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Abstract

The widespread use of machine learning models, coupled
with large datasets and increasingly complex models have led
to a general lack of understanding for how individual predic-
tions are made. The GDPR has even stated that any individual
has a “right to an explanation” from an automated decision if
that decision can significantly impact their life. It is perhaps
unsurprising then that explainable AI (XAI) has become a
very popular research topic over the past several years. This
survey looks at one aspect of model interpretability: instance-
attribution explanations; these techniques are able to trace the
prediction of a test instance back to the training instances that
contributed most to its prediction. This technique is used as a
means of debugging and improving models and datasets.
Another issue confronting many institutions today is that of
data privacy and ownership. Debates surrounding these top-
ics have resulted in legal action; for example, the GDPR
states that companies must comply with removing user data
upon request. Removing user information from databases is
straightforward; however, machine learning models are not
inherently designed to accommodate such a request. Prac-
titioners can always retrain a model from scratch with the
requested samples removed, but this quickly becomes pro-
hibitively expensive. Thus, the second part of this review
focuses on the task of efficient data deletion from machine
learning models. In other words, these works are able to re-
move the effect of one or multiple training instances without
having to retrain the model from scratch.
For both research topics, the current landscape of works
is provided, including the advantages and disadvantages of
each, open research questions, and promising research oppor-
tunities. Then, a discussion of how these research subfields
are related is presented, and a practical use case of identifying
and mitigating bias/misinformation from universal language
models is provided; realizing this use case will henceforth re-
quire innovation in both of these areas.

1 Introduction
The growth and expansion of machine learning in our soci-
ety has brought predictive modeling to almost every facet of
our lives, but with its power and ubiquity comes unprece-
dented and challenging problems. One of those problems
is related to the increasing size and complexity of many
machine learning models (e.g. deep learning architectures,

model ensembles, etc.). Although impressive from a pre-
dictive standpoint, these models are not easily understood,
both from a global perspective of the model (e.g. looking
at the weights of a model) or from a local perspective (e.g.
how did my model make this particular decision?). For many
decades, predictive performance was the main attributing
factor to the success of a resultant model. This is certainly
still an important factor for any predictive model created to-
day, but more emphasis is now being put on how these mod-
els are making decisions, not just what they are predicting.

It may not be critical to know exactly how an auto-correct
model fixes your text message, or how one’s Google search
results came about, but there are many scenarios where au-
tomated decision-making processes can have a significant
impact on an individual’s life. For example, a person may be
denied a bank loan by an automated system run by a bank.
In a bad (but not unrealistic) scenario, the person may be
denied any explanation as to why they were not approved
for a loan. Even worse, the employees using the system may
not understand how or why their model came to that specific
decision. The model may have even been trained on biased
demographic data, where the most predictive attributes may
be the person’s ethnicity or living address. These problems
of transparency (not given an explanation as to how the deci-
sion is made) and ignorance (not knowing how the decision
is made) are some of the problems that can occur when using
predictive modeling; this is especially important when these
decisions can significantly impact people’s lives. For a more
detailed account of this and other scenarios, please consult
the book Weapons of Math Destruction (O’Neil 2016) for a
great primer.

The lack of transparency and interpretability in machine
learning models can decrease user understanding of these
models, which may ultimately lead to their decreased use.
Europe has taken initial steps to address some of these issues
in their GDPR bill1, where one article in the bill states that
consumers have a “right to an explanation” (Goodman and
Flaxman 2017) for any automated decision that can signifi-
cantly impact that person’s life (e.g. bank loan, medical di-
agnosis, etc.). Thus, it is not surprising to see the subfield of
interpretability in machine learning rapidly expanding; this

1https://www.privacy-regulation.eu/en/index.htm



is evident from the increasing number of papers published
in this area, the creation of new workshops and conferences
dedicated to explainable AI (XAI), and the increasing num-
ber of industry-backed tools2 created for the purpose of un-
derstanding and improving predictive models learned from
data.

There are many ways to view interpretability in machine
learning, as the term is ill-defined (Lipton 2018), but inter-
pretability is generally described as a method of analyzing
the model (i.e. analyzing the components of the model or
seeing how changes to the input can change the outputs of
the model) and/or data used to train the model to better un-
derstand the model’s behavior; understanding the model at a
deeper level can then help to debug, improve, and increase
trust in the model, among others (Miller 2018). To get a
more comprehensive background of model interpretability,
please review any of the increasing number of introductions3

to machine learning interpretability and the many methods
already created for virtually every subfield of AI (Gunning
2017).

This paper studies a relatively new and particularly in-
teresting angle of model interpretability, that of understand-
ing model predictions through the lens of the training data.
Since every machine learning algorithm is dependent upon
the data it is trained, one avenue for understanding how a
model makes a decision for a new instance is to trace that
prediction back through the model to the specific training
instances most responsible for that decision. For example,
if your image classifier labels a picture of a dog with cats
in the background as a cat, then it would be beneficial to
have a system that could trace that prediction back to exam-
ples in the training data that may also have a dog with cats
in the background labeled as cats. This ability to find noisy
or problematic instances in the training data not only helps
improve the dataset, but ultimately improves the resulting
model, and any other models that train on this dataset. This
small example helps emphasize the need to answer the ques-
tion: “what is it about my training data that led my model
to make this particular prediction?” This is especially im-
portant as the size of datasets continue to increase, where it
is simply not possible for one to manually inspect all data
points.

These types of explanations are called instance-
attribution methods, as each training example attributes
more or less to the model’s prediction of the target instance.
Thus, the first part of this paper introduces and analyzes
the different methods for generating instance-attribution ex-
planations developed for different machine learning models.
Then, the second part of this paper looks at the burgeoning
area of efficient data deletion in machine learning.

Imagine a scenario where one has found a number of
problematic training instances in the data after they have
trained their complex neural network model for weeks. They
subsequently remove the offending training examples from
their database and would like to update their model to reflect
these changes. Unfortunately, most current machine learn-

2https://github.com/microsoft/interpret
3https://xaitutorial2019.github.io

ing models are not well-equipped to handle these types of
requests. The only option for most machine learning practi-
tioners is to retrain their model on the newly revised dataset.
If one can “remove” the effect of a training sample from a
learned model, then the practitioner may be able to avoid
retraining their model from scratch, saving time and compu-
tational resources.

The ability to effectively remove training samples from a
learned model not only has time and money saving poten-
tial, but may also become a more necessary option as data
privacy and ownership become more mainstream (Veale,
Binns, and Edwards 2018). Once again, the GDPR has
attempted to address this issue by mandating that com-
panies remove a user’s data if that user so desires (Vil-
laronga, Kieseberg, and Li 2018). Currently, the details of
what a company must do to satisfy this request is under de-
bate (Kwak et al. 2017), but it may soon be a reality that all
traces of that user’s data must be removed from the company,
including all machine learning models.

Deleting someone’s personal data from a database is a rel-
atively simple task, as databases are designed to efficiently
handle this type of action, but most machine learning models
are not setup to accommodate this kind of request. The resul-
tant model from a machine learning algorithm is generally a
condensed view of the training data, summarizing the statis-
tics of the data well enough to make useful predictions on
future unseen data. Thus, the second part of this paper ana-
lyzes the current progress of enabling efficient data deletion
in machine learning models, and outlines promising future
directions in this area.

For each of these two broader topics: instance-attribution
explanations and efficient data deletion, a more in-depth
background is provided to give the reader a better sense of
what these approaches are, and why they are useful. Then
the current landscape of work is shown as well as the lim-
itations of each approach, and the gaps in knowledge that
need filling. Finally, a realistic use case is presented and a
proposal for future study is outlined.

2 Instance-Attribution Explanations
2.1 Background
The complexity and ubiquity of machine learning models
has boosted the subfield of Explainable AI (XAI) into the
awareness of researchers around the world. This is evident
from the newly emerging workshops and conferences dedi-
cated to XAI, and existing conferences that are putting more
of an emphasis on model interpretability; there are also a
number of academic and industrial-supported libraries to
help users better understand their model’s decision-making
processes.

