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Evolution of Programming Approaches for High-Performance
Heterogeneous Systems

ABSTRACT
Nearly all contemporary high-performance systems rely on hetero-
geneous computation. As a result, scientific application developers
are increasingly pushed to explore heterogeneous programming
approaches. In this project, we discuss the long history of hetero-
geneous computing and analyze the evolution of heterogeneous
programming approaches, from distributed systems to grid com-
puting to accelerator-based supercomputers.

1 INTRODUCTION
Heterogeneous computing is paramount to today’s high-performance
systems. The top and next generation of supercomputers all employ
heterogeneity, and even desktop workstations can be configured
to utilize heterogeneous execution. The explosion of activity and
interest in heterogeneous computing, as well as the exploration
and development of heterogeneous programming approaches, may
seem like a recent trend. However, heterogeneous programming
has been a topic of research and discussion for nearly four decades.
Many of the issues faced by contemporary heterogeneous pro-
gramming approach designers have long histories, and have many
connections with now antiquated projects.

In this project, we explore the evolution and history of hetero-
geneous computing, with a focus on the development of heteroge-
neous programming approaches. In Section 2, we do a deep dive
into the field of distributed heterogeneous programming, the first
application of hardware heterogeneity in computing. In Section 3,
we briefly explore the resolutions of distributed heterogeneous
systems and approaches, and discuss the transitional period for
the field of heterogeneous computing. In Section 4, we provide a
broad exploration into contemporary accelerator-based heteroge-
neous computing, specifically analyzing the different programming
approaches developed and employed across different accelerator
architectures. Finally, in Section 5, we take a zoomed-out look at
the development of heterogeneous programming approaches, in-
trospect on some important takeaways and topics, and speculate
about the future of next-generation heterogeneous systems.

2 DISTRIBUTED HETEROGENEOUS
SYSTEMS 1980 - 1995

Even 40 years ago, computer scientists realized heterogeneity was
needed due to diminishing returns in homogeneous systems. In
the literature, the first references to the term "heterogeneous com-
puting" revolved around the distinction between single instruc-
tion, multiple data (SIMD) and multiple instruction, multiple data
(MIMD) machines in a distributed computing environment.

Several machines dating back to the 1980s were created and
advertised as heterogeneous computers. Although these machines
were conceptually different than today’s heterogeneous machines,

they still were created to address the same challenges: using opti-
mized hardware to execute specific algorithmic patterns.

The Partitionable SIMD/MIMD System (PASM) [270] machine
developed at Purdue University in 1981 was initially developed for
image processing and pattern recognition application. PASM was
unique in that it could be dynamically reconfigured into either a
SIMD or MIMD machine, or a combination thereof. The goal was
to create a machine that could be optimized for different image
processing and pattern recognition tasks, configuring either more
SIMD or MIMD capabilities depending on the requirements of the
application.

However, like many early heterogeneous computing systems,
programmability was not the primary concern. The programming
environment for PASM required the design of a new procedure-
based structured language similar to TRANQUIL [2], the develop-
ment of a custom compiler, and even the development of a custom
operating system.

Another early heterogeneous system was TRAC, the Texas Re-
configurable Array Computer [264], built in 1980. Like PASM, TRAC
could weave between SIMD and MIMD execution modes. But also
like PASM, programmability was not a primary or common concern
with the TRAC machine, as it relied on now-arcane Job Control
Languages and APL source code [197].

The lack of focus on programming approaches for early heteroge-
neous systems is evident in some ways by the difficulty in finding
information on how the machines were typically programmed.
However, as the availability of heterogeneous computing environ-
ments increased throughout the 1990s, so did the research and
development of programming environments.

Throughout the 80s and early 90s, this environment expanded
to include vector processors, scalar processors, graphics machines,
etc. To this end, in this first major section we explore distributed
heterogeneous computing.

Although the first heterogeneous machines consisted of mixed-
mode machines like PASM and TRAC, mixed-machine heteroge-
neous systems became the more popular and accessible option
throughout the 1990s. Instead of a single machine with the ability
to switch between a synchronous SIMDmode and an asynchronous
MIMD mode, mixed-machine systems contained a variety of differ-
ent processing machines connected by a high-speed interconnect.

Examples of machines used in mixed-machine systems include
graphics and rendering-specific machines like the Pixel Planes 5,
Silicon Graphics 340 VGX, SIMD and vector machines like the
MasPar MP-series and the CM 200/2000, and coarse grained MIMD
machines like the CM-5, Vista, and Sequent machines.

It was well understood that different classes of machines (SIMD,
MIMD, vector, graphics, sequential) excelled at different tasks (par-
allel computation, statistical analysis, rendering, display), and that
these machines could be networked together in a single system.
However, coordinating these distributed systems to execute a single



application presented significant challenges, which many of the
projects in the next section began to address.

In this section, we explore different programming frameworks
developed to utilize these distributed heterogeneous systems. In
Section 2.1, we review several surveys to gain a contextualized
insight into the research consensus during the time period. Then in
Section 2.2, we review the most prominent and impactful program-
ming systems introduced during this time. Finally in Section 2.3 we
discuss the evolution of distributed heterogeneous computing, and
how it relates to the subsequent sections.

2.1 Distributed Heterogeneous Architectures,
Concepts, and Themes

For insight into high-level perspectives, opinions, and the general
state of the area of early distributed heterogeneous computing, we
include discussions from several survey works published during
the targeted time period. We aim to extract general trends and
overarching concepts that drove the development of early systems
and early heterogeneous programming approaches.

The work by Ercegovac [106],Heterogeneity in Supercomputer Ar-
chitectures, represents one of the first published works specifically
surveying the state of high performance heterogeneous computing.
They define heterogeneity as the combination of different architec-
tures and system design styles into one system or machine, and
their motivation for heterogeneous systems is summed up well by
the following direct quote:

Heterogeneity in the design (of supercomputers) needs
to be considered when a point of diminishing returns
in a homogeneous architecture is reached.

As we see throughout this work, this drive for specialization
to counter diminishing returns from existing hardware repeatedly
resurfaces, and this motivation for heterogeneous systems is very
much relevant today.

Ercegovac’s work defines four distinct avenues for heterogeneity:

(1) System Level - The combination of a CPU and an I/O channel
processor, or a host and special processor, or a master/slave
multiprocessor system.

(2) Operating System Level - The operating system in a dis-
tributed architecture, and how it handles functionality and
performance for a diverse set of nodes.

(3) Program Level - Within a program, tasks need to be defined
as concurrent, either by a programmer or compiler, and then
those tasks are allocated and executed on different proces-
sors.

(4) Instruction Level - Specialized units, like an arithmetic vector
pipelines, are used to provide optimal cost/performance ra-
tios. These units execute specialized instructions to achieve
higher performance than possible with a generalized unit,
at an extra cost.

At the time of Ercegovac’s work, there existed three primary
homogeneous processing approaches in high-performance comput-
ing: (1) vector pipeline and array processors, (2) multiprocessors
and multi-computers following the MIMD model, and (3) attached
SIMD processors. These approaches were ubiquitous across all the

early surveyed works related to distributed heterogeneous com-
puting, and they heavily influenced the heterogeneous systems
created and heterogeneous software and programming approaches
used. Ercegovac [106] lists how, at the time, the three different ap-
proaches were combined in different ways to form the five following
heterogeneous approaches:

(1) Mainframes with integrated vector units, programmed using
a single instruction set augmented by vector instructions.

(2) Vector processors having two distinct types of instructions
and processors, scalar and vector. An early example includes
the SAXPY system, which could be classified as a Matrix
Processing Unit.

(3) Specialized processors attached to the host machine (AP).
This approach closely resembles accelerator-based heteroge-
neous computing, the subject of Section 4. The ST-100 and
ST-50 are early examples of this approach.

(4) Multiprocessor Systems with vector processors as nodes,
or scalar processors augmented with vector units as nodes.
For example in PASM, mentioned earlier in this Section, the
operating system supported multi-tasking at the FORTRAN
level, and the programmer could use the fork/join API calls
to exploit MIMD-level parallelism.
CEDAR [172] represented another example of a multiproces-
sor cluster with eight processors, each processor modified
with an Alliant FX/8 mini-supercomputer. This allowed het-
erogeneity within clusters, and among clusters, and at the
level of instructions, supporting vector processing, multipro-
cessing, and parallel processing.

(5) Special-purpose architectures that could contain heterogene-
ity at both the implementation and function levels. The
Navier-Stokes computer (NSC) [262] is an example. The
nodes could be personalized via firmware to respond to inte-
rior or boundary nodes.

Five years later, another relevant survey, Heterogeneous Com-
puting: Challenges and Opportunities was published by Khokhar
et al [166]. Where the previous survey focused on heterogeneous
computing as a means to improve performance over homogeneous
systems, this work offers an additional motivation; instead of re-
placing existing costly multiprocessor systems, they propose to
leverage heterogeneous computing to use existing systems in an in-
tegrated environment. Conceptually, this motivation aligns closely
with the goals of grid and metacomputing, discussed in Section 3.

The authors present ten primary issues facing the developing
heterogeneous computing systems, which also serve as a high-
level road map of the required facilities of a mature heterogeneous
programming environment:

(1) Algorithm Design - Should existing algorithms be manually
refactored to exploit heterogeneity, or automatically profiled
to determine types of heterogeneous parallelism?

(2) Code-type Profiling - The process of determining code prop-
erties (vectorizable, SIMD/MIMD parallel, scalar, special pur-
pose)

(3) Analytical Benchmarking - A quantitative method for deter-
mining which code patterns and properties most appropri-
ately map to which heterogeneous components in a hetero-
geneous system
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(4) Partitioning - The process of dividing up an assigning an
application to heterogeneous system, informed by the code-
type profiling and analytical benchmarking steps.

(5) Machine Selection - Given an array of available heteroge-
neous machines, what is the process for selecting the most
appropriate machine for a given application. Typically, the
goal of machine selection methods and algorithms, for ex-
ample the Heterogeneous Optimal Selection Theory (HOST)
algorithm [65] was to select the least expensive machine
while respecting a maximal execution time.

(6) Scheduling - A heterogeneous system-level scheduler needs
to be aware of the different heterogeneous components and
schedule accordingly.

(7) Synchronization - Communication between senders and re-
ceivers, shared data structures, and collectives operations
presented novel challenges in heterogeneous systems.

(8) Network - The interconnection network itself between het-
erogeneous machines presented challenges.

(9) Programming Environments - Unlike today, where program-
mibility and productivity lie at the forefront of heteroge-
neous system discussions, in this work the discussion of pro-
gramming environments almost seems like an afterthought.
This is not unusual in works exploring early heterogeneous
systems however, as hardware system-level issues were typ-
ically the primary focus. However, they do mention that
a programming language would need to be independent,
portable, and include cross-parallel compilers and debug-
gers.

(10) Performance Evaluation - Finally, they discuss the need for de-
velopment of novel performance evaluation tools specifically
designed for heterogeneous systems.

In summary, the authors call for a need for better tools to identify
parallelism, improved high-speed networking and communication
protocols, standards for interfaces between machines, efficient par-
titioning and mapping strategies, and user-friendly interfaces and
programming environments. Many of these issues are addressed
by the programming approaches and implementations discussed
throughout this work. However, as more heterogeneous and spe-
cialized processors emerge (Sections 4.8 and 4.9), many of these
issues resurface and remain as outstanding issues and challenges
with today’s high-performance heterogeneous computing.

In the guest editor’s introduction of the 1993 ACM Computer
journal, a special edition on Heterogeneous Processing, Freund and
Siegel offer a high-level perspective on the then-current state of
high-performance heterogeneous computing [117].

They offer several motivations for heterogeneous processing.
Different types of tasks inherently contain different computational
characteristics requiring different types of processors, and forcing
all problem sets to map to the same fixed processor is unnatural.
They also consider the notion that the primary goal of heteroge-
neous computing should be to maximize usable performance as
opposed to peak performance, by means of using all available hard-
ware in a heterogeneous way instead of maximizing performance
on a specific processor.

Freund and Siegel also offer two potential programming paradigms:
(1) the adaptation of existing languages for heterogeneous envi-
ronments and (2) explicitly designed languages with heterogene-
ity in mind. They discuss advantages and disadvantages of both
paradigms. This discussion of balance between specificity and gen-
erality in heterogeneous program paradigms continues today, with
contention between specific approaches like CUDA and general
approaches like OneAPI. Additionally, the authors depart from the
opinion that there would be one true compiler, architecture, oper-
ating system, and tool set to handle all heterogeneous tasks well,
insisting that a variety of options will likely be beneficial depending
on the application and context.

In the conclusion, the authors predict that heterogeneity will
always be necessary for wide classes of HPC problems; computa-
tional demands will always exceed capacity and grow faster than
hardware capabilities. This has certainly proven to be true, as het-
erogeneous computing is a staple in today’s high-performance
computing.

The 1994 work by Weems et al., Linguistic Support for Hetero-
geneous Parallel Processing: A Survey and an Approach [292], is
particularly interesting in the context of this project. As previ-
ously mentioned, programming approaches and methodologies are
typically a minor consideration in many early heterogeneous com-
puting works. However, this work explored the existing options for
heterogeneous programming and the challenges and requirements
for heterogeneous languages.

The authors define three essential criteria for evaluating the
suitability of languages for heterogeneous computing: (1) efficiency
and performance, (2) ease of implementation, and (3) portability.
They discuss how languages would need to support an orthogonal
combination of different programmingmodels, including sequential,
control (task) parallelism, coarse and fine-grained data parallelism,
and shared and distributed memory. They stress that heterogeneous
programming languages must be extendable to avoid limitations
on their adaptability, and that abstractions over trivialities must
be provided in order to not overwhelm programmers, while still
providing access details needed by system software. Furthermore,
they discuss the need for an appropriate model of parallelism at
different levels, i.e., control parallelism at a high level, and data
parallelism at a lower level. These kinds of considerations and
concerns are still relevant today. For example, the ubiquitousMPI+X
approach has long been the de facto solution for this kind of tiered
parallelism, but requires interfacing with two standards and two
implementations.

Weems et al. then survey the existing languages, and discuss their
limitations with respect to their vision of a truly heterogeneous
language. They include Cluster-M [107], HPF [170], Delirium [203],
Linda [62], PCN [115], PVM [278], p4 [60], C**, PC++, ABCL/1 [302],
Jade [254], Ada9x [276], Charm++ [161], and Mentat [126] in the
discussion, some of which are explored in this project in Section 2.2.
They further detail six features of an ideal heterogeneous program-
ming language:

(1) supports any mode of parallelism
(2) supports any grain size
(3) supports both implicit and explicit communication
(4) users can define and abstract synchronizations
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(5) users can define new first-class types
(6) users can specify patterns to aid data distribution

So far, a quarter-century later, no single unified heterogeneous
computing solution has evolved to meet all of these requirements.
Many of the developed solutions adapt a hybrid-approach, adopt-
ing multiple languages to deal with different modes of parallelism,
different grain sizes, and communication layers. As discussed in
Section 3.2, the popularity of these hybrid approaches can par-
tially be attributed to the widespread adoption of and reliance on
MPI. However, this does not nullify these properties of an ideal
language, and many contemporary solutions are exploring more
unified approaches, such as PGAS languages and OneAPI.

The authors then explain the three primary deficiencies of the
then-current programming approaches: (1) dependence on exter-
nal languages, (2) lack of support for extension to new models of
parallelism, and (3) lack of support for transporting code between
targets.

Finally, the authors outline two important features that they
feel novel heterogeneous programming approaches should include,
coined (1) metamorphism and (2) pseudomorphism.

To produce high-performance device code from high-level ab-
stracted source code, compilers need to extract a sufficient amount
of semantic information from the original application. If this seman-
tic information is obscured by programming abstractions, the com-
piler may fail to apply appropriate optimizations. Thus the authors
coin metamorphism as a term to address this issue. Metamorphism
enables a language to incorporate new first-class constructs, in
which new modes of parallelism can be expressed with appropriate
semantic information, allowing optimizing compilers to generate
efficient code. Essentially, programmers define first-class types, ef-
fectively changing the language, that the compiler can understand
well, instead of user-defined types and operator overloads that may
obscure semantics.

Different devices may prefer different variants of an algorithm
for the most efficient execution. Pseudomorphism as a language
feature, as defined by the authors, enables the management of
alternate implementations of an operation for mapping algorithms
to different target architectures.

We next explore the 1995 survey Goals of and Open Problems in
High-Performance Heterogeneous Computing by Siegel et al. [268].
Siegel was very involved in the early development of distributed
heterogeneous computing, and many of his publications are in-
cluded in this project, including the outline of the PASM system in
this section’s introduction. The authors present the following goal
of heterogeneous computing:

To support computationally intensive applications
with diverse computing requirements. Ideally pre-
sented to the user in an invisible way.

They continue by outlining the then-current hurdles for achieving
this goal. For the existing heterogeneous solutions, the user would
need to manually decompose applications and assign sub-tasks
to machines. This significantly hindered the potential benefit of
heterogeneous systems. However, they do also offer two examples
of success stories using heterogeneous computing:

• Example 1: Turbulent Convection Simulation. Essentially,
the simulation data was forwarded from device to device,

Heterogeneous Computing: Conceptual Model

Figure 1: Siegel et al. [268]

with each device performing a task well suited to its architec-
ture. First, a CM-5 device was used for a conjugate gradient
method. Then a Cray 2 was used to perform a vectorized
Lagrangian approach. Next, a CM-200 was used to calculate
particle distribution statistics. Last, a Silicon Graphics VGX
simulation was used to visualize the simulation using an
interactive volume renderer.

• Example 2: Cancer Treatment Application. Like the sim-
ulation, this application pipelines the data through three
different devices. First, a CRAY-MP is used for radiation dose
calculations and model interpolations. Then, a Silicon Graph-
ics 340 VGX was used directly by physicians to interact with
the model. When the model was adjusted by the physician,
the new viewpoint information was sent to a Pixel Planes 5
for rendering. If a treatment plan was modified, the changes
were sent back to the CRAY-MP, and the pipeline restarted.

