
Deriving Practical Implementations of First-Class Functions

ZACHARY J. SULLIVAN

This document explores the ways in which a practical implementation is derived from Church’s calculus of

_-conversion, i.e. the core of functional programming languages today like Haskell, Ocaml, Racket, and even

Javascript. Despite the implementations being based on the calculus, the languages and their semantics that

are used in compilers today vary greatly from their original inspiration. I show how incremental changes to

Church’s semantics yield the intermediate theories of explicit substitutions, operational semantics, abstract

machines, and compilation through intermediate languages, e.g. CPS, on the way to what is seen in modern

functional language implementations. Throughout, a particular focus is given to the effect of evaluation

strategy which separates Haskell and its implementation from the other languages listed above.

1 INTRODUCTION
The gap between theory and practice can be a large one, both in terms of the gap in time between

the creation of a theory and its implementation and the appearance of ideas in one versus the

other. The difference in time between the presentation of Church’s _-calculus—i.e. the core of

functional programming languages today like Haskell, Ocaml, Racket—and its mechanization was

a period of 20 years. In the following 60 years till now, there has been further improvements in

both the efficiency of the implementation, but also in reasoning about how implementations are

related to the original calculus. To compute in the calculus is flexible (even non-deterministic),

but real machines are both more complex and require restrictions on the allowable computation

to be tractable. Specifically in the _-calculus, computation can be done anywhere at the whim of

the theorist whereas compilers often generate code for a single execution sequence on a modern

machine executing x86 instructions. This document explores some ways in which a practical

implementation can be derived from the _-calculus. That is, a series of small changes are made to

the semantics of the language until a practical implementation is arrived at.

An aspect of the development of the implementation of function programming languages that

I pay special attention to is evaluation strategy, which decides the order and manner in which

programs are executed. It has had a large impact on implementations as functional compilers

have indeed been devoted to one strategy or another; the most dominant being call-by-value and

call-by-need. Throughout this document, I will describe these approaches side-by-side to tease out

their similarities and differences. In the past, it has been common to see a researcher spend their

time working entirely on compilers and theory of a single strategy resulting in duplicated work.

Today, however, the work of the two dominant practical evaluation strategies are converging.

This document does not necessarily follow the historical development of the modern implemen-

tation, rather it is focused on how the relationship of the theories themselves. Indeed, I begin with

Church’s calculus which is historically a starting point for studying the theory and implementation

of first class functions. However, there are several points herein where a later development is

projected backwards in history to reflect our, i.e. those who study language implementation, current

understanding of these programming languages.

To begin, Section 2 introduces original presentation of first-class functions given as a calculus of

_-conversion. This is a reduction theory for converting one Λ-term into another. I introduce the

three different evaluation strategies most discussed in the literature. As a bridge to later theories, I

show modifications of the base calculi which ease the handling of free variables (De Bruijn notation)

and which perform a more efficient substitution procedure (explicit substitutions). These reduction

theories are good for reasoning, but their non-determinism is undesirable in practice. Therefore, the

following section, Section 3, presents a restriction of the reduction theory that makes evaluation

2 Zachary J. Sullivan

deterministic; this is known as operational semantics. I present multiple ways of representing this

sort of evaluation mechanism; some act as stateful manipulation of a term while others present

evaluation to a result as a single recursive procedure. Next, I present combinators (Section 4)

and their abstract machines. Whereas the previous two sections are focused on specification of a

theory based on Λ-terms alone, this section shows how a combinatory algebra can be used to build

machines for evaluating programs. The following section, Section 5, examines abstract machines not

built for combinators. These were historically some of the first implementations of the _-calculus,

and already, there are large differences in the machines for different evaluation strategies. Many of

today’s functional language compilers use neither of these styles of abstract machines, instead they

compile the source language through a series of intermediate languages. Therefore, I present, in

Section 6, a series of intermediate languages that address different aspects of functional languages

that need to be handled before execution on real hardware. For instance, continuation-passing-style

is used in call-by-value languages in order to offer more ways to optimize these programs. This

document, in the end, presents many ways to represent computation with first-class functions, but

this is not obvious. Thus, Section 7 caps off the discussion of these implementation techniques by

exploring the reasoning frameworks that have developed alongside them. Such reasoning can show

what properties are preserved and/or reflected from the original theory.

In the end, this document does not claim one style of semantics better than another, rather it

supplies some understanding about which style to use depending on a specific implementation

context: whether that context needs the flexibility of a calculus, the optimization pipelines offered by

compilation through intermediate languages, or something in between. Additionally, the document

describes how a source language’s evaluation strategy influences such a choice of semantics;

however, the ultimate hope is that future compiler writers begin to combine different evaluation

strategies into a single compiler.