From a high-level perspective, model interpretability can
impact all levels of the machine learning pipeline, from the
machine learning practitioner, to a high-level executive, to
the consumer of the model’s decisions. As a machine learn-
ing practitioner, knowing how your model makes decisions
is crucial for being able to improve and/or debug it. As an
executive of a company, one may be less well-versed in the
details of machine learning algorithms than the practitioner,



but knowing how a model makes predictions may impact
how business decisions are made and how the model is de-
ployed, if at all. From a user perspective, an accompanying
explanation of how a model makes a particular decision can
engender trust from the user. This trust may then allow mod-
els to be used in more and more diverse situations. However,
one must be wary of the possibility of misleading expla-
nations, whether it be purposeful or accidental; this is dis-
cussed further in §2.9.

This paper reviews all work related to instance-attribution
methods. Before analyzing these approaches, it is neces-
sary to introduce a closely related form of interpretability:
feature-attribution methods. Feature-attribution techniques,
a form of interpreting model predictions through the attribu-
tion of individual features, have garnered much attention in
the past few years.

These methods allow one to answer the question, “What
part of my input caused my model to make this prediction?”
Many models offer a global perspective about what features
are predictive; such as the coefficients in a linear regression
model or the feature importances in a tree ensemble, but
feature-attribution methods allow one to see which features
are most important for this particular input, and quantify
how much each feature is contributing to the final prediction,
whether it be a single classification or a ranking (Hoeve et
al. 2018).

Seminal work by Ribeiro et al. (Ribeiro, Singh, and
Guestrin 2016) called LIME explains the prediction of a
complex model (e.g. a neural network (Hecht-Nielsen 1992)
or tree ensemble (Banfield et al. 2006)) using a surrogate
linear model. LIME takes the input instance and slightly
perturbs that input many times, then fits a linear model to
those perturbations and produces an explanation in terms
of the linear model’s coefficients. This process of explain-
ing a complex model with a simpler, arguably more under-
standable model such as a linear model is popular among
feature-attribution methods (i.e. it is easier to reason about
a model with less internal components such as a linear re-
gression model than one with more such as a deep neural
network).

More recent work by Lundberg et al. (Lundberg and Lee
2017) recognized the relations between LIME and several
other works, and tied them together under one framework
called Shapley values. Efficient implementations of this
framework for different models allow anyone using complex
machine learning models to analyze their model’s predic-
tions through the lens of the input features (Lundberg, Erion,
and Lee 2018).

Analagous to feature-attribution techniques, instance-
attribution methods allow one to answer the question,
“Which part of my training data is most responsible for
my model’s prediction?” As all machine learning models
are built using data, it seems only natural to better under-
stand a model’s behavior by finding the training instances
it deems most important. Taking this perspective on model
interpretability brings unique advantages when compared
to feature-attribution methods; such as the ability to debug
noisy or problematic data, increase user trust by showing
similarly predicted or highly influential instances to the test

instance (Zhou et al. 2019), increase model understanding,
and create adversarial examples that expose flaws in the
model and may lead to more robust models.

These techniques can and likely should be used in con-
junction with other interpretability techniques like feature-
attribution methods to get the most comprehensive view of
how one’s machine learning model behaves. Next, the cur-
rent landscape of techniques providing instance-attribution
explanations are shown, starting with the simplest and most
naive, leave-one-out retraining.

2.2 Preliminaries
As previously mentioned, the term interpretability is ill-
defined (Lipton 2018); thus, in this paper we define in-
terpretability in the context of instance-attribution explana-
tions as any beneficial actionable insights resulting from an
instance-explanation of a test instance prediction for a given
model. For example, an instance-attribution explanation of
an incorrectly predicted test instance can identify noisy or
problematic training instances, prompting the beneficiary of
the explanation to remove those instances, improving the
dataset and resulting models trained on the newly cleaned
training data.

This paper focuses on instance-attribution methods de-
signed for classification models. In classification, given a
dataset D = {xi, yi}ni=1 where n is the number of training
instances, xi = {x1

i , x
2
i , · · · , xki } denotes instance i with k

attributes, and yi is the label of instance i taking on one of c
labels; the goal is to predict the label of a new test instance
xt, denoted ŷt. The following instance attribution techniques
attempt to estimate the effect of each training instance on ŷt.
Finally, we denote Θ as the parameters of a neural network
model.

2.3 Leave-One-Out Retraining
The most straightforward and naive approach to quantifying
the “effect” of a training instance on a model’s prediction
of a test instance is to take out that training instance, retrain
the model, and make a new prediction on the same test in-
stance; the “effect” of that training instance is the resulting
difference between the two predictions.

The benefit of this approach is the simplicity and ease of
implementation, as this method can work with virtually ev-
ery machine learning algorithm in existence. This may even
be favorable if the model being trained is very simple the
data they use for training is very small. This approach gives
one perspective of how much each training instance influ-
ences the model’s prediction.

Unfortunately, most real-world datasets are too big for a
model to retrain for every instance; models are also increas-
ingly complex, taking hours, days, or even weeks to retrain
for even a single example. Thus, several new approaches de-
signed primarily for more complex models (e.g. neural net-
works, tree ensembles) aim to approximate the results you
would get from performing leave-one-out retraining without
having to explicitly retrain the model from scratch; the most
notable of these methods is called influence functions.



2.4 Influence Functions
Influence functions (Cook and Weisberg 1980) were first in-
troduced in the field of robust statistics, and allows one to
answer the question, “How much does training instance xi
affect the prediction ŷ if xi is upweighted by an infinitesimal
amount?” Influence functions were first developed to work
with ordinary least squares (OLS) regression, where it can
measure the effect of a training instance on a test prediction
without having to retrain the model. Wojnowicz et al. (2016)
introduced influence sketching, which extends Generalized
Cook’s Distance (Pregibon 1981) (the generalized version
of Cook’s Distance (Cook 1977)) to work for larger scale
regression datasets by injecting random projections into its
construction. They are able to apply this methodology to
generalized linear models (GLMs) and demonstrate the abil-
ity to detect highly influential samples on a cybersecurity
data set.

Koh and Liang (2017) were the first to adapt influence
functions to a broad range of neural network architectures,
where they define the influence of a particular training in-
stance on a test instance prediction as:

Iup,loss(x, xt) = −∇θL(xt, θ̂)
>H−1

θ̂
∇θL(x, θ̂) (1)

where Iup,loss(x, xt) represents the influence of the train-
ing instance x on the loss of the test instance xt if x were
upweighted by an infinitesimal amount. θ̂ is the empirical
risk minimizer given by:

θ̂ := arg min
θ∈Θ

1

n

n∑
i=1

L(xi, θ) (2)

assuming the empirical risk is twice differentiable and
strictly convex in θ. The rest of equation (1) contains the
derivative of the test instance loss ∇θL(xt, θ̂)

>, the deriva-
tive of the training instance loss ∇θL(x, θ̂), and the inverse
Hessian matrix H−1

θ̂
. The inverse Hessian matrix is an ex-

pensive task, but Koh and Liang use the LiSSA (Agarwal,
Bullins, and Hazan 2017) algorithm to efficiently compute
Hessian vector products instead of explicitly computing the
entire matrix.

This definition of influence can be interpreted in sev-
eral ways: first, this is the change in test loss as the train-
ing instance is infinitesimally upweighted. This can also be
viewed as the proportion between the derivative of the train-
ing loss and the derivative of the test loss; if both are big
and in the same direction, this represents a greater influence
of the training instance on the test instance prediction. From
the model’s perspective, influence functions can be seen as
a similarity measure between the training instance and the
test instance. Finally, this is roughly equivalent to a second
order Taylor expansion, where the expansion occurs around
the test loss, and moves in the direction of the training loss
derivative.

Applying influence functions results in an approximation
to leave-one-out retraining, and its ability to be efficiently
computed on more complex models opens up new insights

to these types of models previously unattainable. For exam-
ple, Figure 1 shows the most influential training samples on
the prediction of a test image (Figure 4 from (Koh and Liang
2017)). The samples are shown for two different types of
image classifiers, and the highly influential samples high-
light some of the differences between these models. The
SVM concentrates more on color, while the Inception net-
work is able to better capture the characteristics of the clown
fish. The most helpful samples for the SVM are fish im-
ages, while dog images generally hurt the prediction; this
is in constrast to the Inception network, where dog images
generally do not hurt the prediction and in one case actually
helps (Figure 1: top-right). Also, influence is not necessarily
correlated with euclidean distance.

Figure 1: The top two most influential samples on the predic-
tion of “fish” for a test image from the SVM and Inception
image classifiers. Also, the influence of each sample (green
for fish images and red for dog images) are plotted against
the Euclidean distance to the test image in terms of pixel
space (Figure 4 from (Koh and Liang 2017)).