Looking to the future, this survey introduced a conceptual model
for an end-to-end heterogeneous programming and computing ap-
proach, shown in Figure 1. Many of the components in the model
addressed the issues and challenges outlined by Khokhar et al [166],
including task profiling, analytical benchmarking, and partition-
ing and machine selection. Although the model is conceptual, as
no complete implementation existed at the time, the model and
derivations of it appear frequently in the subsequent heterogeneous
computing literature. The stages are summarized as follows:

• Stage 1: Generate a set of parameters of interest for codes
and devices. Essentially, this consists of general properties
of machines and algorithms that might be used to determine
suitability of algorithms for machines.

• Stage 2: Independently analyze the application (task pro-
filing), and the heterogeneous machine (analytical bench-
marking). In the application, extract the types of tasks and
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operations performed. For the heterogeneous machine, per-
form benchmarking to see which types of tasks map well to
each different device.

• Stage 3: Use the information from Stage 2 to match applica-
tion tasks to devices, and schedule the application across the
heterogeneous machine.

• Stage 4: Execute the application on the heterogeneous ma-
chine.

The survey concludes with several open questions with respect
to heterogeneous computing. Many of these questions are still
relevant today, and important when considering contemporary
heterogeneous programming approaches.

(1) What information should the user provide, and what should
be automatically determined by the system?

(2) How do you strike a balance between the amount of infor-
mation provided by the user and the expected performance
of the system?

(3) Can you develop a machine-independent language to allow
users to augment code with compiler directives, facilitate
compilation of the program into efficient device code for any
device in the heterogeneous machine, decompose the tasks
into homogeneous sub-tasks, and use machine-dependent
subroutine libraries?

(4) How do you develop debugging, performance, and visualiza-
tion tools for heterogeneous systems?

(5) How can we address policy issues requiring system support?
The first two questions are especially relevant in the context of this
project, and explored further in later sections.

The same authors, Siegel et al., published another survey Software
Support for Heterogeneous Computing [269] in 1996. This survey
addressed many of the same points as their previous survey. They
similarly conclude that, with the then-current heterogeneous sys-
tems users were required to decompose applications into subtasks
and manually map partitions to target machines. They stress that a
long-term goal of heterogeneous computing should be to automate
this decomposition, partitioning, and scheduling, but that research
tools could be developed to aid programmers until full-automation
is realized. They conclude by stating that portable heterogeneous
programming languages at each stage in the conceptual model need
significantly more research until they could be implemented in a
practical way.

2.2 Distributed Heterogeneous Programming
Languages and Environments

We now explore the different languages and programming ap-
proaches developed for distributed heterogeneous computing dur-
ing this time period, approximately 1985-1995.

2.2.1 PVM: Parallel Virtual Machine. While most parallel com-
puting research at the time focused on computation models, algo-
rithms, or machine architectures, the PVM project [278], started at
Oak Ridge National Laboratory, was an early attempt to provide
a unified programming model for both homogeneous and hetero-
geneous distributed environments. PVM primarily consisted of a
set of user interface primitives that could supplement a language
of choice, typically C or FORTRAN. The overarching goal of PVM

was to allow a diverse and scalable set of heterogeneous computer
systems to be programmed as a single parallel virtual machine.
Essentially, PVM was designed as a programming environment for
interacting but independent components.

Prior to PVM, applications were typically written with machine-
specific function calls for inter-process communication, shared
memory operations, and thread spawning. PVM also included prim-
itives for generalized locking and barriers, although shared-memory
loop-level locking still required internal locking constructs. Where
most machines at the time required manual coordination between
diverse computation models and architectures, PVM primitives pro-
vided a portable alternative to these machine-specific constructs.

A PVM application would consist of components, which are
separate stages of the application, not just subroutines. Users can
the specify which components should execute on which machines,
and coordinate communication between the components via mes-
sage passing. PVM also provided shared-memory emulation on
distributed machines, although at the cost of significant perfor-
mance degradation.

This application view allowed a PVM programmer to execute
specific algorithms within an application on the most appropri-
ate hardware available, one of the fundamental goals of heteroge-
neous computing even today. It also allowed programmers to utilize
hardware resources that may have existed but would have been
otherwise wasted.

The PVM project allowed for experimentation with trade-offs
between versatility and efficiency, specifically comparing the ab-
straction provided by a shared memory view, and the performance
degradation of emulation. PVM was created to meet the existing
and expected need for cheap, flexible, and portable parallel pro-
gramming environments.

Several application examples are presented in the initial PVM
publication [278]. These examples, including a Global Environment
Simulation (GES) and BlockMatrix-Multiplication (BMM), highlight
both the capabilities of PVM, and the general nature of problems
targeted by heterogeneous computing at the time. In the GES appli-
cation, a vector processing unit is used to compute fluid flows, a
distributed multiprocessing system is used to model contaminant
transport, a high-speed scalar machine is used to simulate temper-
ature effects, and a real-time graphics system is used to support
user interaction. The separate components shared data using both
shared memory and message passing. GES represents an applica-
tion well-suited to a heterogeneous environment due to the diverse
requirements across the different components of the applications.

BMM represents an alternate use case within the PVM envi-
ronment. For BMM, each computing system performs the same
task, but using different algorithms depending on the machine type:
square sub-block for hypercube architectures, a static pre-schedule
approach on the Sequent machine, and sequential execution on the
Sun workstation. This application demonstrates how PVM can be
used to execute an inherently homogeneous application across a
diverse computing system using a unified programming model.

Figure 2 demonstrates an example of a matrix multiplication
decomposition, performed using PVM. The decomposition assigns
partitions to an array of different devices in a heterogeneous sys-
tem, with each device receiving a block size proportionate to its
computational abilities, at least for matrix multiplication.
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Matrix Multiplication Decomposition

Figure 2: asymmetric decomposition for matrix
multiplication[278]

PVM was also used as the parallelization strategy in many other
works. A widely cited (over 19,000) Crystallography and NMR
system [55] relied on PVM to provide parallelism and portabil-
ity across computing platforms. In fact, prior to the ubiquitous
rise of MPI, PVM existed as the de facto standard for distributed
computing [122]. PVM also inspired the HeNCE project, discussed
in the next section [39].

2.2.2 HeNCE. A suggested future work in the PVM publica-
tion was a GUI for component order and interactions. The HeNCE
project [39–41] tackles this objective. HeNCE, a Heterogeneous Net-
work Computing Environment, implements a graphical interface
on top of the PVM framework.

One of the goals of HeNCE was to provide supercomputer perfor-
mance from inexpensive local-area-network systems. HeNCE pro-
vides programmers a way to easily map conceptual software-design
graphs to a graphical interface, where nodes represent FORTRAN
or C subroutines, and arcs represent data control flow.

In the HeNCE system, the programmer was responsible for spec-
ifying parallelism, but the environment includes support for com-
pilation, execution, debugging, and performance analysis. The ap-
plication was represented as a control flow diagram within the
GUI, and the user can even display an animated view during the
application execution.

Some works related to HeNCE include Paralex and Isis [33],
Network Linda [62], Piranha [61] and Condor, and Pthread. The
designers of HeNCE admitted performance and efficiency was an
area needing improvement and future work.

HeNCE represented an early attempt to create a very high-level
interface for heterogeneous computing, opposed to interfacing di-
rectly with low-level device-specific code. Although the user was
still required to write code for each specific device once, they pro-
vided an automated way to switch between device codes.

2.2.3 Linda. The Linda programming model [62, 63], a product
of Yale University, was frequently discussed in the literature as an
attractive option for heterogeneous computing. Linda diverged from
the mainstream models of distributed computing, or coordination
systems, such as message passing, concurrent logic languages, and
parallel functional programming systems. Instead, Linda adopted
a tuple-space model of parallel programming, where instead of
multiple processes exchanging messages, they pushed data to and
pulled data from an uncoupled "tuple-space". The tuple space existed
separately from the black-box computation of programs.

Although Linda was not originally designed for heterogeneous
programming systems, it became an attractive option for heteroge-
neous computing for several reasons. First, Linda implementations
already existed for several machines. Also, there were no restric-
tions in the Linda programming model that prohibited heterogene-
ity. Finally, Linda tuples used in communication were uncoupled
from Linda processes, and language and machine independent,
making them ideal for heterogeneous systems.

For example, with the right implementation support, processes
on different machines written in different languages can access
the same tuple space without explicit programmer coordination
between the different programming environment.

Although conceptually the Linda programming model was well
suited for heterogeneous computing, the initial Linda implementa-
tions lacked support for distributed heterogeneous computing. Most
extensions by the Linda authors, such as Piranha [123], targeted ob-
jectives other than heterogeneous processing. However, one project
developed a backend to Linda based on the p4 system [59], which
enabled users to write Linda applications for heterogeneous sys-
tems.

2.2.4 p4. The p4 project [60], developed at Argonne National
Laboratory, was a C and FORTRAN library originally stemming
from a number of previous Argonne projects, including the Mono-
macs and Parmacs libraries. Like many of the other early projects,
the main goals of p4 were portability, efficiency, and simplicity.
The p4 project juggled these goals by providing multiple ways to
do things, absorbing complexity into the p4 library, and making
judgments to sacrifice one of the primary goals in certain situations.

The p4 library primarily consisted of subroutine calls, macros,
and type-def data types. At the start of a p4 application, a user
would use a process group routine, which would read a supplied
process group file, and then create and assign processes, either on a
single machine or across several possibly heterogeneous machines.
Each process would be assigned a process ID (analogous to an MPI
rank).

The project supported shared-memory parallelism using a moni-
tor paradigm (shared-memory MIMD). This included abstractions
for vendor-specific locks, semaphores and other shared-memory
synchronization operations. The p4 project also supported distributed-
memory parallelism (distributed-memory MIMD) via message pass-
ing, and provided abstractions such as send, receive, and collective
operations (min, max, barrier, sum, product, etc.)

Several successful projects were built using p4, typically projects
within theArgonneNational Laboratory umbrella. Argonne’s theorem-
prover [204], a maximum-likelihood method for phylogenetic trees,
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several computational chemistry applications, a method for com-
puting resonances in piezoelectric crystals, and the SPLASH bench-
marks all used p4, either directly or internally, to support either
shared- or distributed-memory parallelism.

As previouslymentioned, p4 was also used as a backend to enable
heterogeneous computing for other programming environments.
The p4-Linda project [59], developed by the p4 project team, devel-
oped a p4 backed for the Linda programming language.

Additionally, as part of the Chameleon project [143], p4 was
indirectly used in the reference MPI implementation, which was
co-developed with the MPI standard [129]. Interestingly, the p4
authors had aspirations that vendor-specific MPI could provide
performance improvements to p4. Directly quoted, "We hope that
vendor implementations of MPI will replace p4’s portability layer
with corresponding improvements in efficiency" [60]. However, as
we discuss later, this never became the reality, as MPI became a
standard for frontend programming and replaced many of the other
distributed computing frameworks.

2.2.5 Mentat. Mentat [126] and associated extensions [127],
introduced and researched in the early 90s at the University of
Virginia, represent another early attempt at providing a compre-
hensive programming environment for HPC systems. Mentat ini-
tially started as a homogeneous parallel processing system, with
three primary goals: to provide easy-to-use parallelism, to provide
high performance via parallel execution, and to provide application
portability across different platforms.

The Mentat architects acknowledged that the then-current state
of parallel programming demanded too much from the programmer,
regardingmanual management of communication, synchronization,
scheduling, etc., and often overwhelmed the programmer. Their
proposed solution allowed a programmer to simply describe the
parallelism within the program, and deferred management of paral-
lelism to the compiler. This approach is still desirable today, albeit
at vastly different abstraction levels than Mentat.

The Mentat Programming Language extended C++ with spe-
cialized Mentat classes, or classes intended to be operated on and
executed in parallel. Because the underlying parallelism in Mentat
was based on a macro dataflow model (MIMD) computation, Men-
tat classes typically included computationally expensive routines
or member functions with high latency. These classes could then
be launched or executed asynchronously, allowing for parallelism
via overlapping computation. Classes with objects like shared data
structures or queues would also be implemented as Mentat classes.

From a programming perspective, Mentat provided several ad-
vantages. There existed no shared or distributed memory model,
as only Mentat objects could communicate directly, and this com-
munication was managed by the underlying compiler. Similarly,
althoughMentat objects were launched asynchronously, the Mentat
runtime would block if any function-call arguments were returned
by another Mentat objects, or even automatically forward data
between Mentat objects.

These abstractions allowed Mentat code to be completely source-
portable. The authors mention developing Mentat-based applica-
tions on a Sun workstation, and then running the application on an
Intel iPSC/2, needing only to modify the grain-size selection [126].

Although Mentat did provide source portability, the initial imple-
mentation still assumed a homogeneous system at execution time.
However, as we see in Section 3, the Mentat development team
quickly retargeted Mentat to focus on distributed heterogeneous
systems, specifically "Metasystems".

2.3 Distributed Heterogeneous Systems
Discussion

Thirty years later, many of the visions of the developers of early
distributed heterogeneous systems are still just that—visions. As we
see in the later sections of this project, most modern heterogeneous
programming approaches still require some manual management
of data transfers, communication, and synchronization, although
typically with more user-friendly programming approaches than
those of early systems like Mentat. Much of the research and dis-
cussion today in heterogeneous computing revolves around finding
the appropriate abstraction level.

The diversity of processors in these early heterogeneous dis-
tributed systems seems small relative to today’s array of co-processors
(GPUs, FPGAs, TPUs, etc.). These early processors would all typi-
cally fall into the "traditional CPU" in today’s categorization.

However, the diversity in supporting hardware and software was
far greater in the early heterogeneous than today’s typical cluster
and supercomputer environments. Because the sub-components
were typically completely separate machines, they experienced
heterogeneity in the network architecture, connection latencies,
different communication bandwidths for different machines. On the
software side, different machines had different operating systems,
different process support and inter-process communications, varied
compiler and language support, and multiple file systems. Unlike
today’s cluster and supercomputing environments with mostly
homogeneous software environments, early distributed heteroge-
neous system approaches required masking these network and
software diversities.

3 METASYSTEMS, GRID COMPUTING, AND
CLUSTERS 1995 - 2005

Around the turn of the century, the keywords and terminology
surrounding heterogeneous distributed systems research began to
shift. The next realization of heterogeneous computing systems
began to be referred to as Metasystems, or referenced in the context
of Metacomputing, and Grid Computing. This shift in perspective
reflected a more universal or global outlook on heterogeneous com-
puting. This section serves as a brief intermission between the
start of heterogeneous computing with distributed heterogeneous,
and the current realization related to accelerators. We explore and
discuss the ways in which distributed heterogeneous computing,
coincident with the rapid and impressive growth of the internet and
web-based computing, expanded into Metacomputing, Grid Com-
puting, and eventually cloud-based computing. We also explore the
impact of MPI on the development of heterogeneous programming
approaches and systems.

3.1 Meta, Grid, and Cluster Architectures
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3.1.1 MetaSystems and MetaComputing. Previously, distributed
heterogeneous systems consisted of a few different types of proces-
sors, with a goal of partitioning a single application across a small
number of diverse machine-types. As we see in this section, the
metasystems approach aimed to significantly extend the scope of
distributed heterogeneous computing, creating massive virtualized
environments to support extremely distributed applications and
users.

In their 1998 survey-style publication, Grimshaw et. al discuss
the high-level goals of metacomputing [125]. In essence, a metasys-
tem should "create the illusion of a giant desktop computational
environment" [125]. By connecting a huge amount of distributed
resources in a virtualized way, metasystems can present advantages
across several different areas: (1) they can allow more effective col-
laboration between remote developers, (2) the increase in overall
resources can improve overall application performance, (3) they
can facilitate access to remote data and compute resources, and (4)
the simplified programming environment can improve productivity
for the development of meta-applications.

They argued that a metasystems approach solves a lot of the
problems of traditional approaches like HPF, MPI, or PVM, where
separate components of an application are maintained by separate
groups, with potentially separate licenses and separate software
stacks [125].

They discussed several promising projects attempting to tackle
metacomputing, including AppLes [44], Globus [114], Legion [128],
and Network Weather Service [295], several of which are discussed
below in the context of Grid Computing. They projected that meta-
systems would have a significant impact on scientific productivity.

In a complementary 1998 survey [196], the same team expresses
many of the same sentiments. They discuss the goal of a "trans-
parent, distributed, shared, secure, fault-tolerant computational
environment." They discuss means to achieving this goal, and the
technical challenges of transparent remote execution and a shared
persistent object file space across a distributed metasystem. Overall,
this survey primarily focuses on the hopes and necessities for future
systems.

3.1.2 Grid and Cloud Computing. Grid computing emerged as
the next key term related to heterogeneous computing, following
and closely related to metasystems. Many of the projects originally
coined as metasystems are also discussed in the context of grid
computing, including Mentat and Legion.

In a 2000 Survey, The Grid: A survey on Global Efforts in Grid
Computing [34], Baker et al. present three general principles for
Grid Computing.

• Heterogeneity: resources are heterogeneous in nature across
numerous administrative domains and geographical distances

• Scalability: latency tolerant applications, no degradation of
performance as grid grows

• Dynamicity or Adaptability: resource failure is the rule, not
the exception. Must dynamically extract performance form
available resources

Baker et al. also describe the components required to build and
coordinate a Grid Computer.

• Grid Fabric - the physical resources distributed across the
globe

• Grid Middleware - core services, remote process manage-
ment, allocation of resources, security

• Grid Development Environments and Tools - high-level ser-
vices that allow programmers to develop applications

• Grid Applications and Portals - applications developed using
things like HPC++ and MPI. Portals allow users to submit
jobs via web-enabled applications services

Baker et al. continue by listing several different programming
frameworks either directly or indirectly related to Grid Comput-
ing, including Globus [114], Legion [128], WebFLow [47], Net-
Solve [21], NASA IPG [156], Condor [282], Harness [37], Hot-
page [283], Ninf [259], Nimrod [3], DISCWorld [142], andMetaMPI [100].
We briefly explore some of these approaches in Section 3.2.

In their outro, Baker et al. explain the rising role of Java in grid
and network computing, and they project that Grid Computing
as a field would have a revolutionary effect, similar to that of the
invention of the railroad. As we see later in this project, in some
ways it has, and in other ways it has not.