2 REDUCTION THEORY
Church’s _-calculus [14, 17]—which like a Turing machine is capable of specifying computable

functions—serves as the foundation for functional programming languages.
1
Its core syntax, which

I will refer to as Λ-terms, is given by the following grammar:

𝐿,𝑀, 𝑁 ∈ Expression ::= 𝑥 | _𝑥 .𝑀 | 𝑀 𝑁

where 𝑥 is a variable, _𝑥. 𝑀 is a function (also commonly referred to as an abstraction) that binds

a variable 𝑥 in the expression 𝑀 , and 𝑀 𝑁 a function application. For example, the function

𝑓 (𝑥) = 𝑥 + 1, which is written in a common mathematical notation, is therefore written in the

_-calculus as the anonymous function _𝑥. 𝑥 + 1.

There are several ways to give a semantics, or meaning, to this small language of expressions

including reduction theories, natural semantics, type theories, mathematical semantics (i.e. deno-
tational semantics), and machine semantics. Since Church’s seminal work specifies a reduction

theory, I treat that style of semantics as foundational and will begin by describing them. However,

I will discuss some of the other forms of semantics and their relationship to each other throughout

this document. Generally, a reduction theory specifies what it means for one expression to reduce to

another. When discussing numeric expressions, for instance, it is common to say that 1 + 2 reduces

to 3 by the rules of addition. This can be written as the following reduction rule (the right-hand-side

of the “where” is a meta-language operation):

(+) 𝑛 +𝑚 −→ 𝑐 where 𝑛 +𝑚 = 𝑐

1
Scala is an exception here, i.e. it is considered a functional programming language without _-calculus as its core.

Deriving Practical Implementations of First-Class Functions 3

For expressions in the _-calculus, defining a reduction theory would require stating the rules for

function application which is the only _-calculus operation. There is not only one way to reduce

a function application; and therefore, this section presents the three theories that are used most:

call-by-name, call-by-value, and call-by-need as presented by Church [17], Plotkin [69], and Ariola

[11], respectively. I discuss how these reduction theories differ in their observable output and usage

of meta-language. And after presenting the theories themselves, I discuss how the manner of their

specification, i.e. the meta-language, has implications for practical implementations of functional

programming languages.

Before presenting the reduction theories, I must define two auxiliary functions (to be used

therein) over expressions of Λ: one to provide the set of free variables of an expression and another

to say what it means to substitute some expression for a free variable. The free variables of an

expression are a set of variables defined inductively over the expression in the following way:

FV(𝑥) = {𝑥}
FV(_𝑥. 𝑀) = FV(𝑀) − {𝑥}
FV(𝑀 𝑁) = FV(𝑀) ∪ FV(𝑁)

For example, the free variables of the expression _𝑥. 𝑥 𝑦 𝑧 are 𝑦 and 𝑧 since they are not bound by

any _-expression, whereas 𝑥 is not free since it is bound by the _𝑥. . . . part of the expression. The

second auxiliary function, substitution, relies on this definition of free variables. Denoted𝑀 [𝑁 /𝑥],
a substitution says “for every free occurrence of the variable 𝑥 in the expression𝑀 , the expression

𝑁 is substituted”. It is defined inductively over the expression𝑀 :

𝑥 [𝑁 /𝑥] = 𝑁

𝑦 [𝑁 /𝑥] = 𝑦

(_𝑥. 𝑀) [𝑁 /𝑥] = _𝑥. 𝑀

(_𝑦.𝑀) [𝑁 /𝑥] = _𝑦.𝑀 [𝑁 /𝑥] where 𝑦 ∉ FV(𝑁)
(𝑀 𝑁) [𝐿/𝑥] = 𝑀 [𝐿/𝑥] 𝑁 [𝐿/𝑥]

Note the abstraction rules. The first stops a substitution for the variable 𝑥 upon encountering a

_-expression binding 𝑥 , thereby any variable is treated as if it is bound to the closest _𝑥 that

binds it. The second abstraction rule is what makes this definition of substitution capture-free. If
the expression 𝑁 contains a free occurrence of the variable bound by the _-expression and it is

substituted in the body of the expression, then it would no longer be free after substitution. For

example, the variables 𝑥 is incorrectly captured in the following substitution (_𝑥 .𝑦) [𝑥/𝑦] = _𝑥 . 𝑥 .