This approach by Koh and Liang provides the ability to
compute the influence of training examples on a test pre-
diction from any model with a convex and twice differen-
tiable loss function, which covers many neural network-type
models and many other differentiable models such as SVMs;
however, these are not the only high-performing and ubiqui-
tous models in use today. Tree-based methods, in particular
tree-ensemble approaches such as random forest (Breiman
2001) and gradient boosted decision trees (GBDT) (Fried-
man 2001) are still very active areas of research, with
new implementations of the GBDT framework (Chen and
Guestrin 2016; Ke et al. 2017; Prokhorenkova et al. 2018)
being consistently released for the past several years, many
of which are backed by industry support.

Influence functions as proposed by Koh and Liang can-
not be directly applied to GBDT, as the step-wise na-
ture of attribute-based splits in a decision tree make the



Figure 2: A misclassified test instance (left) and the four most inhibitory samples to the test instance’s true label (Figure 5 from
(Yeh et al. 2018)).

entire model non-differentiable. Fortunately, Sharchilev et
al. (2018) recently proposed an extension of influence func-
tions to tree ensembles, focusing mainly on GBDT.

They developed two algorithms, LeafRefit and LeafInflu-
ence, as well as faster versions of each one. LeafRefit makes
the assumption that the effect of removing a training in-
stance can be estimated assuming the tree structure remains
fixed. With this in hand, they are able to update the leaf val-
ues and measure the effect of the target training instance. For
LeafInfluence, they no longer need this assumption but rely
on the intuition that a small enough perturbation of a target
training instance will not disrupt the tree structure. This al-
lows the leaf values to change smoothly with the weight of
the training instances when computing the derivative of the
test loss with respect to the training weights, resulting in an
approximation of leave-one-out retraining for GBDT mod-
els.

They then show that their methods are able to accurately
approximate the effect of a training instance on a test in-
stance in an information retrieval setting using the metric
normalized discounted cumulative gain (NDCG) (Wang et
al. 2013). They also demonstrate how they are able to find
problematic training instances for their model, and how re-
moving those instances from their model improves perfor-
mance. Finally, they are able to detect some domain mis-
match in a hospital dataset; however, it should be noted that
this dataset was intentionally modified to introduce this mis-
match.

Their method hinges upon one configuration, the update
set, which trades off computational complexity for accuracy.
This update set tells their algorithm which training-instance-
prediction changes to pay attention to; paying attention to
fewer and fewer instances speeds up computation, but sacri-
fices approximation quality, while larger update sets increase
quality, but significantly increase the runtime. In their run-
time experiments, it takes an average of two seconds to com-
pute the influence of each training instance using the largest
update set. If the training set is large, this may be a limiting
factor when choosing to use this approach or not, as expla-
nations may not be readily available in realtime.

Even with Koh and Liang’s tractable adaptation of the in-
fluence functions framework to differentiable models, and
any extensions of this methodology to inherently non-
differentiable models, these approaches still require some

potentially expensive derivative computations. This prob-
lem is exacerbated when the number of parameters in the
model increases to extreme levels (e.g. neural networks with
billions of parameters). Additionally, deep learning models
typically need large amounts of training data to work well,
increasing the time it takes to compute the influence of each
and every training instance for one test instance. Representer
point approaches are a response to these issues.

2.5 Representer Points
The Representer Point framework introduced by Yeh et
al. (2018) is an alternative to influence functions. Their work
hinges on the representer theorem (Schölkopf, Herbrich, and
Smola 2001), which states that the optimal solution to many
learning problems, specifically those applied to empirical
risk minimization within a reproducing kernel Hilbert space
(RKHS), can be represented in terms of the training exam-
ples. Yeh et al. show that the pre-activation predictions from
the second-to-last layer of a neural network can be decom-
posed into a linear combination of the training point activa-
tions.

They show that if a model is optimized with an L2 regu-
larizer:

Θ∗ = arg min
Θ

1

n

n∑
i

L(yi, φ(xi,Θ)) + λ|Θ1|2 (3)

where φ(xi,Θ) is the pre-activation prediction of train-
ing sample xi and Θ1 represents the parameters of the last
intermediate layer of the network, then any pre-activation
prediction φ(xt,Θ) of any arbitrary test point xt can be de-
composed as follows:

φ(xt,Θ) =

n∑
i

k(xt, xi, αi) (4)

where k(xt, xi, αi) represents the contribution of training
instance xi on xt’s pre-activation prediction. k(xt, xi, αi) =
αifift is a weighted similarity measure (in this case the dot
product between the last layer feature values of xi and xt)
where αi is the “representer value” of training sample xi
defined by:



αi =
1

−2λn

∂L(xi, yi,Θ)

∂φ(xi,Θ)
(5)

In practice, if one wishes to compute the representer val-
ues of an already trained network, one can retrain the last
layer of the network, using the feature representation of the
second-to-last layer as the input to this new model; then,
train this last layer with an L2 regularizer and compute
the representer values. Once these are computed, the pre-
activation prediction of any arbitrary point can be decom-
posed as a sum of the training instance contributions using
equation (4).

Figure 2 gives an insightful example of problematic train-
ing instances found using representer points. There is an in-
correctly predicted test instance where some antelope are
predicted as deer. In the negatively influential training sam-
ples, there are antelope in the picture, along with other an-
imals such as elephants and zebras. These types of training
images can confuse image classifiers into making incorrect
predictions. The authors suggest this tool can be used to find
and remove examples like these, or give these samples multi-
ple labels and turn this into a multi-label classification prob-
lem.

Figure 3: A test instance (left) and two positively influen-
tial training samples, including the saliency maps for each
one (Figure 6 from (Yeh et al. 2018)).

They also provide an example of combining two types of
explanations, instance and feature attribution methods (Fig-
ure 3). A test image with its prediction and two posi-
tively influential training samples are shown, along with
their corresponding sensitivity maps generated by Smooth-
Grad (Smilkov et al. 2017). These sensitivity maps essen-
tially show the user what parts of the image the model is
using the most by computing the gradient of the class func-
tion with respect to the input image. Thus, this example not
only tells us which training samples are important for this
test instance, but also what parts of these samples it believes
are important.

Finally, Yeh et al. demonstrate the efficiency of their ap-
proach. The representer point framework incurs a one-time

fine-tuning cost (an average of∼7s and∼12s on the CIFAR-
10 and AWA datasets) to compute the representer values,
but then computing the contribution of all training samples
is much faster (∼0.1s and ∼0.2s to explain a single test ex-
ample). Contrast this with influence functions, which incur
no setup or fine-tuning costs, but took ∼267s and ∼172s
to generate an explanation for a single test example on the
CIFAR-10 and AWA datasets, respectively. Clearly, if gener-
ating real-time instance-based explanations is a priority, the
representer point framework is a more suitable alternative to
influnce functions.

Similar to influence functions, this representer point
framework cannot be directly applied to non-differentiable
models such as decision trees. In recent work, we have de-
veloped a new method called Tree-ensemble Representer-
point EXplanations (TREX), a way to provide instance-
attribution explanations for tree ensembles (mainly random
forest and GBDT) based on the representer theorem. TREX
works by approximating the behavior of a tree ensemble
with a surrogate kernel model that fits the representer the-
orem criteria and enables its predictions to be decomposed
as a sum of its training samples.

TREX uses tree ensemble kernels (Davies and Ghahra-
mani 2014) to capture the structure of the trees and mea-
sure the similarity between data points. This kernel is
used to train a kernel model (e.g. kernel logistic regres-
sion (KLR) (Yu, Huang, and Lin 2011) or a support vec-
tor machine (SVM) (Cortes and Vapnik 1995)) to approxi-
mate the original tree ensemble. The tree ensemble kernels
are defined as dot products in an alternate feature repre-
sentation defined by the feature mapping φ k(xi, xj ;T ) =
φ(xi;T ) · φ(xj ;T ). Note that the kernel is parametrized
by T , since the computation necessarily depends on the
structure of the tree ensemble. Figure 4 shows the differ-
ent choices for φ(x, T ): LeafPath (Bloniarz et al. 2016;
Plumb, Molitor, and Talwalkar 2018; He et al. 2014), Fea-
turePath (Davies and Ghahramani 2014), and a new tree en-
semble kernel called LeafOutput.

