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Abstract

Modern supercomputer architectures have grown increas-
ingly complex and diverse since the end of Moore’s law
in the mid-2000s, and are far more difficult to program
than their predecessors. While HPC programming mod-
els have improved such that applications are now gen-
erally portable between architectures, their performance
can still vary wildly, and developers now need to spend
a great deal of time tuning or even rewriting their ap-
plications for each new machine to get the performance
they need. New performance portable programming mod-
els aim to solve this problem and give high performance
on all architectures with minimal effort from developers.

This area exam will survey many of these proposed
general-purpose programming models, including libraries,
parallel languages, directive-based language extensions,
and source-to-source translators, and compare them in
terms of use cases, performance, portability, and de-
veloper productivity. It will also discuss compiler and
general-purpose language standard (e.g., C++) support
for performance portability features.

1 Introduction

Since the end of Moore’s law and Dennard scaling in the
mid-2000s, chip designers are hitting the physical limits of
what can be done with single- and multi-core processors.
The high performance computing (HPC) community has
realized simply scaling up existing hardware will no longer
work. As a result, there has been an explosion of new su-
percomputer architectures in the last two decades that
attempt to innovate around these physical limits to reach
higher levels of performance. Many of these new architec-
tures use accelerators, such as graphics processing units
(GPUs) or Intel’s Xeon Phi, as well as traditional CPUs,
to achieve higher performance than CPUs alone.

Unfortunately, these types of architectures are very dif-
ficult to program, and there is still no consensus on the

best way to program them. In addition, the wide va-
riety of architectures means code written for one archi-
tecture may not run on another. Over the last couple
decades, portable programming models, such as OpenMP
and MPI, have matured to the point that most code can
now be ported to multiple architectures with minimal ef-
fort from developers. However, these models do not guar-
antee that ported code will run well on a new architec-
ture.

Performance tuning and optimization are now the most
expensive parts of porting an application. The explo-
sion of new architectures also included an explosion of
micro-architectures that can have wildly different perfor-
mance characteristics, and to make the best use of micro-
architectural features, developers often have to rewrite
large portions of their applications. For very large ap-
plications (100,000+ lines of code), this is prohibitively
expensive, and developers need a better option.

Even when developers could rewrite their application,
they often want to run on multiple architectures, and
must therefore keep multiple versions of their code. Main-
taining multiple versions of the same code can be pro-
hibitively expensive as well, since fixes and updates must
be added to each version and these versions can diverge
as time goes on. Keeping multiple code paths within the
same version runs into the same problem, so developers
in this situation also need more options.

In short, porting applications to new architectures cur-
rently requires excessive developer effort and portable
programming solutions are not enough: we need perfor-
mance portable programming models that will increase
developer productivity. This paper will discuss several po-
tential general-purpose, performance portable program-
ming models that have been introduced in recent years,
including:

– Libraries, such as RAJA and SkelCL (Section 3)

– Parallel languages, like Chapel and Cilk (Section 4)

– Directive-based language extensions, including
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OpenACC and OpenMP (Section 5)

– Source-to-source translators, such as Omni and Clacc
(Section 6)

This paper will prioritize discussion of models that are
popular in the HPC community, are currently under de-
velopment, were recently proposed, and/or provide some
novelty, and future directions such models could take,
where applicable. This paper will not discuss: domain
specific languages (DSLs), since these by definition are
not general-purpose (although there have been promis-
ing results in using DSLs for performance portability);
autotuning or other machine learning-based methods for
automatic optimization, since those are meant to be used
with the programming models, but are not programming
models themselves; or generic programming frameworks
such as MapReduce or StarPU, since these are not truly
programming models, but efficient runtime systems.

In addition, Section 7 will discuss current compiler
support for parallelism and potential improvements that
these models could make use of. Section 8 will summarize
and compare these models in terms of use cases, perfor-
mance, portability, and developer productivity. Section
2 will begin by providing background information, and
Section 9 will conclude.

The main sections of this paper (3, 4, 5, and 6) will
be structured as follows. A brief introduction will be
given, then each programming model will be described.
Each model will be discussed in terms of the “3 P’s”
(portability, performance, and productivity) and given a
(qualitative, subjective) “P3 Ranking” based on how well
it meets the criteria for being performance portable and
productive, as defined later in Sec. 2.4. All of this will
be summarized in two tables at the end.

2 Background

The first part of this section will describe the goals and
challenges of exascale computing, as well as how it re-
lates to performance portability. The second part will dis-
cuss background information on performance portability,
including its most common mathematical definition and
several criticisms of that definition. The section will con-
clude with some definitions and brief descriptions of pop-
ular non-(performance) portable programming models,
which will be compared to various performance portable
models throughout this paper.

2.1 Exascale Computing

The aim of exascale computing is to build a machine that
can do 1018 floating point operations in a second — 1
exaFLOP. Exascale computing is essential for doing new

research in many domains. It will allow simulations to
have higher resolution, scientific computations to get re-
sults more quickly, and machine learning applications to
train on more data.

Current supercomputers can do on the order of 100
petaFLOPs (1 exaFLOP = 1,000 petaFLOPs). Summit
(Oak Ridge National Lab) can do ∼150–200 petaFLOPs;
Sierra (Lawrence Livermore National Lab) and Sunway
TaihuLight (National Supercomputing Center in Wuxi,
China) can both do ∼100–125 petaFLOPs [171]. Aurora,
arriving at Argonne National Lab in 2021, will theoreti-
cally be an exascale machine. China and Japan are aim-
ing to have their own exascale machines by 2020 and 2023,
respectively [65].

2.1.1 Goals for Exascale

The U.S. Department of Energy (DoE) set a goal to build
an exascale machine that has a hardware cost of less than
$200M and uses less than 20MW of power [149]. Aurora
will not meet the cost goal, and it’s still unknown if it
will meet the power goal, but there is hope for future
machines.

Other (implicit) goals for exascale computing include
(1) making exascale machines “easy” to program, (2) ver-
ifying that these machines can do a “useful” exaFLOP,
and (3) verifying they can perform sustained exaFLOPs.
The first of these is also a goal of performance portability,
and will be discussed further in Sec. 2.3 (on productiv-
ity).

As for (2) and (3), the origin of these questions goes
back to how supercomputer performance is measured.
The measurement method used by Top500 is the LIN-
PACK Benchmark, a dense linear algebra solver [170].
LINPACK has been criticized for being overly specific and
thus not representative of real applications that will be
run on these machines. For example, LINPACK does not
account for data transfers, which is one of the bottlenecks
on current machines. Very few applications can achieve
even close to the peak performance of LINPACK because
they cannot make use of all the floating point units on a
chip and/or they have to wait on data movement [73].

The HPC community wants an exascale machine that
can perform a “useful” exaFLOP with a real application
that has these kinds of problems. If the machine can
only do exaFLOPs with highly tuned, compute-bound
programs like LINPACK, that isn’t helpful for domain sci-
entists, whose applications are much more varied. If the
machine cannot perform sustained exaFLOPs, but only
burst to an exaFLOP under some circumstances (e.g.,
the kind of dense math performed by LINPACK), that
also isn’t helpful. Building an exascale machine that can
meet goals (2) and (3) will be a challenge beyond merely
building an exascale machine.
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2.1.2 Challenges of Exascale

A DoE report on exascale computing [94] identified the
following as the top ten challenges to building an exascale
supercomputer. Many other works have also identified a
subset of these as major difficulties for exascale systems
[149, 74, 107].

1. Energy efficiency — the goal is to use only 20 MW
of power, but simply scaling up current technology
would use far more than this.

2. Interconnect technology — we need communication
to be fast and energy efficient, otherwise an exas-
cale machine “would be more like the millions of in-
dividual computers in a data center, rather than a
supercomputer” [94].

3. Memory technology — we need to minimize data
movement in our programs, make movement energy
efficient, and have affordable high-capacity and high-
bandwidth memory.

4. Scalable system software — current system software
was not designed to handle as many cores and nodes
as exascale systems will have. Systems also need bet-
ter power management and resilience to faults.

5. Programming systems — we need better pro-
gramming environments that allow develop-
ers to express parallelism, data locality, and
resilience, if they so choose.

6. Data management — our software needs to be able
to handle the volume, velocity, and diversity of data
that will be produced by applications.

7. Exascale algorithms — current algorithms weren’t
designed with billion-way1 parallelism in mind, and
we need to rework them or design completely new
algorithms.

8. Algorithms for discovery, design, and decision — we
need software to be able to reason about uncertainty
and optimizations (e.g., error propagation in physics
simulations or the optimal instruction set to use for
a machine learning algorithm).

9. Resilience and correctness — exascale computers will
have many more nodes than current petascale com-
puters, and hardware faults will therefore be more
frequent. We need both machines and applications
to be able to recover from these faults and guarantee
correctness.

1To get 1018 FLOPs with cores running at 1 GHz (a reasonable
approximation of core frequencies in current petascale supercom-
puters), we would need at least 1 billion cores.

10. Scientific productivity — we want to increase
productivity of domain scientists with new
tools and environments that let them work
on exascale machines easily.

The two bold challenges, (5) and (10), are of particular
interest to performance portability research. Performance
portability is concerned with creating programming mod-
els that run equally well on multiple architectures/ma-
chines; the more difficult question is, how can we do so
while allowing developers to express parallelism, data lo-
cality, and fault tolerance in ways that won’t tie them to
a particular machine or get them bogged down in details?

2.1.3 A Brief History of Supercomputing

Before discussing how exascale computing and perfor-
mance portability impact and inform each other, we need
a brief digression to the history of supercomputer archi-
tectures.

In the early years, processor performance improve-
ments were mainly due to technological advancements,
and processor performance doubled roughly every 3.5
years. In the mid-1980s, reduced instruction set (RISC)
architectures became prevalent, and this led to great in-
creases in processor performance – Moore’s law was born,
saying performance (based on transistor count) would
double every 2 years. Dennard scaling, which relates the
power density of transistors to transistor size, allowed
chip manufacturers to drastically increase the number
of transistors per chip while increasing clock frequency,
giving large performance gains with essentially the same
base architecture. Figure 1 shows this steady growth be-
ginning around 1986. The following decades of steady
progress got developers used to performance improve-
ments for “free” – if their application was too slow, they
could just wait for the next generation of processor to
come out, and (without modifying their code!) it would
run faster.

However, in the early to mid-2000s, Dennard scaling
began to break down. Chip designers began hitting phys-
ical limits, like the power wall: the power density of pro-
cessors grew so high that scaling any further would make
it physically impossible to dissipate the excess heat. Pro-
cessor and compiler developers began seeing diminishing
returns from instruction-level parallelism, and, as Fig. 1
shows, progress began to slow. Processor performance
was only doubling every 3.5 years, and it was clear an-
other solution would be needed, which began the transi-
tion to multicore chips. After this, performance growth
came from increasing the number of cores per chip while
clock rates stabilized [74, 149], and we continue to see
decreases in performance gains. If the trend of the mid-
2010s continues, processor performance will only double
every 10-20 years.
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Figure 1: Forty years of processor performance improvements, as measured by SPECint. Image source: [56].

Before the mid-2000s, supercomputers were made up of
simple nodes (if they had nodes at all) and programmed
with regular programming languages like C and Fortran
or, as massively parallel and cluster architectures became
more popular, with C and Fortran plus the MPI message
passing library, for communication between nodes. Af-
terwards, as intra-node parallelism increased and MPI’s
scalability was called into question [166], MPI+X (where
“X” is an intra-node parallel programming model) be-
came the default.

2.1.4 Modern Architectures

To cope with the end of Moore’s law and Dennard
scaling, three families of supercomputer architectures
have emerged: heavyweight, based on pre-2004 mod-
els with a few powerful cores with high clock speeds;
lightweight, with many less powerful cores and slower
clock speeds (e.g., IBM’s BlueGene architecture); and
heterogeneous, a mix of heavy- and lightweight proces-
sors, like a CPU+GPU system. Performance projections
from 2013 [74] implied that only heterogeneous systems
had a hope of making the exascale compute goal within
the power limit. Recent developments have borne this out
– 7 out of the current top 10 systems have some kind of
accelerator, and 5 of these use GPUs as their accelerator
[171]. 8 of the top 10 most power efficient machines use
GPU accelerators [169].

This proliferation of architectures is shown in Table 1,
which lists the architectures of current and future super-
computers from around the world. The HPC community
hasn’t agreed yet on the best way to program these pre-
exascale machines, but we can agree that we don’t know
what future exascale (and larger) machines will look like.
The US DoE machines most recently announced, Aurora
[65], Perlmutter [108], and Frontier [15], have wildly dif-
ferent architectures that use different programming mod-
els, and users will likely want to run their applications
on all of them at some point.2 Future machines may
even have multiple types of accelerators in each node,
each specialized for a different type of computation, or
programmable coprocessors, like FPGAs [184], that users
want to use at the same time. Therefore, the HPC com-
munity wants to “future-proof” its applications by devel-
oping new performance portable programming models.

2.1.5 Why Performance Portability Matters

Currently, developers need to expend effort to port their
applications to a new machine, and speedup is no longer
guaranteed. Sometimes application development teams
spend months porting and optimizing for a new architec-

2Aurora will have Intel CPUs and Intel GPUs, Perlmutter will
have AMD CPUs and Nvidia GPUs, and Frontier will have AMD
CPUs and AMD GPUs. Each type of GPU uses a different (incom-
patible) programming model.
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Lifespan Architecture CPU vendor CPU version Accel. vendor Accel. version
Aurora 2021– Cray Shasta Intel Xeon Intel Xe

Frontier 2021– Cray AMD Epyc AMD Radeon Instinct
Fugaku 2021– Fujitsu Fujitsu A64FX N/A N/A

Perlmutter 2020– Cray Shasta AMD Epyc Nvidia Unknown Tesla
Frontera 2019– Dell C6420 Intel Xeon (Cascade Lake) N/A N/A
Summit 2018– IBM AC922 IBM Power9 Nvidia V100
Sierra 2018– IBM AC922 IBM Power9 Nvidia V100
ABCI 2018– Fujitsu CX2560 M4 Intel Xeon (Skylake) Nvidia V100
Theta 2017– Cray XC40 Intel Xeon Phi (KNL) N/A N/A

Gyoukou 2017–2018 ZettaScaler-2.2 Intel Xeon (Broadwell) PEZY PEZY-SC2
TaihuLight 2016– Sunway MPP Sunway SW26010 N/A N/A

Cori 2016– Cray XC40 Intel Xeon Phi (KNL) N/A N/A
Oakforest-PACS 2016– Fujitsu CX1640 M1 Intel Xeon Phi (KNL) N/A N/A

Trinity 2015– Cray XC40 Intel Xeon (Haswell) Intel Xeon Phi (KNL)
Tianhe-2A 2013– TH-IVB-FEP Intel Xeon (Ivy Bridge) NUDT Matrix-2000

Titan 2012–2019 Cray XK7 AMD Opteron Nvidia K20X
Piz Daint 2012– Cray XC50 Intel Xeon (Haswell) Nvidia P100
Sequoia 2012– BlueGene/Q IBM Power BQC N/A N/A

Mira 2012– BlueGene/Q IBM Power BQC N/A N/A
K computer 2011–2019 Fujitsu Fujitsu SPARC64 VIIIfx N/A N/A

Table 1: Recent supercomputers, from the 2015-2019 Top500 lists and various announcements.

ture, only to have to repeat all that work again a year
or two later when the next machine comes out. Many
HPC applications have a lifespan measured in decades,
while supercomputers usually last far less than that. Be-
ing forced to refactor for new machines every few years
leaves these applications fragile and error-prone, since the
time developers have to test, debug, and otherwise im-
prove their code decreases significantly – the current sit-
uation is actively harming work done by domain scientists
[148, 96].

The end goal of performance portability is to solve this
problem and minimize the work users need to put into
porting and optimizing their programs for future archi-
tectures. Instead of rewriting the same code again and
again, developers will have time to improve the function-
ality of their application. To quote the OpenACC web-
site: “more science, less programming” [120].

2.2 Performance Portability

Performance portability is not new, but increased inter-
est in it is. Computer architectures have gone through
(and are continuing to go through) so many shifts that
programmers have had to port or rewrite their code mul-
tiple times, which isn’t sustainable in the long run (see
Sec. 2.1.5).

When developers port an application to a new architec-
ture, they do not want to be locked into that architecture
– they want to move between architectures with minimal

porting effort. In addition, they want their application
to perform well on new architectures with minimal opti-
mization and performance tuning. Developers want their
applications to be performance portable.

2.2.1 Definitions

Several different definitions of performance portability
have been proposed in recent years. Some definitions,
as listed by Pennycook et al. [137]:

1. An approach to application development, in which
developers focus on providing portability between
platforms without sacrificing performance [137].

2. The ability of the same source code to run produc-
tively on a variety of different architectures [78].

3. PP
n (b→ t) =

St
n

Sb
n
×100% for program P, base system

b, target system t, and speed-up on n nodes Sn [186].

4. The ability of an application to achieve a similar high
fraction of peak performance across target devices
[102].

5. The ability of an application to obtain the same (or
nearly the same) performance as a variant of the code
that is written specifically for that device [37].

While each of these definitions has its strengths, each
also has weaknesses. Definition (1) is intuitive and pro-
vides a good baseline for determining if an application
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can claim to be performance portable, but it is subjec-
tive and provides no way to measure how performance
portable an application is. Definition (2) restricts the
application code to a single version, which is desirable
for many reasons, but suffers from the same problems as
(1) (how should we define “productively?”). Definition
(3) does provide a metric, but this metric is difficult to
compare between applications, systems, and program in-
puts. Definition (4)’s metric is problematic because it is
somewhat subjective, peak efficiency is difficult to mea-
sure (see Sec. 2.2.2 on architectural efficiency), and two
architectures might be sufficiently different that achieving
peak on one is simple, but on another is impossible (e.g.,
one machine has vector units that the application can’t
utilize). Definition (5) is similarly somewhat subjective,
and might be difficult to measure if code version for a
certain device doesn’t exist.

An ideal definition of performance portability would
be objective and provide an easy way to both measure
and compare values for different applications. The most
commonly utilized performance portability definition is
from Pennycook et al. [137], because it comes with such
a metric. However, there are still several criticisms of
Pennycook et al.’s metric, which will be discussed in the
next section.

2.2.2 Primary Metric

Pennycook et al.’s definition of performance portability
is “a measurement of an application’s performance effi-
ciency for a given problem that can be executed correctly
on all platforms in a given set” [137]. Pennycook et al. de-
signed their definition to reflect both the performance and
portability aspects. In addition, they specifically mention
executing correctly on a given problem to ensure that ap-
plications ported incorrectly are not considered portable
and to note that different inputs can yield different per-
formance characteristics.

The corresponding metric is defined as the harmonic
mean of the efficiency of the application on all supported
platforms in a set (see Smith [152] for the logic behind
choosing the harmonic mean). When one or more plat-
forms are not supported, the metric goes to zero:

PP(a, p,H) =


|H|∑

i∈H

1

ei(a, p)

, if i ∈ H is supported

0, otherwise

where a is the application, p is the problem/input, H is
the set of platforms, and ei(a, p) is the efficiency of appli-
cation a solving problem p on platform i ∈ H. Higher is
better — PP will be high when an application ports well
to all architectures in H, and low when it only ports well
to a few (or none) of them.

The PP metric can be used by comparing application
performance to either the theoretical peak performance
of the architecture — the architectural efficiency — or
the best known performance of the application on any ar-
chitecture — the application efficiency. Pennycook et al.
note that both these efficiencies are important since just
looking at one can bias results. Only considering archi-
tectural efficiency can give artificially low values for PP if
an application physically cannot take advantage of archi-
tectural features (e.g., fused multiply-add instructions or
vectorization), and only looking at application efficiency
can give artificially high results when no truly efficient
implementation exists.

The rest of this section will discuss some criticisms and
improvements suggested since Pennycook et al. first pub-
lished their metric.

Architectural Efficiency. Dreuning et al. [34] note
that, when using architectural efficiency, we must choose
between comparing the application’s achieved FLOPs or
achieved memory bandwidth to the architecture’s theo-
retical peaks. Choosing the wrong peak can lead to in-
correctly high or low values of PP depending on whether
an application is compute or memory bound. Dreuning
et al. suggest fixing this by using a performance porta-
bility model similar to the Roofline model [176]: compute
bound applications should be compared to the platform’s
theoretical peak FLOPs, and memory bound applications
to theoretical peak bandwidth. The operational intensity
(operations per memory access) of the application com-
pared to the hardware can be used to determine whether
applications are compute or memory bound.

Yang et al. [183] add that, when using the Roofline
model, we need accurate theoretical ceilings. In partic-
ular, they note that vendors can be optimistic when re-
porting numbers, so real measurements should be used.
In addition, application FLOPs should not be counted by
hand, because compiler optimizations and special hard-
ware units can make hand-counted FLOPs inaccurate.
Yang et al. demonstrate exactly how far off vendor es-
timates of their hardware’s performance can be, as well
as how different hand-counted FLOPs can be from mea-
sured FLOPs. Ofenbeck et al. [119] similarly describe
why using hardware counters is more accurate than (ven-
dor) estimates, although still problematic for reasons that
are outside the scope of this survey.

Yang et al. also note that we need to choose relevant
ceilings when measuring performance portability. Using
an unrealistic theoretical peak will give artificially bad
results. For example, if the application is not using fused
multiply-add (FMA) instructions, the ceiling measure-
ment should also not use FMA. Knowing how close an ap-
plication truly is to the platform’s most relevant roofline
will help developers decide how and where to optimize
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their code.

Application Efficiency. Architectural efficiency can
give a theoretical upper bound for application perfor-
mance, but does not tell us whether an application is
actually efficient. Application efficiency can give us a
practical upper bound and does not require estimation,
but can be prone to bias. Sometimes there is no good, ef-
ficient implementation, or the developers are unaware of
an implementation that performs better than their chosen
reference. Dreuning et al. note that the best implementa-
tion of an application may be from another programming
model that developers are unfamiliar with [34]. There
is also a long history in high performance computing of
using statistics to obfuscate application performance re-
sults or make numbers appear more favorable [7, 47, 131],
which only makes matters more murky.

Platform Set Choice. Another criticism from Dreun-
ing et al. is the need for an additional metric for plat-
form set diversity [34]. If an application does well on one
type of architecture (e.g., a Xeon Phi), then a platform
set containing only that architecture will give artificially
high PP. Indeed, in their original paper, Pennycook et al.
note that their metric is only useful when the platform
set is known [137]. Researchers using Pennycook et al.’s
metric need to carefully consider their choice of platform
set.

Ideally, applications would support every architecture,
but there are often trade-offs between optimizing for per-
formance and optimizing for performance portability –
what’s good for one platform is not necessarily good for
another. Optimizing for one platform will either improve
performance on all platforms, or improve performance on
a subset of the platforms to the detriment of the others.
Optimization is likely to improve performance portability
overall, but may actually decrease it, and there’s no way
of knowing what will happen beforehand.

Based on these observations, Dreuning et al. give three
ways to improve an application’s performance portability:

– Add platforms to the set, especially ones similar to
platforms it already performs well on, since the appli-
cation is more likely to perform well on those, and/or
require less work to perform well.

– Remove poorly performing platforms from the set,
if there are sufficiently few of them and/or the opti-
mization effort required would outweigh the perfor-
mance benefits.

– Do the work of improving performance on some or
all platforms.

2.2.3 Other Metrics

Other metrics for performance portability have been pro-
posed as alternatives or extensions to Pennycook et al.’s
metric. This section will describe two recent proposals.

PPMD. The PPMD metric is motivated by the experi-
ences of Sedova et al. [148] investigating the performance
portability of various molecular dynamics applications.
The applications they looked at are all best-of-class (or
nearly so) and get high performance on many HPC plat-
forms (so they all score very highly in PP under appli-
cation efficiency). However, these applications got there
with high-effort ports and are thus not truly performance
portable, since migrating to a new platform would likely
result in a great deal more work specific to that platform.
Sedova et al. desired a metric that would take different
source versions and program components into account, so
they developed their PPMD metric.

Sedova et al.’s metric is based on the sources of speedup
in a particular code. If speedup comes mostly from
portable program components, like standard libraries, the
application’s PPMD value will be high. If non-portable
components, such as CUDA kernels, are responsible for
most of the speedup, PPMD will be low. The mathemat-
ical definition of their metric is similar to Pennycook et
al.’s, using the harmonic mean of the fraction of speedup
from non-portable components:

PPMD(a, p,Q) =


|Q|∑

i∈Q Si(a, p)
, if G 6= Q and Q 6= ∅

1, if Q = ∅
0, if G = Q

where G is the set of all program components that con-
tribute to speedup for application a on input p, Q is the
subset of G that is non-portable, and Si is the speedup
over baseline application performance that component
i ∈ Q is responsible for. Ideally, all program compo-
nents responsible for speedup will be portable, so Q will
be empty and PPMD will be 1. PPMD doesn’t depend
on any concept of “peak performance,” which is helpful
since measuring peaks is difficult, but assumes that pro-
gram components don’t interact with or influence each
other and can be measured independently, which may
not be the case. Sedova et al. calculated PPMD for each
of their applications, and none scored particularly well;
the best only got around 40%, which is because many of
them use CUDA or other vendor-specific libraries (vendor
implementations of standard libraries can vary in perfor-
mance). Sedova et al.’s PPMD metric might be a good
companion to Pennycook et al.’s PP, since it does penalize
applications for using non-portable programming models,
whereas PP does not.
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PD. Pennycook et al.’s metric gives different values for
the same application on different inputs, which can make
it difficult to see whether an application is truly perfor-
mance portable, since different platforms might do better
on different problem sizes. Daniel et al. [25] propose an
alternative metric to better cope with problem size vari-
ations, which they call PD, performance portability di-
vergence. They compute PD as the root-mean-square of
the relative error in performance compared to the “best”
performance (using either architectural or application ef-
ficiency):

PD =

∑
i∈H ∆RMS

|H|

∆RMS =

√∑
s∈S δ(a, α)2

|S|

where a and α are the PP values for two applications on
the same input, δ(a, α) is the relative error, S is the set of
all input sizes, and H is the set of all platforms. Ideally,
an application will perform identically on all inputs across
all architectures, and performance portability divergence
will be zero.

While this does give users more information on how an
application behaves across problem sizes, Daniel et al.’s
definition of application does not exclude programs with
multiple source versions, so applications can still get good
PD scores by writing code specific to one architecture. A
combination of this metric and PPMD, perhaps, might
be a better extension to PP than this metric alone, since
it’s already been decided keeping multiple code versions
is not a sustainable solution.

2.2.4 More History

Past research placed the burden of performance porta-
bility solely on the application, but more current work
has shifted it to languages, compilers, and other program-
ming tools [179]. For example, when the developers of the
Weather Research and Forecast (WRF) model were try-
ing to make the application more performance portable
across vector-based and RISC-based computers in the late
1990s/early 2000s [106], they primarily looked into re-
ordering the loops to improve memory access patterns,
not introducing a new library or compiler that would
do it for them.3 However, most application teams to-
day are looking for solutions that won’t require modi-
fying their code (or at least, won’t require modifying it
more than once), which (interestingly) may involve writ-
ing an application-specific performance portability layer

3Interestingly, they did discuss looking into source-to-source
translators that would automatically reorder loops based on the
type of machine, but at the time decided not to since they were
able to get satisfactory performance without translation. This is an
avenue new work is exploring though; see Secs. 5.6 and 6 for more.

(see Sec. 3.3), going back to placing more of the bur-
den on applications. This survey will discuss many other
potential solutions.

2.3 Productivity

Developer productivity is an important (though often
overlooked) aspect and motivating factor of performance
portability. If it takes years to port an application to a
high-performance portable model, that model is not as
useful as another that can be adopted more quickly (even
at the cost of lower performance), especially if the port
cannot be done incrementally so the application can still
be used in the meantime. Performance portable models
should increase developer productivity overall and allow
developers to spend less time writing (and rewriting) code
during the porting process. This section will discuss is-
sues relating to defining and measuring productivity, as
it relates to HPC and performance portability.