2.1 Call-by-Name
In Church’s theory, which became known as call-by-name reduction, a Λ-term reduces to another

with the following reduction rule:

(𝛼) _𝑥 .𝑀 −→ _𝑦.𝑀 [𝑦/𝑥] where 𝑦 ∉ FV(𝑀)
(𝛽) (_𝑥 .𝑀) 𝑁 −→ 𝑀 [𝑁 /𝑥]
([) _𝑥. 𝑀 𝑥 −→ 𝑀 where 𝑥 ∉ FV(𝑀)

The 𝛼-reduction changes one variable to another for any _-expression. Unless stated otherwise,

this document treats programs as equal if they are related by only 𝛼-reduction. The second rule, 𝛽 ,

describes how function application works. And finally, the [-reduction is the so called extensionality
property that states that everything can be treated as a function

2
. Though Church presents all three

rules, 𝛽 is the rule of computation for which this document is primarily considers.

2
This does not always hold in my examples, however, since I add constants to the source language as well.

4 Zachary J. Sullivan

Expressions like 2 and _𝑥. 2 are considered to be normal forms, denoted by the predicate NF(𝑀),
meaning there are no more reductions that can be applied. A term like _𝑥.𝑦 𝑥 is considered to

be in 𝛽-normal-form since there are no 𝛽-reductions available. For reduction theories, running a

program to completion often means that a term is evaluated until it reaches a normal form.

An important aspect of a reduction theory, which separates it from methods that I will examine

later, is that reductions can apply to any sub-term of a term by compatibility. Therefore, rules can
be applied in many different orders to get to the same result. As an example of just how drastic of

an effect this has, consider the evaluation of (_𝑥. 2) ((_𝑦.𝑦 𝑦) (_𝑧. 𝑧 𝑧)). First, let us perform the

top-most left-most 𝛽-reduction:

(_𝑥 . 2) ((_𝑦.𝑦 𝑦) (_𝑧. 𝑧 𝑧)) −→𝛽 2

Another sequence of reduction that I could apply is to reduce the argument of the top most

application:

(_𝑥 . 2) ((_𝑦.𝑦 𝑦) (_𝑧. 𝑧 𝑧)) −→ (_𝑥. 2) ((_𝑧. 𝑧 𝑧) (_𝑧. 𝑧 𝑧))
−→ 2

With this program, in fact, there are an infinite number of reduction sequences wherein each is

determined by how many times the argument of the function _𝑥 . 2 is reduced. (This argument term

is a common example of an infinitely looping Λ-term that is called Ω.) Regardless of the order in
which reductions are applied, Church’s call-by-name calculus will reach the same normal form if

one exists; this is a result of the property called the Church-Rosser property [14], or confluence
when generalized to other rewriting systems.

2.2 Call-by-Value
In contrast with Church’s presentation the calculus of _-conversion, early evaluators for the _-

calculus, such as the SECD machine [43], chose to fully reduce the argument of a function before

performing the substitution. I will explore later, in Section 5, how this simplifies implementations,

but for now I will consider its effect on a reduction theory. Always reducing an argument before

applying 𝛽 is consistent with Church’s calculus, but is more restrictive. Plotkin [69] codified

evaluating the argument in the call-by-value _-calculus. First, a set of values is defined as the

following:

𝑉 ,𝑊 ∈ Value ::= 𝑥 | _𝑥 .𝑀
Though at first blush they appear to be similar, values should be distinguished from normal forms.

The former determine when a reduction can occur, whereas the latter describes terms that are

irreducible. Indeed, the set of values is different since _𝑥. 𝑀 can contain reducible expressions.

After the definition of values, 𝛽-reduction is redefined accordingly:

(𝛽V) (_𝑥. 𝑀) 𝑉 −→ 𝑀 [𝑉 /𝑥]
Unlike the 𝛽-reduction from the call-by-name calculus, this 𝛽V-reduction does not apply every-

where.

With the restricted 𝛽V-reduction, the example from the previous subsection would never reach

a normal form! Instead, it will attempt to reduce the term Ω, i.e. (_𝑦.𝑦 𝑦) (_𝑧. 𝑧 𝑧), forever because
it is the argument of a function. However, this reduction rule does have an advantage over that of

the call-by-name 𝛽 : it will not duplicate some reducible expressions. In practical implementations,

this means it can be more efficient. Consider the evaluation of the expression (_𝑥 . 𝑥 + 𝑥) (1 + 2):
(_𝑥 . 𝑥 + 𝑥) (1 + 2) −→+ (_𝑥. 𝑥 + 𝑥) 3

−→𝛽V 3 + 3

−→+ 6

Deriving Practical Implementations of First-Class Functions 5

In call-by-name, the sub-term 1 + 2 may be substituted into both occurrences of 𝑥 , thereby adding

extra work for the program to reach a normal form. On the other hand, call-by-value guarantees that

the most amount of work possible is performed before substitution at the top-level of the argument.
Work may be duplicated underneath _-expressions, however. In the program (_𝑓 . 𝑓 (𝑓 1)) (_𝑥 . 1 +
2 + 𝑥) the computation 1 + 2 will be evaluated multiple times even with the call-by-value 𝛽-rule.