In his 2003 survey The Grid: Computing without Bounds[113], Ian
Foster, one of the developers of Globus, provides a high-level view
of the role of Grid Computing.

We would not accept a situation in which every home
and business had to operate its own power plant, print-
ing press, and water reservoir. Why should we do so
for computers?

Foster, amajor figure in the foundation of grid computing, viewed
virtualized computation as a natural extension to the internet. The
rapid increases in internet speeds infrastructure at the time led to a
high level of optimism in the possibilities of remote computers. The
goal was to integrate software into existing systems to enable shar-
ing information, data, and software to create a virtual organization
structure, instead of replacing systems at participating sites.

Foster describes several examples of existing Grid Computing
network systems, including:

• European Data-Grid [263]
• US Grid Physics Network
• Particle Physics Data Grid
• Sloan Digital Sky Survey [118]
• National Digital Mammography Survey
• US Biomedical Informatics Research Network [163]
• US Network for Earthquake Engineering Simulation [56]
• 2002 Launch of Open Grid Services Architecture [112]

In a parting note, Foster notes that for broad adoption of Grid
Computing, access to core technologies should be free and open
source.

In 2008, five years later, Foster et al. published another survey,
Cloud Computing and Grid Computing 360-Degree Compared [116].
In this work the authors compared the decade-strong grid comput-
ing concepts with the newly emerged cloud computing paradigm.
They posed the following question,

Is cloud computing a new name for Grid?

and answered as follows:
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• Yes: the vision is essentially the same, to reduce cost, increase
reliability, and increase flexibility of distributed heteroge-
neous computing. Cloud simply shifts from user operation
to third-party operation, and cloud computers can be con-
sidered viable commercial grid computing providers.

• No: The scale for cloud computing is much larger. Instead of
linking up commodity clusters, cloud systems contain over
100 thousand computers and are owned by large corpora-
tions like Amazon, Google, and Microsoft. This introduces
an entirely new set of problems.

• But Yes: The technological challenges in cloud and grid
computing mostly overlap, in that they both manage large
facilities, and define methods for users to discover, request,
and consume provided resources. And intrinsically, both
cloud and grid rely on highly parallel computations.

The authors describe how cloud computing is driven by economies
of scale, and that their viability is driven by rapid decreases in hard-
ware costs, increases in storage capacities, exponential growth in
data demands, and the adoption of services computing and web 2.0.
Cloud computing evolved from grid computing and relies on grid
computing technologies as its backbone, but operates on a very
different model. With grid computing, the model is based on large,
well-planned and well-funded projects with a significant scientific
impact. With cloud computing, thousands of processors can be
accessed with only a credit card.

The authors further describe the different enabling technolo-
gies and software for grid and cloud computing. Grid applications
are usually HPC oriented, and rely on software like MPI [129],
MapReduce [85], Hadoop [267], and coordination languages like
Linda [62]. In contrast, Cloud applications can be large-scale, but
Cloud infrastructures do not typically support fast low-latency net-
work interconnects needed in HPC. Cloud programming models
are typically a mashup of scripting, Javascript, PHP, Python, HTTP,
and web services.

3.1.3 Clusters. While the metasystems approach aimed to con-
nect together existing machines using a software overlay, other
alternatives to the classic supercomputer were being developed
during this time period. The notion of clusters, or networks of
workstations (NOWs), sought to blend the lines between personal
machines and supercomputers, delivering supercomputer-like per-
formance with personal workstation components.

The Berkeley NOW architecture [19], first introduced in 1995,
aimed to utilize the strengths of both personal machines and su-
percomputers, while eliminating their weaknesses. They proposed
that NOW architectures would outlast and outperform both small
computers for personal interactive use and traditional large su-
percomputing machines for several reasons. At that time, the per-
formance improvements for personal workstation machines were
significantly outpacing the improvements for large supercomput-
ers. The larger volume of workstations being produced allowed
manufactures to amortize the development costs and push the
rate of technological innovation. More simply put, the smaller ma-
chines could be offered at a higher cost/performance ratio than
supercomputers. Also, the development cycle for supercomputer
architectures lagged significantly behind the workstation counter-
parts. Another weakness of traditional supercomputers was the

high cost of changing the operating systems and other commodity
software.

A NOW system approach circumvents these issues by merging
local area networks and massively parallel processors. A NOW
system contained an array of commodity workstation components,
Ethernet, a system like PVM to communicate between the compo-
nents, and a sequential file system. Although the original conceptual
presentation of NOW systems [19] referenced PVM for the software
communication layer, the first actual implementation of the Berke-
ley NOW architecture [80] in 1997 employed MPI, foreshadowing
the shift from PVM to MPI for cluster-based computing.

While the shift to MPI for the Berkeley NOW architecture dis-
qualified it for more heterogeneous computing, other NOW ar-
chitectures were more heterogeneity-oriented. For example, the
heterogeneous NOW architecture developed in 1995 at the Univer-
sity of Texas at San Antonio [304] relied on the PVM programming
model for the communication layer. Their system contained SPARC
10-30 workstations, SPARC 5-70 workstations, and classic SPARC
workstations, all connected by Ethernet.

3.2 Meta, Grid, and Cluster Languages and
Environments

Although the various computing paradigms covered in this sec-
tion all stemmed from distributed heterogeneous programming,
and maintain heterogeneity as a core component, the different
paradigms employ vastly different programming environments and
languages. In this section, we briefly discuss a few of the most
widely used programming approaches in each area.

3.2.1 Meta and Grid Computing Languages. Many of the pro-
gramming approaches for meta and grid computing developed as
extensions to their distributed heterogeneous computing counter-
parts. However, several approaches revolutionized the ideas from
distributed computing, aiming to create more global solutions.

Mentat Extended: In a work extending Mentat [127], discussed
in Section 2.2.5, Andrew Grimshaw and the team at the University
of Virginia discuss Mentat’s shortcomings when retargeted for a
heterogeneous environment, steps to be taken to overcome these
deficiencies, and experiments with the application to metasystems.

The Metasystems approach for Mentat addressed three primary
issues: hand-writing parallel applications is difficult, codes are not
portable across MIMD architectures, and the wide variety of avail-
able systems cannot be simultaneously utilized for a single appli-
cation. While the original Mentat implementation focused on the
first two issues, the extension primarily focused on the third issue.

Their approach involved pulling from two separate but related
communities: the parallel processing community, and the hetero-
geneous distributed computing community. However, the primary
focus for theMetasystem approach was performance, as the authors
argued that significant performance degradation would render the
implementation useless. The motivation for using a heterogeneous
system is lost if performance is lost. Therefore, they started with
a parallel performance system, Mentat, and extended by includ-
ing heterogeneous distributed computing concepts and features as
needed, as long as they were not accompanied by significant per-
formance sacrifices. This is a different approach than other systems
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that were built to target heterogeneity, and tackled performance
issues as they arose.

In order to retarget Mentat for metasystems, the authors needed
to address two primary issues: data format and alignment issues
between systems, and scheduling across diverse processors. The
data format issues were relatively straightforward, and had previ-
ously been solved by related works, but the scheduling issues were
still novel and largely unexplored at the time.

The main contributions of the Mentat extensions involved auto-
matic methods for domain partitioning and decomposition. These
methods relied on programmer call-backs and run-time heuristics.
They took a two-faceted approach to scheduling, first focusing on
partitioning (driven by granularity and load balancing), then on
placement, which involved selecting the best available processor
for a certain task. In order to implement an automated scheduler,
the authors developed heuristics, a simplified machine model, and
programmer-provided call-backs.

Globus: The Globus Project [114], pioneered by Ian Foster and
Carl Kesselman, dominates the Meta and Grid computing literature,
and Foster and Kesselman were heavily involved in both areas.
Globus was funded as a multi-institutional DARPA project, and the
initial version of the toolkit was first released in 1997.

The goal of Globus was to abstract a collection of distributed
heterogeneous resources as a single virtual machine. Globus ap-
proaches this challenge using a layered architecture, presenting
a Globus Metacomputing Toolkit containing a bag of high-level
global services and low-level core services that developers can se-
lectively apply depending on their needs. As we see in subsequent
sections, these Globus services were also used as the backbone of
other grid computing systems.

• GRAM - resource allocation and process management
• Nexus - unicast and multicast communication services
• GSI - authentication and related security services
• MDS - distributed access to structure and state information
• HBM - monitoring of health and status of system components
• GASS - remote access to data via sequential and parallel
interfaces

• GEM - construction, caching , and location of executables
• GARA - advanced resource reservation and allocations

Webflow: Webflow [47] was a web browser interface built on
top of several Globus tools, including MDS, GRAM, and GASS.
However, the actual Webflow interface was conceptually separated
fromGlobus, and thus could have been implemented on the backend
using other systems like Legion or COBRA.

Webflow users could build and compose applications using a
visual web-based interface and visual module icons. In many ways,
this conceptually maps well to the massively distributed goals of
Grid Computing.

Legion: Grimshaw et. al, the team responsible for Mentat and
several of the surveys reviewed so far in this project, presented
Legion [128] as their Grid Computing solution.

The Legion approach was based on and written in the Mentat
Programming Language (MPL). In Legion, everything is an object,
and the approach is organized by classes and metaclasses. Like
Mentat, classes are defined as serial, or parallelizable, instructing
the underlying compiler on how to approach an application. Users

can define new classes, and classes manage their own instances.
However, many classes related to parallelism are already defined
in the Legion framework: host objects, persistent storage objects,
binding agents mapping objects IDs to physical addresses, context
objects mapping context names to Legion object IDs, etc.

Legion presented a very object-oriented approach, in contrast to
the more tool and layer-based approaches of Globus and Webflow.
We do note that this realization of Legion is not directly related to
the contemporary realization discussed in Section 4.4, and shares
only a name and the conceptual idea of the definition of "legion".

3.2.2 PVM andMPI. For a period of time after its initial develop-
ment and release, PVM [278], discussed in Section 2.2, was a popular
option for both homogeneous and heterogeneous distributed com-
puting. PVM was a crucial technology for advancing distributed
computing as a whole, but its longevity was overshadowed by MPI.

The Message Passing Interface, MPI [129], had a very significant
effect on the then-current distributed heterogeneous programming
systems. MPI worked to standardize many of the behaviors and
functionalities of distributed computing implementations like PVM,
p4, and others, and was largely successful to that end. In fact, MPI
was so successful that it quickly became the de facto standard for
distributed computing.

P4 and PVM were actually used internally for reference im-
plementations for MPI as it was developed, a promising sign for
the future of distributed heterogeneous computing. However, the
MPI standard itself detailed few facilities for machine interoper-
ability, rendering a standard-adhering implementation unsuitable
for heterogeneous computing. Vendor-supported and large open
source implementations like MPICH [130], relied on a more ho-
mogeneous approach, targeted large homogeneous clusters, and
required multiple installations for a heterogeneous systems that
may not be interoperable. So although MPI standardized and sim-
plified distributed computing compared to previous approaches,
the distributed heterogeneous computing facilities were inhibited.

Although the core MPI standard and implementations were not
ideal for heterogeneous computing, several research projects ex-
tended MPI to enrich support for heterogeneous computing, though
none of these implementations have experienced the longevity of
the more popular MPI implementations, which are still developed
and maintained today, nearly 20 years later.

• MPICH-G [162] A grid-enabled MPI implementation
• PACX-MPI [119] A metacomputing-oriented MPI imple-
mentation

• PVMPI [109] An Integration of the PVM and MPI Systems

3.3 Metasystems, Grid Computing, and
Clusters Discussion

In this section, we briefly explore the transition from distributed
heterogeneous computing into metacomputing and grid computing,
and how these set up the backbone for the monolith that is today’s
cloud computing.

The goals of meta and grid computing were to create infinitely
scaling systems by harnessing the power of remotely connected het-
erogeneous systems. While some projects tackled this, these ideas
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were ultimately re-purposed for commercial success under the um-
brella of cloud computing. Additionally, with respect to scientific
endeavors, the construction of large-scale homogeneous clusters
and supercomputers beckoned a shift from distributed heteroge-
neous machines. At the same time, the growth of MPI, without
a major focus on heterogeneous interoperability, overshadowed
projects like PVM and p4 that targeted heterogeneous systems.

Finally, the very things that made early machines heterogeneous
began to be integrated into single homogeneous processors. Unlike
mixed-mode machines like PASM with distinct SIMD and MIMD
processing, many newmulti-core vectorizing processors seamlessly
integrate both SIMD andMIMD capabilities, which forgoes the need
for a heterogeneous programming environment. Similarly, as we
previously discussed, early distributed heterogeneous systems con-
tained separate processors for visualization, statistics, and data
processing. However, with the expansion of x86 and inclusion of
specialized and vector instructions on general purpose CPU pro-
cessors, the problems these early heterogeneous systems tackled
can again be solved by homogeneous systems.

The shift into cloud computing, the ubiquity of MPI, and the con-
tinuous consolidation into x86 CPUs in many ways signaled the end
of heterogeneous computing as it was originally imagined. How-
ever, as we see in Section 4, the rebirth of heterogeneous computing,
and reinvention of many of the ideas previously mentioned, was
sparked by the introduction of accelerator-based heterogeneous
systems.

4 MULTICORE, MANYCORE, AND
ACCELERATOR-BASED HETEROGENEOUS
SYSTEMS 2010 - 2020

In this section, we follow the evolution of chips from a single core,
to multi-core and manycore chips, which eventually developed into
hardware accelerators. These developments eventually revolution-
ized the architectures of nearly all high-performance machines, and
effectively rebirthed the field of heterogeneous computing.

The construction of large homogeneous machines marked the
end of the 2000s decade and the end of heterogeneous distributed
systems like we saw in the 1980s and 1990s. Jaguar [48], built around
2009 at Oak Ridge National Laboratory, was a Cray XT5 system,
consisting of 224,256 x86-based AMD CPU cores, and was listed as
the world’s fastest machine in 2009 and 2019. Kraken [79], another
Cray Xt5 system built in 2009, was listed as the world’s fastest
academic machine at the time. These homogeneous machines domi-
nated the domain of HPC for several years. Likewise, HPC software
support, programming approaches, and compiler infrastructure de-
veloped during this time was also largely homogeneous. However,
at the same time, scientific programmers began experimenting with
programming using Graphics Processing Units, or GPUs, a trend
that would eventually revolutionize the HPC field.

In 2000, Toshiba, Sony, and IBM collaborated on the Cell Project [134].
This project culminated in the release of the Cell Processor in 2006.
While not strictly a GPU, the Cell Processor was one of the first
architectures to employ accelerator-based heterogeneity to multi-
media and general purpose applications. The Cell Processor’s first
major commercial application was inside the Sony PlayStation 3
gaming console. In 2008, IBM and Los Alamos National Laboratory

(LANL) released the Roadrunner supercomputer, which consisted
of a hybrid design with 12,960 IBM PowerXCell and 6,480 AMD
Opteron dual-core processors [35]. The IBM PowerXCell processors
integrated the original Cell processor design.

While the Cell processor generated excitement and a new interest
in a different type of heterogeneous computing, the Cell processor
was only efficient for certain computations, and the overhead of
manually transferring memory to and from the device was difficult
due to the small memory size of the Cell architecture. Although
GPUs and other heterogeneous accelerators suffer from these same
issues, they evolved and developed to meet the demand of scientific
computing.

The scientific community began evaluating GPUs for general
purpose processing well before their use became mainstream. In
2001, researchers evaluated general purpose matrix multiplication,
and in 2005 LU decomposition on a GPU was shown to outperform
a CPU implementation [91]. Interest in utilizing GPUs in scientific
computing continued to grow, but was inhibited by the complex
programming approaches to GPUs, which typically required a low-
level graphics interface and dealing with shaders and graphics-
related APIs data structures. However, a major development for
GPU programming, and the whole field of scientific heterogeneous
programming, camewith the development and release of of Nvidia’s
CUDA toolkit.

4.1 CUDA and GPGPUs
Nvidia was formed in 1993, but first gained major traction by win-
ning the contract to develop the graphics hardware for theMicrosoft
Xbox gaming console in 2000. Nvidia continued to grow and in-
crease its claim in the GPU market with the release of the GeForce
line, in direct competition with AMD’s Radeon line. However, these
devices were still targeted toward graphics processing.

As the interest in scientific computing using GPUs continued to
grow, Nvidia first recognized the potential financial advantages of
supporting this community. In 2007, Nvidia launched the Tesla GPU,
aimed at supporting general purpose computing, and the CUDA
(Compute Unified Device Architecture) API and programming plat-
form [77].

The CUDAprogramming platform abstracted programming GPU
hardware into an API that was more consumable by scientific pro-
grammers and other programmers without extensive graphics pro-
gramming experience. The CUDA programming model essentially
presents a hierarchical multi-threading layout, where threads are
executed as a 32 or 64-thread warp, warps are mapped onto thread-
blocks, and thread-blocks are mapped onto a grid and grid blocks
(Figure 3). These abstractions fit quite naturally with the nested
loop structure of most scientific software. Listing 1 shows an ex-
ample CUDA application, sourced from Nvidia’s website (https:
//developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/).