2.3.1 Defining Productivity

Productivity is a very subjective, qualitative concept and
it means different things in different contexts, making it
difficult to define and measure. An intuitive definition
might be “getting higher performance with less time/ef-
fort,” but how do we define (and measure) effort?

2.3.2 Measuring Productivity

There have been numerous attempts to measure software
developer effort and productivity across both industry
and academia, but measuring HPC developer productiv-
ity is a very different problem. Most industry productiv-
ity measurement tools look at how much code a developer
writes, but in HPC, developer productivity isn’t just time
spent writing code – it’s time spent optimizing, tuning,
parallelizing, and porting existing code.

There are two main ways to measure developer effort
and productivity: direct logging (e.g., Wienke et al. [175]
and Harrell et al. [53]) and indirect approximations.
Lines of code (LOC) and code divergence (how “differ-
ent” code versions are) are common metrics for approxi-
mating code complexity, and hence, developer effort, but
they don’t take into account how difficult writing a sin-
gle line of code can be (e.g., a complex OpenMP pragma
versus a simple variable declaration) or development time
not spent coding, such as time spent making performance
measurements or designing new features with team mem-
bers [175]. It is not always clear whether these approx-
imations are accurate, and they don’t include all of the
productivity data we want, which is why direct logging
approaches are also important.

Development time logs would be the best metric for
developer effort, since they contain data on what devel-
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opers were working on and what their results were, but
this data is very difficult to collect. Developer diaries
sound like a good idea in theory, but in practice there are
numerous problems. They require a high level of commit-
ment from developers to collect the type, regularity, and
granularity of data that would be useful, but this often
doesn’t happen because developers don’t want to take the
time, are inconsistent in their entries, or simply forget. At
the other end of the spectrum, automated activity mon-
itoring software that tracks data such as keystrokes and
applications used requires no commitment from develop-
ers, but misses out on development activities that happen
away from the computer, such as planning and training,
as well as performance data.

Wienke et al.’s [175] direct logging method tries to com-
bat these problems by creating a journal that pops up at
predefined intervals (so it can’t be forgotten) and provides
a short form with multiple choice questions (so a quick
entry still has useful data) and an open-ended comment
section. However, their tool doesn’t collect performance
data very often, and doesn’t seem associate that data
with the particular code version it came from.

Harrell et al.’s direct logging method [53] was moti-
vated by the desire to keep productivity and performance
data with their code and better track changes over time,
improving on Wienke et al. They wanted to minimize
disruption for developers, so they integrated the logging
process with their projects’ version control system (git
commit). Harrell et al. used these logs to confirm their
intuition about using approximations such as LOC and
code divergence as proxies for developer effort; in partic-
ular, they demonstrate that low divergence ports (e.g.,
adding OpenMP or OpenACC directives) are often less
expensive in terms of developer effort than high diver-
gence ports (e.g., rewriting all compute loops as CUDA
or OpenCL kernels).4

2.3.3 Productivity and Performance Portability

Harrell et al.’s primary criticism [53] of PP is similar to
Sedova et al.’s [148]: it does not penalize applications
that keep separate code versions for each platform, which
are difficult to maintain and require much more developer
effort to create. Indeed, one of the primary goals when
developers were first porting applications to the Titan
supercomputer (one of the first major accelerator-based

4As an example of this intuition, a survey of the CAAR teams,
who were porting applications to Titan for the first time, revealed
that 85% of the developers (most of whom were using CUDA, which
is known for being difficult to adopt) felt the amount of effort to
needed to get good performance on accelerator architectures was
“moderate to high.” Many expressed interest in moving to directive-
based models like OpenACC [68], which is generally considered eas-
ier to adopt, even though there was little evidence to back this
interest up at the time.

machines) was to avoid “version bifurcation,” which Jou-
bert et al. equated with a loss of maintainability [68].
Maintaining separate code paths or separate optimiza-
tions in a single version runs into similar problems. This
is a good representation of the trade-off between program-
ming for performance and programming for productivity
and maintainability [68] – one goal of performance porta-
bility is to do away with this trade-off.

Harrell et al. suggest there is a need for a metric to
measure developer effort to achieve performance. Such
a metric could be used to penalize applications and pro-
gramming models that require high amounts of developer
effort to obtain and/or maintain performance portability.
They note again that there are often trade-offs between
programming model abstraction levels (a proxy for porta-
bility) and performance. Models with higher abstraction
levels are usually easier to port to new architectures, but
have lower performance. Models with low levels of ab-
straction have better performance, but are much more
difficult to port. A metric for productivity would help
quantify this trade-off.

2.4 Some Definitions

For the purposes of this paper, qualitative definitions of
both performance portability and productivity will be
used, since this is not a quantitative comparison of pro-
gramming models, but rather a discussion of how each
model is working towards performance portability and
productivity and how these models can inform and im-
prove each other.

This paper will consider a model performance portable
and productive if:

– it supports most or all major architectures currently
in use and can be easily extended to potential fu-
ture architectures (if an application team suddenly
discovers they need to use another architecture, they
can easily do so, regardless of what the architecture
is);

– it can achieve reasonable performance on each archi-
tecture it supports with minimal source code changes
(configuration changes are acceptable, as long as they
occur outside the code);

– it reduces the burden on developers compared to
other models (e.g., CUDA) in significant ways (e.g.,
shorter code, fewer code changes for porting, easier
debugging, etc.).

2.5 Non-(Performance) Portable Pro-
gramming Models

This paper will often mention various non-portable pro-
gramming models (or non-performance portable models)
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as comparison points for the performance portable mod-
els discussed. These non-portable models have generally
been highly tuned for their one architecture, and can pro-
vide a good estimate of peak application efficiency and
performance. This section will describe the main non-
portable models mentioned.

2.5.1 CUDA

CUDA [118] is Nvidia’s proprietary C++-based GPU
programming language, which naturally only works on
Nvidia devices. CUDA allows developers to write com-
pute kernels in a subset of C++ that will be run on
a machine’s GPU. The downsides of CUDA are that it
requires users to manually manage memory movement
between the host and GPU, and the parallelism model
for writing kernels can be non-intuitive for newcomers.
This makes CUDA code difficult to read and debug, and
porting an existing application to CUDA requires major
changes and restructuring. Nvidia has released several
libraries for CUDA, including cuBLAS (dense linear al-
gebra), cuSOLVER (linear system solvers), cuDNN (neu-
ral networks), and Thrust [10], a high-level, productivity-
oriented library containing general purpose algorithms, in
an attempt to resolve these problems, however, CUDA is
still not portable.

2.5.2 OpenCL

OpenCL [72] is a programming language similar to CUDA
and developed by the Khronos Group, but as an open
standard, it is implemented for far more devices. OpenCL
supports GPUs, CPUs, and FPGAs from multiple ven-
dors, including AMD, Intel, and Nvidia. OpenCL re-
quires a great deal of boilerplate code to set up data
structures and kernels, and kernels are represented as
strings in the application, which makes debugging dif-
ficult. Like CUDA, OpenCL also has many libraries ded-
icated to reducing the severity of these problems. Un-
fortunately, since OpenCL is so low-level (arguably more
so than CUDA), different code is required to get good
performance on different architectures. While OpenCL is
portable, it is not performance portable.

2.5.3 OpenMP 3

OpenMP [124] is an open standard for directive-based
extensions to C, C++, and Fortran that enables devel-
opers to add parallelism to their applications by anno-
tating their code with various pragmas. Early versions of
OpenMP (≤ 3) were solely for CPUs, and since it is much
simpler than almost every other parallel programming
model available, OpenMP became very popular. Vendors
heavily optimized their implementations, and as a result
OpenMP is generally very high performance, but only on

CPUs. OpenMP 4.0 began to add support for other ar-
chitectures, including GPUs (mostly Nvidia GPUs) and
Intel’s Xeon Phi accelerator, making OpenMP 4+ a good
candidate for being performance portable, and this is dis-
cussed in more detail in Sec. 5.1.

2.5.4 Intel TBB and ArBB

Intel’s Threading Building Blocks (TBB) [63] and Array
Building Blocks (ArBB) [115] are two libraries designed
for high performance, but not necessarily performance
portability. ArBB was a C++ data parallelism library
that showed promise for being performance portable, but
Intel discontinued it in favor of TBB (and Cilk Plus, see
Sec. 4.1) shortly after it was introduced, so it was never
extensively studied [1]. TBB is another C++ library for
task parallelism, but as it only supports accelerators via
writing kernels in other languages [174], and does not ap-
pear to be making any moves to change this,5 it is only a
task-based runtime system instead of a true performance
portable model, so it will not be covered here.

2.5.5 MPI and SHMEM

MPI [109] is the most commonly used model for communi-
cation between processors and nodes on supercomputers.
It is based on a two-sided message passing model, where
both processes need to be involved in sending and receiv-
ing messages. MPI is highly portable, and will generally
get high performance on any machine without source code
changes, making it very performance portable by some
standards. However, MPI alone doesn’t allow users to
take advantage of all a machine’s hardware (like acceler-
ators) and has some scalability problems [166], meaning
MPI alone is not enough to write performance portable
exascale programs.

SHMEM, standardized by OpenSHMEM [128], is a
newer communication model, based on the partitioned
global address space (PGAS) model, that is gaining pop-
ularity. SHMEM uses a one-sided message passing model,
where only one process puts (or gets) data into (from) an-
other process’s memory space, without interfering with
the other process’s execution. Like MPI, SHMEM is
highly portable, and in some ways performance portable,
but it also cannot access all a machine’s hardware on its
own.

Both MPI and SHMEM need to be used with an-
other programming model to become truly performance
portable, but beyond that, both are too low-level to be
very productive programming models. Many of the per-
formance portable models below are built on top of MPI

5Intel may in fact be choosing to deprecate this in favor of
DPC++ (see Sec. 4.6).
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or SHMEM, but work at an even higher abstraction level
to be productive as well.

3 Libraries

This section will describe library-based programming
models. For the purposes of this paper, libraries are
considered to be add-ons to existing languages, and not
themselves languages or language extensions, like CUDA
or OpenACC. Categorizing some of these programming
models as one thing or another can be difficult, so in some
cases we default to what the authors/developers consider
their model to be.

3.1 Overview

There is a plethora of high performance domain specific
libraries, many of which are highly scalable and portable
to many architectures. This paper will not discuss them,
however it will briefly discuss some methods for making
these libraries more performance portable. It will also
discuss multiple kinds of libraries, and will give a brief
overview of classifications for them.

3.1.1 Making Domain Libraries Performance
Portable

Domain-specific libraries are very helpful for application
developers in that they allow for high levels of code reuse
and enable code portability. However, to remain portable
and general, a single library can’t be optimized for every
architecture it might be used on; while domain libraries
may be portable, they are often not performance portable.

A potential solution to this is proposed by the Broad-
way compiler [11, 48]. The Broadway compiler can op-
timize an application’s use of libraries by using informa-
tion about the library stored in an annotation language.
The annotations are created by experts and kept with the
library (no source modifications to the library are neces-
sary). While creating the annotations might be time-
intensive, the cost of creating and tuning them is amor-
tized over many uses of the library, and the annotations
are transparent to users, who only need to switch out their
compiler. Broadway reads in those annotations along
with the application and library, then performs source-
to-source translations on the application’s usage of the
library, for example removing multiplications by zero or
replacing an expensive library call with a more special-
ized, inexpensive call when conditions described in the
annotations are met.

The goal of Broadway is separation of concerns between
compiler, library, and application developers; the com-
piler doesn’t need to worry about what’s in the library,
since it is explicitly told, and the application doesn’t need

to worry about optimizing the library because it’s done
by Broadway. Broadway has three general classes of op-
timizations it can apply: (1) optimizations that always
improve performance, (2) optimizations that depend on
the machine, and (3) optimizations that depend on the
machine and the application. Many of the optimizations
that fall under classes (2) and (3) affect performance
portability. Class (2) optimizations can be turned on
more or less mechanically, based on the target architec-
ture, but optimizations from class (3), such as optimiza-
tions for parallelism granularity and degree, require more
work. To better support these kinds of optimizations,
the annotation language was being modified to support
dynamic feedback at run time – when there’s no clear
“best” option for a function at compile time, Broadway
will make multiple versions of the function a try each at
run time, then pick the best. The annotation language
can even support varying how the best version is chosen
at run time, further enabling performance portability.

As a proof of concept, the Broadway authors tested
their work various applications using the PLAPACK li-
brary [2] and saw significant performance improvement
on many functions, with modest or small gains on the
rest, which demonstrates that even a library that has
already been heavily tuned, like PLAPACK, can bene-
fit from some machine- and application-specific optimiza-
tion.

3.1.2 Library Patterns

The libraries discussed in the rest of this section share
many points in common, such as the parallelism patterns
and data structures they support. The merged OPL and
PLPP projects [69], while never fully finished it appears,
contain the vast majority of these patterns and provide
a useful framework for discussing them in the rest of this
section.

The OPL and PLPP projects (from here on, only OPL)
were both pattern languages, which provided high-level
interfaces and functions to describe parallelism in appli-
cations. The main goal of OPL was to allow users to
develop correct and efficient programs that could be writ-
ten quickly, which the authors of OPL equated to giving
users better ways to expose parallelism. The OPL lan-
guage provided a hierarchy of patterns, where the top
levels were structural patterns (how the application was
organized) and computational patterns (classes of algo-
rithms) which had no explicit parallelism. Ideally, a user
wouldn’t need to go beyond these levels, but just in case
OPL also provided lower level interfaces which did deal
directly with parallel constructs. The lower levels of OPL
included parallel algorithm strategies (how to exploit par-
allelism), implementation strategies (program and data
structures that deal with parallelism), and parallel execu-
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tion patterns (how parallelism gets mapped to hardware,
e.g., SIMD execution, thread pools, etc.). The lowest
level is the foundations of parallelism, or how concurrency
is actually implemented, e.g., threading models, message
passing, and memory coherency models.

OPL included the following patterns (ones particularly
relevant to HPC in bold – many of these also show up
throughout the rest of this paper, not just in this section):

– Structural patterns:

– Pipe and filter – data is passed through a
series of stateless operations.

– Agent and repository – a central collection of
data (e.g., a database) is modified by several
independent units of execution.

– Process control – a running process needs to be
monitored, and actions might need to be taken
if the process enters certain states (e.g., turning
on the heat if a thermostat says a room gets too
cold).

– Event-based – processes watch an environment
for events and take some action when events
occur.

– Model-view-controller – an internal data model
has interfaces for viewing and modifying it or
controlling its behavior (e.g., many web-based
applications).

– Iterative refinement – run an operation
until some termination conditions are
met.

– Map-reduce – apply a function to data
and aggregate the results.

– Layered systems – different software lay-
ers provide interfaces to each other for in-
teraction but must remain independent.

– Puppeteer – a set of processes must in-
teract to work on a problem and need to
be managed by a puppet-master.

– Arbitrary task graph – A catch-all for ap-
plications which don’t quite fit the other
structures.

– Computational patterns (reminiscent of Berkeley’s
13 dwarves [5]):

– Backtrack/branch and bound – search al-
gorithms for a large search space.

– Circuits – boolean operations or logic circuits.

– Dynamic programming – a more efficient alter-
native for recursive algorithms.

– Dense linear algebra.

– Sparse linear algebra.

– Finite state machines.

– Graph traversal algorithms.

– Graphical models – similar to state machines,
but modeling a collection of random variables
(e.g., hidden Markov models).

– Monte Carlo – a statistical method for
estimating unknown values.

– N-body – calculating pair-wise interac-
tions between N entities.

– Spectral methods – changing how data
is represented to make sense of it (e.g.,
Fourier transforms).

– Structured mesh.

– Unstructured mesh.

– Parallel algorithm strategies:

– Task parallelism.

– Pipeline or stream.

– Discrete events – tasks interact rarely and inter-
actions are handled as events by an event man-
ager.

– Speculation – tasks interact rarely and are run
speculatively; if errors/conflicts are detected,
the tasks at fault are rerun.

– Data parallelism.

– Divide and conquer – split a large prob-
lem in to progressively smaller sub-
problems that can be more easily solved
and the solutions aggregated.

– Geometric decomposition – each process
is responsible for a piece of the prob-
lem domain, and data is communicated
to neighboring processes as needed.

– Program implementation strategies:

– Single program, multiple data (SPMD).

– Data parallelism over an index space.

– Fork/join.

– Actors – units of execution are associated with
data objects, and method calls amount to mes-
sage passing between them.

– Loop-level parallelism – loops are struc-
tured such that each iteration is indepen-
dent and can run in parallel.

– Task queue.

– Data structure implementation strategies:
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– Shared queue.

– Shared map.

– Partitioned graph.

– Distributed array.

– Generic shared data – catch-all for data sharing
that doesn’t fall into the previous categories.

As can be seen, this is a great deal for any single library
to attempt to implement, and in practice, some of these
patterns are much more commonly used than others, es-
pecially in HPC (for example, meshes and linear algebra
are much more common in HPC than dynamic program-
ming problems or finite state machines). Therefore, most
performance portability libraries only implement a subset
of the most popular patterns, which tend to be those well
suited to solving domain science problems in fields that
utilize HPC techniques, like physics, chemistry, and biol-
ogy. These problems mostly fall under the linear algebra,
mesh, n-body, and spectral patterns, and the strategies
that work well with these patterns. The next section will
go into detail on how libraries have implemented these
patterns and strategies.

3.2 Libraries for Performance Portability

This section describes several libraries designed specifi-
cally to provide performance portability across multiple
domains.

3.2.1 Skeletons

Skeleton programming is a concept borrowed from func-
tional programming, where higher-order functions can
take other functions as arguments to specialize their op-
eration. Since imperative languages are much more com-
mon in HPC, developers have begun implementing them
in these languages as well [39]. Skeleton libraries tend to
be modeled as arbitrary task graphs that provide various
communication and computation patterns (skeletons) as
higher-order functions. These skeletons generally imple-
ment data parallel patterns, but not loop parallelism, and
make use of various distributed data structures.

SkelCL. SkelCL [155] (code sample in Listing 1) is a
high level library for programming heterogeneous sys-
tems, built on top of OpenCL. The primary design philos-
ophy of SkelCL is to abstract away all the tricky parts of
writing (multi-)GPU code to make programming easier.
SkelCL provides a modest set of data parallel skeletons
for some of the computation patterns above, which users
can specialize with their own C-like functions, including
Map (apply a function to all elements of a collection), Zip
(apply a function to a pair of collections), Reduce (con-
dense the elements of a collection to a single value), and

/* Dot product */

/* create skeletons */

SkelCL ::Reduce <float > sum (

"float sum (float x,float y){return

x+y;}");

SkelCL ::Zip <float > mult(

"float mult(float x,float y){return

x*y;}");

/* allocate , initialize host arrays */

float *a_ptr = new float[ARRAY_SIZE ];

float *b_ptr = new float[ARRAY_SIZE ];

fillArray(a_ptr , ARRAY_SIZE);

fillArray(b_ptr , ARRAY_SIZE);

/* create input vectors */

SkelCL ::Vector <float > A(a_ptr , ARRAY_SIZE);

SkelCL ::Vector <float > B(b_ptr , ARRAY_SIZE);

/* execute skeletons */

SkelCL ::Scalar <float > C = sum( mult( A, B

) );

/* fetch result */

float c = C.getValue ();

Listing 1: SkelCL code sample.

Scan (prefix-sum). Later works [159, 14] add MapOverlap

(simple stencil), Stencil (more complex stencils), and
AllPairs (apply a function to each pair of elements in
two sets; n-body) skeletons to better support some linear
algebra applications. The two different stencil-like skele-
tons allow users more flexibility in defining their stencil
computations – e.g., MapOverlap uses padding around the
edges of the vector/matrix to minimize branching, while
Stencil allows users to specify the number of iterations
to run the stencil and various synchronization properties.
All skeletons can take additional arguments aside from
the defaults to give users even more flexibility. For exam-
ple, if a user wants to define a generic “add x” function for
vectors, they can use the map skeleton plus an additional
argument for x.

SkelCL also provides a generic vector class that works
with both CPU and GPU code and hides data transfers
from users – the vector class will do data copies lazily
(only when data is actually used) to eliminate unneces-
sary data transfers. The vector class can also automati-
cally distribute data to multiple GPUs based on a set of
predefined data distribution patterns, including single

(only one GPU gets a copy), block (split evenly among
all GPUs), and copy (each GPU has a full copy) [156]. A
later paper [159] adds an overlap distribution that au-
tomates halo exchanges for stencils, as well as a generic
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2-dimensional matrix class that supports the same distri-
butions along the rows of the matrix.

All skeletons support all data distributions, and the
GPUs automatically cooperate on block and overlap

distributed data structures. If the user doesn’t specify a
data distribution with multiple GPUs, each skeleton has
preferred distributions for their pre-defined arguments,
but the user or runtime can override this (for additional,
user-defined arguments, the user must always specify a
distribution since the runtime can’t reason about the se-
mantics of user-defined arguments).

– Portability: Since SkelCL is built on top of OpenCL,
it supports the many architectures that OpenCL
does, but is also prone to the same performance vari-
ations as OpenCL across architectures. The Lift
project (see Sec. 7.3.3) is the spiritual successor to
SkelCL (written by some of the same authors), which
attempts to remedy these problems.

– Performance: Across several performance tests on
various mini-apps (utilizing all their skeletons),
SkelCL consistently had only 3-5% overhead com-
pared to optimized OpenCL (and was sometimes
faster than naive OpenCL), and trailed behind
CUDA by the same amount as OpenCL (usually
around 20-40% on Nvidia GPUs) [155, 156, 159].
SkelCL also appears to scale well across multiple
GPUs, getting only slightly less than linear speedup
on a Gaussian blur stencil operation (1.9x for 2
GPUs, 2.66x for 3 GPUs, and 3.34x for 4 GPUs in
one experiment) [14].

– Productivity: While SkelCL code is generally much
shorter and easier to read than OpenCL or CUDA
code (due to removing the extensive boilerplate that
OpenCL is known for) [156, 159, 14], SkelCL is
still subject to some of the productivity problems
of OpenCL. OpenCL takes in kernels as strings and
compiles them as needed at run time, and SkelCL
does the same, which makes debugging kernels very
difficult, since errors are never caught at compile
time.

– P3 Ranking: fair – has all the same performance
portability problems as OpenCL, and a few of the
same productivity problems, but is much higher-
level.

SkePU. Not to be confused with SkelCL, SkePU [38,
41] (code sample in Listing 2) is another skeleton library
based on C++, with back ends for CUDA, OpenCL, and
OpenMP. Similarly to SkelCL, SkePU provides data par-
allel computation skeletons for Map, Reduce, MapRe-

// Vector sum

// define kernel

template <typename T>

T add(T a, T b) {

return a + b;

}

// create vectors

skepu2 :: Vector <float > v1(N), v2(N),

res(N);

// init skeleton

auto vec_sum = skepu2 ::Map <2>(add <float >);

vec_sum(res , v1 , v2);

Listing 2: SkePU code sample.

duce, MapArray (similar to zip), and MapOverlap (sten-
cil), which users could customize with their own func-
tions. Scan and Generate (initialization) skeletons were
added later [96]. All of these skeletons can support multi-
GPU execution, and even multi-node execution, via an
MPI layer to manage SkePU instances on multiple nodes
[96]. SkePU also supports passing additional arguments
to each skeleton via a user-defined struct, like SkelCL.

Early implementations of SkePU [38, 96] had users de-
fine their functions using macros, which would be ex-
panded into structs containing versions of the function for
each of the three back ends, but SkePU 2 [41] updated this
to use C++ templates and a source-to-source translator
(based on Clang) to create the struct of function variants.
This new version removes all the type-safety problems of
the original SkePU, as well as improving SkePU’s flexibil-
ity and the compiler’s ability to optimize SkePU code, and
giving the users the option to define functions as lamb-
das or template functions, instead of based on pre-defined
macros. The authors intend to extend their source-to-
source compiler to let users define different specialized
versions of their functions, and automatically choose be-
tween them at compile time based on the target architec-
ture. SkePU 2 also added the Call skeleton (which simply
calls a user function) for even more flexibility and changed
the semantics of the Map skeleton to handle cases which
had previously been handled by MapArray.

Like SkelCL, SkePU provides generic vector and matrix
objects (which they call “smart containers” [26]) that hide
data transfers from users, manage memory consistency
with an MSI-like model, and do data movement between
GPUs and nodes lazily to minimize transfers [38]. Even
for non-GPU back ends, this is useful for decreasing com-
munication costs. These objects also handle data distri-
bution to multiple GPUs and nodes and can do auto-
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mated halo exchanges, although unfortunately users have
no control over how data is distributed, unlike SkelCL
[156] – data is always divided equally among GPUs/n-
odes. Their most recent implementation [26] also has sup-
port for using Nvidia’s GPUDirect (an RDMA library) to
improve performance, support for partial copies of arrays
and matrices, and an improved consistency model that
can handle overlapping ranges on multiple devices/nodes
correctly. When integrated with the StarPU task runtime
[6], these containers can even help the runtime determine
data dependencies and ensure asynchronous tasks are
launched and completed in a correct order. The SkePU
developers believe smart containers and other memory
abstractions are going to become more important for per-
formance portability, since they allow the same code to
run on systems with and without separate (device) mem-
ories; see Sec. 7.2 for further discussion on containers.

– Portability: SkePU supports back ends for CUDA,
OpenCL, and OpenMP, which allows it to target a
wide variety of CPUs and GPUs [38]. In addition,
SkePU’s multi-node capabilities allow the same code
to run on a laptop or on a cluster without modifi-
cation, which is extremely helpful for debugging and
boosting productivity [96].

– Performance: Initial performance tests [38] on GPUs
showed that on some kernels, SkePU matched the
performance of a cuBLAS implementation, although
hand written CUDA was slightly faster on other ker-
nels because of implementation differences. Scalabil-
ity tests across multiple nodes and multiple GPUs
show that SkePU scales well for various combina-
tions of OpenMP processes and numbers of GPUs,
and also demonstrate the performance benefits of us-
ing their lazy memory transfer mechanism [96]. Af-
ter implementing their new containers and memory
management model, the benefits of this increased
a further 20x, on average [26]. Preliminary perfor-
mance tests of SkePU 2 show it surpassing SkePU 1.2
on several tests already, even though it hasn’t been
fully optimized. The results for SkePU 2 do seem to
vary by base compiler though, which demonstrates a
need for more mature optimizing C++11 compilers
[41] (see Sec. 7 for more about this).

– Productivity: One of the goals of SkePU is to make
parallel code appear sequential by hiding parallelism,
data transfers, and synchronization inside the li-
brary, which can greatly increase usability and pro-
ductivity, since developers don’t need to learn or
worry about parallelism or heterogeneous program-
ming [96]. In addition, with SkePU 2, using a normal
C++ compiler instead of their source-to-source com-
piler will give valid sequential code, which is useful

// Cannon ’s matrix multiplication algorithm

template <typename T>

DMatrix <T>& matmult(DMatrix <T>& A,

DMatrix <T>& B, DMatrix <T>* C) {

// initial shift

A.rotateRows (& negate);

B.rotateCols (& negate);

for (int i = 0; i <

A.getBlocksInRow (); i++) {

DotProduct <T> dp(A, B);

// submatrix multiplication

C->mapIndexInPlace(dp);

// stepwise shift

A.rotateRows (-1);

B.rotateCols (-1);

}

return *C;

}

Listing 3: Muesli code sample.

for debugging and testing [41].

The SkePU 2 developers did a further usability sur-
vey [41] on their new template interface compared to
the original macro interface with a group of gradu-
ate students. They introduced half the students to
SkePU 1 first, then to SkePU 2, and reversed this for
the other half, then asked the students which ver-
sion’s code was clearer on a simple example and on a
complex example. For the simple example, students
sometimes preferred SkePU 1, especially when they
weren’t familiar with C++11 features (this led the
SkePU developers to reconsider some design choices).
For the complex example, students generally pre-
ferred SkePU 2, which the developers believe is be-
cause the reduced macros and user function declara-
tions make the code easier to read.

– P3 Ranking : good – can avoid OpenCL’s perfor-
mance portability problems by using OpenMP or
CUDA, and multi-node capabilities are good. Pro-
ductivity is also good, as long as the developer is
good with C++.