Recent work has also used tree-ensemble kernels to gen-
erate explanations. MAPLE is a model-agnostic explainer
that computes the similarity of the test instance to the train-
ing instances, and uses this similarity (which they call the
“local training distribution”) as an instance-based explana-
tion (Plumb, Molitor, and Talwalkar 2018). However, their
approach only looks at the similarity between the test in-
stance and the training instances, whereas TREX decom-
poses the test instance prediction as a weighted sum of the
training instance similarities to the test instance.

Our results show that TREX is able to accurately ap-
proximate the predictive behavior of a tree ensemble, bet-
ter debug and identify the most problematic training in-
stances (Figure 5), and generate explanations faster than al-
ternative methods such as LeafInfluence.

The approaches discussed thus far have all found some
measure of similarity between data points through the
model’s perspective. This is similar to K nearest neighbor
(KNN) (Altman 1992) whose test predictions are directly
computed from its nearest neighbors in some feature space.
Showing hese neighbors is a perfectly valid instance-based
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Figure 4: Three different transformations of a single data
instance from a two-tree gradient boosted ensemble. Each
fi is a feature, and the numbers at the leaves represent leaf
values. The lines in bold represent the paths taken through
each tree in the ensemble given the input instance.

explanation of the test instance prediction, but KNNs in
the original feature space are generally not as predictive as
more complex models such as an ensemble of decision trees.
TREX uses tree ensemble kernels to enter a transformed
feature space where data points are more semantically clus-
tered, a form of nearest neighbor for decision trees (Lin and
Jeon 2006); TREX additionally computes representer values
to weight those similarities to generate instance-attribution
explanations. The work by Yeh et al. can also be framed this
way; they use all intermediate layers as a feature transforma-
tion, and compute the similarity between data points using
this new representation.

2.6 Data Shapley
Ghorbani and Zou inroduce data Shapley (Ghorbani and
Zou 2019) to evaluate the value of individual training
points (Raskar et al. 2019). Their method is based on Shap-
ley values (Shapley 1953), a game theoretic approach to
evaluating participant contribution to a shared coalition.

Data Shapley defines the value of a data point in a dataset
D = {xi, yi}ni=1 as follows:

φi = C
∑

S⊆D−{i}

V (S ∪ {i})− V (S)(
n−1
|S|
) (6)

where φi represents the valuation of data point i, S is a
subset of D not including training point i, and V (S) rep-
resents the predictor performance when training the model
on the subset S. Thus, this equation can be interpreted as
the average change in predictor performance when training
with and without training point i using all possible sub-
sets of D not including training point i. This is close to
leave-one-out (LOO) evaluation where they evaluate φi as
V (D) − V (D − {i}). However, they argue this simpler al-
ternative only uses one possible subset, and does not satisfy
the equitable valuation properties outlined in Ghorbani and
Zou’s work (2019).

Since equation (6) is typically intractable to compute
exactly, Ghorbani and Zou introduce an approximation to
this measure called truncated Monte Carlo (TMC-Shapley),
in which they sample random permutations of the train-
ing data, and add a new data point only if adding it im-
proves performance over using only the previous data points.
They also find that increasing the training size decreases
the marginal contribution of each sample to the point where
each marginal contribution is approximately zero, at which
point they stop the computations of additional data points.

Using TMC-Shapley, Ghorbani and Zou showcase a num-
ber of use cases for different datasets. For example, they
modify a 3000 instance spam dataset by flipping half of its
labels; they then order the training instances to be checked
by their valuations, and fix them when inspected. In most
cases, their approach orders the training data such that
checking and fixing the noisy instances is more efficient than
checking the training data ordered randomly or by LOO.
They also take an image dataset and add varying levels
of white noise to 10% of the images, and find that TMC-
Shapley assigns lower value to these noisy images as they
degrade the model’s performance.

They also show how TMC-Shapley can be used for do-
main adaptation by removing training instances with nega-
tive valuations when evaluating on the target data. Overall,
their approach of data valuation has solid theoretical ground-
ing under the foundation of Shapley values, but their exper-
iments lack any time comparisons with alternatives such as
LOO; without this, it is hard to get a sense of how much
faster their approach is, and this can have a big impact on its
adoption and widespread use.

Jia et al. (2019b) also use Shapley values to approximate
the worth of individual data points using various approxi-
mations to the exact Shapley computations. In related work,
Jia et al. (2019a) compute the approximate and exact valua-
tion of data points for a K-nearest neighbor classifier. Their
approach is able to guarantee bounds on the approximation
error, unlike the approach from Ghorbani and Zou.

2.7 Prototypes and Criticisms
Prototype selection attempts to select the minimum number
of training samples that most comprehensively capture the
distribution of the training set. The main motivation behind
these approaches is to efficiently train classifiers on a small
subset of a much larger dataset. However, recent methods
have put an additional emphasis on interpretability, allow-
ing one to inspect the prototypical examples on which these
models are trained (Bien, Tibshirani, and others 2011).

A Bayesian case model has been developed using
Bayesian optimization to generate case-based reasoning ex-
planations and provide prototype selections (Kim, Rudin,
and Shah 2014). Building on this work, Kim et al. (2016)
introduce the idea of criticisms, which show training exam-
ples from areas in the training data that cannot be cleanly
represented by prototypical samples; they show that this im-
proves interpretability mainly in more ambiguous segments
of the training data. Finally, Anirudh et al. (2017) developed
a generic graph-based approach to finding the most influen-
tial samples in the training data.
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Figure 5: Change in test accuracy as training points are checked and fixed; the dashed line represents test accuracy before label
corruption.

Prototype and criticism selection approaches are certainly
related to model interpretability via the training data. How-
ever, these are not instance-attribution explanations; they
provide a condensed global view of the training data, but
cannot show how much each training instance contributes to
a specific test prediction.

2.8 Additional Applications
There are a number of different beneficial use cases that arise
from analyzing the impact of individual training instances on
one or a group of target instance predictions, many of which
take a form of dataset cleaning or debugging. For example,
Nelson et al. (2008) use a form of leave-one-out retraining
to find adversarially created email attacks on a spam filter
training dataset. Sullivan et al. (2013) identify noisy data by
finding the training samples most responsible for incorrectly
classifying near ground-truth “demonstration” data points
supplied by a demonstrator; they find these noisy points
through model-specific heuristics (e.g. the training samples
present in the parent node of the leaf that incorrectly classi-
fied the “demonstration” instance).

In contrast, some methods can even help create poisoning
attacks, instead of defend against them. Influence functions
can tell one exactly how to change a particular training in-
stance to increase the loss on a target test instance. Koh et
al. (2017) use this to generate noise that will alter specific
training instances in a way that they are indistinguishable
from the original, but cause the predicted labels to flip for the
target instances (Figure 6). They demonstrate this approach
on a model which correctly classifies 591/600 test instances.
If they perturb just 10 training instances for each test in-
stance, they can flip the prediction of all but one of the 591
predictions, making the classifier essentially useless. This
highlights the ease at which new adversarial examples can
be created, and may ultimately lead to more robust models
as classifiers can use these techniques to generate adversar-
ial examples and then come up with defenses against these
attacks.

Brunet et al. (2019) use influence functions to measure the
bias of word embeddings for systems such as GloVE (Pen-
nington, Socher, and Manning 2014), where they simplify
the computation of the influence function to the learned em-
bedding of the GloVE model, resulting in efficient compu-
tation of differential bias for large corpora of text. Alterna-

tively, Pezeshkpour et al. (2019) use influence functions to
explain a model’s link prediction by finding the most influ-
ential facts surrounding that relation; they also use this tool
to study the robustness of link prediction models.

Schulam and Saria (2019) build on influence functions to
approximate the uncertainty surrounding a target test predic-
tion, and they use this method to reliably audit models after
training. Ting and Brochu (2018) use influence funtions to
come up with an optimal subsampling strategy for datasets
that are too large.

2.9 Limitations and Research Opportunities
Analyzing model behavior via the training data has led to
some intriguing and useful applications, but this one per-
spective of model interpretability has a number of limita-
tions.

Scalability. One of the main problems going forward is
scalability. Influence functions are still too slow to be used
for very large models with millions or billions of parame-
ters, and this problem is only exacerbated with the increase
in data sizes. Representer points is an effective solution to
this problem, though these approaches need to introduce a
separate interpretable surrogate model to explain the behav-
ior of the original complex model, and even these methods
will likely face scalability issues as dataset sizes increase.