As the popularity of CUDA and GPGPU programming grew,
several large supercomputers began including both host CPUs and
GPU accelerators. In 2010, China’s Tianhe-1A machine launched,
containing 14,336 Xeon X5670 processors and 7,168 Nvidia Tesla
M2050 general purpose GPUs [301]. This heterogeneous machine
overtook the previously mentioned Jaguar machine from Oak Ridge
National Laboratory (ORNL) as the "world’s fastest supercomputer".
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Listing 1: Example CUDA C Application
1 #include <stdio.h>
2
3 __global__
4 void saxpy(int n, float a, float ∗x, float ∗y)
5 {
6 int i = blockIdx.x∗blockDim.x + threadIdx.x;
7 if (i < n) y[i] = a∗x[i] + y[i];
8 }
9
10 int main(void)
11 {
12 int N = 1<<20;
13 float ∗x, ∗y, ∗d_x, ∗d_y;
14 x = (float∗)malloc(N∗sizeof(float));
15 y = (float∗)malloc(N∗sizeof(float));
16
17 cudaMalloc(&d_x, N∗sizeof(float));
18 cudaMalloc(&d_y, N∗sizeof(float));
19
20 for (int i = 0; i < N; i++) {
21 x[i] = 1.0f;
22 y[i] = 2.0f;
23 }
24
25 cudaMemcpy(d_x, x, N∗sizeof(float), cudaMemcpyHostToDevice);
26 cudaMemcpy(d_y, y, N∗sizeof(float), cudaMemcpyHostToDevice);
27
28 // Perform SAXPY on 1M elements
29 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
30
31 cudaMemcpy(y, d_y, N∗sizeof(float), cudaMemcpyDeviceToHost);
32
33 cudaFree(d_x);
34 cudaFree(d_y);
35 free(x);
36 free(y);
37 }

ORNL’s Titan supercomputer, a successor Jaguar, launched in 2013
and consisted of 18,688 AMD Opteron CPUs, each with an attached
Nvidia Tesla (K20x) GPU [49]. This machine also secured the top
spot as the world’s fastest machine.

More recently, Nvidia GPUs and CUDA programming were em-
ployed in ORNL’s Summit supercomputer [235], another machine
that briefly held the title as theworld’s fastest. Summitwas launched
in 2018 and contains 4,608 nodes each with 6 Nvidia Tesla V100
GPUs. Similarly, Lawrence Livermore National Laboratory (LLNL)
launched the Sierra supercomputer [202] in 2018, containing 4,320
nodes each with 4 Nvidia Tesla V100 GPUs.

Much of CUDA’s success in scientific programming can be at-
tributed to Nvidia’s continued investment in and focus on CUDA
training. Online and in-person training workshops, and a surplus of
available training materials, made Nvidia and CUDA an attractive
GPGPU option compared to other vendors. This focus on training
and CUDA’s success should provide a model for future heteroge-
neous programming approaches. Some newer approaches like Ope-
nACC (also supported by Nvidia) have also adopted this strategy,
frequently hosting learning-focused hackathons and generating
significant training materials [229].

4.2 GPGPUs Beyond CUDA
Although CUDA has survived uncontested the most successful
low-level GPGPU programming approach, several other low-level

CUDA Threading Model

Figure 3: CUDA programming abstraction for GPGPUs
"Thread Hierarchy in CUDA Programming". Retrieved 2016-
09-21

approaches have been developed and see a significant amount of
use.

Microsoft’s DirectCompute API, released in 2008 as part of Di-
rectX 11, provided a GPGPU programming framework, specifically
focused on Windows platforms [218]. The abstraction level pre-
sented by DirectCompute was very similar to CUDA, with a parallel
workload being broken down into groups of thread that were then
dispatched as "Compute Shaders". However, DirectCompute was
quickly overshadowed by CUDA and other approaches, possibly
due to its limitation to Windows-based systems. Little information
on the original DirectCompute implementation can be found today.

CUDA’s dependence on Nvidia devices spawned efforts to create
an open source alternative. OpenCL was developed as a result
of these efforts [131]. As we see in the remainder of this work,
OpenCL has become a staple of accelerator-based heterogeneous
programming approaches, both as a stand-alone approach and as an
intermediate representation or backend for higher-level approaches.

OpenCL (Open Computing Language) was originally developed
by Apple as a GPGPU option under the OSX umbrella. In early 2008,
Apple submitted a proposal to the Khronos Group for creation and
management of an OpenCL language [131]. On November 18, 2008
the OpenCL 1.0 technical specification was released. By the end of
2008, AMD, Nvidia, and IBM had all incorporated OpenCL support
into their vendor tool chains.

Like CUDA, the OpenCL programming approach separates an
application into host code and device code. The abstraction level
for the OpenCL device code is very similar to CUDA, while the
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Table 1: Comparison of CUDA and OpenCL GPGPU abstrac-
tions

CUDA OpenCL
Grid NDRange

Thread Block Work group
Thread Work item

Thread ID Global ID
Block index Block ID
Thread index Local ID

host code abstractions are more verbose. Like CUDA, GPU cores
are abstracted into a tiered parallelism. In OpenCL, work-items are
executed as part of a work-group, and work-groups are organized
inside an N-D range (Table 1). Listing 2 demonstrates and example
vector addition application in OpenCL. From the line count alone,
we can see that OpenCL requires a significant amount of low-level
and boilerplate code, although this functionality is typically encap-
sulated in routines and libraries by frequent OpenCL programmers.
However, each programmer creating a personalized set of routines
to abstract OpenCL API calls creates issues with code portability
and interpretability.

Although OpenCL does provide an open-source alternative to
CUDA that is supported across several different device vendors
(Nvidia, Intel, IBM, AMD), it has not become the de facto standard
for heterogeneous GPGPU computing. First, the widespread success
of CUDA and Nvidia’s dominance in the GPGPU market has al-
lowed scientific programmers to more safely choose a non-portable
option. Second, the abstraction level, especially the verbosity of the
host code, has led many GPGPU developers to seek higher-level
abstractions, as we see in the following section. However, as we dis-
cuss later, although OpenCL has not seen widespread adoption as
a programming approach, many frameworks and compilers target
OpenCL as a backend API (OpenARC [187], TVM [68], etc.)

Although OpenCL and CUDA have been the most popular low-
level GPGPU programming approaches over the past decade, some
application developers have explored other approaches. Vulkan [265],
a successor to OpenGL intended primarily for graphics comput-
ing, can outperform both OpenCL and CUDA for certain scientific
applications [211].

Analogous to Nvidia’s CUDA, the GPU manufacturer AMD
has also released a vendor-specific API for GPGPU programming.
AMD’s HIP API and ROCm platform [17] provide a similar abstrac-
tion level to CUDA. The platform also provides ways to translate
CUDA into HIP, allowing developers to execute CUDA applica-
tions on AMD hardware. Although the current generation of top
supercomputers like Sierra and Summit employ Nvidia GPUs, fu-
ture systems like ORNL’s Frontier, expected to launch in 2021, will
employ AMD GPUs. This transition could herald a shift away from
CUDA, and increase the use of ROCm and HIP across all of scientific
computing.

As discussed, there exist several low-level alternatives to CUDA
for GPGPU programming. However, most scientific application
developers turn to a high-level programming approach.

Listing 2: Example OpenCL C Application
1 #include <stdlib.h>
2 #include <CL/cl.h>
3
4 const char∗ programSource =
5 "__kernel␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\n"

6 "void␣vecadd(__global␣int␣*A,␣__global␣int␣*B,␣__global␣int␣*C)␣\n"

7 "{␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\n"

8 "␣␣␣int␣idx␣=␣get_global_id(0);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\n"

9 "␣␣␣C[idx]␣=␣A[idx]␣+␣B[idx];␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\n"

10 "}␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\n"

11 ;
12
13 int main() {
14 int ∗A = NULL; int ∗B = NULL; int ∗C = NULL;
15
16 const int elements = 2048;
17 size_t datasize = sizeof(int)∗elements;
18 A = (int∗)malloc(datasize); B = (int∗)malloc(datasize); C = (int∗)malloc(datasize);
19 B = (int∗)malloc(datasize);
20 C = (int∗)malloc(datasize);
21 for(int i = 0; i < elements; i++) {
22 A[i] = i; B[i] = i;
23 }
24
25 cl_uint numPlatforms = 0;
26 cl_int status = clGetPlatformIDs(0, NULL, &numPlatforms);
27 cl_platform_id ∗platforms =
28 (cl_platform_id∗)malloc(numPlatforms∗sizeof(cl_platform_id));
29 status = clGetPlatformIDs(numPlatforms, platforms, NULL);
30
31 cl_uint numDevices = 0;
32 cl_device_id ∗devices = NULL;
33 status = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL, 0, NULL, &numDevices);
34 devices = (cl_device_id∗)malloc(numDevices∗sizeof(cl_device_id));
35 status = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL, numDevices, devices, NULL);
36
37 cl_context context = clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);
38 cl_command_queue cmdQueue = clCreateCommandQueue(context, devices[0], 0, &status);
39
40 cl_mem bufferA = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize, NULL, &status);
41 cl_mem bufferB = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize, NULL, &status);
42 cl_mem bufferC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, datasize, NULL, &status);
43 status = clEnqueueWriteBuffer(cmdQueue, bufferA, CL_FALSE, 0, datasize, A, 0, NULL, NULL);
44 status = clEnqueueWriteBuffer(cmdQueue, bufferB, CL_FALSE, 0, datasize, B, 0, NULL, NULL);
45
46 cl_program program = clCreateProgramWithSource(context, 1, (const char∗∗)&programSource, NULL, &status);
47 status = clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
48 cl_kernel kernel = NULL;
49 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufferA);
50 status |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &bufferB);
51 status |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufferC);
52
53 size_t globalWorkSize[1];
54 globalWorkSize[0] = elements;
55 status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL, NULL);
56 clEnqueueReadBuffer(cmdQueue, bufferC, CL_TRUE, 0, datasize, C, 0, NULL, NULL);
57
58 clReleaseKernel(kernel);
59 clReleaseProgram(program);
60 clReleaseCommandQueue(cmdQueue);
61 clReleaseMemObject(bufferA);
62 clReleaseMemObject(bufferB);
63 clReleaseMemObject(bufferC);
64 clReleaseContext(context);
65
66 free(A); free(B); free(C); free(platforms);free(devices);
67 }

4.3 GPGPU Research Project Languages
While CUDA has been a successful GPGPU programming approach,
many developers and scientific programmers still find the abstrac-
tion level too low for daily use. Almost immediately after CUDA
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Figure 4: CUDA and hiCuda performance comparison [141]

was launched, research projects began to emerge offering high-level
abstractions. These projects are discussed in this section. As time
passed, robust production-level, high-level alternatives were devel-
oped. These languages and frameworks are discussed in Section 4.4.

4.3.1 hiCuda. In 2009, two years after CUDA first launched,
Han et. al from the University of Toronto developed the hiCuda
API [140, 141]. As the name suggests, hiCuda was created to ab-
stract some of the complexities of CUDA, specifically memory man-
agement and allocation. hiCuda replaces these operations with
compiler directives. Behind the scenes, a source-to-source compiler
generates CUDA code from hiCuda which is then compiled with
NVCC, the standard CUDA compiler. Source-to-source translation
is a common tool used by academic compilers, as the burden of
implementing a full-scale compiler is often beyond the scope of
research projects [141, 187, 193, 252].

As an example, where a CUDA program would require the fol-
lowing:

size = 64 * 128 * sizeof(float);
cudaMalloc((void**)&d_A, size);
cudaMemcpy(d_A, A, size,

cudaMemcpyHostToDevice);

hiCuda can accomplish the same with:
#pragma hicuda global alloc A[*][*]

4.3.2 CUDA-lite. A similar project, CUDA-lite [289], was de-
veloped in 2008 at the University of Illinois at Urbana-Champaign.
Unlike hiCuda, which was intended to transition a sequential appli-
cation into a GPU accelerated application using abstract directives,
CUDA-lite was meant to be applied to existing CUDA applications,
and was especially focused on abstracting memory bandwidth and
coalescing optimizations. CUDA-lite was built on top of the now-
discontinued Phoenix source-to-source compiler from Microsoft.

4.3.3 OpenMPC. Instead of adapting new abstractions over
CUDA, some methods attempted to recycle older programming
abstractions. For example, the OpenMP to GPGPU [186] developed
by Lee et. al at the University of Purdue in 2009, and its extension
OpenMPC [182] developed by the same team, worked to adapt the
existing OpenMP programming approach for GPGPU applications.

By 2009, OpenMP [81] had already become the de facto standard
for homogeneous CPU-based parallel computing. As a result, many

Figure 5: Performance of OpenMPC [182, 186]

high-performance scientific codes and applications at the time were
programmed using OpenMP. Rewriting using CUDA would have
been a major shift. Additionally, many programmers were already
proficient in the use of OpenMP pragmas and library calls.

The goal of OpenMPC was to use existing OpenMP directives,
along with minimal additional information in the form of OpenMPC
pragmas, to generate CUDA GPU codes. Like the other research-
project based approaches in this section, OpenMP to GPGPU and
OpenMPC were built using a source-to-source compiler, in this case
Cetus [83].

OpenMPC was shown to perform well on many scientific bench-
marks compared to hand-written CUDA codes (Figure 5). However,
because of OpenMPC’s abstraction of CUDA memory management,
OpenMPC did not perform as well on programs with complex
memory transfer patterns between the GPU and CPU. Addition-
ally, OpenMPC faced performance issues due to incompatibilities
between OpenMP semantics and GPU programming and memory
models. These incompatible regions were then computed on the
host CPU instead of the GPU device.

4.3.4 StarPU. The StarPU runtime system [32, 273, 274] was de-
veloped at the University of Bordeaux in France, and first published
in 2009. StarPU is an original runtime system with the goal of utiliz-
ing heterogeneous hardware without causing significant changes
in programmer habits. Like many of the frameworks covered in this
section, StarPU aims to allow programmers to focus on high-level
algorithm issues without being restrained by low-level scheduling
issues. StarPU presents a unified programming approach for CPU
and GPU computing, and consists of a data-management facility
and task execution engine. In the StarPU system, a central process
maintains a queue of tasks, and a scheduler assigns these tasks to
processing units, either a CPU or GPU.

StarPU is designed to dynamically schedule applications across
a heterogeneous system, using one of several strategies:

• greedy - each time a CPU or GPU devices becomes available,
StarPU greedily selects the taskwith the highest programmer-
defined priority from the task queue, and begins execution,
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• no-prio - similar to the greedy approach, but without the
programmer-defined priorities,

• work stealing - if a processing unit has completed its task and
no tasks are available in the queue, the processor attempts
to steal work from other processes,

• randomweighted - each processor is given a speed, or acceler-
ation factor. The acceleration can be set by the programmer
or measured using benchmarks. Then, tasks are scheduled
according to these acceleration factors. For example, if a GPU
has an acceleration factor four times higher than a CPU, the
GPU should be scheduled approximately four times as much
work.

• heterogeneous earliest finish time - performs performance or
cost modeling for each task across each available processing
unit. Based on these performance models, the task can be
assigned to the most appropriate processing unit, either a
GPU or CPU. Ideally, tasks well-suited for CPUs will be
assigned to CPUs, likewise for GPU-suited tasks.

StarPU is still under active development, with a release as recent
as 2020 and activity on the StarPU Gitlab page [274]. Listing 3
shows a "Hello World" code example pulled from the StarPU Gitlab
site.

4.3.5 PGI Accelerator. In 2009 and 2010, another directive-based
alternative to CUDA was developed the Portland Group, the PGI
Accelerator [293, 294]. Although not strictly a research compiler,
we include it in this section because of its scope and similarity to
related research projects. The PGI Accelerator programming model
aimed to target both C and FORTRAN codes, and generate exe-
cutables to be run on Nvidia GPUs. The PGI Accelerator directives
annotated regions of codes that appropriate for GPU computation,
and were divided into two types, data directives for data regions
and parallel management directives for GPU-compute regions. Us-
ing data directives, users directly controlled data transfers between
the host and accelerators, even across multiple parallel or GPU
compute regions. In this way, parallel regions could make use of
data already transferred to GPU devices without re-transfer.

The PGI Accelerator did not provide support for mapping to
architecture-specific features like CUDA shared, constant, and tex-
ture memories, or detect complex reduction patterns. Although the
PGI Accelerator approach was short-lived, it did contribute signifi-
cantly to the development of the OpenACC GPGPU programming
approach, which is covered in depth in Section 4.4. PGI’s proprietary
compiler for the PGI Accelerator approach also formed the basis of
PGI’s successful OpenACC compiler, discussed in Section 4.6.

Certainly other research-based high-level alternatives to CUDA
emerged during the time between CUDA’s 2007 release, and the
release of the first major production-level, high-level approaches,
around 2012 (i.e., R-stream [192], HMPP [90]). Together, all of these
research-based approaches laid the foundation of the more widely
used and production-style, high-level approaches mentioned later
in Section 4.4 and beyond.

4.4 GPGPU High-Level Programming
Over time, interest in GPU-based heterogeneous computation con-
tinually increased in the scientific community, which in turn drove
the demand for more standardized and long-term high-level GPUPU

Listing 3: Example StarPU C Application
1 #include <stdio.h>
2 #include <stdint.h>
3 #include <starpu.h>
4
5 #define FPRINTF(ofile, fmt, ...) do { if
6 (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
7
8 void callback_func(void ∗callback_arg) {
9 FPRINTF(stdout, "Callback␣function␣got␣argument␣%p\n", callback_arg);
10 }
11
12 struct params {
13 int i;
14 float f;
15 };
16
17 void cpu_func(void ∗buffers[], void ∗cl_arg) {
18 (void)buffers;
19 struct params ∗params = (struct params ∗) cl_arg;
20 FPRINTF(stdout, "Hello␣world␣(params␣=␣{%i,␣%f}␣)\n", params−>i, params−>f);
21 }
22
23 int main(void) {
24 struct starpu_codelet cl;
25 struct starpu_task ∗task;
26 struct params params = {1, 2.0f};
27 int ret;
28
29 ret = starpu_init(NULL);
30 if (ret == −ENODEV)
31 return 77;
32 STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
33
34 task = starpu_task_create();
35
36 starpu_codelet_init(&cl);
37 cl.cpu_funcs[0] = cpu_func;
38 cl.cpu_funcs_name[0] = "cpu_func";
39 cl.nbuffers = 0;
40 cl.name="hello";
41
42 task−>cl = &cl;
43 task−>cl_arg = &params;
44 task−>cl_arg_size = sizeof(params);
45
46 task−>callback_func = callback_func;
47 task−>callback_arg = (void∗) (uintptr_t) 0x42;
48 task−>synchronous = 1;
49
50 ret = starpu_task_submit(task);
51 if (ret == −ENODEV) goto enodev;
52 STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
53
54 starpu_shutdown();
55
56 return 0;
57
58 enodev:
59 starpu_shutdown();
60 return 77;
61 }

programming approaches. By 2015, the research-style approaches
developed between 2006 and 2011 evolved into several production-
level approaches with large user bases and significant development
support. Some approaches exist as large, well-documented stan-
dards supported by several device vendors (OpenMP [233], Ope-
nACC [230]). Others were major initiatives supported by major
national laboratories in the US (Kokkos [99], Raja [146]). Finally,
many other approaches were implemented as libraries or wrappers
inside two major languages used in scientific computing, C++ and
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Python. We explore several of these programming approaches in
this section.