Muesli. Muesli [22, 39, 40] (code sample in Listing 3) is
another C++ template library for skeleton programming.
Unlike the other skeleton libraries listed here, Muesli was
originally designed for multi-node systems, and has fo-
cused on multi-node scalability, only adding multi-core
and GPU support recently. Muesli has back ends for
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MPI, OpenMP, CUDA, and combinations thereof. Muesli
also has a Java implementation utilizing MPJ (MPI for
Java), Aparapi (a GPU programming interface), and Java
OpenCL, although support for GPUs and Xeon Phis in
Java is not as mature.

Muesli provides both task parallel and data parallel
skeletons, with the data parallel skeletons provided as
member functions of their distributed data structures for
vectors, dense matrices, and sparse matrices. Developers
can use the task parallel skeletons, including Pipe, Farm,
DivideAndConquer, and BranchAndBound, to define their
desired process organization as a task graph. The data
parallel skeletons can be used for computation and com-
munication between processes, and include fold, map,
scan, zip, and some variants of these. All these skele-
tons can be arbitrarily nested to build a scalable program.
The developers have been careful to make each skeleton
highly scalable for each back end – see their description
of implementing the Farm skeleton [39] for an example.

Users can pass functions to these skeletons as either
normal functions or as functors (currently, the GPU back
end requires functors [40]). Another unique feature of
Muesli is support for currying user (and skeleton) func-
tions, which allows users to create function objects that
have been partially applied to their arguments, and ap-
ply it to the remaining arguments later. This can help
encourage code reuse and modular programming. Unfor-
tunately, currying isn’t supported with the CUDA back
end, but users can achieve similar functionality by modi-
fying member variables in functors.

– Portability: Muesli can target most CPUs, Nvidia
GPUs, and Intel Xeon Phis with C++ and many
CPUs and GPUs with Java. Xeon Phis are only
supported in “native” exectuion mode, not offload
mode. Additionally, GPU performance with Java
often suffers because the underlying GPU offload li-
brary Muesli uses doesn’t use the correct data layout
to enable coalesced memory accesses.

– Performance: Performance tests [21, 39] show that
all of Muesli’s skeletons scale well on multi-node,
multi-core system, and scalability is very similar
to handwritten MPI+OpenMP. The combination of
task and data skeletons also allows users to experi-
ment with task vs. data parallel implementations to
handle load balancing and other concerns. Compar-
ing the Java and C++ implementations shows that
Java performance is generally similar to C++, ex-
cept on some GPU benchmarks, but this is likely due
to the problems with Java’s GPU library mentioned
earlier.

– Productivity: Muesli’s skeletons abstract away all
threading and communication, so users don’t need

// Producer -consumer pattern (Collatz

conjecture)

pipeline(parallel_execution_thr {}

// Consumer function

[&]() -> optional <int > {

auto value = read_value(instream);

return (value > 0) ? value : {};

},

stream_iteration(

// Kernel functions

pipeline(

[]( int e){ return 3*e; },

[]( int e){ return e-1; }

),

// Termination function

[]( int e){ return e < 100; },

// Output guard function

[]( int e){ return e%2 == 0; },

),

// Producer function

[&]( int e){ outstream << e << endl; }

);

Listing 4: GrPPI code sample.

to worry about these low-level details. Furthermore,
the developers noted that when turning sequential
code into part of a parallel Pipe, only minor changes
have to be made to the sequential code (mostly, plac-
ing it into a functor), so porting sequential code to
Muesli is fairly low-effort [39]. However, lambda
support could make this better, since functors are
known for being verbose and difficult to understand
for those not used to C++.

When adding OpenMP support, the Muesli develop-
ers also put effort into ensuring Muesli scales down
as well as up – they wanted Muesli code written for
multi-core to be able to run on a laptop or cluster
without OpenMP as well as the other way around.
To do this, they added an OpenMP abstraction layer
inside the library so that it can be compiled with or
without OpenMP support, and users can run code
that would normally be multi-threaded in a single-
threaded mode, for easy testing and debugging.

– P3 Ranking: good (C++), fair (Java) – C++ is quite
performance portable, Java is less so because of poor
library support. Both are quite productive, it ap-
pears.

GrPPI. GrPPI [31, 30] (code sample in Listing 4) is
somewhat different from the other skeleton libraries de-
scribed previously. While those libraries describe data
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parallel skeletons, GrPPI describes skeletons for stream
processing, which falls under the pipeline pattern from
above. Stream processing works under the assumption
that the full sequence of data is not available, and is in
fact constantly arriving and needs to be processed as it ar-
rives. This model of data as a (possibly infinite) sequence
or stream has become more relevant as IoT and big data
have grown more prominent, but is also very applicable
to HPC programming problems, such as condensing large
amounts of data from a simulation so it will fit on disk
or performing in situ analysis. GrPPI is built on C++
templates, and has multiple back ends, including C++
threads, OpenMP, and Intel’s TBB.

GrPPI provides skeletons for working on streams of
data, including Pipeline (run a series of operations on
each element in the stream), Farm (similar to map, run a
single function in parallel on all elements of the stream),
Filter (run a test on all items in parallel, only items that
pass are put in the output stream), and Stream-Reduce
(like normal reduce; run a binary function on all items
in the stream to create a single aggregate result, e.g.,
a running average) [31]. A later paper [30] adds fur-
ther skeletons for manipulating the flow of streams to
give users more flexibility and control. The new stream
skeletons include Split-Join (divides a stream into sub-
streams, either duplicating the input stream or putting
elements into sub-streams round-robin, and later recom-
bines the sub-streams), Window (groups elements, based
on how much some value has changed, how much time has
passed, how many elements have been seen, or whether
some specific element, e.g., a period in a text stream, has
been seen), Stream-Pool (for modeling evolution of a pop-
ulation), Windowed-Farm (combination of Window and
Farm, passes groups of elements to a farm operation),
and Stream-Iterator (apply a function to an item until
some condition is met, a rare example of iterative refine-
ment from the list above). All of these skeletons, old and
new, are fully composable, allowing users to build a full
application out of only skeleton calls.

– Portability: While the current back ends (C++
threads, OpenMP, and Intel TBB) allow users to
target most CPUs, and test different models to see
which works best for their case, GrPPI currently does
not support GPUs. The authors note that they wish
to add support for GPUs in the future [31].

– Performance: The GrPPI developers ran prelimi-
nary performance tests on edge detection and syn-
thetic benchmarks to test each of their skeletons
against code written natively in each back end
[31]. GrPPI performance generally matched C++
threads, OpenMP, and TBB well, although TBB
(with our without GrPPI) performed worse than
C++ threads or OpenMP, likely because TBB uses

an internal locking mechanism the other two back
ends lack. A later performance study [30] confirmed
these results, including TBB’s low performance with
or without GrPPI, demonstrating that GrPPI adds
negligible overhead.

– Productivity: When trying out various paralleliza-
tion schemes for a video processing application,
the authors counted how many lines of code each
programming model (C++ threads, OpenMP, Intel
TBB, and GrPPI) added to the sequential version.
They found that, even for the most complex par-
allelization scheme, GrPPI added far fewer lines of
code – <5%, compared to 26% for TBB, which was
second [31]. GrPPI has the added benefit of sup-
porting multiple back ends without tying users to
any single one. A later study [30] confirmed these
findings on other applications, and added that the
cyclomatic complexity6 of GrPPI code is much lower
than its back ends, with the occasional exception of
TBB. The authors of GrPPI, however, say they find
GrPPI code more structured and readable than TBB
regardless.

– P3 Ranking: poor, but promising – GrPPI is very
productive, but doesn’t yet support enough plat-
forms or get high enough performance to be called
performance portable. However, with more work it
could be very performance portable.

3.2.2 Parallel Loop Libraries

This section will discuss libraries based on parallel loop
abstractions. These mostly fall under the data parallelism
and index space abstraction strategies, and many use
C++ templating to provide a more generic interface. In
general, these libraries do not provide computational pat-
terns, and users must write all computation themselves.

Kokkos. Kokkos [36, 37] is a loop-based data paral-
lelism library for performance portability that uses C++
templating capabilities. Kokkos has back ends for various
other programming models, including CUDA, OpenMP,
and pthreads, which allow users to target a wide vari-
ety of architectures, such as Intel’s Xeon Phi and Nvidia
GPUs, without modifying their code. These back ends
can be swapped out with minimal changes to application
code so users can easily run on multiple architectures.

Kokkos abstracts away parallelism so architecture-
specific optimizations exist outside the main application.
Kokkos’ abstractions can be loosely grouped into mem-
ory and execution abstractions. Memory layout and ex-
ecution environment are the most common program ele-

6This is a metric for code complexity based on the number of
independent paths through a program [101].
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// Heat conduction stencil (TeaLeaf)

#define DEVICE Kokkos :: OpenMP

// initialize a view

Kokkos ::View <double*, DEVICE > p("p", x*y);

// lambda -style loop

Kokkos :: parallel_for(x*y, KOKKOS_LAMBDA

(int index) {

const int kk = index;

const int jj = index / x;

// if in view interior ...

if (kk >= pad & kk < x - pad &&

jj >= pad && jj < y - pad) {

// recalculate value

p(index) = beta*p(index) +

r(index);

}

});

Listing 5: Kokkos code sample.

ments that need to change for each new architecture, so
the Kokkos developers chose to abstract them away to
decrease porting effort.

Kokkos’ abstractions are multidimensional array views
(array layouts) [35], memory spaces, and execution
spaces. The array views allow developers to change the
memory layout and access patterns to best suit the un-
derlying architecture at compile time, so the compiler
can make inlining and vectorizing optimizations. Memory
spaces keep track of where data resides in heterogeneous
architectures, and similarly, execution spaces contain in-
formation on the type of hardware code should run on.
Execution spaces only have access to memory spaces that
make sense; e.g., a CPU execution space cannot access
a GPU-only memory space, but can access a host burst
buffer memory space. All of these can be modified to
add optimizations for a particular application on a spe-
cific architecture. For example, users could write their
own tiled matrix layout and add it to an application by
merely swapping out array views. Kokkos keeps these
configurations consolidated and out of application code,
which is excellent for portability and productivity.

– Portability: Kokkos supports back ends for CUDA,
HPX, OpenMP 3, pthreads, and serial execution,
with back ends for OpenMP+offloading (4+) and
AMD’s HIP and ROCm in progress [75]. The current
back ends allow Kokkos to target a wide array of de-
vices, including Nvidia GPUs, Intel’s Xeon Phi, and
many CPUs. The new back ends will allow Kokkos

to target AMD GPUs as well.

– Performance: The Kokkos developers tested their
CUDA and OpenMP back ends against native/hand-
written CUDA and OpenMP mini-applications on
an Intel CPU, Intel Xeon Phi, and Nvidia GPU
[37]. While they did need to tweak some settings
in Kokkos (particularly for CUDA), Kokkos’ per-
formance was comparable to native OpenMP and
CUDA in most cases, even outperforming native
CUDA in one case. Kokkos also scaled similarly
to native OpenMP across multiple CPUs and Xeon
Phis. These experiments demonstrate that Kokkos
has low overhead and is at least as performance
portable as the back ends it is built on.

A later performance portability study [100] confirms
these results, showing Kokkos having low overhead
versus native OpenMP on Intel CPUs, although some
tuning was needed to get the same performance on
IBM’s Power8 CPUs and the Xeon Phi, which was
very new when the first performance tests were done,
and likely had better compilers by the time of the
second test. The more recent study showed slightly
higher overheads on an Nvidia GPU, but still com-
parable to native CUDA.

A third study [133] shows Kokkos can have perfor-
mance comparable to OpenCL on Intel and AMD
CPUs for some benchmarks, although Kokkos strug-
gled on most of the benchmarks. On Nvidia
GPUs though, Kokkos’ performance is comparable
to CUDA and OpenCL on all benchmarks.

– Productivity: Kokkos was designed to be added in-
crementally to large applications (100,000+ lines of
code) to aid the porting process. Developers can add
Kokkos abstractions one loop at a time and check
that their results are still correct before moving on
to the next loop. This makes it less of a monumen-
tal effort to port such large applications, and since
Kokkos allows users to swap out back ends at will,
porting becomes worth the effort since future opti-
mizations and ports to new architectures will happen
inside Kokkos, not the application code.

However, a productivity study including Kokkos
[100] have note that the functor programming pat-
tern Kokkos uses for kernels is difficult to understand
and very verbose. The increasing number of compil-
ers that implement C++ lambdas greatly alleviates
this problem, since it allows kernels to be written in-
line instead of in a separate functor. The authors
of this study still note, though, that Kokkos’ array
views aren’t terribly intuitive, and the Kokkos API
could be improved by simplifying them.
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// Heat conduction stencil (TeaLeaf again)

// set up execution policty

typedef RAJA:: IndexSet :: ExecPolicy <

RAJA::seq_segit , // sequential on

segments

RAJA:: omp_parallel_for_exec // OpenMP

parallel for

> policy;

// Custom box segment for index set

RAJA:: BoxSegment box (/*...*/);

RAJA:: IndexSet inner_domain_list;

inner_domain_list.push_back(box);

// lambda -style loop

RAJA::forall <policy >( inner_domain_list ,

[=] RAJA_DEVICE (int index) {

p[index] = beta*p[index] + r[index];

});

Listing 6: RAJA code sample.

– P3 Rating: very good – the selection of back ends
and Kokkos’ performance with many of them make
it very performance portable. However, its produc-
tivity could perhaps be better.

RAJA. RAJA [61, 9] (code sample in Listing 6) is very
similar to Kokkos in that it is a loop-based, data paral-
lel C++ template library with multiple, interchangeable
back ends, including CUDA and OpenMP. RAJA also ab-
stracts away parallelism (via memory and execution pat-
terns) with the goal of hiding architecture-specific code
inside the library where users won’t have to interact with
it.

RAJA’s chosen abstractions are execution policies, it-
eration spaces, and execution templates. The execution
policy defines where a kernel will run and which back end
it will use for parallelism. Iteration spaces describe which
indices of an object the loop will access, and are made
up of index sets and segments. Segments contain indices
that can be treated as a single unit, and index sets are
sets of arbitrary segments. These index sets can contain
non-contiguous indices, as can segments, which makes
them good for representing sparse data structures. RAJA
was originally designed to work well with both structured
(regular) and unstructured (irregular) mesh-based codes,
which is why this particular design was used. Execu-
tion templates define the type of operation being done in
the kernel, such as a standard parallel loop (forall) and
reductions. Similarly to Kokkos, all of these can be mod-
ified to suit an application’s needs. For example, when
Martineau et al. were porting TeaLeaf to RAJA [100],

they implemented a new index set type that corresponded
to a 2-d section of an array so they could use tiled array
accesses, which improved TeaLeaf’s performance on sev-
eral architectures.

– Portability: RAJA has full support for serial,
OpenMP 3, CUDA, and “loop” back ends, with
“SIMD,” OpenMP+offloading (4+), and Intel TBB
back ends in the works [9]. The “loop” back end al-
lows the compiler to do its own optimizations with-
out interference, and the “SIMD” back end forces
vectorization. These back ends allow RAJA to tar-
get most CPUs, Xeon Phis, and Nvidia GPUs.

– Performance: Early performance studies of RAJA
versus pure C+OpenMP on a proxy application
showed that RAJA+OpenMP scales better than
pure C, but has higher overheads with low thread
counts, likely due to higher OpenMP overheads in-
side RAJA rather than any problem with RAJA it-
self.

A later study [100] demonstrated that RAJA has
very low overheads and performs almost as well as
native OpenMP 3 for Intel CPUs and Power8 CPUs,
although more work is needed to reduce overhead
on an Nvidia GPU. RAJA also needs some index
space/memory access pattern tweaks to get better
performance on most platforms.

– Productivity: Again, like Kokkos, RAJA was de-
signed for incremental porting, and has the same
benefits as Kokkos. Similarly, better lambda support
has helped RAJA move away from using functors
for kernels and improved productivity, although even
early on the developers had feedback from domain
scientists that the RAJA version of their code was
more readable and easier to maintain (in addition to
running faster because it was now parallel) [61]. In
addition, one study [100] prefers RAJA’s loop index
spaces to Kokkos’ array views, finding them more
intuitive. This study also found that porting a code
to RAJA adds fewer lines of code than porting to
Kokkos.

– P3 Ranking: good, and promising – RAJA could
support more platforms, but it gets good perfor-
mance on the platforms it does support, making it
a promising candidate for being very performance
portable.

// triad , functor version

phast::vector <double > a(n);

phast::vector <double > b(n, 1.0);

phast::vector <double > c(n, 2.0);

// computation functor
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template <typename T, unsigned int policy

= phast:: get_default_policy ()>

struct triad_functor :

phast:: functor :: func_scal_scal_scal <T,

policy >

{

T scal;

_PHAST_METHOD void operator ()(

phast:: functor ::scalar <T>& a,

const phast:: functor ::scalar <T>& b,

const phast:: functor ::scalar <T>& c)

{

a = b + scal * c;

}

};

// instantiate functor

triad_functor <double > triad;

triad.scal = 3.0;

// run triad calculation

phast:: transform(a.begin(), a.end(),

b.begin(), c.begin(), triad);

Listing 7: PHAST code sample.

PHAST. The PHAST library [132, 133] (code sample
in Listing 7) is based heavily on C++11 features, which
let users write parallel code in terms of containers, itera-
tors, and STL-like algorithms – these algorithms are data
parallel and similar to skeletons, but PHAST’s focus is
parallel loops, which is why it’s in this section. PHAST
code looks like normal C++ with library calls. PHAST
has back ends for CUDA, Boost.Threads, and C++11
threads, so it can target Nvidia GPUs and most CPUs.
The main design goal of PHAST was to hide architecture
and language details from users and manage the degree
and type of parallelism, so the same code can run well on
multiple architectures, while still allowing users to tune
whatever they wish. PHAST allows users to set all the pa-
rameters for every platform at once and will only use the
parameters relevant to the current platform. These pa-
rameters are kept separate from user code, so paralleliza-
tion and data mappings can be changed without modi-
fying application code. When no parameter values are
specified, PHAST tries to infer good values.

To do this, PHAST provides STL-like parallel algo-
rithms, including for each (the primary algorithm), copy,
and find, some of which take user-defined functors to spe-
cialize the algorithm. While PHAST tries to encourage
writing platform- and architecture-independent code, it is
still possible for users to further optimize their functors
by adding different code versions with #ifdefs. PHAST
provides four containers that all of these algorithms can
work with: vector, matrix, cube (a generic 3-d data struc-
ture, not strictly a cube), and grid, which can be defined

over another container to create a mesh. PHAST also au-
tomatically maps standard types to vector types (when
appropriate) and overloads their operations with vector
operations; e.g., a series of uint4 ts will be mapped to a
m128i on SSE architectures. Users don’t have to work

with vector types, PHAST does this transparently with
no user interaction necessary.

– Portability: PHAST supports back ends for CUDA
and C++ threads, which allows it to target Nvidia
GPUs and most CPUs. The developers intend to add
more back ends to allow targeting a wider variety of
devices.

– Performance: An early performance test of PHAST
[132] compared it to CUDA and OpenCL on multi-
core CPUs and Nvidia GPUs. For the CUDA back
end, they noticed that each GPU they tested with
needed different parameters to get the best perfor-
mance, which reinforces the necessity of keeping pa-
rameter choices out of application code. PHAST ac-
tually outperformed CUDA on one benchmark, but
that was due to major implementation differences.
When testing against two different OpenCL vendor
implementations (Intel and AMD), they noticed that
each implementation performed very differently, de-
spite running the same code on the same hardware.
They note that this is likely due to Intel providing
better auto-vectorization.

Another performance test [133] versus SYCL,
Kokkos, CUDA, and OpenCL revealed that on mul-
ticore, all models except SYCL get similar perfor-
mance on simple benchmarks, while on a full ap-
plication SYCL and OpenCL perform the best, al-
though this is due to SYCL and OpenCL’s ability to
reorder data structures. PHAST intends to add this
capability in the future. On GPU tests, PHAST is
on par with CUDA and OpenCL; SYCL does much
worse but this is likely because its implementation
for Nvidia architectures is very new.

– Productivity: When PHAST was first introduced,
the developers noted that it makes for much cleaner
code than CUDA while still giving users a similar
level of control [132]. A later productivity study [133]
calculated several complexity metrics over PHAST,
SYCL, Kokkos, CUDA, and OpenCL on several
benchmarks and confirmed that PHAST is much sim-
pler than OpenCL and CUDA. PHAST scores sim-
ilarly to Kokkos and SYCL on these metrics; it is
more concise, but arguably a bit more complex. The
PHAST developers intend to add support for lamb-
das and the parallel STL extensions from C++17 to
further improve productivity and code simplicity.
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__targetConst__ double a;

__targetEntry__ void scale(double* field) {

int baseIndex;

__targetTLP__(baseIndex , N) {

int iDim , vecIndex;

for (iDim = 0; iDim < 3; iDim ++) {

__targetILP__(vecIndex)

field[INDEX(iDim ,baseIndex+vecIndex)] =

a*field[INDEX(iDim ,baseIndex+vecIndex)];

}

}

return;

}

targetMalloc ((void **) &t_field , datasize);

copyToTarget(t_field , field , datasize);

copyConstToTarget (&t_a , &a,

sizeof(double));

scale __targetLaunch__(N) (t_field);

targetSynchronize ();

copyFromTarget(field , t_field , datasize);

targetFree(t_field);

Listing 8: targetDP code sample.

In addition, PHAST can be used as a source-to-
source translator if desired. PHAST can produce
code that can be given to nvcc or other standard
compilers; a skilled programmer could use PHAST
to generate a baseline implementation and then op-
timize from there.

– P3 Ranking: fair, but promising – for being so new,
PHAST is doing well with performance, although it
could support more architectures. It is also very pro-
ductive, for developers who know C++.

targetDP. Unlike the other libraries listed here, tar-
getDP [44, 45] (code sample in Listing 8) uses pure C
(not C++) with preprocessor macros and library func-
tions to provide data parallel loops. targetDP’s macros
and library are designed to be maintainable and exten-
sible; they were originally designed for structured mesh
codes, and work best with regular codes, but are appli-
cable to other codes as well. The motivation behind tar-
getDP was to provide a single-source implementation for
mesh-based applications that could target both CPUs and
GPUs. targetDP was developed in conjunction with the
Ludwig lattice application, which has several loop nests

with small inner loops that are difficult to vectorize – they
wanted a solution that could (correctly) force vectoriza-
tion.

targetDP targets OpenMP for CPUs and Xeon Phis
(only supported in “native” execution mode), and CUDA
for Nvidia GPUs. To provide parallelism, targetDP
defines the macros TARGET ILP and TARGET TLP for
instruction-level and thread-level parallelism, respec-
tively, that expand to OpenMP simd and parallel loop

constructs or CUDA kernel invocations. These macros al-
low users to control vector length and parallelism degree,
and can help force vectorization for loops that may not
otherwise be vectorized. They also provide a macro for
abstracting away memory layout, similar to index macros
from other scientific codes that treat a single-dimensional
vector as a multi-dimensional array. This allows users to
change memory layouts without modifying their code.

Even when targeting CPUs, targetDP maintains a host
vs. device distinction, since this makes implementing the
macros somewhat simpler, removes some memory con-
sistency and data race concerns, and doesn’t add much
overhead in their experience (though decreasing memory
usage is a possible future improvement). For example,
their copyToTarget macro will expand to cudaMemcpy

when targeting CUDA or a plain memcpy when targeting
OpenMP.

– Portability: Targeting OpenMP and CUDA allows
targetDP to target many CPUs, Intel Xeon Phis
(although they current only use “native” execu-
tion, which doesn’t require using OpenMP’s offload
model), and Nvidia GPUs.

– Performance: Performance tests [44] showed that
targetDP improved application performance on both
an Intel CPU and an Nvidia GPU, likely due to bet-
ter vectorization, which does make applications more
performance portable. Vectorization also improved
performance on a Xeon Phi [45]. However, the
authors never compare their performance to hand-
written CUDA or OpenMP on any architecture, so
it’s difficult to say whether the performance is actu-
ally good.

– Productivity: While targetDP’s macros do allow
users to only write kernel code once, they must still
manually manage memory transfers between the host
and “device,” which is challenging and time con-
suming, and one of the major criticisms of CUDA
and even other performance portable models like
OpenMP and OpenACC. C preprocessor macros are
also not type-safe, which may lead to errors; SkePU
2 [41] deliberately moved away from macros to allevi-
ate this problem. However, if application developers
are unwilling or unable to migrate from pure C to
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C++, they also need a solution, and targetDP is one
option.

– P3 Ranking: poor – doesn’t support many models
and performance hasn’t been compared to any other
models, but if an application needs C, it’s an option.

3.3 Application-Specific Libraries

In a recent paper, Holmen et al. [59] suggest a way for
large legacy codes to incrementally adopt performance
portability models by adding a dedicated, application-
specific performance portability layer (PPL), which acts
as an application-specific performance portability library.
The primary goal of a PPL is to improve long-term porta-
bility for legacy code, or even a newer application that
is expected to have a long lifetime. A PPL insulates
users from changes in the underlying programming mod-
els by consolidating all performance portability-related
code into a single place – the application only needs to
port to the PPL once, and all future ports take place in-
side the PPL. This allows applications to experiment with
multiple programming models without disrupting users
and domain developers. If the user base for the appli-
cation’s chosen model(s) dies out (as the user bases for
some early programming models did [52, 181]), the appli-
cation can migrate to new models in the PPL, not in the
application code. The PPL also allows an application to
specialize its use of performance portable models.

Holmen et al. describe the adoption of a PPL into the
Uintah fluid-structure interaction simulator. The Uin-
tah PPL is based heavily on Kokkos and contains paral-
lel loop abstractions similar to Kokkos’ and RAJA’s (in-
cluding an iteration range, execution policy, and lambda
kernel function), as well as application-level tags that de-
note which loops support which back ends (e.g., CUDA
vs. OpenMP), and build-level support for selective com-
pilation of loops that enables incremental refactoring and
even simultaneous use of multiple underlying models.
Currently, their PPL only supports Kokkos, but the au-
thors see no reason why it couldn’t also support RAJA.

While their PPL is very similar to Kokkos, the de-
velopers didn’t want to directly adopt Kokkos because
they wanted to preserve legacy code, simplify the abstrac-
tions for their domain developers, and make re-working
their implementation or adopting another performance
portable model later easier. They’ve succeeded at some
of these goals already, since their domain developers have
liked the new parallel loop interface and haven’t had much
trouble with it, even though they don’t know much about
parallel programming. The new portable implementation
also demonstrates better speedup and scalability on both
CPU and GPU architectures.

Since the Uintah code base is so large, the authors did
several small-scale refactors to validate their PPL and

standardize an adoption process, and came up with gen-
eral advice for porting to performance portable models:

– Put a build configuration system in place before fully
migrating to a PPL to avoid additional refactors.

– Include a tagging system for loops to let the build
system know which loops have PPL implementations
for which interfaces; this will make porting go much
smoother.

– Have a thorough testing apparatus in place to verify
correctness pre-, during, and post-port.

The Uintah developers also acknowledge that, while
adding a PPL solves many problems, it also raises new
questions, including how to use domain libraries (e.g.,
PETSc) in both the application and PPL simultaneously,
how to manage increasingly complex build configurations,
how to make intelligent, optimal use of underlying pro-
gramming models, and how to efficiently manage mem-
ory and execution while potentially using multiple un-
derlying programming models. In some ways, adding a
PPL is moving responsibility for performance portability
back onto applications, where it was originally (see Sec.
2.2.4), which raises many more questions about the roles
of applications, compilers, and programming models in
performance portability.

4 Parallel Languages

In an ideal world, sequential languages could automat-
ically be parallelized to get high performance on mod-
ern machines, but this is an exceptionally difficult prob-
lem, and debatably not one worth solving,7 so numerous
explicitly parallel languages have been created instead.
These languages vary widely in their feature sets and par-
allel constructs, from high-level languages like Chapel to
low-level languages like OpenCL. The barrier to entry for
new languages is higher than for all the other models dis-
cussed in this paper, since developers of new applications
are reluctant to use a language that might not exist in a
few years, and incremental porting to a new language is
difficult if not impossible [177]. This section describes the
main languages that have managed to break into HPC,
as well as some new contenders that show promise.