Multiple instances. Current approaches only show the ef-
fect of individual training instances on one or multiple tar-
get test predictions, though it may be beneficial to identify
and compute the aggregate effect from groups of training in-
stances. Some preliminary results for this line of work are
underway (Koh et al. 2019; Basu, You, and Feizi 2019).

Robustness. Just as inputs to machine learning mod-
els are susceptible to adversarial manipulations (Narodytska
and Kasiviswanathan 2017), model explanations are vulner-
able to similar events. For example, Ghorbani et al. have
shown that two inputs with visually indistinguishable differ-
ences can result in two very different feature-based expla-
nations (in this case saliency maps), questioning the robust-
ness of these explanations (Ghorbani, Abid, and Zou 2019).
If feature-based explanation systems are vulnerable to these
types of manipulations, than instance-attribution techniques
are very likely to as well. Thus, new methods should be de-
veloped that strive towards robust instance-attribution expla-
nations in the face of small changes to target test instances.



Figure 6: Example of adding visually imperceptible noise to a training image can flip the prediction of a number of target test
instances (Figure 5 from (Koh and Liang 2017)).

Evaluation. Part of the problem with developing
new instance-attribution techniques (as well as feature-
attribution methods) is the lack of clear and consistent eval-
uation metrics (Doshi-Velez and Kim 2017). While there are
ongoing efforts to standardize the evaluation of explanations
for some models and problem domains (Yeh et al. 2018;
Hooker et al. 2019), others believe post-hoc explanation sys-
tems should not be used at all, and instead researchers should
devote their time to developing more inherently interpretable
models that still perform well (Rudin 2019).

Generative Models There is plenty of opportunity
to explain the behavior of generative models such as
GANs (Goodfellow et al. 2014) and universal language
models like BERT (Devlin et al. 2019) and GPT-2 (Rad-
ford et al. 2019). The approaches discussed thus far typically
have well-defined training instances and a straightforward
model architecture. In the case of neural language models,
each training instance is not well-defined, as the input to the
model are finite sequences of tokens; thus, explaining how
a language model produced a specific output in terms of the
training data is not immediately obvious. GANs are also not
easy to explain, as the training procedure of a GAN is depen-
dent not only on input training images, but also on images
from the generative model. It is not clear how one would ap-
ply any of the methods discussed so far on these kinds of
models.

Applications. Finally, although the number of different
applications for instance-attribution explanation systems is
growing, there is still much room for new and insightful ap-
plications of these techniques, both to new models as well
as differing problem domains; this is especially important
for problem domains where the training instances are not as
visually digestible (i.e. text / image data vs tabular data).

3 Efficient Data Deletion
3.1 Background
The current debate about data privacy and ownership has
sparked new discussions about whether or not someone has
the right to remove their data from companies that use
it (Shintre, Roundy, and Dhaliwal 2019). The GDPR has
taken an initial stance in this debate and has mandated that
companies remove user data upon request. This has led to
subsequent discussions about the extent to which companies
must fulfill such a request, and if they even have the capacity
to do so (Kwak et al. 2017).

Removing data from standard databases, such as rela-
tional database management systems (RDBMS), is a sim-
ple task since these systems store data in the form of linked
tabular data, making deletion from these tables straightfor-
ward and efficient. However, machine learning models can
also be viewed as a type of database, designed to summarize
the statistics of the training data well enough to provide use-
ful predictions on future unseen data. This poses a problem,
if machine learning models have a “memory” of the data
they are trained on, they can then leak information about that
data. Even if this data has been deleted from a companies’
RDBMS system, the data continues to exist in their learned
models.

In addition to legal obligations that motivate the need
for models to update themselves upon request, there are
also financial and interpretable reasons for efficient model
updating. The complexity of many machine learning mod-
els today, coupled with increasing dataset sizes, have in-
creased training times significantly; it can sometimes take
days or even weeks to train a large model (Shoeybi et al.
2019)! If a company must remove data from its models, it
may become prohibitively expensive to retrain these mod-
els with the specified data removed, especially if deletions



were to happen frequently. If a model can be efficiently up-
dated without having to retrain, the company may save valu-
able resources. From an interpretable standpoint, generating
an instance-attribution explanation via leave-one-retraining
may be a viable option through efficient deletion.

There are two broad categories of model unlearning: ex-
act and approximate. Definitions and examples of each are
presented in the following sections. Then, challenges and
promising research directions are discussed.

3.2 Exact Model Unlearning
The term exact unlearning describes methods that are able
to remove the effect of training sample i from a machine
learning model, resulting in a new or updated model that is
exactly the same as if that model had been trained without
training sample i.

Leave-One-Out Retraining The simplest way to imple-
ment exact unlearning is by leave-one-out retraining; this
happens by removing one or multiple instances from the
training data and retraining the model on the remaining
instances. This is not only the simplest method to under-
stand and implement, but it also works for essentially ev-
ery machine learning algorithm in existence. Unfortunately,
depending on the size and complexity of the dataset and
model, retraining can often be a prohibitively expensive op-
tion. Thus, decremental learning techniques are a response
to this problem.

Decremental Learning Decremental learning removes
the effect of a training sample on a learned model by updat-
ing it, resulting in an exact unlearning model. Some models
can already support this operation efficiently without mod-
ification; consider a simple naive Bayes model (Rish and
others 2001) model with two binary attributes and a binary
class label. This model can be represented by 5 parame-
ters: P (y = 1), P (X1 = 1|y = 1), P (X1 = 1|y = 0),
P (X2 = 1|y = 1), P (X2 = 1|y = 0). These probabil-
ities are simply counts from the training data (i.e. P (y =

1) = # instances where y=1
# total instances ). Thus, deleting an instance from

the learned model simply means updating these counts and
probabilities, an O(1) operation; this can be done without
retraining the model from scratch. K-nearest neighbor (Du-
dani 1976) is another model that can handle decremental
learning, though it does not actually have a training phase.
However, the majority of models, do not naturally support
decremental learning; thus, the works described next typi-
cally alter the training algorithms in one way or another to
produce a model capable of efficient data deletion.

Decremental learning has strong analogs to incremen-
tal/online learning, which was invented to handle scenarios
of out of-core-learning (i.e. not all the data fits in mem-
ory) and streaming data (i.e. not all the data is available
at one time). Incremental learning has been around for a
long time (Schlimmer and Granger 1986), and some ap-
proaches even support both incremental and decremental
learning. For example, it has been shown for SVMs that in-
cremental (Diehl and Cauwenberghs 2003) and decremen-
tal versions can be made by keeping track of the compu-

Figure 7: Adaptation of a learning algorithm to support SQ-
learning (Figure 1 from (Cao and Yang 2015)).

tations that satisfy the Kaursh-Kuhn Tucker (KKT) con-
ditions; if a deletion is requested, those statistics can be
easily updated to support that operation while maintain-
ing the KKT conditions (Cauwenberghs and Poggio 2001;
Karasuyama and Takeuchi 2010; Romero, Barrio, and Be-
lanche 2007; Chen et al. 2018). Cauwenberghs and Poggio
use the decremental part of their SVM to perform leave-
one-out evaluation efficiently. Incremental and decremental
learning also exist for proximal SVMs (Mangasarian and
Wild 2001) for both binary (Fung and Mangasarian 2002)
and multiclass cases (Tveit, Hetland, and Engum 2003;
Tveit and Hetland 2003). Finally, Duan et al. developed
decremental learning algorithms for lagrangian and least
squares SVMs using similar principles (Duan et al. 2007).

More recent work by Cao and Wang (2015) have shown
that a number of machine learning algorithms can be slightly
modified to support SQ-learning (Kearns 1998), a form of
learning where the algorithm does not depend on the indi-
vidual training points directly, but rather on statistical sum-
mations of the data (Figure 7). They explain that the non-
adaptive form of SQ-learning results in exact model un-
learning, which they demonstrate with a naive bayes model
and an item-item collaborative filtering model (Sarwar et
al. 2001). On several experiments for different problem do-
mains, they pollute the training data and compare their re-
moval approach against retraining with a set of target sam-
ples removed; they find that their approach is significantly
faster than retraining from scratch.

Cao et al. (2018) have developed a method called
KARMA which identifies polluted training samples from
a learning system and uses the approach by Cao and
Wang (2015) to efficiently unlearn those samples from the
system.

