tant performance analysis opportunities.

The approaches presented [20, 85, 18] regardless of
other limitations, they suffer from the essential issues
of how to make sure that given inputs are sufficient for
driving the analysis tools into interesting performance
issues. For techniques such as Coppa et al. [20], this
can be mitigated by incorporating the code coverage
insight to ensure that the highest number of paths is
taken. However, this is beyond the problem of input
generation.

3.1.2 Inputs as Configurations

A common root cause of introducing performance is-
sues is the misuse of off-shelf software [38, 59, 34].
Developers usually do not clearly understand how
to use an API (Application Programming Interface)
or APIs behavior changes across different versions of
the same system but no update is applied to their
calls. Whether these off-shelf software are libraries or
standalone programs, the configuration passed con-
sidered as inputs. From this perspective few tech-
niques [87, 74] were proposed to analyze how different
configurations (inputs) combinations might influence
the application’s performance.

Performance issues introduced on applications that
were working as expected can be hard to understand
for software engineers. These performance issues usu-
ally arise by introducing wrong configurations over
different versions of the software. Zhang and Ernst
[87] introduced a recommender system to choose the
right configurations for the desired performance.

To identify and report configuration changes that
cause performance issues, Zhang and Ernst [87] re-
quire two different versions of the same artifacts. In-
strumenting the code and using the same configura-
tion, they use user’s usage (test cases or actual usage
of the system) to record traces. The instrumentation
follows simple techniques that identify predicates on
branching control-flows and count their executions.
Given traces, Zhang and Ernst [87] match predicates
of the traces on the old version of the system to the
ones from the newer version. They then compute the
behavioral deviation for the matched predicates from
different versions within a given method. This gives
an indication of how similar or different these two
predicates are within different versions. Using thin
slicing, following the dependency between a slicing
criterion (e.g. statement initialization) and predicate
using only the data flow dependency, to identify the
relationship between a given behavioral change and
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a configuration option, Zhang and Ernst [87] recom-
mend which configuration is most likely the cause of
the behavioral deviation.

A significant limitation in Zhang and Ernst [87] ap-
proach is that they require two different versions to
measure the influence of configurations. Access to
older versions of the same software might sometimes
be difficult if not impossible. However, even if older
versions are available, Zhang and Ernst [87] approach
does not look into how the given configurations in-
fluence the system compared to other configuration
for the same version. Thus, missing performance op-
timization opportunities that are actual to the soft-
ware. To mitigate this Siegmund et. al. [74] proposed
an approach that looks at how a user can select the
optimal configurations of a system while maintaining
the desired performance.

The work presented by Siegmund et al. [74] tar-
get large systems where configurations changes by the
user could significantly affect the performance. For
example, measuring the performance of a database
management system with indexing turned on or off
can provide useful insight about the indexing effect.
The number of such features can be significant in
large systems and it is hard to predict their effect
on performance by users. Even in Siegmund et al.
[74], the number of features can be an obstacle be-
cause the number of interaction possibilities is ex-
ponential on the number of features. To avoid such
issue they compose features that cannot be measured
in isolation into a single feature to reduce the num-
ber of possibilities. In addition to that, Siegmund et
al. [74] focused on test heuristics to trim the search
space. Given these guidelines, Siegmund et al. [74]
predict the system performance and report it to the
users.

Such techniques have a different definition of what
we considered as input. Nevertheless, these are still
passive techniques (no new inputs are generated).
Also, even if they generated new configuration (i.e.
for scalable configuration), they are manipulating sys-
tems at a very high level. Such high-level observation
could lead to missing some interesting performance
behaviors as well as mismatching the developer’s lev-
els of abstractions.

3.1.3 Input Driven Analysis

The need for input driven performance analysis was
grasped by a few established techniques [45, 3], but
the amount of automation is very limited to nonex-
istent. Such established ideas, recognize the impor-

tance of the inputs to drive the software engineers
understanding of the software’s performance. More-
over, they understand the number of iterations and
deep understanding needed to find inputs that influ-
ence performance. Thus, these techniques provided
tools that assist in the performance analysis process
based on the give inputs.