// quicksort

template <typename T>

void qsort(T begin , T end) {

if (begin != end) {

T middle = partition(begin , end ,

bind2nd(

7As some have noted [17], sequential and parallel programming
are fundamentally different, so why should we try to use the same
tools for both?
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less <typename

iterator_traits <T>::

value_type >() ,*begin));

cilk_spawn qsort(begin , middle);

qsort(max(begin + 1, middle), end);

cilk_sync;

}

}

// Simple test code:

int main() {

int n = 100;

double a[n];

cilk_for (int i=0; i<n; ++i) {

a[i] = sin(( double) i);

}

qsort(a, a + n);

copy(a, a + n,

ostream_iterator <double >(cout , "\n"));

return 0;

}

Listing 9: Cilk code sample.

4.1 Cilk

The Cilk language [13, 43] (code sample in Listing 9)
started as an MIT project extending C for parallelism,
spun off into a startup that created Cilk++ to extend
C++ [87], was acquired by Intel and upgraded to Cilk
Plus (which worked with C and C++) [144], and has now
been deprecated by Intel, but picked up by an open source
project called Open Cilk [145]. Cilk/Cilk++ is a task-
based language that is unique in that its work-stealing
task scheduler provides provable performance guarantees.
In general, the philosophy of Cilk has been to allow users
to define what can be run in parallel, not what should
be run in parallel; the latter can lead to resource con-
tention. The scheduler decides the parallelism granular-
ity and when/where tasks should be run without user
intervention.

Cilk/Cilk++ is built on a source-to-source translator
to C/C++ and Cilk runtime calls, which support intra-
node parallelism, but leave inter-node parallelism to other
models like MPI. Cilk/Cilk++ is a faithful extension of
C/C++; the serial elision (the program with all Cilk key-
words removed) of any Cilk/Cilk++ program is valid se-
rial C/C++.

The original language [13] used explicit continuation
passing to perform synchronization and pass values be-
tween threads, but this was quickly abandoned in favor
of more traditional spawn and join semantics, since it
was too convoluted for most developers [43]. The up-
dated version of Cilk still used the same provably efficient,
work-stealing scheduler, however, which is based on the

“work-first” philosophy of minimizing overhead by mov-
ing it onto the critical path instead of places it would
increase the theoretical serial execution time.

Cilk [43] used the spawn keyword to create new asyn-
chronous child functions, and the sync keyword as a local
barrier to force the parent function to wait until all its
children had completed (all functions implicitly synced
before returning). When a child function returned, its
return value was usually stored into a variable in the par-
ent. If a user wanted to do something more complex with
return values, like a reduction, they could pass the value
to an “inlet” function, which is a function internal to the
parent that could perform some operations on the value.8

If a program did speculative work (e.g., a parallel binary
tree search), and discovered it needed to cancel child func-
tions, the parent could call abort in an inlet and all its
children would return.

Cilk++ [87] used the same scheduler and very similar
semantics, but changed the keyword to cilk spawn and
cilk sync, added easier parallel loops with cilk for,
and removed inlets and abort, replacing them with re-
ducer objects. Reducers provide a non-locking mecha-
nism to perform reductions and other operations by al-
lowing each child thread to have its own local view of an
object, and on return combine these local views in a sen-
sible (potentially user-defined) way. Cilk++ also added
support for exceptions.

Cilk Plus [144] uses the same semantics as Cilk++
(cilk spawn, cilk sync, cilk for, reducer objects), but
adds support for vector parallelism (ILP) with simd di-
rectives and array notation similar to Fortran’s. While
array notation may be more familiar to Fortran develop-
ers, Robison [144] notes that the simd directive is more
flexible and portable between compilers. Cilk Plus also
adds a tool to check for race conditions; if a program is
free of race conditions, it’s equivalent to its serial elision.

Open Cilk [145] is fully compatible with Cilk Plus and
built on LLVM and Tapir (see Sec. 7.3). Currently, Open
Cilk uses the Cilk Plus runtime built by Intel, but there
are plans to write a fully open source runtime. The Open
Cilk group intends to continue innovating and adding new
features to Cilk.

– Portability: Cilk is based on C and C++, and as
such it is highly portable to most CPUs. While Cilk
does not support GPU programming itself, it seems
that it could be combined with another programming
model, such as OpenCL or CUDA, to launch tasks
that run on the GPU.

– Performance: Cilk’s work-stealing scheduler is
highly scalable, both to high numbers of cores (pro-

8The serial elision of inlets is not valid ANSI C, but it is valid
GNU C.
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viding near-linear speedup, as long as there is suffi-
cient work) and to small numbers of cores (negligi-
ble overhead) [87]. In a performance study of Cilk
[114], Cilk was consistently one of the fastest models,
on par with TBB, which has been highly optimized.
Cilk had an average of 15-20x speedup on 32 cores
over serial execution; its lightweight tasks and auto-
matic load balancing give it excellent scalability even
for dynamic problems that give other models trouble.

– Productivity: While Cilk is somewhat more verbose
than other languages described below, it is still sim-
pler and shorter than many other models, including
TBB; its code size is only about 1.5x larger than
Chapel, which is possibly the most succinct model
discussed in this paper (see Sec. 4.4) [114]. In
one study, Cilk’s development time was compared to
models like TBB and Chapel, and Cilk scored simi-
larly to Chapel.

– P3 Rating: good – performance portable and pro-
ductive, but could add direct support for more ac-
celerators.

4.2 Legion and Regent

Legion [8] is a task-based programming system embed-
ded in C++ and based on logical regions, which describe
the data usage of a function/task and can be used to
discover dependencies and task parallelism. Regions and
tasks can both be partitioned to discover even more par-
allelism. Regions don’t describe the physical data layout
or location on the machine, but which data a task uses
and its access privileges (e.g., read-only, read-write, etc.);
physical data locations are managed by the Legion run-
time. At any given time, a logical region might be mapped
to zero or more physical instances of its data. The Le-
gion runtime manages where these instances are located
on multi-node machines to minimize communication and
keeps instances containing the same data coherent.

The main choices Legion developers need to make are
how to group data into regions and how to map the pro-
gram onto the hardware. Legion provides a mapping API
so users can specify rules for how Legion should map tasks
and regions to hardware. This mapping is where most
machine-specific Legion code ends up, which makes Le-
gion very (performance) portable, since all users have to
do to port to a new machine is write a new mapping, not
modify source code (Legion also provides a default map-
ping to get applications up and running quickly). The
mapping only affects performance, not correctness, and
makes it very easy to compose different Legion applica-
tions, which can all use their own custom mappings.

Legion’s execution model is based on a software out-of-
order processor (SOOP) that schedules and runs a series

// Regent advection task

task simulate(zones_all : region(zone),

zones_all_p : partition(disjoint ,

zones_all),

points_all : region(point),

points_all_private : region(point),

points_all_private_p :

partition(disjoint , points_all_private),

conf : config)

where

reads(zones_all , points_all_private),

writes(zones_all , points_all_private)

do

var dt = conf.dtmax

var time = 0.0

var tstop = conf.tstop

while time < tstop do

dt = calc_global_dt(dt, dtmax ,

dthydro , time , tstop)

for i = 0, conf.npieces do

adv_pos_full(

points_all_private_p[i],

dt)

end

time += dt

end

end

Listing 10: Regent code sample.

of tasks on a (possibly distributed) system. The SOOP
runs ahead of the actual computation to schedule tasks
and distribute data to amortize the overhead; since each
task describes which regions it uses and the privileges
it requires, the SOOP can dynamically discover depen-
dencies and parallelism at run time to create a correct
schedule. The SOOP itself is pipelined so different stages
discover dependencies and map tasks to increase paral-
lelism further. After a task is mapped, it will execute
once all its dependencies have completed, and if it spawns
subtasks, those are sent to the SOOP for scheduling.

Regent [151] (code sample in Listing 10) is a task-based
language built on top of Legion – Regent code appears to
be sequential task calls, but the tasks are run in paral-
lel by the Legion runtime. Regent tasks will be issued
in program order, but the Legion runtime is free to re-
order and run tasks in parallel, as long as all data de-
pendencies are met. Regent is implemented as a source-
to-source optimizing translator to Legion. As in Legion,
users define tasks with the logical regions they use and
what privileges they need on those regions; however, Re-
gent automates much that Legion does not. Regent only
exposes the logical level of Legion to users, hiding low-
level details, including managing physical instances and
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partitioning regions, which greatly reduces the amount of
code users need to write. The Regent translator performs
several optimizations on the Legion code it generates, in-
cluding passing data as futures to avoid blocking, branch
elision, and vectorization, which help Regent get closer to
hand-written Legion performance.

– Portability: Since Regent/Legion is based only on
C++, it can run on a wide variety of CPUs. How-
ever, the only GPU back end supported is CUDA, so
accelerators are limited to Nvidia GPUs.

– Performance: Legion alone can get within 5% of
hand-written application code when configured us-
ing pthreads for CPU code, CUDA for GPU code,
and GASNet for communication, and when run on a
single node. It also has good strong scaling [8]. With
optimizations turned on, Regent gets similar perfor-
mance [151], however, there are optimizations that
have not yet been implemented that could further im-
prove performance. Users must be careful when con-
figuring Legion/Regent’s CPU usage, though, since
assigning too many threads/cores to the application
leaves too few for Legion to use, and the application
and Legion will interfere with each other execution,
degrading performance.

– Productivity: Legion alone requires a great deal of
code, but Regent can reduce this by half while also
decreasing code complexity. Both Legion and Regent
are highly scalable (Regent perhaps a little less than
Legion), so codes can be tested on small machines
and scaled up to larger machines with little work.
Keeping the task and region mapping out of source
code helps this a great deal.

– P3 Rating: good – Legion is high performance, and
Regent is productive, but they could directly support
more accelerators to be truly performance portable.

4.3 X10 and Habanero-Java

X10 [19] is an object-oriented (OO), task-based PGAS
language based on Java and developed by IBM specifi-
cally to be high-productivity. The X10 developers were
dissatisfied with the productivity of other HPC languages
and with OO languages’ support for cluster computing,
so they developed X10 to solve those problems. The
main design goals of X10 were safety (eliminating cer-
tain classes of errors), analyzability (for compilers, tools,
and users), scalability, flexibility, and performance. They
decided to use Java as a starting point because it already
had most of those features, but its parallelism support
was clunky and slow, so they replaced it with their own
parallelism constructs.

X10 adds support for distributed systems with places,
which are logical processes that contain a collection of
(non-migrating) data objects and asynchronous activities
(tasks) that operate on that data – somewhat similar to
Regent’s regions, but more like Chapel’s locales. While
the data and computations inside places don’t migrate,
the X10 runtime is free to move places as needed for
load balancing. Tasks are similar to Cilk, but are cre-
ated with the async keyword, and unlike Cilk, tasks may
terminate before their children. X10 handles this with
finish blocks, which force a task to wait until all chil-
dren spawned inside the block have completed before re-
turning itself; the main function is implicitly wrapped in
a finish block. The finish block also handles any ex-
ceptions thrown by its child tasks.

X10 has foreach and ateach loops that launch tasks
for parallel iteration over arrays within a place and across
places, respectively. Arrays can be mapped to multiple
places with a distribution attribute, but the distribution
cannot change during the array’s lifetime. X10’s memory
model is “globally asynchronous, locally synchronous;”
within a place, data accesses are synchronous and or-
dered, but to modify data in another place, a task must
launch another asynchronous task in that place, which
has weak ordering semantics.

To give users more control over this, X10 provides
atomic regions and clocks for synchronization. Atomic
regions can contain multiple statements, and will behave
as if those statements were executed atomically, with no
interruptions. Clocks are a generalized barrier; at any
time, a clock is in a certain phase and can have multiple
tasks registered on it. Tasks can indicate to the clock they
would like to move to the next phase, and will block until
all tasks registered on that clock are ready to go on. Inter-
estingly, if a program only uses async, finish, foreach,
ateach, clocks, and atomic regions, X10 guarantees that
the program will be deadlock free, which is a feature none
of the other languages described here provide.

Habanero-Java (HJ) [16] (code sample in Listing 11)
is a teaching language for parallelism built on X10. Like
X10, HJ is focused on being safe, productive, and effi-
cient. HJ uses the same abstractions as X10, although it
upgrades clocks to phasers, which are even more general
barriers. Tasks can register on phasers in different modes:
signal-only and wait-only modes can be used to achieve
producer-consumer behavior, or signal-wait mode can be
used to get the same behavior as X10 clocks. HJ also
adds array views similar to Kokkos array views, which
allow users to view a one dimensional array as multidi-
mensional using a custom index space.

– Portability: The JVM and runtime X10 and HJ are
built on are very portable, enabling both to run on
most CPUs. In addition, X10 can call GPU code
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// Population simulation

void sim_village_par(Village village) {

// Traverse village hierarchy

finish {

Iterator

it=village.forward.iterator ();

while (it.hasNext ()) {

Village v = (Village)it.next();

async seq

(( sim_level -

village.level)

>= bots_cutoff_value)

sim_village_par(v);

} // while

[...]

} // finish

}

Listing 11: Habanero-Java code sample.

(and C or Fortran) via its extern keyword, although
the GPU code must be written separately.

– Performance: While the performance of X10 and HJ
has not been as extensively studied as some other
languages, X10 has been shown to get over 80% of
the performance of the optimized versions of some
benchmarks [165].

– Productivity: A productivity study was done on X10
[19], measuring the effort to port a serial Java bench-
mark suite to shared memory parallelism and dis-
tributed memory parallelism. They used LOC and
source statement count (SSC) as proxies for produc-
tivity, since LOC can vary by programming style but
SSC doesn’t, and compute the change ratio for both.
Using existing Java features, the total code change
ratio to achieve distributed memory parallelism is 45-
73%, which is extremely high. With X10, the change
ratio is only 15-23%, which is much less effort. X10’s
deadlock free properties and other OO features also
help productivity.

– P3 Rating: fair – X10/HJ is a teaching language now,
rather than a production language, so performance
and portability aren’t as critical.

// triad benchmark

proc main() {

// make domain (index set)

const ProblemSpace: domain (1) dmapped

Block(boundingBox ={1..m}) = {1..m};

// create and init distributed vectors

var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);

// an array of timings

var execTime: [1.. numTrials] real;

// loop over the trials

for trial in 1.. numTrials {

const startTime = getCurrentTime ();

forall (a, b, c) in zip(A, B, C) do

a = b + alpha * c;

execTime(trial) = getCurrentTime () -

startTime;

}

const validAnswer = verifyResults(A, B,

C);

}

Listing 12: Chapel code sample.

4.4 Chapel

Chapel [17, 18] (code sample in Listing 12) is a parallel
language from Cray, built on top of a source-to-source
translator to C. Like X10, Chapel is designed to be highly
productive and high performance (in that order), and to
remedy many problems with existing parallel languages
and programming models. In brief, Chapel is intended
to be as programmable as Python, as fast as Fortran, as
scalable as MPI, as portable as C, and as flexible as C++.
Chapel’s specific goals are:

– provide a global-view PGAS programming model
where users express their algorithms and data struc-
tures cohesively, at a high level, and map them to
hardware separately (as opposed to a “fragmented”
model, where users write individual kernels specific
to the hardware and must manage many low-level
details, like CUDA9);

– support generalized, multi-level, composable paral-
lelism – both task and data parallelism;

– separate algorithms from implementations, so user
code is independent from the underlying hardware
configuration and data layout in memory (e.g., dense
and sparse matrix multiplication can be done with
the same code);

– provide more modern language features, such as
object-oriented programming, function overloading,

9The Chapel developers believe the prevalence of fragmented
models is one of the primary reasons parallel computing remains so
difficult. They do admit that writing compilers and runtimes for
fragmented languages is much easier than for global-view languages,
though.
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garbage collection, generic/template programming,
and type inference;

– provide more data abstractions than simple dense
arrays and structs, like sets, graphs, and hash tables;

– provide execution model transparency, since develop-
ers can write better code when they have an idea how
what they write will map to the hardware (for par-
allel languages, this includes data distribution and
communication);

– interoperate with legacy code, since there’s no way
all legacy code will be rewritten in a new language
and users don’t want to throw away the effort that
went into writing and testing it;

– be portable;

– be high performance.

To achieve these goals, Chapel provides a global-view,
block-imperative structure, similar to C or Fortran, but
with rather different syntax. The Chapel developers de-
liberately moved away from C- and Fortran-like syntax
to make it more difficult for their users fall into old C
and Fortran habits and to force them to think about
the code they’re writing. While many languages tar-
get a “lowest common denominator” execution model,
Chapel decided to target a more sophisticated, multi-
threaded model whose more complex components can be
emulated in software on systems that don’t fully support
them (albeit with a potential performance hit, which was
later significantly reduced [18]), which improves portabil-
ity by allowing for higher level abstractions. Even though
Chapel is focused on providing high-level abstractions for
the sake of productivity, it provides multiple lower-levels
of abstractions for performance tuning, which they call
“multi-resolution programming.” Chapel operates on the
“90/10” rule: if 90% of a program’s time is spent in 10%
of the code, the user should be able to optimize that 10%
while keeping the other 90% simple – the common case
should be fast (to write).10

Chapel abstracts away hardware configurations as lo-
cales, where each locale is roughly equivalent to a node
in a cluster, where one or more cores all share the same
memory. Chapel provides users with an array of locales
that they can partition and rearrange to mimic the logical
arrangement of their computation. To cope with chang-
ing node architectures, Chapel added support for user-
defined locales, which describe how to manage memory
and computations within a locale, so novel architectures
can easily be supported with high performance. Chapel

10This is similar to OPL’s (Sec. 3.1.2) philosophy of providing
many abstraction levels.

plans to provide various locale types itself (an experimen-
tal Xeon Phi locale was in the works as of 2018), but being
able to define their own locales can help users get up and
running more quickly than waiting for official language
support.

Data parallelism is done with domains, which are in-
dex sets that can contain traditional ranges of integers or
arbitrary types to provide key-value, hash map-like be-
havior. Domains can be partitioned arbitrarily into sub-
domains, or a generic array slice. Domains can be divided
among locales with distributions; Chapel provides some
default distributions like block or cyclic, or users can de-
fine their own. Chapel’s forall loop can iterate over
(sub)domains, arrays, or any expression that produces a
sequence or collection. If a distributed domain is part of
the loop, Chapel will automatically distribute the com-
putation to all the relevant locales. Since domains and
distributions abstract array accesses, this enables separa-
tion of algorithms and implementations, as desired, and
improves performance portability. To change to a new
architecture or data model, all users need to do is swap
distributions; no code changes are necessary.

Task parallelism is done with begin and cobegin

statements that launch tasks to run in parallel. These
tasks can perform one-sided, SHMEM-style communica-
tion with synchronization variables that use full/empty
semantics – when a task writes to the variable, it be-
comes full and a task waiting on it can read it so it be-
comes empty again (users can modify these semantics as
well). Chapel also provides support for atomics.

All these parallelism constructs can be composed arbi-
trarily to provide highly nested parallelism. One of the
Chapel developers’ complaints about other parallel pro-
gramming models is that they only provide one or maybe
two levels of parallelism before another model needs to
be brought in (e.g., using MPI+OpenMP+CUDA to pro-
gram a multicore+GPU cluster in the days before Open-
ACC and OpenMP 4); Chapel does not have this prob-
lem. The developers note that specifying what can be run
in parallel is distinct from specifying where it can run; this
philosophy allows Chapel to be highly portable, as well,
to multicore, multi-node, and heterogeneous systems.

In addition, Chapel provides all the modern features
listed above, and then some, including: objects and
classes, garbage collection, generic programming via la-
tent types/type inference and type variables (similar to
C++ template types or Haskell type variables), iterators,
currying, and modules/namespaces. Chapel is also inter-
operable with C and Fortran, two of the most popular
languages in HPC.

Chapel has been extended to target Nvidia GPUs [150]
(while remaining performance portable to multicores) by
providing new domain distributions, a new back end
for CUDA, and a set of transformations so that code

27



meant for GPUs still has high performance on multi-
cores.11 Chapel’s GPUDist domain distribution indicates
data should be moved/stored in GPU memory and that
computations should happen on the GPU; forall loops
over GPU data will map each loop iteration to a sin-
gle GPU thread. GPU variables are created the same
as normal variables, so no code changes are necessary to
port to GPUs beside changing the distribution. Chapel
can automatically handle data movement to the GPU; if
the user declares a variable with a GPU distribution, it
will be available on both the device and host, and the
Chapel compiler will do data dependence analysis to de-
termine when to copy it. If the user wants more control
over data movement, they can change the distribution
to GPUExplicitDist and perform data movement them-
selves by creating a host and device version of the array
and assigning one to the other. Users can also specify
that data should live in a special GPU memory (e.g., a
fast read-only texture cache) by changing the distribu-
tion.

More recently, a new multi-level GPU interface was
proposed [54, 55] that supports both Nvidia and AMD
GPUs and gives users more control over their device code.
The new interface gives users several options, from writ-
ing CUDA or OpenCL kernels and managing memory
transfers themselves to writing a kernel in a mid-level lan-
guage that Chapel translates to GPU code. This places
the GPU interface more in line with Chapel’s “90/10”
rule. If users wish to further optimize their most impor-
tant GPU kernels, they can now do so.

– Portability: While Chapel was originally designed
by Cray for their multi-node multicore systems, it
has always been intended to be very portable, even
to non-Cray machines [18]. Support for Nvidia and
AMD GPUs has been added via CUDA and OpenCL
back ends and GPU data distributions [150]. User-
defined locales (described earlier) have also been
added, making Chapel extremely portable [18].

– Performance: Early on in the Chapel development
process, performance and scalability were not high
priority, and thus Chapel often performed much
worse than other models [114]. However, as Chapel
began to mature, performance and scalability be-
came concerns, and since the end of the HPCS
project in 2013, have been a major development
focus. Chapel has improved a great deal, to be
comparable with MPI+OpenMP [18]. Much opti-
mization was done to their array implementation
(now 100+x faster), communication implementation
(moved from single-item to bulk messages), and the

11Chapel was later extended with an OpenCL back end to support
AMD GPUs [20].

runtime in general. The Chapel developers are inves-
tigating more optimizations to improve scalability,
which lags slightly behind MPI at very large (1000+)
node counts. It was never Chapel’s design limiting
its performance, only the implementation.

Chapel also offers users some compile-time support
for optimizing their programs via the void type,
which has semantics quite different from void in
other languages [18]. Chapel supports setting vari-
able types dynamically based on compile-time pa-
rameters, and if a type is void, all code that uses it
is ignored and not compiled. This gives users a way
to specialize code while maintaining a single source,
which also improves productivity.

Chapel’s CUDA support [150] also gives performance
equivalent to native CUDA, when explicit copies are
used. Implicit copies add some overhead because
their analysis is conservative. Their compiler is also
capable of compiling code meant for GPUs into mul-
ticore code and getting excellent performance (much
better than the other CUDA-to-multicore compilers
of the day), which makes Chapel very performance
portable.

– Productivity: Chapel is much shorter than other par-
allel code [114] (particularly CUDA [150]), and is also
cleaner and easier to understand. While Chapel was
lacking in traditional language features early in its
development since the team was more interested in
its research features, that has since been remedied
and these features have been added and/or much im-
proved. The semantics of the language also under-
went some changes to make things work as users ex-
pected. For example, previously, variables declared
outside parallel constructs were treated as global
variables and liable to cause data races, but now
these variables are treated as being “passed in” and
each thread gets a private copy (users can modify this
with task/forall data intents if they desire different
behavior). Automatic communication is also a great
productivity boost, since users don’t have to worry
about managing those details. Porting between ar-
chitectures is also incredibly simple and requires very
few code changes. Overall, Chapel has many high
productivity features.

– P3 Rating: excellent – Chapel provides users with a
way to increase its portability, and its performance is
generally very high, making it exceptionally perfor-
mance portable, and very productive, if developers
are willing to take on a new language.
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// Vector addition

// declare vectors

std::vector <int > a(N), b(N), c(n);

// create kernel as lambda

auto vadd = kernel ([]( const auto& a, const

auto& b auto& c){

auto i = Thread ::get().global;

if (i >= a.size()) return;

c[i.x] = a[i.x] + b[i.x];

// specify launch configuration

}, {{N/1024 + 1}, {1024}};);

// call kernel , wait for result

std::future <void > F = std:: async(vadd , a,

b);

F.wait();

Listing 13: PACXX code sample.

4.5 PACXX

PACXX (Programming Accelerators with C++) [50, 51]
(code sample in Listing 13) is a language built on C++
that simplifies accelerator programming by allowing users
to write pure C++ code (with STL-like library calls)
that is compiled and run on GPUs. The main goal of
PACXX is to simplify GPU programming and address
various other problems of OpenCL and CUDA. PACXX
is based on C++14 and the C++14 STL additions with
no syntax extensions, so PACXX code is valid C++ (un-
like CUDA, which extends C++ with triple angle-bracket
syntax).

PACXX kernel functions are specified as lambdas or
normal C++ functions in the style of CUDA kernels (with
a C++ interface to get thread indices and such), not as
strings like in OpenCL, which is both difficult to debug
and can pose a security risk.12 Kernel invocations are
done with a library call to a templated function that takes
the kernel function and launch parameters. PACXX ker-
nels also work with standard STL containers, atomics,
and other functions to simplify kernel writing, as well as
allowing users to pass by reference, return values, and do
synchronization with futures. Like many of the libraries
described earlier, PACXX’s implementation of STL con-
tainers can automatically manage data movement via a
lazy copying mechanism without user involvement. C++
attributes can also be used to specify kernel launch con-
figurations and which memory data should reside in to
allow users to further optimize their code. Users can man-
age accelerators and memory through PACXX-provided
classes if they want even more control.

12The source code is available at run time, and is more easily read
or modified by a malicious party.

PACXX was implemented as a custom compiler13 [50]
that uses the Clang front end and LLVM and modifies
host code to launch kernels automatically – the user only
needs to write C++ as they normally would. PACXX
compiles C++ down to SPIR (to target AMD devices)
or PTX (to target Nvidia devices). The PACXX com-
piler has been updated [51] to support just-in-time (JIT)
compilation for kernels; the compiler first makes the host
executable, then partially compiles the device kernels and
adds them to the binary to be JIT compiled at run time
when more values are known and can be used to optimize
the kernels (see Sec. 7.2.1 for more about JIT).

– Portability: PACXX has back ends for both Nvidia
and AMD GPUs (a somewhat rare, but important,
combination to support), and, via the C++17 ad-
ditions to the STL, multicore and sequential CPU
configurations. Since the C++17 STL standard was
released, PACXX has modified its STL usage to be
fully compatible (by adding a PACXX execution pol-
icy; see Sec. 7.2.1 for more on the C++ STL) so
PACXX code can fall back to multicore or sequential
execution on platforms without a GPU [51]. How-
ever, since PACXX still requires users to specify ker-
nel launch configurations and allows users to spec-
ify architecture-specific attributes, it may require
changes to source code or #ifdefs to port to another
machine.

– Performance: PACXX performance has been com-
pared against pure CUDA and OpenCL [50, 51] as
well as Thrust, a productivity-oriented template li-
brary for Nvidia GPUs [51]. PACXX matches CUDA
performance with a small overhead of around 3% on
Nvidia GPUs, and matches OpenCL performance on
Xeon Phis. OpenCL slightly outperforms PACXX
on Nvidia GPUs and Intel CPUs, but this is likely
because the OpenCL implementation they tested
against used lower precision, non-IEEE compliant
arithmetic on the GPU and the Intel compiler per-
forms extra optimizations to the generated SPIR ker-
nels. PACXX outperforms Thrust on several bench-
marks because it has better heuristics for launch con-
figurations and JIT-ing kernels gives them better im-
plementations of transforms and reductions.