Quantization Stability is an idea from statistical learning
theory which states that small changes to the dataset should
result in small changes to the resulting model (Mukherjee et
al. 2006; Shalev-Shwartz et al. 2010). Ginart et al. (2019)
leverage this concept by developing a learning algorithm
which results in a quantized model (their algorithm is specif-
ically designed for K-Means). Their method uses additional
data structures to store metadata for each quantized cen-
troid from the initial learning process. This extra metadata



Figure 8: Amortized runtime of 1000 sequential deletions (Table 4 from (Ginart et al. 2019)).

Table 1: Dataset Statistics (Ginart et al. 2019)
Dataset Samples Dimension K
Celltype 12,009 10 4
Covtype 15,120 52 7
MNIST 60,000 784 10
Postures 74,975 15 5
Gaussian 100,000 25 5
Botnet 1,018,298 115 11

allows them to quickly calculate whether deleting a specific
instance would result in a different centroid. If a different
centroid is optimal or the chosen sample to delete is one of
the randomly initialized centroids, then the model is retained
from scratch. The core idea of their approach is that a small
number of deletions does not result in a large change in the
resulting model. Additionally, they find that the amortized
complexity of their algorithm for a single deletion operation
is low.

They also define a model as deletion efficient if it can meet
a lower bound of Ω( nm ) where n is the number of train-
ing samples and m ≤ n is the number of sequential dele-
tions. In order to empirically test their method, they analyze
the amortized runtime of deleting a sequence of 1000 train-
ing samples from an already trained k-means++ model; they
compare this with a leave-one-out retraining approach (Fig-
ure 8); Table 1 gives basic statistics on the datasets.

Their algorithms demonstrate a 1-2 order of magnitude
speedup over retraining; though they note that 1,000 dele-
tions is less than 10% on all datasets, resulting in less
chances for necessary retraining of the model. Figure 9
shows the average number of necessary retrains during
the stream of deletions for Q-k-means. They note that the
MNIST results did not show a significant speedup over re-
training since their model had to retrain about 300 times for
1,000 sequential deletions.

In addition to their proposed algorithms, they introduce
four foundational aspects of efficient data deletion: linear-
ity, laziness, modularity, and quantization. Quantization can
be used to enable efficient deletion for some learning al-
gorithms such as k-means. For linearity, linear operations
can remove the effect of certain training samples for linear
models such as SVMs and logistic regression. Laziness ap-
plies to models created by lazy learning algorithms such as
KNN, where the training operations are delayed until infer-

Figure 9: Average number of retrains on each dataset for Q-
k-means (Figure 2 from (Ginart et al. 2019)).

ence time. Finally, modularity deals with isolating parts of
the data, narrowing the impact of deletion operations to spe-
cific parts of the model.

Schelter (2019) has also developed a method for effi-
ciently removing data from k-means using locally sensitive
hashing; the idea is that data points close in euclidean dis-
tance have a high chance of ending in the same hash bucket,
in which their removal has a minimal impact on the resulting
model. They have also created removal mechanisms for an
item-based collaborative filtering model and a ridge regres-
sion model by maintaining intermediate matrices and updat-
ing them when deletion requests arrive, avoiding the need to
retrain from scratch. They show their methods are typically
several orders of magnitude faster than retraining.

3.3 Approximate Model Unlearning
This section explores works that delete target training sam-
ples from a learned model, but the resultant updated model
is generally not the same as a model retrained from scratch.
These “approximate” unlearning methods are currently the
only option for non-deterministic algorithms such as models
that rely on stochastic learning. For deterministic learning
algorithms, approximate unlearning can also be applied, and
it may be advantageous to do so if approximate unlearning
is faster than exact unlearning.

There are currently a limited number of works that have
attempted model unlearning for stochastically trained mod-
els. Returning to Cao and Yang (2015), they show that itera-
tive models can be unlearned using adaptive SQ-learning, in



Figure 10: The SISA approach: data is split into shards,
and then slices. A separate model is trained for each shard,
and model parameters are saved after learning on each slice.
The ensemble makes a prediction by aggregating the outputs
from all the models (Figure 2 from (Bourtoule et al. 2019)).

which the statistical summations may depend on each other
as learning proceeds. This method provides no guarantees
about the extent to which the training samples have been re-
moved, and they also do not provide any experimental eval-
uation.

Tsai et al. (2014) focus on the primal and dual optimiza-
tion problems of SVMs and logistic regression models. They
solve the optimization problem initially with the given data;
then, they solve the optimization problem again on the re-
vised dataset (i.e. the dataset with the target trainnig samples
removed) using the initial wi (for primal) or αi (for dual)
values from the first solution. They find that using wi from
an initial solution is the best at significantly reducing the
time to find the optimal solution for the revised dataset in
question.

Bourtoule et al. (2019) introduce SISA (sharded, iso-
lated, sliced and aggregated) training, where they break up
a dataset into disjoint shards and train a separate model on
each shard. To make a prediction, the outputs from all the
models are aggregated. Also, each datapoint in a shard is
called a slice, and the model state is saved after training
on each slice. To facilitate unlearning of a specific training
sample, one must revert to the model state before learning
on that sample, and then proceed to train on the rest of that
shard (Figure 10).

Their approach essentially speeds up leave-one-out re-
training by altering the training procedure; however, this
speedup comes with a cost. Increasing the number of shards
makes unlearning more efficient, but decreases classification
accuracy. They also downplay the storage overhead asso-
ciated with using SISA; the model state is saved for every
slice (i.e. the parameters are stored after learning on each
training sample). For example, a model with 1M parame-

ters trained on a dataset with 1M examples would require
storing 1 trillion floating point numbers. Finally, their ap-
proach only works for iterative learning algorithms such as
stochastically trained neural networks, and would not work
for non-iterative approaches such as tree-based models.

Mitigation Wang et al. (2019) have developed a method
for mitigating adversarial input images using unlearning.
They are specifically defending against BadNet models (Gu,
Dolan-Gavitt, and Garg 2017), backdoor attacks that copy a
portion of the input images and place a small visually per-
ceptible trigger on them (Figure 11); their work also defends
against similarly poisoned trojan datasets (Liu et al. 2017).
These attacks are then optimized so that test images with
the trigger are classified with a target label, while any im-
ages without the trigger are classified with the original la-
bel. They are able to build attack models for each dataset
that have high attack success rates while maintaining high
classification accuracy (Figure 12).

To mitigate these backdoor attacks, they create a new
dataset that is much smaller than the original (about 10%
of the original size) and add a “reversed” trigger4 to 20% of
these images. After this step, they fine-tune their model on
this new dataset over 1 epoch. They are able to show this
mitigation strategy is able to drastically reduce the attack
success rate (MNIST attack success rate goes from 99.90%
to 0.57%) while maintaining high classification accuracy;
in some cases classification accuracy actually goes up (Fig-
ure 12).

They repeat this procedure two more times: (1) where
they replace the “reversed” trigger with the original trigger,
and (2) where they remove the trigger altogether. Both meth-
ods that fine-tune on the “reversed” or original triggers are
able to significantly mitigate the attacks while keeping clas-
sification accuracy high. They find mixed results when fine-
tuning on the clean images (Figure 12). Overall, they find
their strategy is more effective on the Trojan datasets than
the BadNet models. They postulate that the Trojan model at-
tacks target a select fraction of neurons, making them more
sensitive to unlearning, while the BadNet models are more
effective at updating all layers of the network, making them
more difficult to fix.

Finally, they report this unlearning approach is one to
two orders of magnitude faster than retraining from scratch.
Even though the focus of this work is on mitigating back-
doors and not unlearning, they provide some potential for
unlearning in a stochastic setting. Overall, their method
showcases another application for model unlearning.

Certified Removal Guo et al. (2019) introduce a defini-
tion of certified removal of a training instance from a model
as the following:

ε−ε ≤ P (M(A(D), D, x) ∈ T )

P (A(D\x) ∈ T
≤ εε (7)

∀T ∈ H where H is the hypothesis space of all potential
models from a randomized learning algorithmA(·) andD is

4A “reversed trigger” is the minimal number of pixels needed
to misclassify the samples to the target label.



Figure 11: Examples of adversarial input images for different datasets and their triggers (typically a small white square in the
lower-right corner of the image) (Figure 20 from (Wang et al. 2019)).