Kiistner et al. [45] present the simplest form of the
techniques. Given that inputs highly influence the
application under test performance, Kiistner et al.
[45] provided a tool that highlights methods based on
their inputs. There is no automation on the tested in-
puts. Rather they provide an input based perspective
of the application performance. For example, given
the selected set of methods a developer would like to
understand, the developer defines input ranges (e.g.
x < 5;5 <=z <=10;10 < z). Using the different in-
puts ranges, the tool generates three different profiles
for each input range based on the provided test suite.
Kiistner et al. [45] put a lot of emphasis on the input
when analyzing the application under test. However,
the needed manual interference by the developers is
an obvious limitation.

Ayala-Rivera et al. [3] also focus on the workload
to assist developers improve their productivity. How-
ever, compared to Kiistner et al. [45] they provide
some notion of automation of the workload. Instead
of providing only performance feedback and wait for
new inputs, Ayala-Rivera et al. [3] allow the devel-
opers to identify a set of important input parameters
and their characteristics. The given inputs are then
automatically stressed (e.g. quadratically increasing
an array size for each new execution) based on prede-
fined policies to inspect possible performance issues.
Although such an approach might have some automa-
tion to manipulate the workload, it does not actually
explore any unanticipated issues by providing scalable
inputs, as scalable inputs are not necessarily interest-
ing inputs.

3.2 Input Generation

Finding a solution that would drive all the pre-
sented performance analysis techniques to actual per-
formance issues requires searching the space of all
possible special inputs given the whole program con-
text [43]. Special inputs are not only a stress of some
input size (e.g. increasing a size of an array for a sort-
ing algorithm [15]), random generation of load inputs
then passively select the most diverse [86], or focus
on increasing the coverage of the tests [16], rather
it is a deeper understanding of the given method or
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algorithm functionality.

Interesting performance inputs usually defined as
pathological inputs [48]. Simply, pathological inputs
are inputs that maximize the cost of software exe-
cution given different combinations of inputs but of
a fixed length. For example, on sorting algorithms
pathological inputs are these inputs that maximize
the execution time without providing longer arrays
of inputs (i.e. scalable inputs). The length of the
inputs is important and can escape the developers
understanding of the software complexity. However,
pathological inputs are the most difficult to generate
and understand.

Although such performance information is valu-
able, sometimes it is missing from the most well-
documented libraries. For example, Java Devel-
opment Kit (JDK) documentation of array sorting
states that the given algorithm “offers n x log(n)
performance on many data sets that cause other
quicksorts to degrade to quadratic performance” [64].
Reaching a high detailed state of performance anal-
ysis automatically is a challenging task. Moreover,
finding special inputs for a software application that
is not as self-contained as a sorting algorithm is even
more challenging.

In this section, we present the best attempts we are
aware of to automatically generate new special inputs
for the purpose of performance analysis. Distinguish-
able input generation techniques use machine learning
methods [31], genetic algorithm [72] or fuzzing [48] to
search for special inputs.

3.2.1 Machine Learning Driven

The earliest found technique to use machine learn-
ing as a driver for special inputs finding presented
by Grechanik et al. [31]. They created a tool called
FOREPOST that takes initial inputs and their associ-
ated execution times to generate new possible special
inputs.

FOREPOST ([31, 53, 50, 51] execute the applica-
tion under test on a small set of randomly chosen test
inputs. Then it infers rules with high precision for se-
lecting test input data automatically to drive the ap-
plication toward possible performance issues. Rules
are in a form of if-then statements. For example,
based on the loaning system presented in the paper,
a rule could be “if inputs convictedFraud is true
and deadboltInstalled is false then the test case
is good.” The given example indicates that using the
given inputs leads to an expensive performance (more

computation time), thus it is a good test case as it
exposes performance issues. As input data are clus-
tered into expensive and cheap tests, FOREPOST re-
port methods that are specific to expensive test cases,
which is most likely to contribute to a bottleneck.