– Productivity: As mentioned earlier, requiring users
to specify kernel launch configurations can hurt pro-
ductivity by making users change their code for each
architecture. However, since it uses plain C++ and
the STL, PACXX code is much shorter and easier to
write and understand than CUDA and other GPU
programming models, especially for users used to

13Which is why it is in the languages section, not the libraries
section.
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// Buffer example

int b[N], c[N];

// put data in buffers

buffer <int , 1> B(b, range <1>{N});

buffer <int , 1> C(c, range <1>{N});

// submit this to a device queue

myQueue.submit ([&]( handler& h) {

// request buffer access

auto accB =

B.get_access <access ::mode::read >(h);

auto accC =

C.get_access <access ::mode::write >(h);

// create kernel

h.parallel_for <class

computeC >(range <1>{N}, [=](id <1> ID) {

accC[ID] = accB[ID] + 2;

});

});

Listing 14: SYCL code sample with buffers.

C++. Furthermore, since PACXX supports type in-
ference in kernels via the new auto type inside lamb-
das [51], it allows users to write kernel templates that
work with many types, which can significantly reduce
code duplication and improve productivity.

– P3 Rating: good, promising – if the need for launch
configurations was removed, PACXX’s performance
portability and productivity would improve greatly,
but it’s already quite portable and productive, espe-
cially for C++ developers.

4.6 SYCL and DPC++

SYCL [182] (code sample in Listing 14) is a high-level
language built on OpenCL and designed to improve
OpenCL’s usability so it can be used to write single-source
C++ for accelerators. This means host and device code
live in the same source file, which can be analyzed and
optimized by the same compiler for better performance.
SYCL is built on C++14 and intended to follow the C++
specification as much as it can, so it does not change or
extend C++ syntax in any way (i.e., a CPU-only im-
plementation could work with any C++ compiler). It
allows C++ libraries to work with OpenCL, and allows
OpenCL kernels to work with C++ features, such as tem-
plates and lambdas. SYCL is intended to be easy to use
while still giving the performance and control of OpenCL,
and focuses on intra-node parallelism, leaving inter-node
parallelism to other models like MPI.

// Shared memory example

// create host and shared arrays

int* hostArray = (int*)

malloc_host(N*sizeof(int));

int* sharedArray = (int*)

malloc_shared(N*sizeof(int));

// submit this to a device queue

myQueue.submit ([&]( handler& h) {

// create kernel

h.parallel_for <class

myKernel >(range <1>{N}, [=](id <1> ID) {

int i = ID[0];

// access shared and host array on

device

// shared array will be copied

over; host array will not

sharedArray[i] = hostArray[i] + 1;

});

});

Listing 15: DPC++ code sample with shared memory.

SYCL takes an explicit data parallelism approach,
where the user declares what can be run in paral-
lel with Kokkos-style parallel for templated function
calls. Kernels can be written as lambdas, functors,
OpenCL code, or loaded as SPIR binaries. SYCL can
output kernels at compile time as device-specific executa-
bles, or as SPIR, so kernels can be compiled at run time
for any device. To manage data movement, SYCL uses
buffers, which are an abstraction over C++ objects, and
can represent one or more objects at any given time (as
opposed to a specific memory location). Inside a kernel,
users can request access to a buffer with a set of permis-
sions (similar to Legion/Regent privileges), and SYCL
will automatically handle data movement to and from
the device based on those permissions. While this can be
cumbersome, it does allow SYCL to optimize data trans-
fers to the device.

SYCL kernels are run by submitting them to device
queues, which allow for some task parallelism, since by
default these queues impose no ordering on the execu-
tion of kernels submitted to them. Each device can also
have multiple queues running kernels on it (although each
queue can only be bound to one device). The data depen-
dencies and access permissions of each kernel are used to
enforce an ordering on each queue, or users can explicitly
specify dependencies between kernels. SYCL queues only
specify which kernels can be run in parallel, but provide
no guarantees about what kernels will be run in parallel.

Data Parallel C++ (DPC++) [142] (code sample in
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Listing 15) is a language from Intel built on top of SYCL
(it’s “SYCL with extensions”). Intel’s new oneAPI [62]
is also built primarily on DPC++, with many additional
libraries and interoperability with languages other than
C++. DPC++ is intended to be a place to experiment
with new parallelism features that could be added to the
C++ standard. Some of the features already added in-
clude support for hierarchical parallelism inside kernels,
ordered device queues, per-device versions of kernels, and
unified shared memory.

Unified shared memory is perhaps the most interesting
of these. It removes the need for specifying data use per-
missions or manually managing data movement by allow-
ing users to create host, device, and shared pointers via
malloc host, malloc device, and malloc shared func-
tions. Device pointers are allocated only on the device
and can’t be accessed by the host, while host pointers are
allocated only the host, but can be accessed by the de-
vice without being transferred, so accesses are likely to be
very slow. Data can be explicitly moved by copying a host
pointer into a device pointer inside a kernel, or vice versa.
Shared pointers can migrate data automatically between
the host and device whenever the data is accessed, so the
first few accesses are slow, but afterwards accesses can
happen from fast device memory. This greatly lessens
the burden on the developer, so they can quickly proto-
type an application, then optimize memory transfers as
necessary.

– Portability: Since SYCL and DPC++ are built
on top of OpenCL and C++, they are extremely
portable, and can be used to target any device
OpenCL can target (which is a great deal).

– Performance: SYCL and DPC++’s performance is
theoretically bounded above by OpenCL’s, but it
isn’t subject to the same performance variations as
OpenCL. While in the past SYCL’s performance
has lagged behind OpenCL’s due to implementation
difficulties [24, 133], it now performs similarly to
OpenCL on many architectures [28]. However, as
it is very new, some vendors do not yet support it,
or the performance of their implementation could use
improvement.

– Productivity: SYCL and DPC++ are certainly more
productive than OpenCL, since they remove most
of the boilerplate OpenCL is known for and update
many features to be compatible with C++. How-
ever, some SYCL syntax (buffers in particular) is
still verbose, and compared to other languages (e.g.,
Chapel), a great deal of code is still required be-
cause users must write and launch individual kernels.
DPC++ has been remedying some of this already

(e.g., with unified memory), and will hopefully con-
tinue to do so.

– P3 Rating: very good, promising – SYCL and
DPC++ solve many problems with OpenCL’s per-
formance and productivity which were preventing it
from being a truly performance portable model. All
that’s currently lacking is robust vendor support.

4.7 OpenCL

While OpenCL is not performance portable in and of it-
self (as noted in Sec. 2.5 and above), due to its popularity,
there have been efforts besides SYCL/DPC++ to make
performance portable implementations, which have been
somewhat successful. pocl [64] is one such implementa-
tion, which implements new LLVM passes inside Clang
to transform OpenCL kernel code meant for one archi-
tecture into kernels that will have high performance on
another architecture. PPOpenCL [93] is another imple-
mentation built on Clang that performs whole-program
transformations across host and device code for the same
purpose.

pocl enables kernels written for one device to achieve
performance close to that of a device-specific kernel on
another device. PPOpenCL can achieve a geometric
mean speedup of 1.55x with a single source code over
the baseline OpenCL implementation on several archi-
tectures, even outperforming OpenACC on some bench-
marks. Combining pocl and PPOpenCL (PPOpenCL
does no kernel-only transformations, but pocl does) out-
performs each individually, so while writing new OpenCL
code with the intention of running it on multiple devices
might not be advisable, existing OpenCL can at least
achieve some degree of performance portability.

5 Directive-based Models

Directives are language extensions, although sometimes
they’re considered languages in and of themselves. Direc-
tives are annotations for base languages, usually C, C++,
and Fortran, that allow users to give the compiler extra
information, such as which loops can be parallelized or
what arrays need to be moved to the GPU. While some
[159, 132] consider directives to be low-level because users
must still specify data movement and describe parallelism
themselves, directives are still more concise, portable, and
high-level than models like OpenCL or pthreads. This
section will describe the most popular directive-based
models.
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// Heat conduction (TeaLeaf)

// set up data environment , copy r and p

to device

#pragma omp target data map(to: r[: r_len])

map(tofrom: p[: p_len])

{

// describe loop parallelism

#pragma omp target teams distribute

collapse (2)

for (int jj = pad; jj < y-pad; ++jj) {

for (int kk = pad; kk < x-pad;

++kk) {

const inst index = jj*x + kk;

p[index] = beta*p[index] +

r[index];

}

}

} // p gets copied back

Listing 16: OpenMP code sample.

5.1 OpenMP

As described in Sec. 2.5, OpenMP [124, 125, 126] (code
sample in Listing 16) began as a way to simplify program-
ming shared memory CPUs, specifically targeting parallel
loops with directives to tell the compiler how loops should
be parallelized. (Version 3 also added directives for task-
based parallelism.) Version 4.0 began adding support for
heterogeneous, accelerator-based computing and perfor-
mance portability features, a trend which has continued
for Version 5.0 – both of these are discussed further be-
low. OpenMP follows a more “prescriptive” programming
model, where developers explicitly define how their code
should be mapped onto the hardware for parallel execu-
tion, but is beginning to add some “descriptive” directives
that give the compiler more freedom. (This idea will be
revisited in Sec. 5.2 on OpenACC.)

OpenMP’s original goals when it was created in the
mid-1990s were to provide portable, consistent, paral-
lel, shared-memory computing for Fortran, C, and C++,
maintain independence from the base language, make a
minimal specification, and enable serial equivalence [27].
OpenMP has mostly kept to these goals, with the excep-
tion of adding support for models other than data par-
allelism, which has made it difficult to keep the specifi-
cation small, and abandoning serial equivalence as unre-
alistic for modern architectures.14 There is an ongoing
debate about which parallelism models OpenMP should
support, and exactly how many basic programming con-
structs should be added to OpenMP to support these
other forms of parallelism; some expect that OpenMP

14A subset of OpenMP does maintain serial equivalence, but keep-
ing to this subset severely restricts what programmers can do.

will move closer to becoming a general-purpose language
in its own right in the future [27].

5.1.1 OpenMP 4.x

As mentioned earlier, OpenMP’s primary abstraction is
parallel loops, and OpenMP provides directives for users
to describe how their loops should be mapped onto par-
allel hardware. OpenMP 4.0 added target and map di-
rectives to denote that code regions and data should be
offloaded to an accelerator, as well as various clauses
to modify how code is mapped to the device. Version
4.0 also added the simd directive to force vectorization
(auto-vectorization can vary by compiler and greatly in-
fluence performance) and improvements for task-based
parallelism and error handling [27].

OpenMP 4.5 further improved accelerator support by
adding unstructured data regions, so map directives can
be moved into functions, which improves readability and
usability. However, OpenMP 4.5 also modified how cer-
tain types of data (e.g., scalars) are copied onto the de-
vice, which can make porting between OpenMP 4.0 and
4.5 error-prone, as noted by Martineau et al. [98]. The
4.x specification also does not define support for copying
pointers in data structures to the device (“deep copy”
support), but some compilers still support it, which can
make porting between compilers difficult.

OpenMP 4+ has been struggling with implementation
support. Even though the 4.0 specification was released in
2013, it has taken many years for some compilers to offer
even basic support for offloading directives, and perfor-
mance can still vary wildly between compilers. As Mar-
tineau et al. note, developers who were used to consistent
high performance from OpenMP 3 will be in for a sur-
prise, and may be better served by waiting until compiler
vendors have had more time to improve their implemen-
tations.

5.1.2 OpenMP 5.0

OpenMP 5.0 adds several new features specifically for
performance portability and to make supporting multiple
architectures easier. Version 5.0 adds metadirective,
declare variant, and requires constructs that allow
users to denote that some directives or functions should
only be used on certain hardware. While semantically
similar to preprocessor directives like #ifdef, these con-
structs give the compiler more information to reason
about which version should be used, instead of naively
copy-pasting code [136]. Version 5 also adds support for
deep copying (to handle data structures with pointers, as
mentioned above), iterator-based ranges, and interacting
with the memory hierarchy, all of which are becoming
more widely used in modern code.
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Version 5.0 is also adding some more “descriptive” con-
structs, such as loop (similar to OpenACC’s parallel

loop construct) and order(concurrent), so users can
opt to let the compiler make choices for them. One goal of
OpenMP 5.0 is not to interfere with threading and mem-
ory models that are currently being added to the base
languages, so allowing the compiler (which should know
more about these models) to make more choices could be
helpful.

5.1.3 Future OpenMP

OpenMP is still evolving, and there are many features
that may be added in the future [27]. Some of these
features include: data transfer pipelining, memory affin-
ity, user-defined memory spaces, event-driven program-
ming, and lambda support. The standards committee
is also considering adding “free-agent” threads that can
help with load balancing by joining parallel regions.

– Portability: Since OpenMP was very popular for
shared memory programming before it ever began
to be used for heterogeneous performance portable
programming, a great deal of effort has been put
into porting it to a wide variety of architectures.
OpenMP 3 had implementations for a wide variety of
CPUs, and OpenMP 4 has added support for GPUs
and Xeon Phis. There are numerous implementa-
tions of OpenMP [127] from both academia and in-
dustry, including ones from Intel [135, 136], AMD,
Cray [79], PGI, IBM, GNU, and LLVM [12, 4, 129].

– Performance: OpenMP 3 has many mature imple-
mentations that get extremely high performance, but
OpenMP 4+ is still fairly new and its performance
varies. In one study [98], Martineau et al. compared
six OpenMP 4.5 implementations (from Intel, Cray,
LLVM, PGI, IBM, and GNU) on multiple applica-
tions and architectures, and found that each com-
piler implemented the standard slightly differently –
directives that gave good performance with one com-
piler and architecture didn’t with another compiler,
even on the same architecture.

OpenMP 4+’s performance can match the perfor-
mance of OpenACC, another directive-based model,
but usually falls short of CUDA’s performance [97,
98]. This isn’t surprising, since CUDA is much more
low level, but with further optimization to GPU code
generation, it may be possible to match CUDA. Giv-
ing OpenMP a fair comparison can also be difficult,
since support for the specification has been lagging,
which may interfere with results since developers
have to hack around deficiencies; for example, this
impacted Pennycook et al.’s [135] study of OpenMP’s
performance portability compared to Kokkos.

– Productivity: OpenMP is generally considered to be
very expressive for parallelism, but without requir-
ing details like CUDA or explicit threading, and the
porting process is usually straightforward [97]. The
new features also allow C and Fortran users to ex-
press concepts that would require C++ templates or
excessive code with directives, which is a great pro-
ductivity boost [135]. Unfortunately, OpenMP cur-
rently requires different directives to get optimal per-
formance on CPUs and GPUs, so it doesn’t quite pro-
vide a single-source solution for applications (which
is not good for performance portability), but new ad-
ditions such as the metadirective construct amelio-
rate that to some degree.

The OpenMP 5.0 specification was released quite re-
cently, near the end of 2018, and as of now there are
no compilers that fully support it, but some work has
been done evaluating the new features’ usability. A
study of some additions to OpenMP 5.0 [135] found
that metadirective is good for describing simple
patters, like target versus parallel for (for GPU
vs. CPU), but not for more complex directives where
users might want to turn specific clauses on or off
depending on the target. The declare variant di-
rective was also useful, but still creates the same ver-
sion bifurcation problems as #ifdef, and users need
a way to specify which version to call, if necessary.
The authors don’t believe there will be much use for
the requires directive in production codes, but dur-
ing the development and debugging process it could
have been very useful.

– P3 Rating: good – OpenMP is almost performance
portable, but its performance consistency needs more
work, and it would be preferable if accelerator ver-
sions didn’t need different directives. It is, however,
highly productive.

5.1.4 OpenMP 3 to GPGPU

As an interesting aside, even before OpenMP moved to
officially support heterogeneous computing, there were ef-
forts to enable OpenMP-based GPU computing. Lee et
al. [86, 83] created OpenMPC, a source-to-source trans-
lator from OpenMP 3 to CUDA. Their translator took in
OpenMP code, transformed it so it was better organized
for the CUDA programming model, then translated par-
allel loops into optimized CUDA kernels with the appro-
priate data transfers. They provided extra directives so
users could control and further optimize the translation
into CUDA, if desired. Lee et al. compared their opti-
mized, generated CUDA against hand-tuned CUDA, and
found that the average performance gap was less than
12%. They noted that the generated CUDA took signif-
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// Head conduction (TeaLeaf)

// set up data environment , copy r and p

to device

#pragma acc data copyin(r[: r_len])

copy(p[:p_len ])

{

// describe loop parallelism

#pragma acc kernels loop independent

collapse (2)

for (int jj = pad; jj < y-pad; ++jj) {

for (int kk = pad; kk < x-pad;

++kk) {

const inst index = jj*x + kk;

p[index] = beta*p[index] +

r[index];

}

}

} // copy p back

Listing 17: OpenACC code sample.

icantly less effort to make, demonstrating that directives
can greatly increase productivity, if developers are willing
to take a small performance hit (though hopefully in the
future, performance will be more similar).

5.2 OpenACC

OpenACC [121, 122, 123] (code sample in Listing 17) is a
directive-based model originally designed for GPU com-
puting, although there are now implementations that tar-
get multicore, Xeon Phis, and FPGAs [84, 85, 180, 77].
OpenACC’s main goals were to enable easy, directive-
based, portable accelerated computing (which OpenMP
didn’t have at the time) and to merge several individual
efforts into a single standard. OpenACC came out of a
combination of CAPS’ OpenHMPP [33], PGI Accelerator
[181], and Cray’s extensions to OpenMP. Like OpenMP,
OpenACC supports C, C++, and Fortran as base lan-
guages.

Unlike OpenMP, however, OpenACC follows a more
“descriptive” approach, whereas OpenMP is “prescrip-
tive.” OpenMP requires developers to explicitly define
how parallelism is mapped onto hardware, while Open-
ACC leaves most choices up to the compiler. There has
been much discussion about which approach is best for
performance portability, but in truth (as noted by de
Supinski et al. [27]), this is a false binary, and these
models exist on a spectrum. While it would be nice
if users could add a few descriptive directives and have
things “just work,” often that isn’t possible and prescrip-
tive models are still necessary. OpenACC has recently
begun adding more prescriptive constructs so users can
have more control over tuning their code.

5.2.1 OpenACC 2.x

The original OpenACC standard had fairly basic direc-
tives for annotating parallel loops and describing data
movement. The 2.x versions added support for asyn-
chronous compute regions, function calls within compute
regions, atomics, an interface for profiling tools, and other
usability improvements, such as modifying the semantics
of copy/copyin/copyout to include checking whether
data was already present to minimize unnecessary data
transfers. Basic support for user-defined deep copy op-
erations on data structures containing pointers was also
added, which is very important for scientific applications
that use deeply nested data structures.

5.2.2 OpenACC 3.0 and Future Versions

Version 3.0 (very recently released) adds more support
for multi-GPU configurations, which are becoming more
common, and lambdas in compute regions. It also in-
troduces somewhat stricter rules for which parallelism
clauses can appear together. OpenACC is generally
adding more prescriptive options, such as loop schedul-
ing policies and optimization directives (e.g., unroll), to
allow users to make decisions where the compiler can’t.

– Portability: OpenACC has many implementations
from industry and academia, including PGI, Cray,
GNU, OpenARC [84, 85], OpenUH [89], accULL
[143], and IPMACC [80]. Together, these implemen-
tations support most hardware currently being used,
including most CPUs, Nvidia GPUs, AMD GPUs,
and various FPGAs. However, very few individual
implementations support all of these, so to move be-
tween hardware, users might need to swap compilers,
which can be problematic for performance.

– Performance: While performance varies by compiler
vendor [57] and parallelism construct (kernels vs.
parallel directives), optimized OpenACC generally
achieves performance close (within 80-90%) to native
CUDA or OpenCL [57, 85, 134, 99]. Choosing the
correct optimizations can be difficult, however, and
choosing an incorrect optimization can hurt perfor-
mance on some architectures. In particular, loop or-
dering to coalesce memory accesses, minimizing data
transfers, and using a sufficient number of threads
can have a large impact on performance.

– Productivity: Like OpenMP, OpenACC code tends
to be significantly shorter and simpler than code from
other models. Unlike OpenMP, however, OpenACC
doesn’t require different directives to target differ-
ent architectures, so a single implementation of an
OpenACC program can run on any architecture (al-
beit with a potential performance hit). OpenACC’s
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// XACC distributed array example

// set up distribution

#pragma xmp nodes n(1, NDY , NDX)

#pragma xmp template t(0:MKMAX -1,

0:MJMAX -1, 0:MIMAX -1)

#pragma xmp distribute t(block , block ,

block) onto n

// apply distribution to array

float p[MIMAX][ MJMAX][ MKMAX];

#pragma xmp align p[k][j][i] with t(i, j,

k)

// set up halo region

#pragma xmp shadow p[1:2][1:2][0:1]

// computation with OpenACC directives

omitted for brevity

// halo exchange (ik-plane and jk-plane)

#pragma xmp reflect(p) width (1,1,0) acc

Listing 18: XACC code sample.

descriptive philosophy also arguably makes it easier
to learn than OpenMP, since it requires fewer extra
clauses per loop to get good performance, although
some consider the two to be roughly equivalent [99].

– P3 Rating: very good – OpenACC is very portable,
and (while its performance might not be quite as
high as other models), it is performance portable. It
is also very productive.

5.3 XcalableMP and XcalableACC

XcalableMP (XMP) [112] and XcalableACC (XACC)
[113, 162] (code sample in Listing 18) are directive-based,
PGAS models built on the Omni compiler for C and For-
tran. XcalableMP is based on OpenMP and High Perfor-
mance Fortran, and is meant to be a replacement for MPI,
providing high-level directives for data movement instead
of low-level functions. XcalableACC is an extension to
XMP that modifies some XMP directives to work with
accelerators and defines how XMP interacts with Open-
ACC to support heterogeneous computing. Both XMP
and XACC support C and Fortran and can use CUDA
and OpenCL to target Nvidia and AMD GPUs. XMP
and XACC also provide coarray notation (another form
of distributed arrays) for C and are interoperable with
coarrays in Fortran 2008 and later (for further discussion
of coarrays, see Sec. 7.2.2).

XMP and XACC use template directives to define a
virtual index range, node directives to define a set of

units of execution (not necessarily compute nodes), and a
distribute directive to divide the index range across the
nodes. The align directive declares a global array that
uses this distribution. Both XMP and XACC support
uniform block, cyclic, and block-cyclic distributions, as
well as general, arbitrary-sized block distributions. The
shadow and reflect directives declare halo regions on
distributions and synchronize halos, respectively. With
XACC, all data directives can be used to control data
allocated on accelerators as well. XMP has its own di-
rectives for parallelizing loops, and XACC uses normal
OpenACC directives.

– Portability: XMP and XACC both have back ends
for CUDA and OpenCL, and can therefore tar-
get most CPUs and accelerators, including Nvidia
GPUs, AMD GPUs, and Intel Xeon Phis. By sup-
porting both MPI-style two-sided communication
and PGAS-style one-sided communication (via coar-
rays), XMP and XACC allow users to have a great
deal of control over communication patterns that can
improve portability and performance when moving
between architectures.

– Performance: Performance tests have shown that
XMP has better performance than similar PGAS lan-
guages like UPC [112]. Early performance tests com-
paring XACC without coarrays to MPI+OpenACC
across various node configurations show that XACC
outperforms MPI+OpenACC on small problem sizes
(even when MPI+OpenACC uses Nvidia’s GPUDi-
rect RDMA utility) and performs similarly to
MPI+OpenACC on larger problems sizes [113].
Later tests with coarrays (and more mature Open-
ACC implementations) show that XACC usually
gets over 90% of MPI+OpenACC performance, and
is often within 97-99% [162].

– Productivity: MPI can be difficult to program since
it is low-level and users have to do all communication
manually. XMP replaces these with high-level direc-
tives that greatly simplify the process. XMP adds
less code than other PGAS languages like UPC, and
XACC adds less code than MPI+OpenACC.

Since XACC is very similar to XMP+OpenACC, de-
velopers can use existing OpenACC resources so the
learning curve isn’t too steep, and porting from XMP
to XACC is as simple as adding OpenACC directives.
Going from OpenACC to XACC is also simple, since
users just need to add XMP directives.

– P3 Rating: excellent – XcalableMP and Xcal-
ableACC are very performance portable and produc-
tive, although they may not give the level of control
some users want, being so high-level.
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// OpenMC example

// split MIC 0 into two workers

#pragma omc worker name(MIC :0:0 -29:1 ,

"M00")

#pragma omc worker

name(MIC :0:30 -59:1 ,"M01")

#pragma omc worker name(CPU :0:0 -15:1 ,"P0")

#pragma omc worker name(CPU :1:0 -15:1 ,"P1")

// launch task

#pragma omc agent // Agent 1

{

PF(0); BR(0); SW(0);

}

#pragma omc wait all

for(i = nb; i < N; i += nb) // main loop

{

// launch two more tasks on part of MIC

#pragma omc agent flag(i) on(M00 ,M01)

priority (1) // Agent 2

Upd(i, nb);

#pragma omc agent deps(i) // Agent 3

{

PF(i/nb); BR(i/nb); SW(i/nb);

}

#pragma omc wait all

}

Listing 19: OpenMC code sample.

5.4 OpenMC

OpenMC [91] (code sample in Listing 19) is a directive-
based model meant for the TianHe series of supercom-
puters, but applicable to other architectures as well, and
with several unique features that could improve the pro-
ductivity of other directive-based models. Liao et al.’s
motivation for creating OpenMC was some unusual ar-
chitectural features of the TianHe supercomputers. The
TianHe machines use multiple types of accelerators, in-
cluding Xeon Phis and GPUs, and the primary way of
programming them was MPI+OpenMP+X, where X is an
accelerator-specific language; if developers wanted their
application to use the different kinds of accelerators, they
had to keep multiple versions of their code, which (as
has been mentioned several times) isn’t sustainable. Liao
et al. wanted to provide a way to make use of all the
hardware, including the multicore CPUs, in each node,
so they developed OpenMC as a new intra-node parallel
programming model.15

OpenMC treats hardware as a logical group of work-
ers, onto which a master thread launches tasks, which

15OpenMC was developed around the same time as OpenMP 4.0,
and before an implementation of OpenMP offloading existed.

can be serial or parallel. OpenMC calls tasks “agents,”
and parallel regions “accs.” Workers are groups of hard-
ware cores that can be partitioned if the hardware al-
lows it (e.g., only using some cores of a Xeon Phi), which
is a unique feature that allows OpenMC to take advan-
tage of task parallelism by running more tasks on the
subdivided hardware. OpenMC considers all tasks ca-
pable of being run in parallel, unless the user specifies
dependencies. OpenMC’s memory model is very similar
to OpenACC and OpenMP’s; all agents’ serial code runs
on the host in a shared memory environment (but can
create private copies of variables as needed), and each
agent can launch parallel kernels via accs and is respon-
sible for managing communication and synchronization
with its accs. Agent and acc directives can have data
clauses, but OpenMC has no stand-alone data directives,
like OpenMP and OpenACC do.

OpenMC has several directives that OpenMP and
OpenACC have no equivalent for, and which could greatly
improve their performance portability and readiness
for exascale. OpenMC provides an implemented-with

clause for acc regions that allows users to tell the com-
piler which programming model has been used, which
is similar to the annotations used by the Uintah PPL
(see Sec. 3.3) and could be modified to let users pro-
vide multiple implementations of a acc region, similar to
OpenMP 5.0’s declare variant. Agents and accs can
also be annotated with a priority clause that lets the
user give hints to the scheduler to determine when to run
a region, for greater control and flexibility. Most inter-
estingly, OpenMC provides a time clause for agents and
accs that can be used for both performance monitoring
and resiliency. If an agent or acc takes longer (or shorter,
if the user chooses) than the specified time, OpenMC will
issue a warning, so the user can monitor the machine
for abnormal behavior that might indicate a soft fault or
other hardware problem, or check how consistently a new
kernel implementation outperforms an old implementa-
tion. Since exascale machines will be larger and more er-
ror prone than their predecessors, this kind of embedded
support for performance monitoring will be increasingly
important going forward.