Figure 12: Classification and attack success rate for three unlearning approaches (Table 4 from (Wang et al. 2019)).

a fixed training set. Equation (7) states that a removal mech-
anism M(·) that removes the effect of a training sample x
is ε-certified if the ratio of likelihoods between the updated
model after removal and a model trained without x is close
to 1 for all models in the hypothesis set. This guarantees that
the updated model after removal is effectively indistinguish-
able from a model retrained from scratch.

The simplest removal mechanism would be retraining (re-
sulting in ε = 0), but this is intractable in most cases as
previously discussed. Thus, they present an approximate re-
moval mechanism for linear classifiers as follows:

w− := w∗ +H−1
w∗ ∆ (8)

which they denote as the Newton update removal mech-
anism; this one-step Newton update applied to the influ-
ence (Koh and Liang 2017) of the gradient of the removed
point removes the majority of the influence of the target
training sample. However, the residual error may still be
used to extract information about the sample. Thus, they
randomly perturb the training loss to mask this residual er-
ror and achieve ε-certified removal; they also note that this
residual error decreases quadratically with the size of the
training set.

They test their removal mechanism in three different sce-
narios: (1) on a standard linear regressor, (2) the last layer
from a feature-extractor network, and (3) the last layer on
a differentially private feature extactor. For all three exper-
iments, they find that their removal mechanism is several
orders of magnitude faster than retraining (Figure 13). They
also analyze the impact of the hyperparameters σ (controls
the variance of the perturbations on the training loss) and
λ (L2 regularizer) on their removal mechanism and found
that larger values of either or both are able to support a
larger number of removals before needing to retrain, but too

large of values can cause significant decreases in test accu-
racy (Figure 14).

They also identified the top 10 samples from the MNIST
dataset with the largest and smallest removal update norms
||H−1

w∗∆||2; they found that the samples with the largest
norms were atypical and much harder to remove from the
model, while the samples with the smallest norms were more
prototypical and easier to remove (Figure 15). Finally, their
approach also extends to support batch removal of training
data.

3.4 Limitations and Research Opportunities
Since efficient data deletion as a research subfield is still a
burgeoning area, there is plenty of challenging open ques-
tions and opportunities for new developments.

Evaluation A simple but important question in regards
to data deletion is “how should one evaluate models that
support efficient data deletion?”. Ginart et al. (2019) use
a benchmark of 1,000 sequential deletions to measure the
amortized runtime while using two performance metrics to
track the utility of their updated models. This seems like a
reasonable approach and would likely work just as well for
approximate model unlearning methods, but are there bet-
ter ways to evaluate efficient data deletion, and do these still
hold for models that support batch deletions?

In a related vein, how can one test whether or not a spe-
cific training instance has been removed from a learned
model? This is straightforward for exact unlearning ap-
proaches, as the resultant model can be directly compared
to one retrained from scratch, but this is not as easy for
approximate unlearning methods, in which validating the
absence of something is a difficult problem (Kwak et al.
2017). Perhaps part of the answer lies in membership in-
ference attacks (Shokri et al. 2017; Hayes et al. 2019;



Figure 13: Training times for the linear models in each scenario, and their respective times to remove the target training
sample (Table 1 from (Guo et al. 2019)).

Figure 14: Effect of hyperparameters σ (controls the variance of the perturbations on the training loss) and λ (L2 regularizer)
on model test accuracy and the expected number of supported removals before retraining is necessary (Figure 1 from (Guo et
al. 2019)).

Yeom et al. 2018; Carlini et al. 2018), in which the goal
is to figure out whether or not a particular training sample
was used in training a specified model (Figure 16). It may
be possible to repurpose this attack as an evaluation metric
to help measure the quality and effectiveness of different ap-
proximate unlearning methods. However, Guo et al. (2019)
claim that models supporting ε-certified data removal guar-
antee these attacks would be ineffective. Fortunately, mod-
els that support ε-certified data removal are guaranteed to be
indistinguishable from a model retrained without the target
training samples to delete, removing the need to use model
inference attacks as a measure of training sample absence.

Hyperparameter Tuning There is also the question of
how to deal with models whose hyperparameters become
suboptimal as more and more training data is deleted, result-
ing in a change in the underlying data distribution. Ginart et
al. (2019) suggest that practitioners keep a separate valida-
tion set to tune their models, preferably one they know will
not change much or at all for a long period of time.

Differential Privacy Differential privacy (Dwork 2011;
Chaudhuri, Monteleoni, and Sarwate 2011; Abadi et al.
2016) is an appealing approach for enabling efficient data
deletion. Guo et al. (2019) define it as:

∀T ⊆ H,D,D′ : ε−ε ≤ P (A(D) ∈ T )

P (A(D′) ∈ T )
≤ εε (9)

where D and D’ differ by only one sample. They argue that
differential privacy is a sufficient condition for ε-certified
data removal, but that it is a very strict condition and one
that is not necessary. They explain that K-nearest neighbor
supports an ε-certified removal mechanism, but cannot claim

any differential privacy guarantees. Thus, they believe re-
training from scratch and differential privacy are on the ends
of the extremes, with approximate data removal in the mid-
dle.

Ginart et al. (2019) also allude to the possibility of us-
ing differential privacy tools for efficient data deletion, but
point out that in order to sequentially remove multiple train-
ing instances or a batch of training instances, one must use
group differential privacy. This requires the user to know in
advance how many instances they are planning to remove in
the future, which could be problematic in real-world scenar-
ios.

In a slightly different approach, Malle et al. (2016) pro-
pose that machine learning models be trained on a perturbed
and/or anonymized version of a database. If using a per-
turbed database, this can negate the need to delete individ-
ual training points (for privacy reasons) since each training
point does not reveal any information about an individual.
However, just anonymizing a database does not provide any
deletion guarantees on its own, since adversaries can use
cross-link attacks to link anonymized attributes with public
information.

Additional Supervised Techniques Currently, research
in efficient data deletion cover a number of supervised al-
gorithms such as naive Bayes, SVMs, logistic regression,
KNNs, and collaborative fitering models. However, there is
still much work to be done for stochastic learners and the
many different neural-type models. Also, decision trees are
an important area of supervised models that need adaptation
to support efficient data deletion. Ginart et al. (2019) argue
that it may be possible to quantize decision tree models to



Figure 15: Samples with the largest (top) and smallest (bottom) removal update norms from the MNIST dataset (Figure 3 from
(Guo et al. 2019)).

Figure 16: Example membership inference attack where the
goal of the attack model is, given the prediction of a data
record from the target model and the label of the data record,
determine whether or not the data record is in the target
model’s training data (Figure 1 from (Shokri et al. 2017)).

support data removal; they also say this may be possible for
stochastic learners, kernel regression, and segmented regres-
sion (Rahimi and Recht 2008; Muggeo 2016).

Applications Since efficient data deletion for machine
learning models is a relatively new research subfield, the
main motivations for current approaches tend to be focused
on privacy issues.

However, there are other desirable reasons for efficiently
deleting data from a trained model. As previously men-
tioned, decremental learning in SVMS speeds up leave-one-
out validation (Cauwenberghs and Poggio 2001). Practition-
ers can also adapt online or incremental learners to support
data deletion, making their models more nimble when learn-
ing from streaming data. This can decrease the amount of
offline training and help to more efficiently handle concept
drift (Gama et al. 2014).

Models would also be able to efficiently remove any po-
tentially harmful training instances, whether they are unin-
tentional artifacts of the dataset or are intentionally placed
there by a dataset poisoning attack (Rubinstein et al. 2009;
Biggio, Nelson, and Laskov 2012; Mozaffari-Kermani et al.
2014; Steinhardt, Koh, and Liang 2017). This goes hand in
hand with instance-attribution methods, where approaches
like influence functions may be able to find problematic
training instances, and models supporting efficient data dele-
tion can quickly and effectively delete them without having
to retrain from scratch, saving time and resources.

Efficient data deletion methods may also be able to re-

place methods that compute the influence / value of each
training instance (Koh and Liang 2017). One could use ex-
act unlearning to efficiently remove the effect of a training
instance xi and compute the change in prediction on a target
test instance, resulting in the influence of xi on the model’s
test prediction. This can be done for each training instance
to generate an instance-attribution explanation equivalent to
performing leave-one-out retraining, all without having to
retrain for every instance.

Despite these already promising applications for efficient
data removal, there is plenty of opportunity for new and
creative innovation for this methodology on many different
types of models and problem domains.