It is important to understand how FOREPOST ob-
tains performance rules to understand the usage of a
machine learning technique. FOREPOST uses the
set of values of the application under test as input to
a machine-learning algorithm. Such input can be rep-
resented as Vi, ...,V — T where V;  is the value
of the input I, and T' € {Good, Bad}. The machine
learning classification algorithm learns the model and
outputs rules of the form I, ©V; e [, ©V; e ... o
I, ® Vi, — T, where ® is one of the relational oper-
ators and e stands for logical connector and or or.
Such learned rule is feedback to the testing script
to automatically collect execution costs and guide
the selection of new input data. Repeating the pro-
cess will partition the input data and generate newly
learned rules. The algorithm reaches a high degree of
probability of expensive input values if no new rules
are learned.

Grechanik et al. [31] argue that frequently invoked
methods, which appear in cheap and expensive test
cases, can be of no significance to performance in-
sight. Rather, FOREPOST reports less frequently
invoked methods that appear within expensive test
cases or have little to no significant impact in cheap
test cases. It is clear that such argument does not
always hold as for simple example (e.g. sorting algo-
rithms) we could have good and cheap test cases over
many invocations and still be of performance signif-
icance. However, such observation can be domain
specific [10] as Grechanik et al. [31] mainly evaluate
their tool on closed-source loaning application and
select only Boolean inputs to manipulate.

Evaluating FOREPOST shows that the technique
does actually generate inputs that worsen the per-
formance. For example, under random testing of
JPetStore, a widely used java benchmark, it takes
an average 576.7 seconds to execute 125,000 transac-
tions. With FOREPOST, executing the same num-
ber of transactions takes an average 6,494.8 seconds.
However, FOREPOST is less efficient in finding bot-
tlenecks. Examining FOREPOST’s top 30 possible
bottlenecks methods for a Renter application results
in finding a single performance issue of wasted com-
putations.

We believe that the limitation in ranking interest-
ing performance issues is not a significant issue. In
fact, we argue that reporting bottlenecks should not
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Figure 6: An abstract representation of

be examined using an input generation techniques
(see Section-4). Rather it should only feed such data
to specifically built profilers (e.g. gprof). However,
an actual limitation with FOREPOST is its consid-
eration of high-level inputs only. FOREPOST does
not manipulate inputs at a finer level (e.g. method
level). Rather it only looks to the application’s in-
puts. Some would argue that such high-level inputs
are the only inputs a user of the system can manip-
ulate. Nevertheless, it is not the level at which soft-
ware engineers are examining the system. Usually,
different developers develop and test different mod-
ules of the software. Generating inputs that encom-
pass all modules can decrease results understandabil-
ity. Moreover, any change to the internals of the sys-
tem could expose interfaces to previously unexamined
inputs by FOREPOST.

3.2.2 Genetic Algorithms Based

Another distinguishable approach was proposed by
Shen et al.[72, 50, 51]. Their definition of the in-
put generation for performance problems is similar
to the one given by Grechanik et al. [31]. However,
toward the evaluation of their approach as we will ex-
plain later, their definition lacked a demonstration of
generality. Shen et al. [72] define the input genera-
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using genetic algorithms for input generation.

tion problem as a search and optimization problem.
Moreover, they suggest using a genetic algorithm to
drive the search task. Shen et al. [72] argue that ma-
chine learning based techniques [31] are fit for pat-
tern recognition rather than a search and optimiza-
tion problem. Thus, because the genetic algorithm
core idea is to find new fitter “individuals” based on
existing ones, they think it is a good fit for inputs for
performance testing.

Although we think that a good classifier (machine
learning algorithm) is suitable for the problem on in-
put generation if combined with a good input selec-
tion method for testing, a genetic algorithm is also a
good fit if combined with a non-random input selec-
tion method. An important limitation in the genetic
approach, as we will describe it, is the possibility of
falling into less important local-minimas when search-
ing for special inputs.