4.4.1 OpenACC. OpenACC (originally short for Open Accelera-
tors) is one of this first high-level GPGPU programming approaches
that still supports a significant user base today (as of 2020). Ope-
nACC was first released in 2012 as a collaboration between Cray,
NVIDIA, and the Portland Group in order to support the users of
ORNL’s Titan, one of the first large heterogeneous supercomputers.
As previously mentioned, Titan was a Cray machine with Nvidia
devices. The Portland Group was involved because, as mentioned
in the previous section, OpenACC was inspired by the high-level di-
rective approach used in in the PGI-Accelerator model, and the first
OpenACC compiler provided by PGI was developed as an extension
to the PGI-Accelerator compiler.

The dream of OpenACC was to create an open, directive-based
standard for GPU-computing as an analog and counterpart to the
then de facto standard for parallel processing on multi-core CPUs,
OpenMP. In the same way that a small number of OpenMP prag-
mas can be used to parallelize an existing application, OpenACC
intended to provide a minimal set of directives that application de-
velopers could apply to accelerate an existing CPU-based scientific
application on a GPU. This contrasted with the existing lower-level
programming approaches like CUDA and OpenCL, which required
a significant amount of code restructuring and rewriting for GPU
acceleration.

The ideology of OpenACC is to allow users to expose and identify
parallelism in an application using descriptive directives, and to
leave the more complicated task of mapping parallelism to GPU
devices in the hands of the OpenACC compiler. This deviates from
the OpenMPmodel, which traditionally employed a verymoderated
and prescriptive application of directives.

This high burden of effort tasked to OpenACC compilers in
some ways has prevented OpenACC from reaching the popularity
and monopoly status of its OpenMP analog. Although OpenACC
is intended for general-purpose GPU computing across different
vendors, for most of its history, the PGI OpenACC compiler has
been the only available production-level option, and was restricted
to Nvidia devices. Now, nearly a decade later, other vendors have
more fully adopted the OpenACC standard and implemented more
functional support. We discuss these compilers in more detail in
Section 4.6.

An OpenACC annotated application typically contains a combi-
nation of data and compute directives centered around a computa-
tionally intense region of code or loop nest. In Listing 4, we see a
small C program annotated with two OpenACC directives, a data
directive (line 16) and a compute directive (line 19). Replicating
this high-level programming approach in a low-level approach like
CUDA or OpenCL could require significantly more code, several
source files, and multiple compilations.

4.4.2 OpenMP. OpenMP reigned as the de facto standard for
directive-based homogeneous multi-core CPU computing through
the early 2000s, at least in the scientific computing domain. As the
demand for high-level programming approaches for GPGPU com-
puting increased in the early 2010s, there was a push for OpenMP to
support accelerator-based heterogeneous computing in addition to

Listing 4: Example OpenACC C Application
1 int main() {
2
3 int SIZE = 1024;
4
5 float ∗a, ∗b;
6 a = malloc(sizeof(float) ∗ SIZE);
7 b = malloc(sizeof(float) ∗ SIZE);
8
9 for (int i = 0; i = < SIZE; ++i) {
10 a[i] = 0;
11 b[i] = // some initial value
12 }
13
14 // Data Directives
15 #pragma acc data copyin(b[0:SIZE]) copyout(a[0:SIZE])
16
17 // Compute Directive
18 #pragma acc parallel loop collapse(2)
19 for (int i = 1; i <= SIZE; i++)
20 for (int j = 1; j <= SIZE; j++)
21 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
22 }

the homogeneous multi-core computing. Although the previously-
mentioned OpenACC was developed to address this demand, moti-
vation for OpenMP prevailed for several reasons:

(1) OpenACC and OpenACC compilers have been too-tightly
bundled to Nvidia devices, especially since PGI (the primary
OpenACC compiler) was acquired by Nvidia in 2013.

(2) Most high-performance-oriented scientific programmerswere
already familiar with basic OpenMP directives and OpenMP
programming styles.

(3) Many scientific applications already employed OpenMP for
homogeneous CPU-based computing, lightening the burden
of developing a new accelerator-based implementation.

As a result, in 2013, a year after the launch of OpenACC, the
OpenMP standards committee released OpenMP 4.0, which in-
cluded new directives for offloading to GPU accelerators. In 2018,
the standards committee released OpenMP 5.0, which expanded sup-
port for accelerators and included additional directives for tasking
and auto-parallelism. Even before the official inclusion of offload-
ing directives in OpenMP, several research-oriented compilers had
been prototyping support for GPU offloading for OpenMP, which
we discuss further in Section 4.6.

Initially in their development, OpenACC andOpenMP contrasted
in the programming approach philosophy. Asmentioned, OpenACC
employed a more descriptive approach, where users expose paral-
lelism and compilers map that parallelism to devices. In OpenMP,
the directives supplied by users are taken more literally and pre-
scriptively, in that the user directly controls how the parallelism is
mapped to a device. However, the two standards have recently be-
come more aligned due to the loop directive introduced in OpenMP
5.0, which mimics the behavior of the descriptive OpenACC direc-
tives. The relationship between OpenMP and OpenACC has been
somewhat contentious at times. However, both standards are still
currently being maintained as a high-level programming approach
for heterogeneous computing.

Although OpenACC has been limited due to its ties to Nvidia
devices, the availability of the production-level PGI OpenACC com-
piler throughout its history has certainly been an advantage. In
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Listing 5: Example OpenMPAMP Accelerated Massive Par-
allelism 2012 in MicrosoftâĂŹs Visual Studio Not tied to
Nvidia GPUs C Application
1
2 int main() {
3
4 int SIZE = 1024;
5
6 float ∗a, ∗b;
7 a = malloc(sizeof(float) ∗ SIZE);
8 b = malloc(sizeof(float) ∗ SIZE);
9
10 for (int i = 0; i = < SIZE; ++i) {
11 a[i] = 0;
12 b[i] = // some initial value
13 }
14
15 // Data Directives
16 #pragma omp target data map(to:b[0:SIZE], from:a[0:SIZE])
17
18 // Compute Directive
19 #pragma omp teams parallel for collapse(2)
20 for (int i = 1; i <= SIZE; i++)
21 for (int j = 1; j <= SIZE; j++)
22 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
23 }

contrast, although OpenMP 4.0 originally was approved in 2013,
compilers fully supporting the standard have been slow in coming.
Only very recently have mature compilers successfully supported
the entire standard, and many mainstream compilers are still un-
der development for the OpenMP 4.0 standard and especially the
OpenMP 5.0 updates. We discuss this further in Section 4.6.

In Listing 5, we show the same application as the previous list-
ing, now annotated with OpenMP directives. Although this short
example trivially highlights the use of OpenMP, this approach still
greatly simplifies heterogeneous computing compared to CUDA
and OpenCL.

4.4.3 Kokkos. In 2012, around the same time as the release of
OpenACC and OpenMP 4.0, H.C. Edwards and a team at Sandia
National Laboratory developed the Kokkos portability layer [97–
99].

Kokkos is implemented as a performance portability layer. Un-
like OpenACC and OpenMP that rely on directives, Kokkos is im-
plemented as a C++ template library on top of OpenMP, CUDA,
HPX [160] (discussed below), or Pthreads [214]. Essentially, the goal
is to allow programmers to implement the Kokkos abstraction layer
once in their application, which can then be executed across a di-
versity of hardware architectures. The C++ templating abstraction
is an attractive model for heterogeneous programming, as it allows
the same API calls to have multiple backend implementations.

Kokkos has been a popular option within the scientific commu-
nity, and is supported by several national labs, including Sandia and
Argonne National Laboratories. Listing 6 demonstrates an exam-
ple Kokkos application. The Kokkos abstractions do require more
in-depth knowledge of C++ including concepts like templates and
functors, compared to the directive-based approaches.

4.4.4 Raja. Like Kokkos, Raja is a C++-based GPGPU program-
ming approached developed by a major US National Laboratory,
Lawrence Livermore National Lab (LLNL) [38, 146]. Raja was first

Listing 6: Example Kokkos C++ Application
1
2 #include <Kokkos_Core.hpp>
3 #include <cstdio>
4 #include <typeinfo>
5
6 struct hello_world {
7 KOKKOS_INLINE_FUNCTION
8 void operator()(const int i) const { printf("Hello␣from␣i␣=␣%i\n", i); }
9 };
10
11 int main(int argc, char∗ argv[]) {
12 Kokkos::initialize(argc, argv);
13
14 printf("Hello␣World␣on␣Kokkos␣execution␣space
15 ␣␣%s\n", typeid(Kokkos::DefaultExecutionSpace).name());
16
17 Kokkos::parallel_for("HelloWorld", 15, hello_world());
18
19 Kokkos::finalize();
20 }

released in 2014, shortly after Kokkos, OpenACC, and OpenMP 4.0.
Raja is essentially another collection of C++ abstractions intended
to provide architecture portability for HPC systems, specifically
those with GPGPU architectures.

A 2015 Supercomputing poster compared Raja and Kokkos using
the TeaLeaf application [209]. While Kokkos relied on the C++
template metaprogramming approach, Raja instead relies on the
C++11 lambda features. They also found that porting an application
to Raja was relatively intuitive, on a similar level to an OpenMP port.
Conversely, porting the application to Kokkos required extensive
architectural changes. Like Kokkos, Raja relies on OpenMP and
CUDA internally to target CPUs and GPUs, respectively.

Listing 7 highlights a vector addition example in Raja, pulled
from the Raja github (https://github.com/LLNL/RAJA/). Although
Raja does require manual memory management with specialized
allocators and deallocators, the actual loop parallelization requires
very little code modification.

4.4.5 Alpaka. A newer project, Alpaka [210, 296, 303], was first
released in 2015 and first published in 2016. Like Kokkos, Alpaka
aims to provide a performance portability layer that allows pro-
grammers to write a single application for accelerators from several
different vendors with minimal code changes. However, unlike
Kokkos, Alpaka also abstracts the data structures used in kernel
arguments, allowing for further optimizability. Internally, Alpaka re-
lies on several back-end languages and libraries, including OpenMP
4+, OpenACC (experimental), TBB, CUDA, and HIP. Alpaka also
relies on gcc and clang for back-end compilation. Although Alpaka
is a newer project with less adoption that Kokkos or Raja, Alpaka
is very well documented, both on GitHub [8] and their web refer-
ence [7], which are strong indicators of continued success, higher
adoption, and project longevity.

4.4.6 C++ Libraries and Extensions. While Raja and Kokkos are
two of the most popular C++-based high-level GPGPU program-
ming approaches, especially in scientific computing, several other
C++ libraries and extensions have been developed to support het-
erogeneous computation. We briefly discuss several of these in this
section.
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Listing 7: Example Raja C++ Application
1 #include <cstdlib>
2 #include <cstring>
3 #include <iostream>
4
5 #include "memoryManager.hpp"
6 #include "RAJA/RAJA.hpp"
7
8 const int CUDA_BLOCK_SIZE = 256;
9
10 int main(int RAJA_UNUSED_ARG(argc), char ∗∗RAJA_UNUSED_ARG(argv[]))
11 {
12 const int N = 1000000;
13
14 int ∗a = memoryManager::allocate<int>(N);
15 int ∗b = memoryManager::allocate<int>(N);
16 int ∗c = memoryManager::allocate<int>(N);
17
18 for (int i = 0; i < N; ++i) {
19 a[i] = −i;
20 b[i] = i;
21 }
22
23 // OpenMP CPU target
24 RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
25 c[i] = a[i] + b[i];
26 });
27 memoryManager::deallocate(a);
28 memoryManager::deallocate(b);
29 memoryManager::deallocate(c);
30
31 // CUDA GPU target
32 RAJA::forall<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
33 [=] RAJA_DEVICE (int i) {
34 c[i] = a[i] + b[i];
35 });
36
37 memoryManager::deallocate_gpu(d_a);
38 memoryManager::deallocate_gpu(d_b);
39 memoryManager::deallocate_gpu(d_c);
40
41 return 0;
42 }

• AMP C++ AMP (Accelerated Massive Parallelism) was orig-
inally released in 2012 as part of Microsoft’s Visual Stu-
dio 12 [124]. Interestingly, AMP was one of the few early
GPGPU programming approaches not tied to Nvidia devices.
Although C++ AMP is now considered obsolete and is no
longer supported by Microsoft, the ideas from the project
inspired other more modern approaches like AMD’s ROCm
suite.

• Boost.Compute C++ Boost is a collection of C++ libraries
with various functionalities, typically related to performance
improvements [261]. Although Boost libraries are licensed,
maintained, and well documented, they aren’t part of the
official standard, though many Boost libraries are eventually
absorbed into the official C++ standard. The Boost.Compute
library was accepted as a Boost library in January 2015 and
was available in Boost v1.61 released April 2016 [279].
Boost.compute is essentially a wrapper over OpenCL, with
a high-level API created to resemble typical C++ STL library
calls, and a low-level API that more closely resembles sim-
ple abstractions over OpenCL boiler-plate code, effectively
merging OpenCL into C++. Although the Boost.compute
github, mailing list, and issue tracker saw a flurry of activity

in 2015 and 2016, there does not seem to be a significant
amount of activity and development currently as of 2020.

• Thrust In the same way that Boost.compute could be consid-
ered a C++ OpenCL wrapper, C++ Thrust was developed as
a C++ CUDA wrapper [42]. First published in 2012, Thrust is
now an important part of the CUDA C++ toolkit and actively
under development by Nvidia.

• Bolt C++ Bolt is yet another C++ template library with sup-
port for OpenCL [51]. Unlike the other libraries mentioned,
Bolt specifically was developed to target AMD GPU devices.
Bolt was developed and released by AMD in 2014, shortly
after Nvidia’s Thrust and Microsoft’s AMP. Bolt optimizes
code for AMD devices by generating AMD-specific API calls
at the OpenCL level.

• VexCLWhile AMP, Boost.compute, Thrust, and Bolt attempt
to abstract a lower-level backend (OpenCL, CUDA, AMD
OpenCL), VexCL is a higher-level vector expression template
library, although these distinctions may be lost on most
scientific programmers [86]. VexCL creates and compiles a
distinct OpenCL application, each with a single execution
kernel, for each vector expression encountered in the original
application.

• C++All of the other programming approaches in this section
refer to libraries and extensions not incorporated in the C++
standard. However, newer versions of C++ have begun to in-
corporate different types of CPU parallelism directly into the
standard. For example, C++17 has increased SIMD support
for parallel loops. Furthermore, there is a push with the C++
community to add support for heterogeneous computing in
future releases. The major drawback is the slow timeline
for C++ releases and the significant burden of defending
inclusions into the already massive C++ standard.

In addition to the libraries mentioned, several other C++ het-
erogeneous programming libraries have been developed, although
few have a significant user base today. Some examples include CUB
(CUDA Unbound) [212], SkelCL [275], and ArrayFire [208].

4.4.7 Distributed- and Accelerator-based Approaches. Legion
The Legion Project [36, 189, 190] originates from Stanford Uni-
versity, and was first published in 2012. Legion, a portmanteau of
logical regions, is unique from many of the other high-level ap-
proaches in this section in that it aims to support both distributed
and accelerator-based heterogeneous computing.

Like many of the other frameworks, a main goal of Legion is
to abstract or decouple the algorithm design from the mapping or
execution on heterogeneous architectures. For Legion, this concept
extends to distributed heterogeneous machines. Legion specifically
focuses on data movement and management abstractions, primarily
by introducing the abstraction of logical regions. By partitioning
data into logical regions and sub-regions, programmers can indi-
cate data locality and independence, which can be used by the
underlying framework components to facilitate communication
and parallelism.

Legion remains relevant today, and regular software releases
address bugs, performance issues, features and extensions, and
additional system support. Furthermore, the Legion project is sup-
ported and funded by the DOE Exascale Computing project [188].
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Listing 8: Example Legion C++ Application
1 #include <cstdio>
2 #include "legion.h"
3
4 using namespace Legion;
5
6 enum TaskID {
7 HELLO_WORLD_ID,
8 };
9
10 void hello_world_task(const Task ∗task,
11 const std::vector<PhysicalRegion> &regions,
12 Context ctx, Runtime ∗runtime) {
13 printf("Hello␣World!\n");
14 }
15
16 int main(int argc, char ∗∗argv)
17 {
18 Runtime::set_top_level_task_id(HELLO_WORLD_ID);
19
20 {
21 TaskVariantRegistrar registrar(HELLO_WORLD_ID, "hello_world␣variant");
22 registrar.add_constraint(ProcessorConstraint(Processor::LOC_PROC));
23 Runtime::preregister_task_variant<hello_world_task>(registrar, "hello_world␣task");
24 }
25
26 return Runtime::start(argc, argv);
27 }

In Listing 8 we see a small "Hello World" example programmed
using Legion, sourced from the Legion github site [189]. Although
this example hardly captures the essence of Legion, lacking even
invocations of logical regions, it does give a small insight into the
Legion API.

HPX HPX, short for High Performance ParalleX, is another dis-
tributed computing focused framework, developed by Louisiana
State University and first published in 2014 [144, 160, 237, 238].
Like Legion, HPX aims to provide a unified programming approach,
allowing both single-node and distributed parallelism from a sin-
gle API. HPX is strongly connected to C++, and depends heavily
on the Boost C++ libraries. Although HPX has traditionally fo-
cused on CPU-based distributed and single-node parallelization,
more recently, efforts have been made to support heterogeneous
computation with HPX, either through integration with OpenCL
(HPXCL [89]), development of a SYCL backend [76], or other ap-
proaches.

Listing 9 shows an example "Hello World" application with HPX.