– Portability: OpenMC only supports C as a base lan-
guage, and OpenMP and CUDA for acc regions,
which allows it to target many CPUs, Intel Xeon
Phis, and Nvidia GPUs. This is the hardware used
by TianHe machines, so it may be sufficient for its
original purpose, but support for more architectures
is desirable.

– Performance: OpenMC’s performance was com-
pared to native CUDA and OpenMP performance
on Nvidia GPUs and Intel Xeon Phis. The GPU
version was slower than the hand-tuned CUDA, and
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// triad in HSTREAM

#pragma hstream in(b, c, a, scalar) out(a)

device (*) scheduling (4096)

{

a = b + scalar*c

}

Listing 20: HSTREAM code sample.

this is likely due to OpenMC’s lack of support for
overlapping computation and communication, which
is left for future work. On the Xeon Phi, OpenMC
was able to get a higher percentage of hand-written
performance, and splitting the Xeon Phi into mul-
tiple workers for more parallelism further improved
performance.

– Productivity: Unfortunately, the parallel regions
of OpenMC agents must be implemented in a
target-specific language (e.g., CUDA when targeting
GPUs), which does limit OpenMC’s portability, but
if OpenMC were to be integrated with more mod-
ern programming models, this would not be neces-
sary. As it stood at the time, OpenMC required
users to provide different worker directives and agen-
t/acc implementations per architecture, and possibly
modify data movement clauses. To port an OpenMC
code designed for GPUs to OpenMC for Xeon Phis,
users would have to modify about 10% of their code,
which the authors of OpenMC believe to be accept-
able, but for large code bases may still be intractable
– 10% of 1 million lines of code is 100,000, after
all. However, OpenMC does require far less code
than hand-written CUDA, and only slightly more
than OpenMP. The additional performance monitor-
ing capabilities are also very intriguing and could
greatly help productivity.

– P3 Rating: fair – OpenMC is a good prototype, but
needs work with respect to requiring different worker
directives and kernels. It is somewhat portable and
gets good performance on TianHe machines, but is
not as productive as it could be.

5.5 HSTREAM

HSTREAM [105] (code sample in Listing 20) is a new
directive-based extension for stream computing, as op-
posed to traditional data parallel computing (similar to
the GrPPI library, Sec. 3.2.1). Its programming model
is based on a (possibly infinite) partially known stream
of data, and contains a data producer, a data proces-
sor, and a data store (data writer), all of which can be

overlapped to increase parallelism. HSTREAM is meant
to be similar to OpenMP, and uses a source-to-source
translator to target CPUs with OpenMP, Nvidia GPUs
with CUDA, and Xeon Phis with Intel’s Language Exten-
sions for Offloading (LEO). Unlike other directive mod-
els, HSTREAM allows developers to automatically use all
the available hardware in a node simultaneously by han-
dling data and computation distribution (and, it seems,
load balancing). To determine how computations should
be divided, HSTREAM requires an additional platform
description file that contains relevant data about all the
hardware in a system, such as the number of cores, mem-
ory size, and so on.

Since HSTREAM is so new, the following descriptions
of its portability, performance, and productivity will be
more sparse than for other models.

– Portability: HSTREAM uses OpenMP as a CPU
back end, so it can target most CPUs, but it uses
CUDA and Intel’s LEO to target GPUs and Xeon
Phis, so its portability to other devices is limited.

– Performance: HSTREAM’s performance hasn’t yet
been compared directly to OpenMP or CUDA, but
its performance on the STREAM benchmarks using
CPUs and GPUs combined is better than using ei-
ther separately. This is a strong proof-of-concept for
high performance automatic load balancing across
devices, and is in many ways a continuation of the
work begun by the Qilin compiler (see Sec. 6.1.1).

– Productivity: HSTREAM is approximately as com-
plex as other directive based models like OpenMP or
OpenACC. It comes with the added bonus of auto-
matically using multiple devices, at the cost of pro-
viding a per-machine platform description file, which
is a trade-off that could be worth it to some devel-
opers.

– P3 Rating: promising – HSTREAM is an interesting
model, but hasn’t been around long enough to judge.

5.6 Customizable Directives

In addition to the standardized and otherwise pre-
packaged directives described above, there have been ef-
forts to allow users to define their own, specialized di-
rectives. Allowing users to define their own directives
can give them more control over their application. This
section will describe a framework that helps users define
their own directives and an example of how user-defined
directives can improve performance portability.

5.6.1 Xevolver

Xevolver [163] is a source-to-source translation tool built
on top of ROSE [139] (see Sec. 6.3) that allows users
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to define their own (parameterized) code transforma-
tions and directives to specify where those transforma-
tions should be applied. The main goal of Xevolver is
to separate optimizations/transformations from applica-
tion code – these transformations can be kept outside
application code bases, which removes the need to keep
platform-specific versions of code and consolidates knowl-
edge about how to optimize for a given platform. Trans-
formations can be shared across applications as well,
which reduces the need to re-implement optimizations for
each program.

The authors of Xevolver note that existing solutions
for writing specialized code for each architecture aren’t
sufficient, since they generally involve keeping separate
source versions or directly modifying application code.
As an example, using C preprocessor macros to condi-
tionally compile different code versions (even ones kept
in the same file) can quickly devolve into “the so-called
#ifdef hell” [163]. Users want specialized code, but they
don’t want to write specialized code, so having a set of
transformations to pull from could be extremely helpful.

Performance tests of Xevolver-enhanced applications
on various architectures confirm that adding these trans-
formations helps performance. One motivation for cre-
ating Xevolver was to help users with applications op-
timized for vector machines port to other architectures
(Xevolver also enables incremental porting). The authors
demonstrated that it takes a set of non-trivial but consis-
tent transformations to port these codes, and that trans-
formations that help one architecture can be detrimental
to another. Since these transformations don’t actually
modify the source code, they help make applications more
performance portable.

Xevolver has been used to port part of a weather simu-
lation to OpenACC [76] and migrate a numerical turbine
code [160], among other things.

5.6.2 The CLAW DSL

The CLAW DSL [23] is an example of application spe-
cific, user-defined directives meant to enable performance
portability for weather and climate models. CLAW is
not based on Xevolver, but on the Omni source-to-source
Fortran translator [110] (see Sec. 6.2) and uses a single-
column abstraction to take advantage of certain domain
properties of most climate modeling programs. The
CLAW compiler outputs OpenMP or OpenACC anno-
tated Fortran and is interoperable with normal OpenMP
or OpenACC code to enable incremental porting.

Climate models have been using OpenMP and Open-
ACC for performance portability, but different architec-
tures require different directives for optimal performance.
The differences are consistent, however, so the DSL pro-
vides directives to abstract away these differences.

The CLAW port of a portion of one climate model out-
performed the original serial implementation and a naive
OpenMP implementation, and matched the correspond-
ing hand-tuned OpenACC implementation. This proof of
concept demonstrates how user-defined transformations
can improve the performance portability of an applica-
tion.

6 Source-to-source Translators

This section will discuss source-to-source translators
specifically designed to improve the performance portabil-
ity of applications. Source-to-source translators are con-
sidered here to be programs that transform one input
language into another, but do not themselves compile it
down to an executable; i.e., translators need another base
compiler to work.

Several translators have been mentioned already, par-
ticularly when discussing the implementations of some
directive based models in Sec. 5. This section will dis-
cuss how those translators work, as well as some other
frameworks for code translation for performance porta-
bility. Note that, while previous sections have always
contained a brief description of performance, portability,
and productivity for each model, this section will not al-
ways do so, since for several translators this has already
been discussed or is not applicable.

6.1 Early Translators

Source-to-source translators are not a new concept, and
several that did not directly address performance porta-
bility were introduced that could nevertheless improve it.
This section will discuss a couple of those.

6.1.1 Qilin

The Qilin compiler [95] was intended to solve the problem
of load balancing computation on heterogeneous systems
– in other words, to decide what fraction of computation
should happen on the CPU vs. on the GPU. Even for a
single application, the ideal fraction can change for dif-
ferent inputs, and, of course, different hardware. Qilin
automates this mapping process by doing it adaptively
at run time.

Qilin provides two APIs for writing parallel applica-
tions; the compiler doesn’t have to extract parallelism,
only map it to the hardware. The first API is the stream
API, which provides data parallel algorithms (similar to
skeleton libraries), and the second is the threading API,
which allows users to provide parallel implementations
in the underlying programming models, Intel TBB and
CUDA. The compiler dynamically translates these API
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calls into native code and decides a mapping using an
adaptive algorithm.

This algorithm is based on a database of execution
time projections that Qilin maintains for all programs
it has seen. The first time Qilin sees a program, it
builds a model of how that code performs when differ-
ent percentages of work (per kernel) are run on the CPU
vs. the GPU. For future runs (even on different prob-
lem sizes), Qilin refers to that model to find the mapping
that will minimize run time. This adaptive mapping is al-
ways faster than GPU-only or CPU-only execution, and
within 94% of the best manual mapping (at granulari-
ties of 10%). This kind of adaptive mapping can improve
performance portability by providing good performance
regardless of architecture changes, and it improves pro-
ductivity by automating the process.

6.1.2 R-Stream

The R-Stream compiler and translator for C [147, 103] is
somewhat unique among all the other models discussed
here, in that it requires no source code modifications at
all, not even annotations like OpenMP or Bones (see
6.4). R-Stream has been used to target several processors
and accelerators, including IBM’s Cell processor, Clear-
Speed’s processors, and Nvidia GPUs [88]. The compiler
takes in unmodified C and outputs C with parallelizable
portions in the chosen parallel back end. R-Stream is
based partially on the polyhedral optimization model.16

Its general compilation flow is as follows:

– Parse in C, translate it to an SSA IR.

– Run optimizations.

– Run analyses to determine which portions could be
mapped onto an accelerator.

– “Raise” map-able portions into a polyhedral IR and
optimize them under the polyhedral model to find
parallelism.

– Lower map-able portions back to SSA IR.

– Emit non-mapped code as part of the master thread,
and emit mapped code in target language (e.g.,
CUDA).

Interestingly, R-Stream generates the best parallel code
when given what the authors call “textbook” C code –
code without any optimizations or clever implementation
strategies, just the basic algorithm as you might find in
a textbook. This implies that, to create performance
portable code, less is more, and simple, high-level expres-
sions of algorithms can be more useful (in some ways, at
least) than optimized versions.

16It is not important to understand the polyhedral model for this
survey, but more information can be found in Griebl et al. [46].

6.2 Omni

The Omni compiler [110] is a source-to-source transla-
tor for Fortran and C (C++ is in development) that is
used by XcalableMP, XcalableACC, and the CLAW DSL,
among others. Omni is based on the idea of metapro-
gramming: it allows users to write code to transform
their code. Not all compilers support every optimiza-
tion, or can determine whether an optimization is safe, so
metaprogramming allows users to transform their code so
it is easier for compilers to analyze or to directly apply
optimizations themselves.

Omni is composed of three main pieces: a front end,
which parses in C and Fortran and turns them into
XcodeML, Omni’s IR (based on XML); a translator,
which turns the XcodeML IR into Xobject (Java-based
XML objects) and applies transformations to it; and a
back end, which translates XcodeML back into C or For-
tran which can be compiled by a regular compiler. Omni
could theoretically support multiple “meta-languages” for
users to define what transformations should be done,
and where, including an Xobject-based meta-language,
an XML-based meta-language, or a new DSL; however,
since the Xobject-based meta-language was simplest to
implement, Murai et al. chose to only implement that
one. To define a transformation in their Xobject-based
language, users must write a Java class that implements
an Omni-specific interface, which describes the transfor-
mation to perform on the Xobject(s). To choose where
that transformation is applied to their code, users add an
Omni directive to their application. This is how Xcal-
ableMP and XcalableACC were implemented (see Sec.
5.3).

Unfortunately, this interface isn’t terribly user-friendly,
especially for non-compiler-expert users and domain sci-
entists, although the vast majority of high-level com-
piler optimizations, including loop unrolling and array-of-
struct to struct-of-array transformations, can be defined
using it. Murai et al. realize this, though, and note that
future work includes building a nicer interface. Perhaps
another solution would be for compiler experts to write an
open source collection of transformations that the HPC
community could use and modify for their own purposes.

6.3 ROSE

The ROSE translator [139] is different from other trans-
lators listed here in that it is designed to specifically sup-
port analysis and optimization for source code and bi-
naries. The ROSE front end supports many languages,
including C, C++, Fortran, Python, OpenMP, UPC, and
Java, as well as both Linux and Windows binaries. ROSE
is meant to support rewriting large DoE applications for
future architectures and programming models, as well as
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research into new compiler optimizations, automatic par-
allelization, software-hardware codesign, and proof-based
compilation techniques for software verification. ROSE
has multiple levels of interfaces for working with source
code ASTs, and many optimizations and analyses have
been implemented to help users modernize their code.

One of the more interesting features of ROSE, from a
compiler design perspective, is its IR, which is based on
the Sage family of IRs. Even though ROSE supports a
wide variety of languages with very different feature sets,
around 80% of the IR is shared between all these lan-
guages, and only 10% is for special cases. That such a
variety of languages can all be represented by one IR is
very promising for compilers that wish to support mul-
tiple programming models. The topic of IRs is further
discussed in Sec. 7.3.

Some projects that have been built on ROSE include
Xevolver (see Sec. 5.6.1), a fault-tolerance research tool
[92], a benchmark suite for data race detection [90], and
more.

6.4 Bones

Bones [117, 116] is a source-to-source compiler for C,
and targeting OpenMP, OpenCL, and CUDA, based on
the concepts of algorithmic species and skeletons, similar
to the skeleton libraries described earlier in Sec. 3.2.1.
Nugteren et al. [117, 116] criticize existing compilers for
parallelism as lacking in one of these three aspects: they
aren’t fully automatic and require users to change their
code, they produce binaries or otherwise non-human-
readable code, or they don’t generate highly efficient code.
Bones is intended to fix these problems by using algo-
rithm species17 and knowledge of traditional compiler op-
timizations to drive a skeleton-based translation process.

The Bones translation process goes like this:

1. Extract algorithmic species information from source
code, either by hand or (preferably) using an auto-
mated tool like A-Darwin or Aset, and add species
annotations to source code.

2. Pass annotated source code to Bones compiler,
which uses species annotations to pick appropriate
algorithmic skeletons.

3. Bones uses skeleton information to perform source
code optimizations and outputs transformed C code.

Bones skeletons are not quite like the skeleton functions
found in the libraries in Sec. 3.2.1, but are more like

17Algorithm species are similar to skeletons, but at higher granu-
larity – species describe memory access patterns on all data struc-
tures in a particular loop nest. See Nugteren et al. [117, 116] for
more.

pieces of template or boilerplate code into which the com-
piler can insert pieces of user code; e.g., types are left as
parameters, loop bodies are empty, and so on. Multiple
species can map to a single skeleton, since species provide
much higher granularity than skeletons, in general, and
the number of species is near infinite.

Bones can do many different optimizations based on
skeleton information, such as multi-dimensional array
flattening, loop collapsing, and thread coarsening. The
optimizations Bones does based on the skeleton infor-
mation can also be target-dependent. For example, when
targeting a GPU (either with OpenCL or CUDA), Bones
can do data analysis on the species (kernels) identified to
determine which data needs to be moved to the GPU,
as well as optimize data transfers and synchronization
events. One uncommon benefit of Bones’ optimizations
is that they need not be just permutations of the orig-
inal code – Bones can add extra code to, e.g., ensure
data accesses on GPUs are properly coalesced. However,
Bones does still rely on the optimizations the underly-
ing C compiler can do, since not all optimizations (like
vectorization) can be written as skeletons, and not all
performance relevant data (like register pressure) can be
contained in species or skeletons.

– Portability: Bones can target OpenMP, OpenCL,
and CUDA, which gives users access to the vast ma-
jority of CPUs and GPUs, however, since Bones
only supports C, the number of codes that can use it
is restricted.

– Performance: Bones is based partially on the poly-
hedral optimization and compilation model, but un-
like other polyhedral compilers, Bones can be used
on non-polyhedral code (this requires manual algo-
rithm classification, which is not optimal). To test
and validate Bones, Nugteren et al. [117, 116]
compare it against Par4All [3] and ppcg [173],
two other popular C-to-CUDA polyhedral compilers.
On average, Bones outperforms both Par4All and
ppcg, although Nugteren et al. do note that this is
with Par4All and ppcg in fully automatic mode
and with all optimizations turned on for Bones, for
a more fair comparison, since Bones plus an algo-
rithm classifier is fully automatic. If users wanted
to spend more time tuning parameters for Par4All
or ppcg, they could likely get much higher perfor-
mance and possibly outperform Bones, but with all
compilers in full automatic mode, Bones performs
best. Bones even performs comparably to handwrit-
ten CUDA on the Rodinia benchmark suite.

– Productivity: One of the more common criticisms
of skeleton libraries is that it is difficult and time-
consuming for humans to select the correct skeleton,
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and libraries can be error-prone when users choose
the wrong skeleton. Bones significantly reduces the
chance for human error by automating this process
using either Aset or A-Darwin. However, non-
polyhedral codes may still need a human to add al-
gorithmic species annotations; Nugteren et al. be-
lieve their annotation structure is “descriptive and
intuitive,” so this process should not be difficult, but
users unfamiliar with their species concepts and clas-
sifications may disagree.

Since Bones produces human-readable OpenMP,
OpenCL, or CUDA, it can improve productivity
by providing a baseline implementation that expert
users can then tune. Bones is also easy to extend
with more skeletons, and users may be able to use
this to optimize their code as well.

– P3 Rating: fair – Bones is only good at enhancing
performance portability of affine C programs, but it
is very good at doing that.

6.5 OpenACC to OpenMP

There have been several proposals for translating between
OpenACC and OpenMP, including those from Pino et al.
[138], Sultana et al. [161], and Denny et al. [32]. Many
current machines have only one of OpenMP or OpenACC,
or have a poor implementation of one but a good imple-
mentation of the other, so being able to translate between
them would alleviate the problems this causes. How-
ever, because of semantic differences between OpenMP
and OpenACC, mechanical translation from OpenMP to
OpenACC is generally not possible or advisable [178].

OpenMP was designed when most machines used multi-
processor architectures, and processor vendors wanted
to provide a unified interface for programming multi-
processors. Therefore, the meaning of each OpenMP di-
rective was very important and the OpenMP specifica-
tion has a detailed, prescriptive definition of what each
one means. OpenACC, on the other hand, was designed
when there were many diverse, heterogeneous architec-
tures, so the OpenACC specification decided to leave
many more (architecture-specific) choices to the compiler
and only provide a descriptive definition of what each
directive does/means. OpenMP also has many synchro-
nization primitives and atomics, which OpenACC does
not; some OpenMP concepts simply cannot be expressed
in OpenACC. Going from OpenACC to OpenMP, though,
is possible, as this direction doesn’t have these problems.

While there is a simple, one-to-one mapping for Open-
ACC and OpenMP data directives, the same is not so for
compute directives. Even though many OpenMP direc-
tives seem similar to OpenACC, they have different defi-
nitions and meanings. For example, OpenMP can’t par-

allelize within a thread with only parallel for unless
the user specifies it (this is why OpenMP needed to add
the simd directive), while OpenACC can – the parallel

loop directive guarantees there are no data dependencies
across iterations. This means that translating loops from
OpenMP to OpenACC is non-trivial and requires data
dependence analysis, while going the other way is simple
and always valid.

The difficult part of writing an OpenACC to OpenMP
translator is adding the right prescriptive OpenMP key-
words to loop nests (to ensure the loops are properly
mapped to hardware). To make matters more interest-
ing, these keywords may be different for each particular
device, as the next sections describe.

6.5.1 Sultana et al.’s Translator

Sultana et al. [161] made a prototype tool for auto-
matically translating OpenACC to OpenMP, focusing on
translating for the same target device, e.g., Nvidia GPUs.
They demonstrated that some parts of the translation are
indeed mechanical, but others require more work. One
of their goals was to provide a deterministic translation,
i.e., the same set of OpenACC directives will always be
translated to the same set of OpenMP directives. To
this end, they created a deterministic set of translation
rules for each OpenACC data and compute directive, as
well as deterministic rules for adding gang, worker, and
vector clauses to OpenACC loops that did not already
possess them. This was necessary because, while Open-
ACC allows the compiler to decide how to parallelize
nested loops, OpenMP requires more direction. In ad-
dition, OpenMP has no equivalent for OpenACC’s seq

directive, so the translator needed to remove directives
from these sequential loops, and redistribute any reduc-
tions or private clauses on these loops.

However, Sultana et al. ran into problems with chang-
ing compilers when going from OpenACC to OpenMP
(specifically, OpenMP offloading), including large per-
formance differences. Some of this is expected, as both
OpenMP and OpenACC leave quite a bit up to the com-
piler. They used PGI as their baseline OpenACC com-
piler and Clang as their OpenMP compiler, and noticed
that the kernels PGI generated were almost always faster
than the kernels Clang generated. This could be because,
at the time, PGI’s OpenACC implementation was much
more mature than Clang’s OpenMP implementation, but
it does show that compiler implementations of these mod-
els can have significant impact on overall performance.

Furthermore, as future work, Sultana et al. believe
that they may need to device specific translation rules,
echoing Wolfe [178]. For example, the rules for an Nvidia
GPU will probably not be optimal for a Xeon Phi, and
vice versa.
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6.5.2 Clacc

A more recent project, Clacc [32], desires to build
a production-quality, open-source OpenACC compiler,
built on Clang, and to generally improve OpenACC and
GPU support in Clang. Clacc translates OpenACC into
OpenMP to take advantage of existing OpenMP support
in Clang. The authors of Clacc note that this both im-
proves code portability between machines without good
OpenACC or OpenMP implementations (as Sultana et
al. [161] also describe), but also opens up possibilities
for using existing OpenMP tools to analyze OpenACC.
As OpenACC is much newer than OpenMP, tool support
for OpenACC is less mature, and this could significantly
benefit OpenACC developers. Many developers are also
worried that OpenACC will be soon be subsumed into
OpenMP, which is much more popular, and that porting
to OpenACC will therefore be a waste of effort, so being
able to translate from OpenACC to OpenMP easily and
automatically would ease their concerns.

To implement OpenACC support in Clang, the Clacc
developers first translate OpenACC code to an Open-
ACC AST inside Clang, then create shadow OpenMP
sub-trees, which can be compiled to an executable or used
to output an OpenMP AST (or source code) equivalent
to the OpenACC input.

While their implementation is very new and doesn’t
yet fully support GPUs or languages other than C, the
Clacc team has been able to get performance comparable
to PGI’s on multi-core, with the exception of one bench-
mark, as long as gang, worker, and vector clauses are
specified.

7 Compiler Support

This section will discuss support for parallelism and per-
formance portable features in compilers, as well as the
language standards these compilers implement.

7.1 Current State of Support

Most general-purpose languages used in HPC have little
to no support for parallelism, although, as described in
Sec. 7.2, recent additions to both C++ and Fortran have
been changing this. However, implementation of these
standards has been slow in coming, which means differ-
ent compilers often offer different levels of support and
performance. In particular, support for lambda functions,
generic/templated functions, and optimizations that work
across these and through calls to performance portabil-
ity abstraction layers like RAJA and Uintah’s PPL [59]
would be a great help to performance portability efforts.
Unfortunately, these are some of the standard additions
that have been most inconsistently implemented. The

implementations are much better than they were when
Hornung and Keasler called for better support in C++
[60], but there is still room for improvement.

Sadly, these compilers were first designed when most
code was sequential and they have no easy way of inter-
nally representing parallelism. Most compilers turn par-
allel constructs into function calls in their internal repre-
sentation (a process called outlining, see de Supinski et al.
[27] for an example of this with OpenMP), and this causes
several issues for users. The most important problem is
that the compiler has no way to reason about parallelism
and must make conservative choices, which often means
not applying an optimization even when it is valid. It also
contributes to the inconsistency described previously, and
can mean that code changes are necessary to get the same
performance out of different compilers. There have been
several efforts lately to add parallelism to existing IRs,
which are described in Sec. 7.3.

7.2 Language Standards

Language standards define exactly what a programming
language is and does, and are very important for tradi-
tional portability. If compilers implement a standardized
language, users know that, no matter which compiler they
choose or what machine they run on, they can be reason-
ably confident their code will work as intended. Compil-
ers often implement their own extensions to a language,
or might have a more efficient implementation of stan-
dard features, but as long as users restrict themselves to
the standard, they can know their code will compile and
run correctly.

Adding features into a standardized programming lan-
guage is a long and difficult process that begins when
a developer proposes a new feature to a language stan-
dards committee. If the committee likes the idea, they
iterate with the developer on design choices and wording
(sometimes for years) before finally presenting it to the
committee’s full membership for approval. If the feature
proposal is approved, it goes into the standard, and com-
pilers that want to support the standard must implement
it. Implementation and testing is also a long process, so
the time lag between a feature first being proposed and a
working implementation becoming available can be many
years.

As mentioned previously, most languages have little
or no explicit support for parallelism, since parallel pro-
gramming is still comparatively new and the standard-
ization process takes so long. Performance portability is
an even more recent concept with even less language sup-
port. This section will discuss efforts by the C++ and
Fortran standards to add explicitly parallel features and
even some performance portability features.
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squared = map (\x -> x * x) nums

Listing 21: A lambda in Haskell.

std:: for_each(nums.start(), nums.end(),

[](int& x){ x = x * x; });

Listing 22: The lambda from Listing 21 in C++.

7.2.1 C++

Lambdas. Lambda functions are a concept borrowed
from functional programming, where higher-order func-
tions can take other functions as arguments. Lambdas
are (usually short) functions that are unnamed and writ-
ten in-line, which is why they’re also called “anonymous”
functions. Listing 21 shows an example of a lambda
function in Haskell, a functional programming language.
This example applies the map higher-order function to a
lambda that takes a number (and squares it) and a list
nums to produce a list of squared numbers. Listing 22
shows the same operation in C++, assuming nums con-
tains integers.

Lambdas are one of the most commonly cited C++11
features that enhance performance portability, but their
true purpose is increasing developer productivity within
other performance portable models. Many models, par-
ticularly libraries like RAJA, SkePU, and Kokkos, benefit
a great deal from the capability to specify functions in-
line. Their other option is to use C++ functors18 (func-
tion objects), which are much more verbose, difficult to
understand, and must be placed elsewhere in the code,
possibly far away from where they’re used. Numerous pa-
pers have noted their usefulness in writing clean, perfor-
mance portable code, especially as implementations have
improved [60, 61, 100, 51, 41, 59, 133, 9].

Templates. Templated functions and classes allow de-
velopers to write generic code that works with many
types, as long as those types support any operations used.
Primitive types in C++ function and class definitions are
not interchangeable, despite the fact that the code to op-
erate on each primitive is often exactly the same. Tem-
plates fix this. Listing 23 shows a short template function
to add two numbers and a couple invocations of that func-
tion.

The C++ Standard Template Library (STL) was first
added in C++98, and contains many templated classes
and functions, including containers, like std::vector

and std::map, and algorithms, like std::sort and
std::binary search. As of C++17, the STL also has

18Not to be confused with the concept of functors in category
theory and functional languages.

template <class MyType >

MyType add(MyType a, MyType b) {

return a+b;

}

float x = add <float >(4.2 , 3.14);

int y = add <int >(1, 2);

Listing 23: A simple C++ template function.

several parallel algorithms, such as std::reduce and a
parallel version of std::for each, that are differentiated
from their sequential counterparts by an execution policy;
however, there are few implementations of the parallel
STL.

Many C++ libraries (see Sec. 3) have taken advan-
tage of the new templating abilities to provide generic
parallelism to their users. In fact, the SkePU develop-
ers redesigned their entire interface to take advantage of
templates and improve the type safety and usability of
SkePU [41]. In some places templates enabled them to
reduce their internal runtime’s code size by 70%. Other
libraries like PHAST [132] and Muesli [40] use templates
to provide users with generic data containers and parallel
algorithms.

Containers. Containers and data structures deserve
separate discussion outside of templates in general due
to the sheer number of libraries that provide their own
implementations of the exact same generic vector/matrix
classes [38, 155, 159, 96, 14, 39, 26, 40, 41, 22]. Libraries
that provide so-called “smart containers” that automati-
cally handle memory transfers between the host and de-
vice in particular each seem to have reimplemented the
wheel with identical lazy copying mechanisms. If the
standard library had an implementation of this, it would
consolidate a great deal of knowledge and allow for more
interoperability between various programming models.