Shen et al. [72] major contribution is on explaining
how to represent inputs using genetic algorithm. In
the genetic algorithm, they have what is known as an
individual who is essentially a chromosome. Chromo-
somes in their part are made of a set of genes. The
goal of genetic algorithms is to generate new individ-
wals by crossing-over fit chromosomes. Calculating
the fitness of a chromosome is based on a predefined
fitness function that considers each gene. Figure-6
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shows a representation of the chromosomes tailored
for the input generation problem.

For each set of inputs, Shen et al.[72] consider these
as chromosomes. Within each given chromosome, we
have a set of genes that represent an individual pa-
rameter and its value. For example, if a method
accepts an array x = [1, 2, 3] and a boolean y =
True, then a chromosomes is the sequence of genes
{1 = 1,29 = 2,23 = 3,y = True}. Using inputs
with different values for the same method, the fittest
sequences of inputs (i.e. chromosomes) are crossed-
over to generate a potentially new fitter sequence of
inputs.

The fitness function simply maps the input values
to the elapsed execution time. Inputs that maximizes
the fitness function are fit inputs. Given a run of the
application under test based on randomly generated
inputs, the fitness function will have few candidate se-
quences of inputs. As shown in Figure-6 each pair of
the candidate sequence of inputs (i.e. chromosome)
will be crossed-over. The crossover phase simply con-
sists of selecting a subset of the inputs (i.e. a set of
genes) and exchange them between the sequence of
inputs. Finally, for each crossed subset of inputs the
values are randomly changed (authors did not provide
details on how to select new values thus we assume
it is random). In the last step of each iteration, the
application under test is run again using the newly
generated sequence of inputs to calculate its fitness.

The presented evaluation by Shen et al. [72] does
not provide clear results to assess the potential of
the technique. The evaluation uses URLs as inputs,
which does not correlate clearly on how the approach
is applicable to widely available non-web-based ap-
plications. Moreover, the experiments highlight the
technique’s results on injected performance issues.
The essential goal of input generation techniques is to
generate unanticipated inputs that reveal actual per-
formance issues. Injecting performance issues does
not help in understanding the possible limitation of
the technique. Thus, it is hard to draw conclusions
about the approach.

Regardless of the evaluation methodology, we
can identify some possible limitations. First, the
crossover step between two sequences of inputs (i.e.
chromosomes) by itself does not necessarily gener-
ate new inputs. Trying different combinations of the
same set of values can lead to some interesting re-
sults, but no actual new inputs generated. Thus, we
fall into the essential issue of the developer’s given
inputs that does not necessarily cover all the perfor-
mance possibilities. Second, based on the previous

1 function quicksort(array):
2 /* initialize three arrays to hold
3 elements smaller, equal and greater
4 than the pivot */
5 smaller, equal, greater = [1, [1, []
6 if len(array) <= 1:
7 return
8 pivot = array[e]
9 for x in array:
10 if x > pivot:
11 greater.append(x)
12 else if x == pivot:
13 equal.append(x)
14 else if x < pivot:
15 smaller.append(x)
16 quicksort(greater)
17 quicksort (smaller)
18 array = concat(smaller, equal, greater)
Number of
Quicksort Inputs executed
lines
8 5 3 7 9 37
v
1 5 3 7 9 52
| 1 5 6 7 9 ‘ 67

Figure 7: [67] Steps taken by SlowFuzz to find inputs
that maximize the execution cost of quicksort.

limitation, Shen et al. [72] randomly generated new
values for each exchange input (i.e. gene). This so-
lution does introduce an actual new input. However,
because the given genetic algorithm does not calcu-
late how each input (i.e. gene) is contributing to the
fitness of each sequence of inputs, the new values are
not necessarily selected with high potential of gener-
ating a new fit sequence of inputs that drives the ap-
plication’s performance into performance issues. The
absence of a link between the newly selected values
and the new combinations of inputs is an essential
limitation of such approaches.