4.4.8 Python and Java. Traditionally C, C++, and FORTRAN
have dominated the high-performance computing field. However,
more recently newer languages have experienced a rise in popu-
larity in the HPC field, especially those that are heavily used in
domain sciences (i.e., python and R). While most high-level hetero-
geneous programming approaches, especially within the scientific
community, still target C and C++, there are some approaches that
have been developed to target python and Java.

PyCUDA [167, 169] was first published in 2009, several years
earlier than many of the other high-level approaches discussed in
this section. However, PyCUDA is less of a high-level language,
and more of a simple set of CUDA-wrappers in python. For exam-
ple, in Listing 10 sourced from the PyCUDA author’s web page
(https://documen.tician.de/pycuda/), we see that the computation
kernel still very much uses CUDA syntax, but the host code uses a

Listing 9: Example HPX C++ Application
1 hello_world_component.hpp
2 #include <hpx/config.hpp>
3 #if !defined(HPX_COMPUTE_DEVICE_CODE)
4 #include "hello_world_component.hpp"
5 #include <hpx/iostream.hpp>
6
7 #include <iostream>
8
9 namespace examples { namespace server {
10 void hello_world::invoke()
11 hpx::cout << "Hello␣HPX␣World!" << std::endl;
12 }}
13 HPX_REGISTER_COMPONENT_MODULE();
14 typedef hpx::components::component<
15 examples::server::hello_world
16 > hello_world_type;
17 HPX_REGISTER_COMPONENT(hello_world_type, hello_world);
18 HPX_REGISTER_ACTION(
19 examples::server::hello_world::invoke_action, hello_world_invoke_action);
20 #endif
21
22 // hello_world_component.cpp
23 #pragma once
24 #include <hpx/config.hpp>
25 #if !defined(HPX_COMPUTE_DEVICE_CODE)
26 #include <hpx/hpx.hpp>
27 #include <hpx/include/actions.hpp>
28 #include <hpx/include/lcos.hpp>
29 #include <hpx/include/components.hpp>
30 #include <hpx/serialization.hpp>
31
32 #include <utility>
33 namespace examples { namespace server {
34 struct HPX_COMPONENT_EXPORT hello_world
35 : hpx::components::component_base<hello_world>
36 { void invoke(); HPX_DEFINE_COMPONENT_ACTION(hello_world, invoke);};
37 }}
38
39 HPX_REGISTER_ACTION_DECLARATION(
40 examples::server::hello_world::invoke_action, hello_world_invoke_action);
41 namespace examples {
42 struct hello_world
43 : hpx::components::client_base<hello_world, server::hello_world> {
44 typedef hpx::components::client_base<hello_world, server::hello_world>
45 base_type;
46
47 hello_world(hpx::future<hpx::naming::id_type> && f)
48 : base_type(std::move(f)) {}
49 hello_world(hpx::naming::id_type && f)
50 : base_type(std::move(f)) {}
51 void invoke()
52 { hpx::async<server::hello_world::invoke_action>(this−>get_id()).get(); }
53 }
54 }
55 #endif
56
57 // hello_world_client.cpp
58 #include <hpx/config.hpp>
59 #if !defined(HPX_COMPUTE_DEVICE_CODE)
60 #include "hello_world_component.hpp"
61 #include <hpx/hpx_main.hpp>
62
63 int main(int argc, char∗ argv[]) {
64 // Create a single instance of the component on this locality.
65 examples::hello_world client =
66 hpx::new_<examples::hello_world>(hpx::find_here());
67 // Invoke the component's action, which will print "Hello World!".
68 client.invoke();
69 return 0;
70 }
71 #endif

simplified python API. Judging from the documentation, version up-
dates, and paper citations, PyCUDA still has a significant user-base
today.
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Listing 10: Example PyCUDA Python Application
1 import pycuda.autoinit
2 import pycuda.driver as drv
3 import numpy
4
5 from pycuda.compiler import SourceModule
6 mod = SourceModule("""
7 __global__␣void␣multiply_them(float␣*dest,␣float␣*a,␣float␣*b)

8 {

9 ␣␣const␣int␣i␣=␣threadIdx.x;

10 ␣␣dest[i]␣=␣a[i]␣*␣b[i];

11 }

12 """)
13
14 multiply_them = mod.get_function("multiply_them")
15
16 a = numpy.random.randn(400).astype(numpy.float32)
17 b = numpy.random.randn(400).astype(numpy.float32)
18
19 dest = numpy.zeros_like(a)
20 multiply_them(
21 drv.Out(dest), drv.In(a), drv.In(b),
22 block=(400,1,1), grid=(1,1))
23
24 print(dest−a∗b)

Listing 11: Example PyOpenCL Python Application
1 import numpy as np
2 import pyopencl as cl
3
4 a_np = np.random.rand(50000).astype(np.float32)
5 b_np = np.random.rand(50000).astype(np.float32)
6
7 ctx = cl.create_some_context()
8 queue = cl.CommandQueue(ctx)
9
10 mf = cl.mem_flags
11 a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
12 b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
13
14 prg = cl.Program(ctx, """
15 __kernel␣void␣sum(

16 ␣␣␣␣__global␣const␣float␣*a_g,␣__global␣const␣float␣*b_g,␣__global␣float␣*res_g)

17 {

18 ␣␣int␣gid␣=␣get_global_id(0);

19 ␣␣res_g[gid]␣=␣a_g[gid]␣+␣b_g[gid];

20 }

21 """).build()
22
23 res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
24 prg.sum(queue, a_np.shape, None, a_g, b_g, res_g)
25
26 res_np = np.empty_like(a_np)
27 cl.enqueue_copy(queue, res_np, res_g)

The OpenCL analog to PyCUDA, PyOpenCL, was developed by
the same research team [168] in 2012, three years after the release
of PyCUDA. In Listing 11, we see that PyOpenCL provides a simi-
lar wrapper-style abstraction over OpenCL, although with slightly
more OpenCL-oriented python API calls. The Clyther project [255]
was another interesting but short-lived OpenCL-based python in-
terface for heterogeneous computing.

Similar to howPyCUDAprovided away to developGPU-accelerated
applications in python, JCUDA [300] provided CUDA wrappers for
Java. Also developed in 2009, JCUDA is still frequently updated and
supports a significant user base. Because the abstraction level of
Java is more similar to C, JCUDA’s abstraction level is very similar
to that of C-based CUDA. As a result, this approach does not strictly

qualify as a "high-level" approach in the same manner as the other
approaches in this section.

The options for performing general purpose accelerated comput-
ing in languages like python are still technically limited. However,
as we see in the following section, python has a rich environment
and a multitude of programming approaches for heterogeneous
domain specific computing that more appropriately map to the
abstraction level and programming style of python.

4.4.9 SYCL, DPC++, and OneAPI. The SYCL standard is yet
another C++-based heterogeneous programming approach [164].
First released in 2014, SYCL originally aimed to be a programmer-
productivity oriented abstraction layer on top of OpenCL. However,
later implementations targeted other intermediate representations,
like AMD HIP and CUDA. We discuss this further in Section 4.6.
Although SYCL is several years old, it has seen limited uptake in
the scientific community, until its recent involvement with DPC++
and Intel’s OneAPI initiative.

DPC++ [29], launched in 2019, is a SYCL implementation devel-
oped and managed by Intel, that integrates the SYCL and OpenCL
standards with additional extensions. These extensions are often
championed for inclusion in the SYCL standard itself, analogous to
how several of the heterogeneous and parallelism features of SYCL
are then pushed for inclusion into the C++ standard. Examples of
features in SYCL that originated in DPC++ include unified shared
memory, group algorithms, and sub-groups.

Intel’s OneAPI Library [151] attempts to encapsulate several of
the technologies and programming approaches discussed in the
section under a single umbrella. OneAPI consists of several APIs
based on DPC++, SYCL, C++ Parallel STL, and Boost.Compute,
including:

• oneAPI DPC++ Library
• oneAPI Math Kernel Library
• oneAPI Data Analytics Library
• oneAPI Threading Building Blocks
• oneAPI Video Processing Library
• Collective Communications Library
• oneAPI DNN Library
• Integrated Performance Primitives

It remains to be seen if OneAPI can truly deliver a unified pro-
gramming approach for a diverse set of heterogeneous systems.

4.5 Domain Specific GPU Programming
Approaches

Both the high-level and low-level general-purpose GPU program-
ming approaches allowed developers to create heterogeneous ap-
plications for a huge diversity of application domains. However,
many domain and computational scientists spend the entirety of
their programming efforts within a very specific field or area. To
combat the issues with the general purpose approaches, such as
the complexity of the low-level approaches and inconsistency and
performance issues with the high-level approaches, a multitude of
domain-specific GPU programming approaches were developed.

More specifically, libraries or domain-specific languages (DSLs)
targeting a single application space or area were developed to meet
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the very specific needs of a smaller user-base. We discuss several
of these approaches across a number of domains in this section.

4.5.1 Linear Algebra and Math Libraries. Linear and matrix alge-
bra algorithms have consistently been some of the most important
but also computationally demanding components of scientific com-
puting. It is no surprise then, that several heterogeneous libraries
and frameworks have been developed specifically for this domain.

cuBLAS: Possibly the most universal heterogeneous program-
ming library, cuBLAS is a linear and matrix algebra library devel-
oped and maintained by Nvidia for CUDA-enabled GPUs [222].
Although cuBLAS greatly simplifies development of CUDA kernels
containing BLAS-like algorithms, because of its closed-source and
proprietary nature, the internal functionality can be difficult to
debug. Still, cuBLAS has hundreds of citations just in 2020, over a
decade after its initial release. An OpenCL alternative, clBLAS [16,
231], was developed in 2013 and is maintained by AMD, although
its adoption has been much less widespread than cuBLAS.

cuSparse A separate library for sparse matrix computations,
cuSparse [216], was introduced around the same time as cuBLAS.
Developed and maintained by Nvidia, cuSparse is specialized for
sparse matrix computations and sparse matrix storage and memory
formats on the GPU. Like cuBLAS, cuSparse is limited to CUDA
GPUs, but is still commonly used as of 2020.

MAGMAAmajor open-source alternative to cuBLAS,MAGMA [285,
286] (Matrix Algebra for GPU and Multicore Architectures), was
developed at the University of Tennessee in 2009. MAGMA was
designed to be similar to LAPACK [18] (also developed at the Univer-
sity of Tennessee), and MAGMA integrated with LAPACK APIs and
data structures. Although MAGMA has been less popular overall
than cuBLAS, even as of 2020 MAGMA has been shown to outper-
form cuBLAS on certain applications [120]. Also, current releases
of MAGMA support both dense and sparse matrix operations.

ViennaCL Another open-source alternative, ViennaCL [256,
257], was first released in 2010. ViennaCL primarily focused on
common sparse and dense linear algebra operations, and initially
only had support for an OpenCL backend, although OpenMP and
CUDA backends were later added. Like the most of the other frame-
works in this section, ViennaCL could be used to target CPUs,
GPUs, and MIC devices. Overall ViennaCL was not hugely popular
compared to cuBLAS and MAGMA, but is still referenced in 2020.

Eigen The Eigen C++ library [101] specialized in matrices, vec-
tors, numerical solvers, and related algorithms. Although Eigen
was originally designed for CPU-based linear algebra, GPU-support
was later added, making it an attractive option for heterogeneous
computing as well.

ARPACK The ARPACK library [23, 191] is a Fortran77 based
collection of subroutines, targeted toward large-scale eigenvalue
problems. The ARPACK developers also released C++ versions of
the routines, ARPACK++ [24]. In the context of this project, some
effort has been made to extend ARPACK to support GPUs [22],
although ARPACK is less oriented toward heterogeneity than other
works in this project, and primarily included for completeness. Re-
cently ARPACK development has shifted to an open-source project,
ARPACK-NG [25]. Although not as popular as many of the other
math libraries, ARPACK is still used in 2020, and is an underling

numerical computing tool for several frontends such as SciPy [26]
and Mathematica [27].

cuFFT Besides BLAS routines, another common but computa-
tionally demanding operation in scientific routines is Fast Fourier
Transforms (FFTs). In conjunction with the cuBLAS and cuSparse
routines, Nvidia also released an FFT library, cuFFT [227]. For com-
pleteness, the other math libraries released by Nvidia include cu-
Parse, cuRand, cuSolver, and cuTensor [220].

Odient Differential equations occur frequently in algorithms
with a time dimension, for example development of ecological
systems and population modeling. Odient [4, 195] was developed
in 2011 as a C++-based GPU-enabled library for solving the initial
value problems (IVPs) of ordinary differential equations (ODEs).
Interestingly, Odient was used as recently as 2020 to model the
spread of the Covid-19 virus [93, 138, 205, 258].

SPIRAL The SPIRAL project [250, 272] is a DSL and program-
ming framework focused on the development of digital signal pro-
cessing (DSP) algorithms. SPIRAL aims to simplify the program-
ming approach for domain scientists, offering a syntax similar to
typical formula and mathematical expressions. SPIRAL then inter-
nally applies performance expert knowledge and optimizations to
generate high-performance code for specific architectures.

4.5.2 Image Processing and Graph Algorithms. The Halide pro-
gramming language was developed in 2013 as a collaboration be-
tween MIT’s CSAIL laboratory and Adobe [136, 137, 253]. At its
core, Halide is a DSL targeted for image processing and graph
algorithms.

Like many of the other programming approaches in this section,
Halide is embedded in C++, with a dedicated Halide C++ API. More
recently, Halide has also developed python bindings. Halide sup-
ports a wide array of architectures, including x86, ARM, PowerPC,
and other CPU architectures and CUDA, OpenCL, OpenGL, and Di-
rectX enabled GPUs. Halide is used internally in Adobe Photoshop,
and in projects related to Google’s Tensorflow.

4.5.3 Machine Learning. The explosion of machine learning,
undoubtedly the fastest-growing field in computer science, has
led to the development of several heterogeneous programming ap-
proaches targeted specifically toward the machine learning domain.

Again, in a trend we commonly see in accelerator-based hetero-
geneous programming approaches, Nvidia has significantly con-
tributed to the machine learning domain with the development
of their cuDNN library [71], first released in 2014. Although the
cuDNN (CUDA Deep Neural Network) library can be programmed
directly, similarly to cuBLAS, more typically cuDNN is used as a
backend to one of the widely used deep learning front end frame-
works. More recently, these frameworks are the primary tool for
machine-learning science, as manually coding neural network algo-
rithms can be difficult. The specific frameworks that support cuDNN
include MxNet [67], Tensorflow [1], Keras [135], Pytorch [239],
Chainer [284], and Caffe [155].

Analogous to clBLAS, AMDhas also developed anOpenCL-based
analog to cuDNN, named MIOpen [14, 165]. Recently released in
2019, MIOpen is provided as part of the ROCm suite, and based on a
software stack including both OpenCL and HIP. Although MIOpen
is currently not as popular as cuDNN, and lacks integration into
the major front-end frameworks and tools, it could become popular
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in the near future with new AMD systems like ORNL’s Frontier
supercomputer [234], projected release in 2021 with four AMD
GPUs on each node.

TVM [68], a community driven project developed at the Univer-
sity of Washington, offers an open source option for end-to-end
deep neural network computation. Now managed by the Apache
Software Foundation (ASF), TVM has several advantages over the
other major machine-learning frameworks in that it is not tied or
restricted to any vendor or device family. TVM supports multiple
front-end approaches, including Tensorflow, Keras, and MxNet, and
is able to target a diverse set intermediate representations, including
CUDA, OpenCL, Rocm, and others. Additionally, TVM has limited
support for FPGA devices.

4.5.4 Scientific Visualization. A very natural domain for het-
erogeneous programming is scientific visualization. Visualization
applications typically already heavily rely on GPU architectures for
image and video rendering and display, typically through low-level
APIs like OpenGL or OpenCV. Development of domain-specific
heterogeneous programming approaches for scientific computing
is a natural extension. One approach involves in-situ visualiza-
tion, where the computation and visualization are tightly coupled,
without requiring offloading to the host device.

VTK-m [213] is an example of a heterogeneous scientific visual-
ization approach. Likemany other approaches, VTK-m relies on C++
template metaprogramming. The VTK-m programming abstraction
is based on "data-parallel primitives", high-level algorithmic API
calls that are then executed on the accelerator device.

Another example is the Alpine framework [177], which builds on
the VTK-m framework and ideas. Alpine is focused on supporting
modern supercomputing architectures, a flyweight infrastructure,
and interoperability with software like R and VTK-m. Alpine was
designed to accelerate scientific visualization codes using Nvidia
GPUs and Intel Xeon Phis.

The Ebb framework [45, 96] is a DSL designed specifically for
collision detection, a common algorithmic operation in scientific
visualization and computer graphics.

Finally, the Listz framework [88, 198], developed at Stanford
University, is a DSL created specifically to construct 3D mesh PDE
solvers, critical for many visualization algorithms and graphics
applications.

4.5.5 Climate and Weather. Due to the high number of compu-
tational resources required to model climate and weather at scale,
climate and weather simulations represent a large fraction of most
HPC system workloads. Unsurprisingly, DSLs have also been cre-
ated to ease the creation of climate-based HPC applications. One
example, the CLAW project [72, 243] developed in 2018 at ETH
Zurich, is a FOTRAN-based DSL that aims to provide performance
portability for column- and point-wise weather and climate com-
putations.

4.6 Heterogeneous Compilers
Development of new heterogeneous programming approaches,
APIs, libraries, and frameworks is important for advancing the
field of heterogeneous computing. However, even the world’s best-
designed programming approach is rendered useless without an

effective implementation, typically in the form of a compiler. Much
of the success of different programming approaches hinges on the
availability and usability of compilers for said approaches. In this
section, we discuss different tiers of compilers, from vendor sup-
ported production-level to academic, each of which plays a crucial
role in the life cycle of heterogeneous programming approaches.

4.6.1 Vendor Compilers. Wefirst discuss vendor compilers. These
typically refer to a language implementation, in the form of a com-
piler, developed by amajor acceleratormanufacturer, such as Nvidia,
AMD, IBM, Intel, etc. We briefly highlight some major advantages
and disadvantages of the vendor compiler model for heterogeneous
programming approaches, and then discuss several vendor compil-
ers in detail.