4 Use Case Study: Identifying and Mitigating
Potentially Harmful Training Data in
GPT-2, a Universal Language Model

A practical application that necessitates innovation in both
research areas of instance-attribution explanations and effi-
cient data deletion is presented, and will be the main topic
of the dissertation research.

4.1 Background
Language models (LMs) (Brown et al. 1992) are some of
the most fundamental models in natural language processing
(NLP) research. The goal of a language model is simple, pre-
dict the next token given a sequence of previous tokens (e.g.
chars, words or sub-words). This type of model is deemed
a generative model since it is able to continuously generate
new data, but it can also be viewed as a sequential classifier.
It makes predictions by generating a probability distribution
over a finite set of tokens (called the vocabulary)5 and choos-
ing the next token by sampling from this distribution.

These models can be as simple as a sequential n-gram
model, which counts co-occurrences of n-tokens; it then at-
tempts to predict the next most probable token given the
previous n tokens. More recently, language models have be-
come much more complex and powerful thanks to innova-
tions like word embeddings (Mikolov et al. 2013; Penning-
ton, Socher, and Manning 2014), byte-pair encodings (Sen-
nrich, Haddow, and Birch 2016) (which solves the problem
of out-of-vocabulary tokens), and larger neural architectures

5Different models handle the problem of encountering an un-
known token (i.e. out-of vocabulary tokens) differently.



Figure 17: Potentially problematic responses generated by GPT-2 to the prompt “Vaccinations”.

coupled with cheaper and more powerful GPU processing
capabilities that can adequately fit massive real-world text
datasets.

This has spawned a new era of language models called
universal language models such as ULMFIT (Howard and
Ruder 2018), GPT (Radford et al. 2018), BERT (Devlin et
al. 2019), GPT-2 (Radford et al. 2019), RoBERTa (Liu et
al. 2019), and more. These universal LMs differ in architec-
ture and their approaches to training. For example, BERT
uses a fill-in-the-blank strategy to train their model; they
look at previous and future tokens to predict the missing to-
ken. On the other hand, GPT and GPT-2 only use the previ-
ous sequence of tokens to predict the next token. All uni-
versal language models make heavy use the of the trans-
former (Vaswani et al. 2017), a neural architecture that can
better capture the short and long-range dependencies in the
text necessary to accurately predict the next token.

There are two ways to generate text from these models,
unconditionally or conditionally. Unconditional generation
starts generating text by randomly sampling a token from the
model’s vocabulary, and then uses that as context for gener-
ating the next token, then both tokens may be used for pre-
dicting the subsequent token, and so on; this process repeats
for an arbitrary number of tokens. Conditional generation
is similar, except the user can first provide any number of
tokens as context before letting the model continue the gen-
eration.

Universal language models are now able to generate very
real and convincing prose, especially when trained on large
enough datasets6. Consumers of these models can also train
or fine-tune them on their own datasets, opening many ap-
plications for these models such as news/poetry/lyrics/joke
generation. People can use them to augment their creative
writing, either generating a whole story or just a sentence.

Aside from generating realistic text, universal LMs can
be reconfigured for different NLP tasks. The idea is that
universal LMs learn the basic fundamentals about language
(e.g. structure, context, etc.) and this can be used to train
a more specific NLP model whose task might be part-of-
speech (POS) tagging, question answering, translation, etc.
It has been shown that using a universal LM for downstream
models has improved the state-of-the-art (SOTA) for just
about every NLP task (Howard and Ruder 2018). This is a
large part of the excitement around universal LMs, as they

6Realistic GPT-2 examples to human prompts can be found at
https://openai.com/blog/better-language-models.

can be trained once on very large amounts of text, then fine-
tuned and configured to work with any downstream NLP
task, making them increasingly ubiquitous in the NLP com-
munity.

4.2 Language Model Bias/Misinformation
The ubquity of such a model may also come with a cost;
since these models are trying to generate text as close to the
training distribution as possible, it is perhaps unsurprising
that these models are capable of producing biased or unfa-
vorable text if biased or unfavorable text is present in the
training data. For example, GPT-2 is trained on 40 million
reddit webpages with relatively high karma scores (Radford
et al. 2019), and when a user prompted it with the word
“Jews”, it generated “controls the media” (Vincent 2019)7.

Negative associations such as this may be problematic de-
pending on how the model is being used (Brunet et al. 2019).
If a universal LM is being used to help generate new stories,
this may exacerbate the problem of fake news. If used in a
downstream task such as a question-answering system like
Alexa (Purington et al. 2017)8, this could also be problem-
atic if seemingly innocuous inputs can generate slanderous
text. Ultimately, any biases present in a universal LM would
then be present in all downstream NLP models. This may not
be a problem for certain tasks such as POS tagging, but may
be more problematic for tasks such as question answering.

Whether or not one believes bias is problematic is up for
debate and likely very dependent upon the application, but
at least having the technology available to audit models and
quantify how biased they are is important. If one does find
undesirable biases present in their model, it can be beneficial
to know where their model learned this (i.e. being able to
trace a generated piece of text back to the training data that
contributed most to its generation). One can then make a
decision as to include that piece of training data, or training
documents from that source.

4.3 Measuring and Mitigating Model Bias
To accomplish these goals, the dissertation work will focus
on three main aspects: (1) quantify the amount of bias or
misinformation present in GPT-2 for specific topics. Bias
can be inherently difficult to measure; some have tried using
WEAT (word embedding association test) to measure bias in

7Users can generate their own responses at talktotrans-
former.com.

8alexa.amazon.com



word embeddings (Brunet et al. 2019), but others have found
that WEAT can systematically overestimate bias in those
word embeddings (Ethayarajh, Duvenaud, and Hirst 2019).
Instead, the plan is to investigate topics that contain a general
consensus on what people believe. These topics include dif-
ferent conspiracy theories / controversial topics such as the
link between vaccines and autism, the moon landing, climate
change, the shape of the Earth, etc. The aim is to quantify the
amount of misinformation produced by GPT-2 when given
an innocuous prompt about one of these topics.

A small-scale study has shown that given a seemingly in-
nocuous prompt, GPT-2 outputs some potentially problem-
atic text (Figure 17). The next step is to scale up this study
by generating many more responses to these prompts and
having people on Amazon Mechanical Turk9 label the sen-
timent of the responses (i.e. is the response for or against
vaccinations?).

Once some objective measure of bias for these topics
has been created, a method needs to be developed that can
(2) trace the potentially problematic generated text back to
the training samples that contributed most to its generation.
One of the main challenges is that most current instance-
attribution methods have a clear definition of what a “train-
ing instance” is (e.g. images for image classifiers, separate
numerical vectors for each example in tabular data, etc.)
while LMs have room for a much looser definition of what
a training instance could be. You may want to know either
the words, sentences, or paragraphs that contributed most to
the target generated text. Thus, finding the appropriate gran-
ularity for both the training instance and the target generated
text is crucial and may be dependent on the consumer of the
explanations; they may want to know the exact phrase that
contributed most, or the documents that contributed most.

Once the problematic training instances to be removed
from the model have been identified, a method needs to be
developed that can (3) efficiently remove the target training
instances from GPT-2 without having to retrain the model
from scratch. This is especially important as training these
models from scratch can take days or weeks of training, even
using many GPUs in parallel. If the target training instances
can be removed efficiently, the retraining process can be
avoided, saving a lot of time and resources. The mitigating
approach from (Wang et al. 2019) may be a viable option, or
perhaps removals can be performed on the linear part of the
model as in (Guo et al. 2019).

Finally, to see if the removal mechanism has effectively
removed the problematic training instances, step (1) is re-
peated and the amount of bias/misinformation present in the
model for the given topic is remeasured. This metric mea-
sures our ability to identify and remove the potentially prob-
lematic training instances. Given limited resources relative
to OpenAI (the creators of GPT-2), these solutions are to
be developed and evaluated on a distilled version of GPT-
2 (Sanh et al. 2019).

9mturk.com

5 Conclusion
This survey has described the nascent research subfields of
instance-attribution explanations and efficient data deletion
in machine learning and has provided a view of the land-
scape of works in these areas. These are both relatively new
and promising areas of research; the shortcomings of cur-
rent approaches have been identified and the remaining open
questions and challenges left to solve have been outlined.

A practical application involving both of these areas has
also been presented, and will be the main focus of research
for dissertation work. Both of these areas are likely to in-
crease in popularity over the coming years as model inter-
pretability and data privacy play increasingly larger roles in
machine learning.
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