3.2.3 Fuzzing Driven Inputs

To our knowledge, Lemieux et al. [48] presented the
most general and focused approach to generate input
that leads to performance issues and target the com-
prehensive definition of performance inputs. They
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precisely target pathological inputs by always fixing
the size of the manipulated set of inputs.

Lemieux et al. [48] use fuzz testing as an engine
to drive the input generation. Fuzzing is widely used
in functional requirements testing where the applica-
tion under test is barraged with randomly generated
tests. For functional testing, the goal of fuzzing is to
use feedback-directed mutational fuzzing to increase
the code coverage. Petsios et al. [67] are the first to
use fuzzing for performance inputs generation. Their
intuition is to iteratively use evolutionary search tech-
niques to maximize a program execution cost.

As shown in Figure-7, Petsios et al. [67] devel-
oped a technique called SlowFuzz that uses fuzzing
engine to generate inputs. In addition, SlowFuzz de-
fines a cost function to rank the inputs based on their
execution cost. The example shown explains how
the fuzzing algorithm iteratively finds a sorted array
that maximizes the cost of executing the given quick-
sort algorithm (i.e. increasing the length of execution
paths).

Lemieux et al. [48] adopt the same methodology
but instead of targeting inputs that only maximize
the execution cost of a given path (e.g. SlowFuzz
[67]), they also considered inputs that hit new lo-
cations (i.e. increasing the coverage). SlowFuzz is
greedy in that it looks for inputs that maximize the
count of edges on the control-flow graph over explor-
ing new paths in favor of achieving a worsen perfor-
mance in a shorter time.

The implementation of Lemieux et al. [48] ap-
proach called PerfFuzz. Initializing PerfFuzz requires
a seed input that is known to run the program. Perf-
Fuzz adds the seed input to a set called ParentInputs
that maintains known special inputs. The set holds
inputs that are known to either maximize the test
coverage (finding new paths on a control-flow graph)
or maximize the execution cost of the given control-
flow graph. Lemieux et al. [48] argue that such setup
allows them to avoid local maximums by having a
multi-dimensions objective. In fact, they argue that
it helps them not necessarily finding the global maxi-
mum, but potentially many different near global max-
imums.

If we look at a single iteration of PerfFuzz’s algo-
rithm, we find that the algorithm first generates new
inputs by randomly permuting the bytes of inputs
from the ParentInputs that has potential. Bytes
permutation simplifies the input problem. However,
might not be a good approach for complicated inputs
such as widely used data structures. Potential inputs,

(1) "tVGIPFE]j??A4A+v!A?AAE | §A2MPE O8G0y (8mryyyy"
() "ttttintXxti19tltlttttt"
(3) "t <81>v A?@t <80>!A?@t <80>!t tARN t t t t t t t t t"

Figure 8: Different inputs generated by PerfFuzz [48]
for the WORDFREQUENCY application.

nevertheless, are the ones from the ParentInputs set
that maximizes performance value for some cost mea-
surement in the application. The cost definition can
differ based on the developer needs. For example,
it could be the number of bytes allocated at malloc
statement or cache misses. For PerfFuzz they defined
cost as the execution counts of control-flow graph
edges.

All newly found inputs are ChildInputs. As Perf-
Fuzz finds a collection of new ChildInputs, the ap-
plication under test is run again given the new collec-
tion. PerfFuzz adds inputs to the ParentInputs set if
they show a maximization in the coverage (newly ex-
ecuted edges) or cost (count of edge execution in this
case). The number of inputs in the ParentInputs set
cannot exceed the number of control-flow graph edges
at any given point in time. Thus, PerfFuzz reevalu-
ates all inputs within the set of ParentInputs each
time a new input shows a performance maximization.
The algorithm repeats this process of finding new in-
puts and running the application against them until
it hits a given threshold (e.g. 1 hour).