Advantages: Compilers developed and maintained by hardware
accelerator vendors are typically very consistent and reliable for a
small set of supported devices. The documentation and user guides
are often detailed, thorough, and updated. These companies are
financially motivated for success with their devices, which results in
many of the advantages listed. These compilers also have somewhat
of a guarantee of longevity, at least compared to the independent
and open source projects.

Disadvantages: Vendor compilers, for obvious reasons, are lim-
ited to only compile code for devices produced by the vendor. This
leads to replication of efforts for each different manufacturer. Fur-
thermore, vendor compilers often introduce extensions to otherwise
portable programming approaches that optimize the performance
for their specific devices. These extensions break the original lan-
guage intentions, and result in code that is no longer portable across
an array of different accelerators. The vendor compilers also typi-
cally have a slower release cycle, are slower to incorporate updates
to programming approaches, and are more conservative for the im-
plementation of new language feature release of updated language
versions.

NVCC Arguably the most popular, and dominant, vendor com-
piler in all of heterogeneous computing is nvcc, Nvidia’s core CUDA
compiler [219]. Released in 2006 along with Nvidia’s CUDA toolkit,
nvcc is based on the LLVM compiler toolchain [179], which is dis-
cussed later in this section. The nvcc compiler is implemented as a
compiler driver; nvcc invokes the needed tools to perform a given
compilation. Typically in a C CUDA application, the host code is
compiled with gcc, and the device code is compiled using cudacc. In
this case, nvcc would invoke gcc and cudacc, generating a C-code
host binary and PTX device code respectively. PTX, or NVPTX, is a
low level instruction set architecture used by CUDA-enabled GPUs.

Although nvcc is strictly for CUDA applications and Nvidia de-
vices, nvcc is used extensively as an internal mechanism in many
of the higher level source-to-source compilers, open source frame-
works, and heterogeneous programming toolkits.

PGI The PGI OpenACC compilers, pgcc and pgft, have been
the de facto standard for OpenACC compilation since its incep-
tion in 2012 [293, 294]. The PGI (Portland Group Inc.) company
was founded in 1989, and originally developed parallel computing
compilers for x86 architectures. PGI especially specialized in high-
performance FORTRAN compilers. Because of this specialization,
in 2009 PGI was contracted by Nvidia for the development of the
first FORTRAN-based CUDA compiler.
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PGI also worked with Nvidia to develop the PGI-Accelerator
programming model, which we discussed in Section 4.3. As men-
tioned, the PGI-Accelerator compiler was eventually extended to
develop the first OpenACC compiler. According to the definitions
and classifications used in this section, PGI’s role in heterogeneous
programming and computing up to that point would have placed it
exactly in the following "independent compilers" section. However,
in 2013 PGI was acquired by Nvidia, redefining it as a "vendor com-
piler", at least for the purposes of this project. Interestingly, in 2013
PGI also developed an OpenCL compiler for ARM cores [133], but
this was removed after the Nvidia acquisition.

Since then, PGI has continued to develop compilers for Nvidia
devices for OpenACC C and OpenACC FORTRAN, and has been
very involved in the promotion and development of OpenACC
itself. Although PGI compilers have existed independently from
the CUDA toolkit in the past, as of August 2020 pgcc and pgft have
now been fully absorbed into Nvidia, and are now re-branded as
part of the Nvidia HPC SDK [132, 224].

AMD The other major GPU manufacturer after Nvidia, at least
in the context of scientific computing, is AMD. Unlike Nvidia, AMD
has not developed a proprietary programming approach and ven-
dor compiler for heterogeneous computing. AMD has developed
a C/C++ optimizing vendor compiler, aocc, for its CPU Ryzen de-
vices [11], but for their Radeon GPU devices, AMD has opted for
an open-source solution.

In order support its GPU architectures, AMD has developed the
open-source ROCm (Radeon Open Compute) suite [12]. ROCm
is a collection of APIs, drivers, and development tools that sup-
port heterogeneous execution on both AMD GPUs, but also other
architectures like CUDAGPUs. ROCm supports the AMDHIP repre-
sentation, but can also process OpenMP and OpenCL applications.
The compilers, libraries, and debuggers for ROCm are available
from the open source github [13].

Intel Intel has long been at the frontier of high-performance
compilers for their optimizing and parallelizing CPU compilers,
enabling SIMD and multi-threaded parallelism for their homoge-
neous Intel Xeon CPU devices. Intel’s first foray into heterogeneous
compilation came in 2010 with the introduction of the Intel Xeon
Phi coprocessor chip [217]. These chips followed a similar offload
model and architecture as the contemporary GPU models.

Intel’s acquisition of the FPGA-manufacturer Altera has also
resulted in the release of a vendor-specific Intel-based OpenCL
compiler for FPGAs [150]. However, this compiler framework suf-
fers from many of the vendor-specific extensions and optimizations
mentioned in the above "disadvantages" discussion, rendering the
resulting OpenCL not portable to other devices. We discuss this
further in Section 4.8.

Finally, with the release of the X e GPGPU, Intel is also expected
to release an Intel-based GPU-specific vendor compiler [152]. Few
details have been released on the heterogeneous programming
approach for the X e accelerator, but it is expected to involve In-
tel’s OneAPI and DPC++ frameworks, discussed in more detail in
Section 4.4.

Cray Although Cray does not manufacture heterogeneous ac-
celerators, Cray has been responsible for building several of the
world’s fastest heterogeneous supercomputers, including ORNL’s
Jaguar, Titan, and Frontier. For these machines, Cray has developed

the "Cray Compiling Environment" [78]. For GPGPU offloading, cce
supports both OpenACC and OpenMP 4.5 directives.

IBM Like Cray, IBM does not directly develop heterogeneous
accelerators, although IBM does develop multicore chips, the Power
processors (Power 1, ..., Power8, Power9, Power10, etc.) [148]. How-
ever, like Cray, IBM has also built top heterogeneous supercom-
puters, including ORNL’s Summit and LLNL’s Sierra machines. In
turn, IBM’s xlc compiler toolchain has limited support for hetero-
geneous programming approaches [147]. Specifically, xlc supports
the OpenMP offloading directives in their C and C++ applications,
though no support for OpenACC is available.

4.6.2 Independent Compilers. Several independent companies
develop and maintain proprietary compiler technologies, a few
of those specifically targeting heterogeneous computing. Before
its acquisition by Nvidia, pgcc/pgc++ from The Portland Group
represented a prime example of an independent heterogeneous
compiler.

Another example is the ComputeCPP compiler from Codeplay
Software [74]. The ComputeCPP compiler is an implementation
of the SYCL standard, discussed in Section 4.4, and currently rep-
resents one of the few production-level SYCL implementations,
although Intel is currently developing a SYCL implementation as
part of its OneAPI framework. Several other independent compiler
development companies exist, and this list is by no means exhaus-
tive.

4.6.3 Open Source Compilers. The main alternative to hetero-
geneous proprietary vendor compilers are production-level open
source heterogeneous compilers. These compilers and compiler
toolchains are typically maintained by steering committees, which
can consist of representatives from accelerator vendors, scientific in-
stitutions, and independent companies. We discuss the advantages,
disadvantages, and some examples of open source heterogeneous
compilers.

Advantages Unlike the vendor compilers, open source compil-
ers are often more community driven. That is, the direction and
implementation of the compiler is not completely motivated and
driven by device manufactures, although device manufactures are
often involved. Also, most of the open-source compiler frameworks
support a variety of accelerators and architectures. More gener-
ally, open source compilers benefit from all of the same advantages
of open-source software as a whole, including transparency, flexi-
bility, and independence. Specific to heterogeneous programming
approaches, open source compilers can more quickly adapt new
standards and features and the rapidly evolving array of architec-
tures. Also, because the same compiler can be used across several
architectures, the input programming approach used is inherently
more portable. Most open source projects are managed through git
or subversion, and hosted on a popular git repository hosting site
like Github.

Disadvantages Open source compiler projects, especially the
smaller ones, may not have the financial security of the vendor com-
pilers. They also may not have the secured longevity. For example,
if the main contributors to an open source compiler projects change
positions or careers, continued maintenance on the project may
terminate. Also, the open source compilers may not have access
to low level architecture details that the vendor compilers use to
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get increased performance on their specific devices. However, the
large open source compiler projects, like LLVM and GCC, typically
have no issues with longevity and closely tail vendor compilers in
terms of performance.

LLVM, Clang, and MLIR LLVM, originally an abbreviation for
Low Level Virtual Machine, has become one of the most important
compiler toolchains, not just in heterogeneous compilation, but
in all of computing [178, 179, 248]. As previously mentioned, the
LLVM backend intermediate representation and compilation tools
form the backbone of many of the other compilers, including the
vendor compilers like nvcc.

First developed in 2000 by Chris Latner at the University of
Illinois at Urbana Champaign, LLVM has grow significantly from
its initial role as a virtual machine processor. Originally designed for
C/C++, LLVM now provides an internal representation and compile
time, runtime, and idle time optimization for a multitude other
languages. In 2005 Apple began to manage and maintain LLVM for
use in their internal projects, but LLVM was later re-licensed under
Apache.

LLVM exists as a main project, LLVM-core, and a number of
sub-projects, including three specifically relevant to heterogeneous
programming approaches, Clang, OpenMP, and MLIR.

First released in 2008, clang is LLVM’s own front end compiler for
C and C++ [178, 247]. The clang compiler processes C and C++ code
and generates LLVM IR, which is then optimized and processed by
LLVM. LLVM’s OpenMP sub-project implements OpenMP func-
tionality into the LLVM clang compiler. Through the clang and
OpenMP sub-projects, LLVM supports heterogeneous computing
by compiling C and C++ applications with OpenMP offloading
directives.

Though not yet an official LLVM sub-project, OpenACC sup-
port is also being developed for LLVM as part of the Clacc (Clang
OpenACC) project [87]. Clacc builds on the LLVM OpenMP in-
frastructure. Clacc accepts C-based OpenACC as input, internally
translates to OpenMP, and then generates LLVM intermediate rep-
resentation using the existing LLVM OpenMP infrastructure.

MLIR (multi-level intermediate representation) is another LLVM
project with significant implications for heterogeneous program-
ming [180, 249]. The MLIR project adopts a layered compilation
and optimization model, with different MLIR layers, or dialects, that
have distinct abstraction levels and areas of focused. These layers
can be combined and lowered, from higher abstraction dialects
to lower abstraction dialects. Essentially, MLIR offers a reusable
abstraction toolbox. A main goal of MLIR is to prevent software
fragmentation and improve support for heterogeneous hardware,
as the concept of dialects maps well to the ideas of different accel-
erators. MLIR also aims to provide support for the development of
domain-specific programming approaches, which has a straightfor-
ward mapping to MLIR dialects and the progressive conversion and
lowering structure of MLIR. The previously discussed Tensorflow
framework relies on MLIR, and has been a major motivation for the
development of the project [281]. Additionally, the Flang project
(a FORTRAN-based front-end for LLVM) and Flang’s OpenACC
support rely on MLIR [236].

GNU C/C++ The GNU Compiler Collection, commonly referred
to as just GCC, is undoubtedly the longest-living and most wide-
spread open source compiler framework [244] (although Perl is a

close second on longevity). It is no surprise then that GCC also
plays a role in heterogeneous compilation.

GCC was first released in 1987 as the GNU C Compiler, but has
since expanded to incorporate other languages such as C++ and
FORTRAN. More recently GCC has worked to develop support
for OpenACC [245] and OpenMP offloading models [246]. How-
ever, GCC’s implementations are not as mature as PGI’s OpenACC
implementation and LLVM’s OpenMP implementation.

pocl The pocl project (Portable Compute Language) is an open
source implementation of the OpenCL standard [154, 232], first
released in 2015. The pocl project relies on Clang and LLVM in-
ternally, and is able to target most CPUs, Nvidia GPUs, and other
HSA-supported GPUs.

TriSYCL The TriSYCL project is an open source implementation
of the SYCL standard [288]. TriSYCL was originally managed by
AMD, but is nowmanaged by Xilinx, who have implemented several
SYCL extensions and additions in order to more efficiently support
SYCL on their FPGA architectures. Although this likens TriSYCL
to the vendor compilers, TriSYCL has also been used to evaluate,
verify, and provide feedback for the SYCL standard itself, which
more closely aligns with the goals of open source projects.

4.6.4 Academic Compilers. The last category of heterogeneous
compilers we cover are academic project compilers. These projects
are typically source-to-source translation compilers, or pre-compilers,
that build on or extend existing production-level compiler projects.
However, they play a crucial role in the development cycle of het-
erogeneous programming approaches. We briefly discuss the ad-
vantages and disadvantages of research-based compilers, and list a
few notable examples.

Advantages Academic compilers are great for prototyping and
experimentation of new language features. A production level com-
piler, either vendor or open source, may take months to push
through new features and require several stages of approval. Con-
versely, an academic compiler is usually owned by a small group of
researchers, and new features can be implemented and launched
in a few days. Often, new language features are first evaluated in
academic compiler settings, and only later re-implemented, or trick-
led down, into more production-setting compilers. Most academic
compilers also host open source code on major code repositories.

Disadvantages Academic compilers often struggle with adop-
tion and longevity. Because the projects are owned by a small num-
ber of people, small shifts in personnel can have disastrous effects
on maintenance of a framework. Also, the compiler frameworks are
typically funded by larger projects and grants, and therefore may be
dependent on renewal of funding. Finally, because these compilers
may be targeting a specific problem area for the research group,
they often implement only a subset of the target programming
language or approach.

ROSE The ROSE compiler framework is an open source, re-
search based, source-to-source transformation compiler developed
at LNLL [200, 252]. First published in 1999, ROSE has not suffered
from longevity issues, and is still cited frequently in 2020. In 2013,
ROSE was used in one of the first initial implementations and eval-
uations of the OpenMP offloading model, OpenMP specification
4.0 [194].
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OpenUH The OpenUH project was managed by the HPCTools
group at the University of Houston [30, 193]. OpenUH was based
on the Open64 compiler framework [228], and was originally devel-
oped as an OpenMP and FORTRAN Coarray compiler. OpenUH did
begin support for OpenMP offloading directives for heterogeneous
programming, and experimental support for OpenACC on Nvidia
and AMD GPUs, but as of 2020 the compiler framework does not
seem to be under active development.

Omni The Omni compiler project is maintained and developed
by researches at the University of Tsukuba and the RIKEN Center
for Computational Science, both in Japan [75, 260]. First released
in 1999, the Omni OpenMP compiler represented one of the first
research-oriented implementations of the OpenMP standard. Over
time, Omni has shifted to focus on cluster-based OpenMP comput-
ing. In 2010, an extension to the Omni project, XacalabeMP [181]
integrated a PGAS-model distributed memory approach to OpenMP
compilation. Also in 2010, the OMPCUDA project extended the
Omni compiler to support compilation of OpenMP code for CUDA
GPUs. Later in 2013, initial OpenACC support was added, shortly af-
ter the release of the OpenACC standard [280]. The next year, 2014,
the XaclableMP and OpenACC extensions were combined to cre-
ate the XalableACC extension [215], a PGAS-based heterogeneous
distributed framework based on OpenACC.

The Omni compiler and its extensions are still under active
development. In 2019 and 2020, extensions were made to include
FPGA support [50, 291], although this support is still a work in
progress.

OmpSs The OmpSs project, first published in 2011, aimed to
support CUDA- and OpenCL-enabled GPUs with OpenMP input[94,
242]. OmpSs is developed and maintained by the Barcelona Super-
computing Center, BCS.

Because OmpSs pre-dated the OpenMP offloading directives, the
developers created custom extensions to OpenMP for handling data,
based on the StarSs framework [241]. OmpSs was evaluated and
extended by amultitude of other works and projects [57, 58, 102], in-
cluding one comparing OmpSs, OpenMPC, OpenACC, and OpenMP.
OmpSs has also been explored for FPGA-based heterogeneous com-
puting [52, 53, 240], which we discuss further in 4.8.

As is obvious from the numerous publications, OmpSs is still
undergoing active development and still being used as part of the
toolchain for a number of other projects.

OpenARC The OpenARC compiler framework, first published
in 2014, is maintained and developed by Oak Ridge National Lab-
oratory [187]. OpenARC is an extension of the OpenMPC frame-
work [182], and like OpenMPC, is built on the Cetus compiler
toolchain [83]. OpenARC was originally designed to be the first
open source option for OpenACC compilation, acting as an source-
to-source translator that consumes OpenACCC input and generates
C and CUDA output. More recently, OpenARC has evolved to ac-
cept OpenMP offloading directives as additional inputs, and can
generate OpenCL and AMD HIP as output sources, in addition to
CUDA.

OpenARC also acts as the core framework for other heteroge-
neous programming projects. The Compass framework [185] relies
on OpenARC to generate ASPEN performance models [271] of het-
erogeneous applications driven by user annotations and directives.
The CCAMP project aims to create an inter-operable OpenMP and

OpenACC framework [174, 175]. The Iris runtime library (citation
pending), also integrated into OpenARC, is a work in progress that
aims to allow multiple accelerators, even with different architec-
tures, to collaborate together to execute a single application.

The OpenARC developers have also integrated support for FP-
GAs [173, 176, 183]. This is discussed in more detail in Section 4.8.

HipSYCL Like TriSYCL, the hipSYCL project is another open
source implementation of the SYCL standard, although hipSYCL
lacks the backing of a major vendor and is instead managed by
Heidelberg University [9, 145]. HipSYCL implements a subset of
the SYCL standard, and targets AMD GPUs, Nvidia GPUs, and
OpenMP-enabled CPUs. Copied from the HipSYCL repository, in
Figure 6, we see a breakdown of the different SYCL implementations,
several of which were mentioned in this and previous sections.

HPVM HPVM (Heterogeneous Parallel Virtual Machine) [171,
206, 207] is a research project first published in 2018 originating
from the University of Illinois at Urbana-Champaign. On the surface,
HPVM is an extension to LLVM with direct support for heteroge-
neous computation, simplifying the intermediate representation
that many of the LLVM-dependent heterogeneous programming
approaches rely on.