The Kokkos developers have taken note of the this and
have been working to add their View data container (see
Sec. 3.2.2) to the C++ standard library as std::mdspan
[58]. The proposed container would provide a multi-
dimensional view on a contiguous span of memory, while
not truly owning that memory. The mdspan object would
contain a mapping from a multi-dimensional index space
onto a scalar offset from a base memory address which
would be used to access memory, but allow other memory
management activities to happen elsewhere. This would
let applications interact with memory without knowing or
understanding the underlying layout of memory. For ex-
ample, the developers could experiment with row-major
versus column-major or tiled data layouts in memory by
changing the mdspan object’s mapping function without
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changing anything in the rest of their code. This would
be incredibly helpful for performance portability, since it
would move programs closer to single-source implemen-
tations that can be configured for multiple architectures.
There are many other benefits to a standardized container
view like the proposed mdspan, such as better integra-
tion with other libraries, combining static and dynamic
extents, and array slicing, which are fully described by
Hollman et al. [58]. Hollman et al.’s mdspan implementa-
tion has very low or negligible overheads, although they
noted that compiler version (including the same version
of the same compiler with different options enabled) did
impact overheads, since different optimizations were ap-
plied, which is another point in favor of standardizing
implementation of these features as described earlier in
Sec. 7.1.

Just-in-Time Compilation (JIT). Just-in-time
compilation is a technique that, as the name implies,
waits until the last minute to compile code into an
executable. There are multiple ways to do this, but for
the compiled languages most commonly used in HPC,
the general process is to link the main executable with
a compiler library, and when a function to be JIT-ed
is reached, invoke the compiler on that function, then
put in the arguments and run the result. A common
optimization to this process is to cache JIT-ed functions
to avoid repeated compilation overheads.

JIT compilation is one way to help compilers gener-
ate faster code. It is often difficult for compilers to de-
cide if an optimization is safe or helpful at compile time,
when some information (like loop trip counts or pointer
aliases) is unknown, but at run time, this information
can be made available and the compiler can make better
choices. To get any real improvement, though, users need
to decide whether the overhead of compiling parts of their
application at run time is offset by faster execution times.

Some languages and translators, like PACXX [51] and
Qilin [95], have used JIT techniques to provide run
time optimization and specialization for their users’ code.
However, a recent project, ClangJIT [42], has been mov-
ing to add JIT capabilities to the C++ standard so
users can benefit from JIT specialization and optimiza-
tion of their code without relying on an external library.
ClangJIT proposes adding some syntax to the language
so users can specify which functions they want JIT-ed,
and goes on to demonstrate that the specialization pro-
vided by JIT-ed functions can result in shorter benchmark
execution times. They also show JIT can reduce compile
times for heavily templated full applications (without im-
pacting the execution time!), since only the versions that
are actually used for a particular run are compiled.

7.2.2 Fortran

Do concurrent. Fortran’s do concurrent construct
[140] was first added to the standard in Fortran 2008 to
provide users with language support for parallel loops.
The concurrent version of Fortran’s traditional do-loop
indicates to the compiler that there are no data dependen-
cies between iterations, so each iteration can be done in
parallel (similar to OpenACC’s independent loop mod-
ifier). This enables the compiler to do many optimiza-
tions, such as vectorization, loop unrolling, and auto-
mated threading, that otherwise might be applied if data
dependencies were unclear. The contiguous attribute
(also added in Fortran 2008) is complementary; it de-
notes that an array occupies a contiguous block of mem-
ory and allows the compiler to perform optimizations with
that knowledge. Features such as this allow compilers to
be more consistent and aggressive in which optimizations
they apply, which is good for performance portability.

While C++ has added support for performing parallel
operations on arrays with the parallel STL algorithms,
it’s unclear how well compilers can optimize those oper-
ations since they happen inside library calls, and adding
a generic parallel for-loop (similar to Kokkos/RAJA par-
allel loop abstractions) to both C and C++ would help
both languages be more consistent in their optimizations
as well.

Coarrays. Coarray Fortran was first proposed in 1998
as an extension to Fortran 95, but was not adopted into
the specification until Fortran 2008 [140, 104]. Coarrays
are a PGAS concept for sharing data, where a single array
is allocated across multiple processes, and all processes
can access each other’s coarray data. In Fortran terms,
a collection of process “images” (all executing the same
code in an SPMD manner) declare a coarray with the
syntax <type> :: a(n,m)[*], which means that array
a is allocated across all images with local array dimen-
sions n x m, and codimensions (the logical dimensions of
the set of images the coarray is allocated across) spec-
ified in brackets. Codimensions can be used to specify
logically multi-dimensional groups of processes, e.g., for
a 3-codimensional case, each process can be thought of as
being a point in a cube, potentially with neighbor images
above and below, to the left and right, and to the front
and back.

Additional coarray features added in Fortran 2018 [141]
(in response to criticisms from Mellor-Crummey et al.
[104], among others) include the introduction of teams of
images and the ability to allocate local coarrays among
only the images in the team, instead of across all images
as global variables.19 While there don’t appear to be any

19Teams also have the ability to handle failed images, which is
extremely important for resiliency going forward.
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implementations in major compilers yet, the OpenCoar-
ray library and wrapper [153] appears to be a mostly com-
plete implementation that can be added to any compiler.
OpenCoarray can be set to use either MPI or OpenSH-
MEM as a communication back end, giving users flexibil-
ity.

Adding coarrays to the language specification enables
performance portability by standardizing a parallel pro-
gramming feature. As OpenCoarray demonstrates, the
back end can be switched out to use a different paral-
lel programming model without making changes to user
code, bringing Fortran closer to a single-source solution
for shared data.20

7.3 Parallel Internal Representations
(PIRs)

Internal representations (IRs) are the data structures
compilers use internally to represent and reason about
users’ code before translating it into assembly or ma-
chine language. All transformations and optimizations
the compiler performs are done on the IR. Some compil-
ers, such as Habanero-Java (see 7.3.4), use multiple IRs
that represent different levels of abstraction between the
high-level language being compiled and the machine’s in-
struction set, since many optimizations are easier to rea-
son about at higher or lower levels of abstraction.

Ideally, an IR would be able to express all operations
of the compiler’s target architecture(s) and all concepts
in the high-level language(s) the compiler accepts, and
would additionally be independent of architecture and
language, but in reality this is often not the case. Fea-
tures are added to language standards, and compiler writ-
ers either can’t or won’t extend their IR, so they make do
with what they have. This has been especially true for
parallelism features, and this section will discuss several
attempts to add support for parallelism into IRs.

7.3.1 LLVM

The LLVM compiler infrastructure is a group of projects,
including the Clang compiler, LLDB debugger, LLD
linker, and an OpenMP runtime library used by Clang.
LLVM’s primary feature is its IR, which has become
widely used since its initial introduction. LLVM IR [81]
was designed to be language independent and useful at
all stages of program compilation, including linking and
debugging. The IR itself is very low level and based on a
RISC-like instruction set with type information, a control
flow graph, and data flow graph via static single assign-
ment (SSA) value representations. Due to its popularity,

20There have also been several implementations of coarrays for
C++ [164, 111, 66], but there has yet to be any attempt to add
them to the standard. Unified Parallel C (UPC) [172] adds similar
PGAS features to C, but not with coarrays.

LLVM has been a common target for efforts to add par-
allelism to IRs.

LLVM for Parallelization, Vectorization, and Off-
load. Tian et al. [167, 168] proposed additions to
LLVM’s IR to enable more efficient parallelization, vec-
torization, and offloading, primarily for OpenMP and
other directive-based models. Their first proposal [167]
did this by adding four new intrinsics to LLVM that
represented basic directives, directives with qualifiers,
and directives with various numbers of qualifiers with
operands. Their second proposal [168] trimmed this down
to two intrinsics, llvm.directive.region.entry() and
llvm.directive.region.exit(), to represent when a
region is controlled by directives. These intrinsics can
be attached to LLVM OperandBundles that contain data
on which directive(s) they represent and any operands,
and entry/exit pairs are matched with an LLVM Token
that the entry creates, which is passed as an argument
to the exit. Singleton directives (e.g., omp barrier) are
also represented by an entry/exit pair with no code in
between to eliminate the need for a third intrinsic. Af-
ter the front end adds these intrinsics, parallelization and
offloading are handled by transforming groups of basic
blocks into “work regions,” which are single-entry single-
exit sub-graphs of the program’s control flow graph that
can be put through their new optimizations on their own
and then mapped onto OpenMP runtime calls (and pos-
sibly offloaded). Vectorization is handled similarly.

Tian et al.’s second proposal better reflects their design
goals of enabling more and better optimizations, mini-
mizing the impact on existing LLVM infrastructure, and
providing a minimal, highly reusable threaded code gen-
eration framework. They implemented their additions
and modified existing LLVM passes to work with them
in Intel’s OpenCL compiler, to see how the new IR struc-
tures would affect existing FPGA simulator workloads,
and found that very few changes were needed to existing
LLVM code. Their additions gave the FPGA simulator
workloads good speedup – up to 35x for one workload –
demonstrating the benefits of extending parallelism sup-
port. This clearly improves performance, but can also
improve productivity by removing the need for develop-
ers to do these kinds of optimizations to their code; they
can just let the compiler do it.

Tapir. The Tapir project [146] added fork-join paral-
lelism to LLVM IR. The authors did this by adding three
instructions: detach, reattach, and sync. The detach

instruction is the final instruction for a block, and takes
references to two blocks, a detached block and a continua-
tion block, as its arguments. These two blocks can be run
in parallel; the detached block must end with a reattach

instruction that points to the continuation block. The
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sync instruction enables synchronization by dynamically
waiting for all detached blocks with its context to com-
plete. To spawn an arbitrary number of tasks, the com-
piler can nest detaches and reattaches, as long as cer-
tain properties are obeyed. These properties (described
fully in their paper) ensure that the parallel representa-
tion maintains serial semantics; this allows serial opti-
mizations to “just work” on parallel IR with minimal or
even no modifications. In fact, most of the code for Tapir
was additions to the LLVM back end, lowering Tapir IR
into Cilk calls, and not modifications to existing code.
The authors also added some new optimization passes,
such as parallel loop scheduling, synchronization elimina-
tion, and “puny task” elimination. The authors evaluated
the correctness and performance of their implementation
on 20 Cilk benchmarks.

Tapir has also been used to implement OpenMP tasks
[154]; the task portion of Clang’s OpenMP implementa-
tion was replaced with code to generate Tapir IR, and
then lower it into Cilk API calls, using the back end from
[146]. The authors compared their OpenMP task imple-
mentation to the implementations in GCC, Intel, and un-
modified Clang using the Barcelona OpenMP Task Suite.
While their incomplete implementation caused problems
for one benchmark (they had yet to implement critical
sections or atomics), the Tapir implementation matched
or exceeded, sometimes by 10x, the other three imple-
mentations in all cases. Tapir does especially well on
benchmarks where the overhead to work ratio is high,
since Tapir spends far much less time in overhead than
the other three (30% compared to 80+%). They also
did experiments to see whether their new optimizations
improved performance at all, which they did. This im-
plementation of OpenMP is interesting for performance
portability, since it implies the possibility of having mul-
tiple high-level parallel languages targeting multiple back
ends – a single IR can represent multiple programming
models (Cilk and OpenMP) and still achieve good per-
formance.

7.3.2 SPIRE

The Sequential to Parallel Intermediate Representation
Extension project (SPIRE) [70] provides a methodology
for turning sequential IRs into parallel IRs that have rep-
resentations for both control parallelism (e.g., threading)
and data parallelism (e.g., vectorization). To do this,
SPIRE adds execution and synchronization attributes to
the IR representations of functions and blocks. The ex-
ecution attribute describes whether the function/block
should be run in parallel, and if so, how, and the syn-
chronization attribute describes how that function/block-
/instruction behaves in relation to others, and includes
support for atomic operations, spawning new units of ex-

ecution, and barriers. SPIRE also adds an event primitive
type which acts like a semaphore, for finer-grained syn-
chronization, and two new intrinsic functions, send and
recv, to represent point-to-point communication. The
authors of SPIRE also provide operational semantics for
these additions, both as a proof of correctness and to sys-
tematically define how they work.

In their original work [70], Khaldi et al. applied their
methodology to the IR of PIPS, a source-to-source trans-
lator, and showed that it could represent parallelism
concepts from a wide variety of models, including Cilk,
Chapel, OpenMP, OpenCL, and MPI. Later, they ap-
plied it to LLVM IR and used OpenSHMEM to eval-
uate their implementation, focusing on optimizing the
performance of shmem get and shmem put [71]. To trans-
form LLVM, they added an execution attribute to func-
tions and blocks and a synchronization attribute to blocks
and instructions, similarly to their original paper. They
also added an event type to act as a semaphore, and
send and recv intrinsics. In an addition to their orig-
inal work, which did not directly address programming
models based on separate address spaces, they added a
location attribute to values and identifiers and an ex-
pression attribute to load/store operations. The loca-
tion attribute describes whether data is resident locally,
must be fetched, or is shared. They decided to represent
shmem get and shmem put as load and store operations,
so the expression attribute can be used to mark loads
and stores as volatile when they might be waiting on a
remote SHMEM operation (this tells the compiler some
optimizations might not be safe).

As a proof-of-concept for how their additions improve
the compiler, Khaldi et al. modified some existing LLVM
compiler passes to optimize OpenSHMEM get and put
operations, primarily turning single-element gets and
puts into bulk operations. They did in fact get signifi-
cant speedup, especially when they were able to turn the
entire series of data transfers into a single transfer. This
is another point in favor of adding representations of par-
allelism to IRs – current compilers can’t reason about
data transfers like this because they’re treated as func-
tion calls, which can’t be optimized. If compilers could
reason about these kinds of optimizations, users wouldn’t
have to and could spend their time on development in-
stead of performance tuning.

7.3.3 Lift

The Lift IR [157] is somewhat different from the IRs dis-
cussed previously in that it is a functional IR. The authors
of Lift were deliberately targeting performance portabil-
ity for their compiler, which takes in their functional lan-
guage and outputs OpenCL which has been optimized for
a particular architecture [158]. The functional language
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is reminiscent of skeleton libraries – in fact, it is in may
ways the continuation of one of SkelCL’s authors’ work
there. Lift attempts to remedy the problems SkelCL had
with OpenCL’s performance portability issues.

Lift has several high-level operations (including map,
zip, reduce, split, join, and stencil, which was added later
[49]) that take in a user-defined specialization function.
This high level language is translated into their functional
IR, lowered using rewrite rules to a second, completely
interoperable IR with semantics closer to OpenCL, and
finally compiled to OpenCL.

The Lift project is interesting because of the capabil-
ities enabled by their rewrite rules. The rewrite rules al-
low them to explore the “implementation space” of high-
level code by incrementally applying them, compiling to
OpenCL, running performance tests, and repeating un-
til they’ve found a semi-optimal implementation. Indeed,
their work is in some ways proof that OpenCL is not per-
formance portable, because when compiling for an Nvidia
GPU, an AMD GPU, and an Intel CPU, their compiler
generated different code for each, and got good perfor-
mance on each (matching and sometimes exceeding the
state-of-the-art at the time) [158]. As future work, they
want to replace their current rewrite rule search algorithm
with a machine learning model to decrease very high com-
pile times.

One of the main goals of Lift (which other languages
and IRs could learn from) is to decouple exploiting par-
allelism in code from mapping parallelism to hardware,
which is also a goal of performance portability – make
the main code base architecture-independent, so it can
be modified to run well on any architecture.

7.3.4 Other PIRs21

PLASMA. The PLASMA IR [130] was designed to ex-
tend an exiting IR with IR-level support for SIMD paral-
lelism (vectorization) by abstracting away details for any
specific SIMD implementation, like SSE or CUDA. Their
goals were to abstract away data parallelism granularity
(vector length), vector-specific instructions (i.e., it must
also be possible to mark vector-only instructions like a
vector shuffle as parallelizable), and parallel idioms (like
map and reduce). To do this, they include an operator
abstraction in their IR that distinguishes between oper-
ators that only accept a single element and true vector-
only operators that must take a vector. To vectorize a
single-element operation, their IR contains distributors
that take a single-element operation and vector(s), and
map the elements of the vector(s) onto the operation
according to the distributor type. For example, to do
a parallel/vectorized add of vectors a and b, the com-

21Note: not an exhaustive list, but a selection based on how
recent, novel, and relevant each IR is.

piler passes a, b, and the scalar add operation to the par

(parallel) distributor: c = par(add, a, b). PLASMA
is also able to optimize these vector operations by com-
posing them, so fewer/no intermediate vectors need to be
created.

To test their IR, the authors implemented a source-to-
source translator for C+PLASMA extensions to pure C,
with either SSE3 or CUDA for vectorized code. They
compare performance to state-of-the-art vectorized li-
braries for both CPU and GPU, and while their perfor-
mance does vary by platform, it is generally compara-
ble to libraries for each. With respect to performance
portability, it’s interesting to note that they were able
to use the same vector abstraction for two very different
architectures (SSE and CUDA) and get reasonable per-
formance, which implies the possibility of a single-source
code being able to be translated for multiple vector ar-
chitectures.

Habanero-Java. Habanero-Java (described in Sec.
4.3) uses three separate IRs at various levels of abstrac-
tion [185]. The different IRs each lend themselves to dif-
ferent types of optimizations, which makes the process
of lowering through each IR and to machine code much
easier on compiler writers. Their high-level PIR (HPIR)
has a tree structure (similar to a traditional AST) which
enables simpler parallelism optimizations, such as elimi-
nation of redundant asyncs, strength reduction on syn-
chronizations, and may-happen-in-parallel analyses. The
middle-level PIR (MPIR) linearizes HPIR by transform-
ing some control flow structures and eases data flow anal-
yses. The low-level PIR (LPIR) lowers MPIR to add run-
time calls for concurrency, making runtime optimizations
easier, and transforms all IR constructs into a standard
sequential IR that can be used for traditional compiler op-
timizations. Using multiple IR abstraction levels like this
allows the compiler to optimize for parallelism while also
reusing sequential optimization passes, which is a process
other compilers could utilize to improve the consistency
of their optimizations, and hence the performance porta-
bility of the code they produce.

INSPIRE. The INSPIRE IR [67] (no relation to
SPIRE [70]) is a functional IR like Lift but for traditional
HPC languages, like C and C++. INSPIRE has two
parts: the core IR, including primitives for types, expres-
sions, and statements, and extensions built on these. IN-
SPIRE’s parallel control flow is based on a thread group
model, where thread groups collectively process a “job,”
which is a collection of local variables and a function for
the threads to execute. The IR has primitives for threads
to spawn and merge with other threads, and communi-
cate with each other. It also has primitives for distribut-
ing data and work among threads. INSPIRE is different
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from the other IRs listed here in that it doesn’t process
single translation units, it works over the entire program
at the same time, enabling a number of whole-program
optimizations. The authors’ implementation uses Clang’s
front end for OpenMP, Cilk, OpenCL, and MPI, and they
run performance experiments to verify that their base
compiler (without any new optimizations) produces code
that performs similarly to a normal C compiler, as this is
how developers researching new optimizations would use
it and they want the initial state of any code to be the
same across compilers. For all the sequential and OpenCL
inputs, this does hold true, but for a few OpenMP inputs
(mostly using OpenMP’s tasks, which their IR is very
well suited for), the performance improves significantly,
just by being translated through their IR. This demon-
strates once again the importance of using appropriate
IR constructs for compiling high performance (and per-
formance portable) code. It can make all the difference
for optimizing parallel constructs.

7.3.5 MLIR

The variety of home-grown IRs described above all have
many features in common, and a great deal of effort could
have been saved if their authors all had some sort of
shared IR-building library to work with, especially if that
library came with built in debugging support and parser
logic. The MLIR project [82] aims to solve exactly these
problems, along with others in the compiler community,
such as the difficulty of writing high-quality DSL compil-
ers and many mainstream compilers defining their own
IRs on top of LLVM. Instead of implementing many bet-
ter compilers, it seems easier to instead implement a bet-
ter compiler building infrastructure.22

MLIR is designed to standardize SSA IRs and in-
cludes built in support for documentation generation, de-
bugging infrastructure, and parsing logic, among other
things. MLIR users can define their own operations,
types, rewrite patterns (similar to Lift’s rewrite rules),
and optimization passes on top of MLIR’s infrastructure,
while keeping their IR extensible for the future. MLIR’s
design principles include having minimal built-ins in their
IRs, allowing users to customize anything and everything,
progressive lowering, maintaining more high-level seman-
tics, IR validation, and source location tracking and trace-
ability. All of these features would greatly improve mod-
ern compilers, but one of their most interesting features,
and the one that will probably do the most to support
performance portability, is IR dialects.

IR dialects are a way of logically grouping operations,

22The authors of Tapir [154] agree that it would be helpful to
move the HPC community towards a single, standardized IR. By
having standard, common IRs, we avoid duplicating effort and can
have multiple programming models work together easily.

attributes, and types into sets within an IR, similar to
namespaces in C++. Dialects make IRs more flexible
and modular, reduce name conflicts, and allow for inter-
esting interactions and reuse possibilities by mixing IRs.
For example, with an accelerator dialect, host and device
code could be generated and optimized together instead of
separately, or an OpenMP dialect could be reused across
many source languages instead of reimplemented for each.
Both of these would improve performance portability,
since compilers could work with a consistent (standard-
ized?) IR, instead of their own home-grown IR. MLIR op-
timization passes are designed to work with any dialect,
even ones they weren’t intended for. Dialects and IR op-
erations can register properties (like “legal to inline” or
“no side effects”) with each other to help this process, or
the pass can treat operations from unfamiliar dialects con-
servatively. MLIR has already been adopted by several
groups, including TensorFlow, a polyhedral compiler, the
Flang compiler, and various DSLs, demonstrating that
this is something both industry and academia are very
interested in and find useful.

8 Discussion

This section will give a high level review of how all the
models described above support the various aspects of
performance portability, beginning with a brief summary
of each section, and continuing with a discussion of how
each model can be useful and how well each type of model
supports portability, performance, and productivity.

Tables 2 and 3 give a summary of how well each model
meets some criteria for performance, portability, and pro-
ductivity, and assign each model a score based on how
well it meets these criteria. Scores are calculated by sim-
ply summing up “points” according to these rules:

– ×= 0 points

– ◦ = 0.5 points

– X= 1 point

– High (when “High” is good, as with performance) =
2 points

– Moderate (good) = 1 point

– Low (good) = 0 points

– High (when “High” is bad, as with SLOC added) =
0 points

– Moderate (bad) = 1 point

– Low (bad) = 2 points

– N/A = 0 points
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– Combined values (e.g., Low/Moderate) are worth 0.5
points in the appropriate direction

– Varied or Unknown values will be treated as “Mod-
erate”

These scores are intended to provide a (very) rough
comparison of the models discussed here, not to provide
a new metric for performance portability or anything sim-
ilar. Many readers may disagree with this scoring system,
or care about different qualities. (As can be seen, even
the qualitative assessments from earlier in this same paper
do not always agree with the numeric scores, as criteria
were weighted differently, and human judgement was in-
volved.) Some may emphasize Fortran support over GPU
support, for example, or may not care how many lines of
code are added to their program. Those readers are wel-
comed to devise their own scoring system based on their
own wants and needs. Again, the intent here is to provide
a high level overview and comparison, not definitively say
one model is better than another.

8.1 Summary

This section gives a brief summary of the content of the
previous five sections.

8.1.1 Libraries

There are two main classes of libraries designed for per-
formance portability: skeleton libraries and loop-based li-
braries. Skeleton libraries provide higher-order functions
based on common parallel patterns users can customize
to run computations in parallel, while loop-based libraries
abstract away iteration spaces and data structures to run
loops in parallel. Application-specific performance porta-
bility layers can further insulate users and application
code from the details of parallelism and changes in the
underlying performance portability models.

8.1.2 Languages

While the barriers to entry for parallel languages are
higher than those for other models, some languages have
been successful. All of these languages are primarily task-
based, but most include data parallelism as well, since
modern hardware relies heavily on vectorization for its
performance. Some of these languages are very high-
level (e.g., Chapel and HJ) while others are less so (e.g.,
DPC++).

8.1.3 Directives

The two most popular directive-based models are
OpenMP and OpenACC, which fall on opposite ends
of the prescriptive vs. descriptive spectrum, although

both have been moving closer to the middle. Other
directive-based models, like OpenMC and XcalableACC,
haven’t been nearly as successful, but have unique fea-
tures OpenMP and OpenACC could learn from. There
are also tools that let users define their own directives,
to give them more control over what transformations and
optimizations happen to their code.

8.1.4 Translators

Many of the other models in this paper were built on
source-to-source translators like Omni and ROSE, which
were both designed to enhance user productivity by help-
ing users transform their code into more performance
portable versions. Other translators, like Bones and
Clacc, were designed more as compilers than translators,
but also provide translation capabilities so users can fur-
ther tune their code before compiling it.

8.1.5 Compiler Support

Most compilers currently have limited internal support for
parallelism, but this is changing. Language standards,
particularly for languages like C and Fortran that are
popular in HPC, have been adding native support for
more parallelism constructs, and compilers will need to
follow suit to be able to effectively analyze these codes.
Many compilers are attempting to move to PIRs, and
MLIR in particular is an exciting project, since it opens
up a new world of IR building and composability.

8.2 Use Cases

Each model described here was meant to support a differ-
ent use case; it’s very difficult to make one programming
model that does everything, and the effort usually isn’t
worth it when there are so many other models that al-
ready exist. This section will discuss the options users
have for the three main application-developing use cases.

8.2.1 Porting Legacy Applications

There are still many legacy HPC applications in use to-
day (e.g., weather simulations) that were first written in
C or Fortran decades ago, and these applications need to
be ported to take advantage of hardware advances as well.
However, wholesale rewrites of these programs are gener-
ally not possible, since they may contain millions of lines
of code, and years of work have gone into verifying their
correctness and adding a wide variety of features. De-
velopers don’t want to throw all this work away to start
again with a new programming model, especially one they
might have to abandon a few years later when the next
great thing comes out.
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Fortran developers in particular have a hard time; C
developers can port to C++ (a non-trivial task, but also
not a complete rewrite) and instantly gain access to a
wide variety of libraries and languages for performance
portability. Even if porting to C++ isn’t an option, there
are still some libraries and translators (like targetDP and
Bones) that support pure C. Fortran doesn’t have these
options. Fortunately, some directive-based models, like
OpenMP and OpenACC, have deliberately included sup-
port for Fortran, and directives are minimally invasive
and allow for incremental porting, so they are a good
option for porting legacy code to modern architectures.

8.2.2 Porting Newer Applications

Newer HPC applications are much more likely to use
C++, so they have more options than older C and Fortran
codes. There are many C++ libraries for performance
portability, and even some languages (like PACXX and
DPC++) that are built on C++ so a porting effort would
be possible. If the porting process needs to be incremental
though, developers should check that a language supports
incremental ports, e.g., by allowing access to raw point-
ers for data stored in containers. Some applications may
be better served by a library, since libraries are generally
designed with incremental porting in mind. Most of the
directive-based models support C++ as well.

8.2.3 Writing New Applications

New applications are free to choose whatever program-
ming model they want, but developers still have a great
deal to consider when making their choice, including:

– Does this model let us express what we want?

– Does it provide tuning capabilities we want?

– Does it target the architectures we want, and will it
add support for new architectures we might need in
the future?

– Does it have a user community we can turn to for
help?

– Will this model still exist in ten years (or the lifetime
of the application)?23

Developers may also want to consider using a PPL
(see Sec. 3.3) to insulate the application code (and non-
expert software developers, such as domain scientists)

23There were many, many libraries and languages proposed in the
last 10-20 years that are not included in this paper because they
never got past the “proposal” stage of community adoption. Many
more made it past that stage only to be deprecated and mostly
abandoned by their user communities.

from changes in underlying programming models. Us-
ing a PPL goes a long way towards removing the need to
ask the last question above; if community support for a
model disappears, the PPL can migrate to another model
without disturbing application code. Using a PPL is also
something existing applications can and should consider –
PPLs were originally proposed to help legacy applications
port to new architectures.