Lemieux et al. [48] evaluate their findings com-
pared with the ones generated by SlowFuzz [67]. Perf-
Fuzz clearly outperformers SlowFuzz in finding inputs
that are more pathological. However, an essential is-
sue in fuzzing based approaches, in general, is the
difficulty of understanding their generated inputs.

For instance, applying PerfFuzz on a WORD-
FREQUENCY application would generate results sim-
ilar to the ones shown in Figure-8. The shown three
inputs are all revealing different performance issues.
Input (1) in Figure-8 depicts a single long word issue,
which maximizes the time taken by the application
to compute a hash of the word. The second input (2)
in Figure-8 exercises a case where a repeated execu-
tion of the method add_word () occurs because of the
many short words. The last given input (3) presents
a case where many hash collisions are occurring, thus
longer execution time in traversing a linked list.

All the given inputs in Figure-8 are valid and valu-
able examples. However, relating them to the root
causes of the performance issue requires a deep un-
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derstanding of the algorithm. In addition, as the size
of the application grows the problem becomes even
worse.

A more significant issue with PerfFuzz is its focus
on a single high-level input at a time. As presented
before high-level inputs are not the level at which
software engineers are thinking. Especially for large
complex applications, manipulating the high-level in-
puts would not be in line with a sub-module or a
function a developer is writing. Nevertheless, the is-
sue with PerfFuzz is not in manipulating high-level
inputs, but also manipulating a single input at a time.
Limiting the number of inputs interacting with a sys-
tem to a single input reduces the problem space sig-
nificantly. For example, in a basic database system,
it is important to understand the relation of indexing
on different operations such as insertion and query-
ing. Examining a single variable at a time could lead
to missing interesting performance insights. Also, it
makes PerfFuzz simplifies the problem beyond appli-
cability for real-world applications.

Another limitation is in the time needed to find
valuable input. Because PerfFuzz [48] mutate input
randomly, the effort needed to find local maximum is
costly. A more educated permutation of input values
could cut the time needed (6 hours for the WORD-
FREQUENCY application) to find interesting inputs
significantly.

4 Efficiency Measurement

An apparent issue in the field of performance analy-
sis, in general, is the lack of a unified method for effi-
ciency measurement [69]. For us, efficiency measure-
ments mean how effectively a technique helps soft-
ware engineers in finding actual and previously un-
known performance issues. Mytkowicz et al. [56]
illustrate the severity of the efficiency measurement
problem. In their work, they show how a set of Java
profilers (zprof, hprof, jprofile, and yourkit) do not
agree on a hot method under a unified benchmark
and the testing data. Such disagreements indicate
that there must be at least three wrong profilers as
Mytkowicz et al. [56] state. In examining the core
issues between the given profilers, they found them
violating a fundamental sampling attribute. None of
the profilers collected samples randomly. Therefore,
each profiler would serve a different purpose.

When presenting their evaluation, authors of per-
formance analysis tools follow different methods for
evaluation. Some authors present their findings and

confirm them with the application’s developers as a
method of measuring efficiency [29, 28]. Either they
provide analysis of their findings or assisting the de-
velopers to understand the results. Others evaluate
their efforts against tools with similar general goals
but focus on other strengths such as overhead or cov-
erage [20]. A more prominent efficiency measurement
methodology [21, 31] is comparing results with other
performance analysis techniques given a unified appli-
cation under test but one that express the presented
goal better. This approach is usually unfair and un-
realistic because the goals of the two performance
analysis techniques are unmatchable. For example,
Curtsinger and Berger [21], who develop an applica-
tion for finding performance improvement opportuni-
ties within a parallel program, compares its results
to the ones produced by gprof [28]. The goal for
gprof was never to profile parallel programs. Thus,
the comparison does not hold.