The HPVM project aims to develop a uniform representation
that can capture an array of different heterogeneous architectures,
including GPUs, multi-core CPUs, FPGAs, and more. The main
components of HPVM include: (1) a dataflow graph-based parallel
program representation to capture task and data parallelism, (2) a
heterogeneous compiler intermediate representation that supports
optimizations commonly employed on GPU devices, like tiling and
loop fusion, and (3) a heterogeneous virtual ISA supporting GPUs,
SIMD vectorization, and multicore CPUs.

HPVM is implemented on top of the LLVM project, and aims to
provide a valuable new asset, a heterogeneous-focused extension,
to the LLVM community.

4.7 Heterogeneous Benchmark Suites
When evaluating heterogeneous programming approaches, typi-
cally performance is king. However, measurements of performance
are relative, and difficult to compare across different projects, frame-
works, or standards. The one control that makes performance com-
parisons possible are standard benchmarks. In this section, we
review several different benchmark suites designed specifically for
heterogeneous programming approaches.

First released in 2009, the Rodinia benchmark suite [64] is the
oldest among the benchmark sets discussed in this section. Rodinia
first released with CUDA and OpenMP versions of computational
kernels from several different scientific domains. OpenCL kernels
were added next, and after the release of the OpenACC standard,
OpenACC versions of several of the kernels were included. The
OpenMP kernels were updated to use some of the offloading direc-
tives, although they only annotated using directives specific to the
Intel Xeon Phi devices, not general GPUs.

In 2010, ORNL released the SHOC (Salable Heterogeneous Com-
puting) benchmark suite [82]. The SHOC benchmarks released with
both CUDA and OpenCL versions of several kernels. Unlike Ro-
dinia, SHOC was designed to test applications at scale, not just on
a single node.
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Overview of SYCL implementations

Figure 6: hipSYCL repository README [145]

The Parboil benchmarks [277] were developed by the University
of Illinois at Urbana-Champaign and released in 2012. Like the other
benchmark suites, Pairboil contains both CUDA and OpenCL code
versions. One unique aspect with Parboil is that several different
versions of each application are provided with different levels of op-
timizations. These versions can be used to measure the effectiveness
of an automated optimizing compiler.

Also released in 2012, theOpenCL 13Dwarfs benchmark suite [111]
is a realization of Berkely’s 13 computational dwarfs in OpenCL [28],
where a dwarf is essentially a core computational or communication
method or action.

In 2013, EPCC, the Edinburgh Parallel Computing Center, a su-
percomputing center associated with the University of Edinburgh,
released a suite of OpenACC benchmarks [104, 105]. The suite
contains low-level operations intended to test and measure the per-
formance of hardware and compilers. The suite also contains a set of
software kernels intended to replicate operations most commonly
seen in scientific applications. Although the EPCC Benchmarks
also contain OpenMP implementations, these versions are based
on non-offloading OpenMP standards, 3.0 and earlier.

Finally, the SPEC Accel [158] benchmark suite was released in
2014. SPEC (Standard Performance Evaluation Corporation) is a
non-profit specifically focused on developing and maintaining high-
quality benchmarks. As a result, the SPEC Accel benchmarks are
verywell organized and documented, and have a robust set of scripts
for executing and recording application information. However, the
SPEC benchmarks are not open source, and require either a paid
commercial license or a free academic licence.

Interestingly, the oldest benchmark suite, Rodinia, seems to be
the most popular, with nearly an order of magnitude more citations
than any of the other benchmark suites. This could be just an arti-
fact of being released first, or from the Rodinia kernels more closely
resembling desired scientific applications. However, the Rodinia

benchmarks themselves are infrequently updated and fail to capture
many of the new language features. This requires each research
project that requires a benchmark set to develop their own updates
to the benchmarks. The other benchmark suites face a similar chal-
lenge. Several newer benchmark suites have been presented, but
all have faced issues with adoption. Moving forward, development,
adoption, and maintenance of high-quality benchmark suites could
significantly improve the productivity of heterogeneous program-
ming approach developers.

4.8 FPGA Accelerators
Since the initial release of CUDA in 2006, GPGPUs have been the
dominant driving force for accelerator-based heterogeneous com-
puting. The concept of offloading computationally intense regions
of code to a heterogeneous hardware accelerator has become com-
monplace in scientific computing, and for the past decade, het-
erogeneous computing has almost exclusively referred to GPGPU
offloading. However, FPGAs have recently emerged as a major com-
petitor to GPU accelerators, both in terms of computing power and
power efficiency.

Field Programmable Gate Arrays (FPGAs) have been produced
and developed for nearly 40 years. Altera, a major FPGA man-
ufacturer, was founded in 1983, and released the first FPGA in
1984. Xilinx, the main competitor to Altera for several decades, was
founded in 1984 and released their first FPGA in 1985. These devices
have been pushed and promoted as potential architectures for high
performance computing for decades, but until very recently, have
not seen much adoption. The real revolution for FPGAs, and their
adoption as a heterogeneous accelerator, has stemmed from the
introduction of new FPGA programming approaches.

Traditionally, FPGAs were programmed using low-level Hard-
ware Definition Languages (HDLs). These programming approaches
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required detailed knowledge of FPGA hardware, manual manage-
ment of timing and placing of wires on the FPGA board, and tedious
implementation of flip flops, arithmetic logic, and other similar
computer architecture-type features. Several high-level options,
or High Level Synthesis (HLS) tools were developed, for example
Handle-C, which was released in 1996 and generated HDL from C
input [31]. However, many of these early HLS projects were more
research oriented, and never had a wide adoption in the scientific
community.

The first release of a viable HLS option for scientific program-
mers came with Altera’s release of their OpenCL SDK, in 2013,
around four years after the release of OpenCL itself [10]. Due to
the widespread adoption of GPU offloading, by 2013 the idea of
offloading to other accelerators such as FPGAs had become more
palatable to the scientific community. The Altera OpenCL SDK
was well documented, backed by a major vendor, and contained a
suite of compilation, debugging, and performance measurement
tools. Sensing the opportunity, Intel acquired Altera in 2015, and re-
branded the SDK as the Intel FPGA SDK for OpenCL [150], which
is still very active in 2020. Around the same time as Altera’s de-
velopments, Xilinx also developed OpenCL SDKs and HLS tools,
with their Vivado [299]and SDAccel [297]tools. These tools have
been repackaged and recently released as the Vitis Software Plat-
form [298].

Several research projects have sought to make the HLS pro-
gramming approaches even more accessible for scientific program-
mers, typically by building software layers on top of the vendor-
supported HLS backends. One example is the OpenARC 2016 ex-
tension, the OpenACC to FPGA framework [173, 176, 183, 184].
The OpenACC to FPGA framework accepts OpenACC C programs
as input, and generates Intel-based OpenCL as output, creating
optimized OpenCL from standard OpenACC directives. In similar a
2017 project, the team at Tskuba University extended the OmpSs
framework to support FPGAs [52]. Like the OpenARC extension,
the OmpSs extension relies on backend HLS tools, in this case the
Xilinx HLS tools. In a later extension, OmpSs was also extended to
support OpenACC [291].

In a slightly different approach, the ETH Zurich DaCe (Data-
Centric) framework also supports FPGA deployment with a high-
level programming approach [43]. DaCe is unique in that it employs
a control-flow graph and GUI based interface as a frontend pro-
gramming model, which is different than the current programming
approach for nearly all scientific applications. However, this ap-
proach may map to FPGA architectures more appropriately than
OpenACC or OpenMP, as it is reminiscent of the GUI-based HDL
placing and routing programming style. Like OpenARC and OmpSs,
Dace internally relies on the Xilinx HLS tools, with some support
for the Intel tools through the hlslib extension [84].

4.9 Next Generation Accelerators
For upcoming and future systems, other types of accelerators be-
sides GPUs and FPGAs are being explored as hardware accelerators.
More and more exotic, customized, and specialized hardware ac-
celerators are being explored as viable options in heterogeneous

systems. In this section, we discuss some of these more recent accel-
erators, and the heterogeneous programming approaches associated
with them.

4.9.1 Machine Learning Accelerators. Perhaps the most relevant
and motivated new accelerator devices are machine learning accel-
erators. The interest in these types of devices closely followed the
huge increase in activity in the area of machine learning. Due to
the vast number of newly developed machine learning accelerators,
this discussion is far from comprehensive, but we do discuss some
of the most promising and widely available chips.

One of the first widely discussed chips specialized for machine
learning was the Google Tensor Processing Unit (TPU) [73, 157].
Although Google began using the TPU devices internally in 2015,
they were not publicly announced until 2017, and not publicly
released until 2018. Google subsequently released the TPU1, which
specialized on deep neural network inference, and the TPU2 and
TPU3, both updates to the original TPU chip. Google also released
a low-power alternative, the TPUEdge chip [287]. Interestingly, the
TPUEdge device is shipped as part of a USB accelerator, a device not
much larger than a typical flash drive. Machine learning models for
the Google TPUs are built and programmed using Tensorflow, or
in the case of TPUEdge, Tensorflow Lite, and compiled by Google’s
XLA compiler [5]. However, other XLA frontends are also supported
on TPUs, including Julia [46], Jax, and Pytorch.

Nvidia has also invested heavily in machine learning-focused
acceleration. The Nvidia Volta devices, the primary accelerator
in ORNL’s Summit supercomputer, contain 640 "Tensor Cores",
specialized for machine learning workloads [226]. The Nvidia Am-
pere devices, the successor to the Volta, significantly improves
on the Volta architecture and introduces double-precision tensor
cores[221]. Nvidia has also released a packaged full system con-
taining its core chips, the line of DGX workstations [223]. These
workstations, including the DGX-1, DGX-2, DGX-V100, and DGX-
A100, provide out-of-the box solutions for high performance and
accelerated machine learning, for a significant cost. The initial price
for the newest DGX A100 was $199,000. As a cheaper alternative,
Nvidia has released a low-power, low-cost device for small scale
and edge machine learning, the Nvidia Jetson and its successor, the
Nvidia Xavier [225]. Not surprisingly, the Nvidia machine learning
devices are still based on CUDA, and can be programmed with
heterogeneous approaches that support CUDA backends, including
Tensorflow and several of the other frameworks mentioned in this
project.

Although Google and Nvidia are the most recognizable names in
machine learning accelerators, many other major companies have
also developed custom machine learning hardware. Amazon has
developed a custom inferencing chip for its Amazon Web Server
(AWS) EC2 instances, the AWS Inferentia chip [266]. Inferentia is
programmed using the AWS Neuro SDK, which contains a compiler,
a custom run-time, and profiling tools. The SDK supports many of
the leading ML frameworks like Tensorflow, PyTorch, and MXNet.
AMD has released a Radeon Instinct MI8 and a double precision
update, the MI60 [15]. These devices are specifically built for deep
learning and can be programmed using the AMD MIOpen, ROCm,
and HIP toolchains (discussed in Section 4.4), which support many
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of the popular ML frontends like Theano, Caffe, and Chainer. Inter-
estingly, AMD has partnered with LLNL to deliver the El Capitan
supercomputer in 2023, which will be deployed with Radeon In-
stinct devices [201]. Finally, ARM also has a hat in the ring with
the ARM Ethos line of machine learning processors [20].

Besides the machine-learning oriented accelerators developed
by major processor manufactures, there are also several chips devel-
oped by smaller, more research-based entities. Like the distinction
between research-oriented and vendor compilers, research-oriented
machine learning accelerators have more freedom to experiment
and explore, both with the hardware and the programming ap-
proach. Some examples include the AI "IPU" (Inference Processing
Chips) from Graphcore, which is a smaller company backed by
larger entities like Dell, Samsung, and others [159]. The NeuFlow
chip, developed as a collaboration between IBM, New York Univer-
sity, and Yale University is an older AI-oriented chip, first published
in 2011 [110]. Stanford University has been responsible for devel-
oping two AI-oriented chips, the Energy Efficient Inference Engine
(EIE) [139] and the TETRIS accelerator [121], focused on 3D stack-
ing memory. Researchers at MIT CSAIL lab have developed the
Eyeriss chip, an energy efficient inference processor [70]. Finally,
scientists at the Institute of Computing Technology of the Chinese
Academy of Sciences have developed the DianNao dataflow re-
search chip [66], and several extensions, including DaDianNao [69],
ShiDianNao [92], and PuDianNao [199]. These research processors
all aim to allow developers to utilize the popular machine learn-
ing frontends, and really demonstrate the success of well-designed
DSLs as a heterogeneous programming approach.

4.9.2 Neuromorphic Accelerators. Neuromorphic accelerators
are being seriously explored by the scientific community. Starting
in 2018, Oak Ridge National Lab has hosted an international confer-
ence, ICONS, on neuromorphic computing [149]. An early exam-
ples of prototype neuromorphic-style chips is the IBM TrueNorth
System, first released in 2016 [6, 108]. As of 2019, Intel is also exper-
imenting with neuromorphic chips, with its research chip "Loihi",
and accompanying "Pohoiki" system [153]. Numerous other smaller
companies are developing and researching neuromorphic chips,
including BrainChip with the Akida processor [54] and General
Vision with the NM500 chip [290].

4.9.3 Quantum Accelerators. Quantum computing, and quan-
tum accelerators, have generated a significant amount of media
attention and focus due to the revolutionary potential of a fully
fledged quantum computer. Recently, quantum computing has been
added as a core initiative for the US Department of Energy, with
the funding of new centers to support the national quantum ini-
tiative. Although quantum computing as a viable accelerator in
heterogeneous systems has yet to be realized, several companies
are working to close this gap, including D-Wave [95] and IBM with
the Q system [251].

4.9.4 Other Next Generation Accelerators. Finally, other even
more novel accelerators are also being explored. The EMU Chick
system from Emu Technologies implements a thread-migration
based system with a novel architecture [103]. Xilinx and other
FPGA vendors are exploring coarse-grained reconfigurable archi-
tectures (CGRAs), which can be thought of as a GPU-FPGA hybrid

accelerator. Other novel acceleration ideas and chips are explored
and published every year.

The next generation of accelerators will enable extreme hetero-
geneity for high-performance computing, but it will also create
extreme challenges, both with the programming approaches and
software stacks.

5 CONCLUSION
Since its first conceptualization with the PASM and TRACmachines
in the early 80s, heterogeneous computing and heterogeneous pro-
gramming approaches have shifted in and out of vogue. In Sections 2
and 3 we explored how distributed heterogeneous computing rose
with the promise of robust diverse and distributed systems, sup-
ported by heterogeneous programming approaches and software
stacks. We also saw how these systems were eventually eclipsed
by homogeneous MPI-based supercomputers, homogeneous cloud
servers, and CPU-chip advancements. In Section 4, we explored
the rebirth of heterogeneous computing through accelerator-based
computing, and the explosion of GPU-based computing and inno-
vation with other more novel accelerators.

However, the challenges faced by distributed heterogeneous
systems and contemporary accelerator-based systems are not so
different. Many of the challenges early heterogeneous system de-
velopers faced are being constantly revived and re-imagined, espe-
cially in the face of the extreme heterogeneity of next generation
systems. Many of the conceptual models, theoretical road maps,
programming approaches, technical requirements and restrictions,
and strategies for success from distributed heterogeneous research
apply directly to accelerator-based systems. Figure 1, first published
in 1995, would look right at home in a 2020 publication exploring ex-
treme heterogeneity, albeit with improved graphics. Simply replace
SIMD, MIMD, and vector processors, with CPUs, GPUs, FPGAs, ML
accelerators, and neuromorphic chips.

One important balance in terms of heterogeneous programming
approaches is the push and pull of generalized frameworks and
specialized DSL frameworks. Successful high-level DSLs like Ten-
sorflow have had incredible success, and made heterogeneous pro-
gramming accessible to the large but specialized field of machine
learning. Conversely, the generalized low-level CUDA and OpenCL
APIs remain two of the most popular programming approaches for
general accelerator programming, even 14 years after their initial
release. This is especially impressive considering the huge number
of research-based, open source, and even vendor-supported, high-
level alternatives that have been developed over the past decade.
However, the development of these high-level frameworks need
to be funded at a level to readily intercept the developments of
platforms and applications, otherwise implementations, and sub-
sequently adoption, may lag significantly behind the development
of standards. A prime example is OpenMP offloading, in which the
standard was first released in 2013 but the functioning implemen-
tations were very recently released.

One immediate conclusion that could be drawn is that DSLs may
provide an optimal high-level approach, and that these DSLs can be
built using generalized low level approaches. However, this leaves
stranded the programmer looking for a high-level heterogeneous
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programming approach for an application outside the popular DSL
frameworks.

Another significant takeaway is the huge success experienced by
Nvidia in high performance computing for the scientific community.
Developing a great framework is a challenge, but maintaining,
updating, documenting, and marketing a great framework is what
leads to widespread adoption and longevity. Also, the investments
in training, library support, integration with other tools, and, for
better or worse, aggressive acquisition of competition has solidified
Nvidia’s position in the heterogeneous computing landscape.

However, capitalistic development is not the only path to suc-
cess. LLVM represents an open source project that nearly parallels
Nvidia in terms of adoption and project integration. Part of LLVM’s
success can be attributed to the integrity and ingenuity of its ini-
tial design, and its early support and development from Apple. But
LLVM has also been very successful at creating a community-driven
environment, with very experienced contributors and a rigorous
approval process for extensions and modifications. Both the suc-
cesses of LLVM and Nvidia can be inspirations for creation of
next-generation heterogeneous software stacks and programming
approaches.

Finally, for all the computational heterogeneity discussed in this
project, several other forms of heterogeneity are being explored
in contemporary systems. A major example is heterogeneity not
in the processor, but in the memory, with developments like non-
volatile memory. These other types of heterogeneity, along with the
constant development of novel accelerators, will continue to create
challenges for the development of heterogeneous programming
approaches.

Twenty-five years have passed since Siegel et al first laid their
goals and challenges for heterogeneous computing. Despite the
immense amount of progress in general and heterogeneous com-
puting, most of these issues are still goals and challenges for today’s
accelerator-based systems. Twenty-five years from now, will we
have a new landscape for heterogeneous computing and program-
ming with these problems behind us, or will we still strive toward
the same goals and face the same challenges?
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