8.3 Portability

Most of the models described here are very portable,
and many of the ones that aren’t are actively working
on adding support for more architectures. Portability is
in many ways a prerequisite for performance portabil-
ity (as defined for this paper, especially), since a model
can’t be performance portable if it only runs on one or
two architectures. Regardless, all claims of portability
should be taken with a grain of salt. A recent, large-
scale study on performance portability by Deakin et al.
[29] notes that one of the most difficult parts of compar-
ing performance portability values for different program-
ming models is simply getting applications to run on a
variety of architectures in the first place. Immature im-
plementations or lack of testing mean that, while small
benchmarks might run, larger applications may still fail;
Deakin et al.’s analysis had to cope with multiple fail-
ures on some of their applications. In addition, for many
models, portability varies by implementation (see Table
2), and to migrate to a new architecture, users may have
to switch implementations. This can be problematic since
the implementations’ support for the standard may vary,
and performance can also vary, but this is an implemen-
tation problem and not a problem with the model itself.

Perhaps the most important aspect of the models them-
selves to consider, with respect to portability, is how eas-
ily they can be extended to support new architectures
– particularly architectures that aren’t just a variation
on traditional CPUs, GPUs, or clusters. We don’t know
what HPC machines will look like in the future, so it’s
worth considering how extendable a model is and whether
it has the right abstractions for parallelism, computa-
tion, and communication to be “future-proof,” regardless
of what happens to the underlying hardware, including
CPUs, GPUs, the memory hierarchy, configurable com-
puting such as FPGAs, and a host of other special pur-
pose processors.

Higher-level models that internally utilize other, lower-
level models, such as high-level libraries (e.g., SkePU,
Kokkos) or high-level languages (e.g., Chapel), are a good
example of extensibility – if a new architecture with a
new programming model comes out, they can implement
a new back end and their users can automatically take ad-
vantage of it. Other models, like OpenMP and the C++

50



STL, have had to work much harder to adapt, but have
ultimately succeeded. The users of these models have also
had to work to update their code, however, so this is not
a sustainable path, as it can greatly impact the model’s
productivity during the changeover. If a programming
model has to go through a major API change every time
there is a shift in supercomputer architectures, it isn’t
truly portable.

8.4 Performance

Most of the models discussed here also give high perfor-
mance, but this is much more inconsistent, since perfor-
mance portability is still a struggle for many. (See Sec.
2.2 for a discussion of how optimizing for performance
vs. for portability can be at odds.) Furthermore, opti-
mizations that are good for one architecture might hurt
performance on another, and this can be very difficult to
reason about.

Because of this, it’s important for programming mod-
els to give users lots of performance knobs to tune (if
they so desire), but to keep those knobs out of the ap-
plication code and preferably in one centralized location.
Almost all the models described here do a good job of this,
with the exceptions of OpenMP, OpenCL, and Legion, to
some degree. The primary two ways models abstract out
performance tuning are by providing high-level interfaces
with specialized back ends (e.g., OpenACC and RAJA) or
by allowing users to define their own specialized mappings
to hardware (e.g., PPLs, Chapel, and custom directives).
Both of these methods are functional, although the latter
is more flexible at the cost of putting more responsibility
on the user. Better support for parallelism in compilers
could reduce this burden by making it easier for compil-
ers to reason about parallelism, so users don’t have to
provide extra information about hardware mappings.

8.5 Productivity

Productivity is perhaps the most difficult of the 3 P’s.
There isn’t yet a good definition or way to measure it
(see Sec. 2.3), which means most discussion of portability
(even in this paper) is qualitative, based on individuals’
opinions and experiences. However, there is still a gen-
eral consensus that even the performance portable mod-
els with the steepest learning curves are still better than
device-specific models like CUDA and OpenCL in terms
of productivity, if only because porting from one machine
to another takes less work. Keeping these more portable
models productive is good for performance portability –
it forces them to stay higher-level and avoid falling into
the “OpenCL trap” of becoming overly-specific, so they
have a better chance of achieving consistent performance
on multiple architectures.

Models that support incremental porting (directives
and libraries) are in many ways the most productive for
porting applications, since a small part of the application
can be ported to test out a model without committing
to rewriting thousands of lines of code, even though high-
productivity languages like Chapel and HJ might be more
succinct. Tools that can automate the porting process
(like Bones and the other translators) are also a boon
for productivity.

Perhaps the best solution for productivity, though, is
an application-specific performance portability layer (see
Sec. 3.3), since it can allow parallelism experts to play
with different models in the background while domain
scientists get on with their work, and it removes all de-
pendence on a specific performance portable model from
the application code itself. While the concept is still rel-
atively new, separation of concerns between application
programming and application tuning seems to be a very
productive path to take.

The tools that go with these models, such as debuggers,
testing apparatuses, and performance measurement tools,
are also essential for productivity, but they are outside the
scope of this paper – each of them is likely worthy of its
own paper.

To conclude, a list of programming model features that
are good for performance portability and productivity:

– High-level abstractions.

– Simple front end that targets multiple (non-
performance portable) back ends.

– Keeping configuration separate from code.

– Multiple abstraction levels.

– Allow users to extend anything and everything.

– Automate, but let users override.

– Scale down as well as up.

– Standardization.

– Separate expressing parallelism from mapping it to
hardware.

9 Conclusion

In short, each category of model has its uses, and progress
is being made along the path to performance portability.
The HPC community is better off now than it was even
five years ago, and developers have more (and better) op-
tions than they used to. Some of these options are start-
ing to converge; for example, OpenMP and OpenACC
are both taking on some of each other’s characteristics,
some libraries (e.g., Kokkos and RAJA) are doing the
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same, significantly better compiler tools (MLIR) are be-
ing developed, and large user communities are starting
to form around some of these models. The HPC com-
munity seems to be moving out of the “innovation” and
“early adoption” phases of the technology adoption life-
cycle and into the “early maturity” phase [68]. The next
two to five years will be very exciting to watch unfold; the
new supercomputers will hopefully achieve the first exa-
FLOP, and the programming models for these machines
will hopefully continue to coalesce into truly performance
portable (and productive!) models.
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Table 2: Comparison table for performance and portability.

Performance Portability
Model CPU GPU Other Intel CPU AMD CPU IBM CPU Other CPU Nvidia GPU AMD GPU Xeon Phi FPGA Other Single vs. Multi-node

Non-Portable

CUDA N/A High N/A × × × × X × × × × Single
OpenCL High High Varieda X X X ◦b X X X X ◦b Single

OpenMP 3 High N/A N/A X X X ◦b × × × × × Single
TBB High N/A Highd X X X X × × X × × Single

Libraries

SkelCL High High Varieda X X X ◦b X X X X ◦b Single
SkePU 2 High High Varieda X X X ◦b X X X X ◦b Multi
Muesli High Variedc Highd X X X ◦b X ◦b X ◦b ◦b Multi
GrPPI High N/A N/A X X X X × × × × × Single
Kokkos High High High X X X X X ◦i X × × Single
RAJA High High High X X X Xe X × X × × Single

PHAST High High N/A X X X X X × × × × Single
targetDP Moderate Moderate Moderate X X X ◦b X × X × × Single

Languages

Cilk High N/A Highd, f X X X X × × Xf × × Single
Legion/Regent High High N/A X X X X X × × × × Multi

X10/Habanero-Java Moderate N/A N/A X X X X × × × × × Multi
Chapel High High Variedi, d X X X X X X ◦i × × Multi
PACXX High High Highd X X X X X X X ◦g × Single

SYCL/DPC++ High High Varieda X X X ◦b X X X X ◦b Single

Directives

OpenMP 4+ High Variedh Moderatei X X X ◦b X ◦b X ◦i, b ◦i, b Single
OpenACC High High Moderatei X X X ◦b X ◦b X ◦i, b ◦b Single

XcalableMP/ACC High High Moderate X X X ◦b X X X X ◦b Multi
OpenMC Moderate Moderate Moderated X X X ◦b X × X × × Single

HSTREAM Unknownj Unknownj Unknownj X X X ◦b X × X × × Single

Translators
Bones High High High X X X ◦b X X X X ◦b Single
Clacc High High Moderateb X X X ◦b X ◦b X ◦i, b ◦i, b Single

aSupport is experimental and performance varies by implementation.
bVaries by implementation (or chosen back end), but many/most do not support.
cC++ performance is good, Java performance is inconsistent.
dXeon Phi only.
eVia the serial back end, at least.
fOnly with Cilk Plus.
gIf the FPGA supports SPIR.
hGPU performance varies wildly by implementation, but is improving.
iSupport is experimental.
jPerformance has not been compared to other models yet.
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Table 3: Comparison table for productivity, and overall P3 scores.

Productivity Overall P3 Scores
Model C C++ Fortran Other langs. SLOC addeda,b Same code per platformc Difficultyd Incremental porting Numeric Qualitative

Non-Portable

CUDA X X ◦e Xf High X High X 8.5 Poor
OpenCL X X × Xg High × High X 17 Fair

OpenMP 3 X X X ◦h Low X Moderate X 14 Fair
TBB ◦j X × × Moderate/High X Moderate/High X 13.5 Fair

Libraries

SkelCL ◦j X × × Moderate X Low/Moderate X 19 Fair
SkePU 2 ◦j X × × Moderatek X Low/Moderate X 19 Good
Muesli ◦j X × Xi Moderate X Moderate X 18.5 Good/Fair
GrPPI ◦j X × × Moderate X Moderate X 11.5 Poor, Promising
Kokkos ◦j X × × Moderatek X Low/Moderatek X 18.5 Very Good
RAJA ◦j X × × Low/Moderatek X Moderatek X 18 Good, Promising

PHAST ◦j X × × Low/Moderate X Moderate X 15 Fair, Promising
targetDP X × × × Moderate X Moderate/High X 13 Poor

Languages

Cilk ◦l ◦m × × Low X Moderate ◦n 14.5 Good
Legion/Regent ◦j X × × Moderate/High X Moderate/High × 12.5 Good

X10/Habanero-Java × × × Xi Low/Moderate X Moderate × 9.5 Fair
Chapel N/A N/A N/A Xo Very Low X Low/Moderate × 17 Excellent
PACXX ◦j X × × Low/Moderate X Low/Moderate X 20 Good, Promising

SYCL/DPC++ ◦j X × × Moderate X Moderate X 18.5 Very Good, Promising

Directives

OpenMP 4+ X X X ◦h Low × Moderate X 18.5 Good
OpenACC X X X × Low X Low/Moderate X 20.5 Very Good

XcalableMP/ACC X ◦p X × Low X Low/Moderate X 21 Excellent
OpenMC X × × × Low × Moderate X 13.5 Fair

HSTREAM ◦j X × × Low X Low/Moderate X 15.5 Promising

Translators
Bones X × × × None X Low X 21 Fair
Clacc X ◦q × × Low X Low/Moderate × 18 Very Good

aCompared to serial/base version.
bFor languages, this is code size increase compared to serial C/C++/Fortran/etc.
cNo code changes required to run or get reasonable (not necessarily high) performance on different platforms. E.g., OpenMP 4+ requires different pragmas for GPU and non-GPU platforms and thus does not have this property.
dFor a programmer to learn, understand, and/or maintain.
eOnly through PGI’s CUDA Fortran.
fPython and Haskell bindings, possibly others.
gFortran, Pascal, Go, Haskell, Java, Julia, Rust, Scala, Python, Ruby, Erlang, and .NET bindings, possibly others.
hA partial Java implementation is available from the University of Auckland.
iJava.
jOnly via porting to C++.
kDepends on lambda support.
lThe serial elision of a Cilk or Cilk Plus program is valid (GNU) C.

mThe serial elision of a Cilk++ or Cilk Plus program is valid C++.
nMust port entire translations units at the same time.
oChapel has unique syntax different from other languages.
pC++ is in development for the underlying translator, Omni.
qSupport is in the works.
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[16] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar,
“Habanero-Java: The new adventures of old X10,”
in Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java,
ser. PPPJ ’11. New York, NY, USA: ACM, Aug.
2011, pp. 51–61.

[17] B. L. Chamberlain, D. Callahan, and H. P. Zima,
“Parallel programmability and the Chapel lan-
guage,” The International Journal of High Perfor-
mance Computing Applications, vol. 21, no. 3, pp.
291–312, 2007.

55

https://web.archive.org/web/20130129203900/http://software.intel.com/en-us/articles/intel-array-building-blocks/
https://web.archive.org/web/20130129203900/http://software.intel.com/en-us/articles/intel-array-building-blocks/
https://web.archive.org/web/20130129203900/http://software.intel.com/en-us/articles/intel-array-building-blocks/
https://arstechnica.com/gadgets/2019/05/cray-amd-to-build-1-5-exaflops-supercomputer-for-us-government/
https://arstechnica.com/gadgets/2019/05/cray-amd-to-build-1-5-exaflops-supercomputer-for-us-government/


[18] B. L. Chamberlain, E. Ronaghan, B. Albrecht,
L. Duncan, M. Ferguson, B. Harshbarger, D. Iten,
D. Keaton, V. Litvinov, P. Sahabu, and G. Titus,
“Chapel comes of age: Making scalable program-
ming productive,” Cray User Group Meeting 2018,
2018.

[19] P. Charles, C. Grothoff, V. Saraswat, C. Don-
awa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar, “X10: An object-oriented approach to
non-uniform cluster computing,” in Proceedings of
the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages,
and Applications, ser. OOPSLA ’05. New York,
NY, USA: ACM, Oct. 2005, pp. 519–538.

[20] M. Chu, A. Aji, D. Lowell, and K. Hamidouche,
“GPGPU support in Chapel with the Radeon Open
Compute platform,” Jun. 2017.

[21] P. Ciechanowicz and H. Kuchen, “Enhancing
Muesli’s data parallel skeletons for multi-core com-
puter architectures,” in 2010 IEEE 12th Interna-
tional Conference on High Performance Computing
and Communications (HPCC), 2010, pp. 108–113.

[22] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The
Münster skeleton library Muesli: A comprehensive
overview,” Working Papers, ERCIS-European Re-
search Center for Information Systems, Tech. Rep.,
2009.

[23] V. Clement, S. Ferrachat, O. Fuhrer, X. Lapillonne,
C. E. Osuna, R. Pincus, J. Rood, and W. Sawyer,
“The CLAW DSL: Abstractions for performance
portable weather and climate models,” in Proceed-
ings of the Platform for Advanced Scientific Com-
puting Conference, ser. PASC ’18. New York, NY,
USA: ACM, Jul. 2018, pp. 2:1–2:10. [Online]. Avail-
able: http://doi.acm.org/10.1145/3218176.3218226

[24] H. C. da Silva, F. Pisani, and E. Borin, “A com-
parative study of SYCL, OpenCL, and OpenMP,”
in 2016 International Symposium on Computer Ar-
chitecture and High Performance Computing Work-
shops (SBAC-PADW), 2016, pp. 61–66.

[25] D. Daniel and J. Panetta, “On applying perfor-
mance portability metrics,” in 2019 IEEE/ACM
International Workshop on Performance, Portabil-
ity and Productivity in HPC (P3HPC), Nov. 2019,
pp. 50–59.

[26] U. Dastgeer and C. Kessler, “Smart containers and
skeleton programming for GPU-based systems,” In-
ternational journal of parallel programming, vol. 44,
no. 3, pp. 506–530, 2016.

[27] B. R. de Supinski, T. R. W. Scogland, A. Duran,
M. Klemm, S. M. Bellido, S. L. Olivier, C. Ter-
boven, and T. G. Mattson, “The ongoing evolution
of OpenMP,” Proceedings of the IEEE, vol. 106,
no. 11, pp. 2004–2019, Nov. 2018.

[28] T. Deakin and S. McIntosh-Smith, “Evaluating
the performance of HPC-style SYCL applications,”
in Proceedings of the International Workshop on
OpenCL, ser. IWOCL ’20. New York, NY, USA:
Association for Computing Machinery, Apr. 2020.

[29] T. Deakin, S. McIntosh-Smith, J. Price, A. Poe-
naru, P. Atkinson, C. Popa, and J. Salmon, “Per-
formance portability across diverse computer archi-
tectures,” in 2019 IEEE/ACM International Work-
shop on Performance, Portability and Productivity
in HPC (P3HPC), Nov. 2019, pp. 1–13.

[30] D. del Rio Astorga, M. F. Dolz, J. Fernández, and
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allel pattern interface for stream processing,” in Al-
gorithms and Architectures for Parallel Processing,
J. Carretero, J. Garcia-Blas, R. K. Ko, P. Mueller,
and K. Nakano, Eds. Cham: Springer Interna-
tional Publishing, 2016, pp. 74–87.

[32] J. E. Denny, S. Lee, and J. S. Vetter, “Clacc: Trans-
lating OpenACC to OpenMP in Clang,” in 2018
IEEE/ACM 5th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC), Nov. 2018,
pp. 18–29.

[33] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A
hybrid multi-core parallel programming environ-
ment,” in Workshop on general purpose process-
ing on graphics processing units (GPGPU 2007),
vol. 28, 2007.

[34] H. Dreuning, R. Heirman, and A. L. Varbanescu,
“A beginner’s guide to estimating and improv-
ing performance portability,” in High Performance
Computing, R. Yokota, M. Weiland, J. Shalf, and
S. Alam, Eds. Cham: Springer International Pub-
lishing, 2018, pp. 724–742.

[35] H. C. Edwards, D. Sunderland, C. Amsler, and
S. Mish, “Multicore/GPGPU portable computa-
tional kernels via multidimensional arrays,” in 2011
IEEE International Conference on Cluster Comput-
ing, Sep. 2011, pp. 363–370.

56

http://doi.acm.org/10.1145/3218176.3218226


[36] H. C. Edwards and D. Sunderland, “Kokkos ar-
ray performance-portable manycore programming
model,” in Proceedings of the 2012 International
Workshop on Programming Models and Applica-
tions for Multicores and Manycores, ser. PMAM
’12. New York, NY, USA: ACM, Feb. 2012, pp.
1–10.

[37] H. C. Edwards, C. R. Trott, and D. Sunderland,
“Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access pat-
terns,” Journal of Parallel and Distributed Comput-
ing, vol. 74, no. 12, pp. 3202 – 3216, 2014, domain-
Specific Languages and High-Level Frameworks for
High-Performance Computing.

[38] J. Enmyren and C. W. Kessler, “SkePU: A multi-
backend skeleton programming library for multi-
GPU systems,” in Proceedings of the Fourth Inter-
national Workshop on High-level Parallel Program-
ming and Applications, ser. HLPP ’10. New York,
NY, USA: ACM, Sep. 2010, pp. 5–14.

[39] S. Ernsting and H. Kuchen, “A scalable farm skele-
ton for hybrid parallel and distributed program-
ming,” International Journal of Parallel Program-
ming, vol. 42, no. 6, pp. 968–987, Dec. 2014.

[40] ——, “Data parallel algorithmic skeletons with ac-
celerator support,” International Journal of Paral-
lel Programming, vol. 45, no. 2, pp. 283–299, Apr.
2017.

[41] A. Ernstsson, L. Li, and C. Kessler, “SkePU
2: Flexible and type-safe skeleton programming
for heterogeneous parallel systems,” International
Journal of Parallel Programming, vol. 46, no. 1, pp.
62–80, 2018.

[42] H. Finkel, D. Poliakoff, J.-S. Camier, and D. F.
Richards, “ClangJIT: Enhancing C++ with just-
in-time compilation,” in 2019 IEEE/ACM Interna-
tional Workshop on Performance, Portability and
Productivity in HPC (P3HPC), Nov. 2019, pp. 82–
96.

[43] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multithreaded lan-
guage,” in Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and
Implementation, ser. PLDI ’98. New York, NY,
USA: ACM, 1998, pp. 212–223.

[44] A. Gray and K. Stratford, “targetDP: an abstrac-
tion of lattice based parallelism with portable per-
formance,” in 2014 IEEE Intl Conf on High Per-
formance Computing and Communications, 2014

IEEE 6th Intl Symp on Cyberspace Safety and Secu-
rity, 2014 IEEE 11th Intl Conf on Embedded Soft-
ware and Syst (HPCC,CSS,ICESS), 2014, pp. 312–
315.

[45] A. Gray and K. Stratford, “A lightweight approach
to performance portability with targetDP,” The In-
ternational Journal of High Performance Comput-
ing Applications, vol. 32, no. 2, pp. 288–301, 2018.

[46] M. Griebl, C. Lengauer, and S. Wetzel, “Code gen-
eration in the polytope model,” in In IEEE PACT.
IEEE Computer Society Press, 1998, pp. 106–111.

[47] J. Gustafson, “Twelve ways to fool the masses
when giving performance results on traditional vec-
tor computers,” Jun. 1991.

[48] S. Z. Guyer and C. Lin, “Broadway: A compiler for
exploiting the domain-specific semantics of software
libraries,” Proceedings of the IEEE, vol. 93, no. 2,
pp. 342–357, 2005.

[49] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gor-
latch, and C. Dubach, “High performance stencil
code generation with Lift,” in Proceedings of the
2018 International Symposium on Code Generation
and Optimization, ser. CGO 2018. New York, NY,
USA: ACM, Feb. 2018, pp. 100–112.

[50] M. Haidl and S. Gorlatch, “PACXX: Towards a uni-
fied programming model for programming acceler-
ators using C++14,” in 2014 LLVM Compiler In-
frastructure in HPC, 2014, pp. 1–11.

[51] M. Haidl and S. Gorlatch, “High-level programming
for many-cores using C++14 and the STL,” Inter-
national Journal of Parallel Programming, vol. 46,
no. 1, pp. 23–41, 2018.

[52] T. D. Han and T. S. Abdelrahman, “hiCUDA: A
high-level directive-based language for GPU pro-
gramming,” in Proceedings of 2Nd Workshop on
General Purpose Processing on Graphics Process-
ing Units, ser. GPGPU-2. New York, NY, USA:
ACM, 2009, pp. 52–61.

[53] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook,
J. Sewall, D. Jacobsen, D. N. Asanza, A. Hsu, H. C.
Carrillo, H. Kim, and R. Robey, “Effective perfor-
mance portability,” in 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and
Productivity in HPC (P3HPC), Nov. 2018, pp. 24–
36.

[54] A. Hayashi, S. R. Paul, and V. Sarkar, “GPUIter-
ator: Bridging the gap between Chapel and GPU
platforms,” in Proceedings of the ACM SIGPLAN

57



6th Chapel Implementers and Users Workshop, ser.
CHIUW 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 2–11.

[55] ——, “Exploring a multi-resolution GPU program-
ming model for Chapel,” in 7th Chapel Imple-
menters and Users Workshop, ser. CHIUW 2020,
New York, NY, USA, May 2020.

[56] J. Hennessy and D. Patterson, Computer Architec-
ture: A Quantitative Approach, 6th ed. Elsevier
Science, 2019.

[57] J. A. Herdman, W. P. Gaudin, O. Perks, D. A.
Beckingsale, A. C. Mallinson, and S. A. Jarvis,
“Achieving portability and performance through
OpenACC,” in 2014 First Workshop on Accelera-
tor Programming using Directives, Nov. 2014, pp.
19–26.

[58] D. Hollman, B. Lelbach, H. C. Edwards, M. Hoem-
men, D. Sunderland, and C. Trott, “mdspan in
C++: A case study in the integration of per-
formance portable features into international lan-
guage standards,” in 2019 IEEE/ACM Interna-
tional Workshop on Performance, Portability and
Productivity in HPC (P3HPC), Nov. 2019, pp. 60–
70.

[59] J. Holmen, B. Peterson, and M. Berzins, “An
approach for indirectly adopting a performance
portability layer in large legacy codes,” in 2019
IEEE/ACM International Workshop on Perfor-
mance, Portability and Productivity in HPC
(P3HPC), Nov. 2019, pp. 36–49.

[60] R. Hornung and J. Keasler, “A case for im-
proved C++ compiler support to enable per-
formance portability in large physics simulation
codes,” Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), Tech. Rep., 2013.

[61] R. D. Hornung and J. A. Keasler, “The RAJA
portability layer: Overview and status,” Sep. 2014.

[62] Intel Corp., “Intel oneAPI program-
ming guide (beta),” May 2020. [On-
line]. Available: https://software.intel.com/
content/www/us/en/develop/documentation/
oneapi-programming-guide/top.html

[63] ——, “Intel Threading Building Blocks doc-
umentation,” Mar. 2020. [Online]. Available:
https://software.intel.com/content/www/us/en/
develop/documentation/tbb-documentation/top/
intel-threading-building-blocks-developer-reference.
html
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[129] G. Özen, S. Atzeni, M. Wolfe, A. Southwell, and
G. Klimowicz, “OpenMP GPU offload in Flang
and LLVM,” in 2018 IEEE/ACM 5th Workshop on
the LLVM Compiler Infrastructure in HPC (LLVM-
HPC), Nov. 2018, pp. 1–9.

[130] S. Pai, R. Govindarajan, and M. J.
Thazhuthaveetil, “PLASMA: Portable pro-
gramming for SIMD heterogeneous accelerators,”
in Workshop on Language, Compiler, and Archi-
tecture Support for GPGPU, held in conjunction
with HPCA/PPoPP 2010, Jan. 2010.

[131] S. Pakin, “Ten ways to fool the masses when giving
performance results on GPUs,” Dec. 2011.

[132] B. Peccerillo and S. Bartolini, “PHAST library —
enabling single-source and high performance code
for GPUs and multi-cores,” in 2017 International
Conference on High Performance Computing Sim-
ulation (HPCS), 2017, pp. 715–718.

61

https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://www.openacc.org/
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/


[133] ——, “PHAST - a portable high-level modern C++
programming library for GPUs and multi-cores,”
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 30, no. 1, pp. 174–189, Jan. 2019.

[134] H. Peng and J. J. Shann, “Translating OpenACC to
LLVM IR with SPIR kernels,” in 2016 IEEE/ACIS
15th International Conference on Computer and In-
formation Science (ICIS), Jun. 2016, pp. 1–6.

[135] S. J. Pennycook, J. D. Sewall, and J. R. Hammond,
“Evaluating the impact of proposed OpenMP 5.0
features on performance, portability and produc-
tivity,” in 2018 IEEE/ACM International Work-
shop on Performance, Portability and Productivity
in HPC (P3HPC), Nov. 2018, pp. 37–46.

[136] S. J. Pennycook, J. D. Sewall, and A. Duran, “Sup-
porting function variants in OpenMP,” in Evolving
OpenMP for Evolving Architectures, B. R. de Supin-
ski, P. Valero-Lara, X. Martorell, S. Mateo Bellido,
and J. Labarta, Eds. Cham: Springer International
Publishing, 2018, pp. 128–142.

[137] S. J. Pennycook, J. D. Sewall, and V. W. Lee,
“A metric for performance portability,” in Proceed-
ings of the International Workshop on Performance
Modeling, Benchmarking, and Simulation, 2016.

[138] S. Pino, L. Pollock, and S. Chandrasekaran, “Ex-
ploring translation of OpenMP to OpenACC 2.5:
lessons learned,” in 2017 IEEE International Par-
allel and Distributed Processing Symposium Work-
shops (IPDPSW), May 2017, pp. 673–682.

[139] D. Quinlan and C. Liao, “The ROSE source-to-
source compiler infrastructure,” in Cetus users and
compiler infrastructure workshop, in conjunction
with PACT, 2011.

[140] J. Reid, “The new features of Fortran 2008,” SIG-
PLAN Fortran Forum, vol. 27, no. 2, p. 8–21, Aug.
2008.

[141] ——, “The new features of Fortran 2018,” SIG-
PLAN Fortran Forum, vol. 37, no. 1, p. 5–43, Apr.
2018.

[142] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner,
J. Pennycook, and X. Tian, Data Parallel C++:
Mastering DPC++ for Programming of Heteroge-
neous Systems using C++ and SYCL. Apress,
Nov. 2019, unedited advance preview of chapters
1-4.
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