Grouping applications benchmarks for performance
testing such as the DeCapo [11] benchmark is also in-
sufficient efficiency measurement. These benchmarks
are not necessarily a realistic representation of real-
world applications. In addition, these benchmarks
could lead to more tailored solutions, as the goal be-
comes to find new performance issues from the same
application. Most importantly, the goal is not only
finding performance issues but also assisting software
engineers throughout the software evolution.

Performance analysis tools do not apply fixes au-
tomatically. This is a major aspect of performance
analysis tools due to the tradeoff between program
soundness and the potential of finding performance is-
sues. Using the performance improvement percentage
based on automatically applied fixes is a precise mea-
surement for compiler-level optimization techniques.
It shows the benefits of automatically applied fixes.
Limiting performance analysis tools to find and ap-
ply valid fixes of performance issues restricts the po-
tential of reporting interesting performance issues as
discussed before. Therefore, it is hard to adopt the
same approach by performance analysis techniques.

As fixes are manual, the performance improvement
measurement cannot be ever precise for the perfor-
mance analysis techniques. Humans’ experiences and
understanding can vary significantly. Thus, fixes ap-
plied for the reported performance issues could pro-
vide different speedup values depending on the de-
veloper’s experience. Nevertheless, we think that fix-
ing the top k number of reported performance issues
is the best available way for measuring performance
analysis techniques. Authors of any technique can
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put the needed effort and consultation into fixing the
reported k performance issues to maximize the ben-
efits. This could hopefully bridge the gap in the per-
formance efficiency measurement limitation, as the
value gained from fixing reported performance issues
is essentially what software engineers would consider
in using one tool or another.

An even more compelling solution for the input
generation focused approach is to use existing per-
formance analysis techniques to measure efficiency.
The three major input generation efforts presented
in this report [72, 31, 48] should have a unified evalu-
ation method. For example, using tools such as gprof
[28] to monitor the ranking change in performance
issues between different methods. Performance anal-
ysis tools might not serve a precise goal an input gen-
erator is targeting, but different ones should cover and
highlight different goals.

5 Machine Learning for Input
Generation

Machine learning found to be effective in many differ-
ent problems but barely touched on for performance
analysis. In fact, our comprehensive search for tech-
niques that explicitly adapt machine learning to gen-
erate input for performance testing results only in
the work presented by Grechanik et al. [31]. As pre-
sented before Grechanik et al. [31] approach did not
generalize enough to identify inputs automatically.

As machine learning proves itself as a valid or
promising solution for different applications, we
thought it is important to explore what established
machine learning modules are applicable to the in-
put generation problem. Finding an arrangement
of inputs that maximizes a method execution is a
very high-dimensional problem. Machine learning
is widely known to be suitable for high-dimensional
problems.

Machine learning is classified into supervised, un-
supervised and reinforced learning. We first evaluate
the applicability of each learning method then discuss
the most relevant method to us.

Supervised machine learning approaches are appli-
cable in cases where labeled data are available. In
software analysis, data is not an issue as inputs can be
paired with the runtime cost based on a given traced
run. In fact, the sheer amount of data where slight
changes in input could produce a slight uninteresting
change in output is one of the problems. Another is

that supervised learning models must use some sort
of random data generation method to generate actual
new inputs. Otherwise, the model would be passive
in that it looks only at what user provided as inputs
rather than finding new ones.

We think that supervised learning methods are
more applicable in performance driven source code
learning than input generation. For example, using
regression-testing techniques that identify the source
code change causing a performance change [52, 70],
can create labeled data of source code fixes for per-
formance improvements. A challenge here is to au-
tomate the deployment, run of the application and
traces collection of not only heterogeneous artifacts
but also many different versions of the same artifact.

Unsupervised machine learning techniques, where
no labels are available, are suitable for clustering,
anomaly detection, finding associations, etc. Simi-
lar to supervised learning, unsupervised learning can
cluster expensive inputs from cheap inputs. How-
ever, also similar to supervised learning, there must
be an input generation used along with unsupervised
learning. Depending on user-created tests would
lead to limitation such as the ones presented in dif-
ferent passive performance analysis approaches (e.g.
[28, 5, 61]).

Reinforcement learning maintains a reward func-
tion that increases as a learning model gets closer to
the optimal solution by trying different inputs at dif-
ferent stages of the learning process. In our case, the
reward function can be seen as a fitness function that
increases as a method’s execution cost increases and
decreases otherwise. In addition, the learning stages
as runs of the application under test with different
inputs. Assuming method inputs can be automati-
cally identified, we think that reinforcement learning
methods are the most applicable to our problem.

Stanley and Miikkulainen [77] established a notable
work for reinforcement learning. They focus on ex-
amining the efficiency of using fixed-topology models
(e.g. fixed number of hidden units, node, and con-
nections) versus evolving-topology for reinforcement
learning tasks (see Figure-9). The NeuroEvolution of
Augmented Topologies (NEAT) presented by Stanley
and Miikkulainen [77], can be seen as a method that
searches for behavior instead of a value function that
is more suited to continuous and high-dimensional
problems. Although a fully connected model that
uses backpropagation can in principle approximate
any continuous function, the model topology can af-
fect the speed and accuracy of learning. Moreover,
deciding on a topology that is applicable for a given
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Figure 9: Mutation of a neural network topology by
adding a connection or node [77].

problem is a time-consuming task as well as it could
emphasize some inputs over others.

Because the input generation problem is a high-
dimensional problem, where even the flattened rep-
resentation of a single complex object can result in
many different primitive inputs to permute, machine
learning is a promising fit for the problem. Also, be-
cause the different input have different emphases on
a method performance (e.g. the case of indexing ef-
fect on database operation compared with the actual
data), solutions such as NEAT are an even better
fit. We think NEAT [77] is a promising methodol-
ogy for the search of performance inputs. The ability
to iteratively decide on the emphasis each input has
(evolving the topology) for different methods and dif-
ferent high-dimensional inputs is a solution that has
not been explored within the performance analysis
field.

Recent input generation work [31, 72, 67, 48]; either
reduce the dimensionality of the inputs by permuting
a single input at a time or builds a fixed-model tar-
geting different types of inputs. We believe that the
use of a neural evolution reinforcement model such as
NEAT [77], could help overcome existing limitations.

6 Future Work

For the input generation problem alone, there are
still many open problems. Automatically identify-
ing complex methods input and finding an expensive
combination of these inputs are the two major open
problems.

Coppa et al. [20], as described before, showed a
technique of identifying method inputs by recording

the read operation to memory for the given method.
Grouping the set of inputs into a meaningful way to
developers before using them is an issue. Another is
to reduce the excessive overhead of identifying such
inputs, as identifying the input is only a first step in
any input generation methodology.

Given Coppa et al. [20] technique, we would like to
examine its applicability to work with fuzzing tech-
niques [67, 48]. Inputs from the Coppa et al. [20],
if identified successfully would increase the dimen-
sionality and nature of the inputs beyond existing
evaluations of the fuzzing techniques [67, 48]. Hence,
it could highlight easy fixes to the existing fuzzing
techniques or shows that fuzzing is limited to such a
problem.

Furthermore, using the same inputs, we would like
to examine the different in efficiency between the
available fuzzing techniques [67, 48] and an applicable
reinforcement model such as NEAT [77]. We would
like to look into different forms of efficiency. For ex-
ample, the understandability between the two, time
of search and expressiveness of the performance issue.

Finally, low-prioritized, we also would like to fur-
ther explore the idea of composing a data-set of source
code level performance fixes. Using regression testing
techniques such as PerImpact [52], we would like to
identify source code fragments that are proven to be
fixing performance issues. Using the two versions, su-
pervised machine learning algorithms can be trained
to suggest changes at a source code level to avoid
common performance issues. If possible, this solu-
tion would have a high understandability rate as well
as avoid the need to generate inputs of common per-
formance issues.
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