The choice of how to evaluate the argument of the function has become known as the language’s

evaluation strategy. Indeed, focusing on variables allows the strategies to be specified with the

same 𝛽-reduction but with different definitions of values wherein call-by-name has all terms as

values and call-by-value has those just described. Work in the sequent calculus [20, 82], which

is a classical variant of the _-calculus, often presents these two evaluation strategies in the same

formulation as dual to one another.

2.3 Call-by-Need
Wadsworth, in his 1971 dissertation [83], notes the inefficiency of call-by-name and proposed a way

to avoid the duplication of work caused by substituting unevaluated expressions without switching

to call-by-value. His solution treats an expression as a graph wherein variables will be pointers to

their binding site. I will describe his approach later in Section 4, but this section is all about calculi.

The ability to reason syntactically about sharing in non-strict computations came in 1995 when

Ariola et al. [12] introduced the call-by-need evaluation strategy.

Their calculus introduced a new syntactic category for Answers:

𝑉 ,𝑊 ∈ Value ::= _𝑥 .𝑀

𝐴 ∈ Answer ::= 𝑉 | (_𝑥 . 𝐴) 𝑀
An answer describes the output of a computation which may contain a value or a chain of applied

_-expressions. First note that any applied _-expressions can be thought of as let-expressions, e.g.
(_𝑥. 𝑥) (1 + 2) is similar to let 𝑥 = 1 + 2 in 𝑥 . Intuitively, an answer can be thought of as a

call-by-value value inside of a heap constructed of the applied _-expressions.

The reduction rules for the call-by-need _-calculus, as presented by the Ariola et al. journal paper
[11], rely on a notion of evaluation context. These specify a unique reducible expression within a

term. The meta-language search operation 𝐸 [𝑀] means that “the expression𝑀 is in the evaluation

context 𝐸”. The shape of an evaluation context 𝐸 is defined by the following grammar:

𝐸 ∈ Eval Context ::= □ | 𝐸 𝑁 | (_𝑥. 𝐸) 𝑁 | (_𝑥. 𝐸 [𝑥]) 𝐸
As an example, the term (_𝑥 . (_𝑧. 𝑧) 3) (1 + 2) would be decomposed into the evaluation context

(_𝑥. (_𝑧.□) 3) (1 + 2) and the expression 𝑧.

There are three reduction rules:

(𝑉) (_𝑥. 𝐸 [𝑥]) 𝑉 −→ (_𝑥. 𝐸 [𝑉]) 𝑉
(𝐶) (_𝑥 . 𝐿) 𝑀 𝑁 −→ (_𝑥. 𝐿 𝑁) 𝑀
(𝐴) (_𝑥. 𝐿) ((_𝑦.𝑀) 𝑁) −→ (_𝑦. (_𝑥 . 𝐿) 𝑀) 𝑁

Taking the place of substitution, 𝑉 -reduction3 states that whenever there is a variable occurrence

inside of an evaluation context whose binding is to a value replace the variable with its value.

In the heap metaphor, it says to lookup the variable in the heap. 𝐶-reduction (𝐶 for Commute)

pushes the binding for 𝑥 in 𝐿 into the application 𝐿 𝑁 . That is, bind𝑀 to 𝑥 in the heap. The final

rule, 𝐴-reduction, re-associates bindings by moving the binding for 𝑦 outside the binding for 𝑥 .

The binding of 𝑦 to 𝑁 must be preserved to preserve sharing. With all three of these rules which

3
The Ariola et al. journal paper [11] differs from the conference paper Ariola et al. [12] and an other journal paper by

Maraist et al. [50] in the𝑉 -reduction. Whereas the former uses evaluation contexts to search for the reducible term, the

latter uses any context which is not unique.

6 Zachary J. Sullivan

move terms under bindings, there is a risk of free variable capture; therefore, they only apply when

variable capture will not occur.

Another rule is added by Maraist et al. [50] to connect the calculus closer to what is found in

practical language implementations at the time.

(𝐺) (_𝑥. 𝑀) 𝑁 −→ 𝑀 where 𝑥 ∉ FV(𝑀)
This rule is similar to garbage collection, hence (𝐺), because it removes unnecessary bindings from

an answer.

To demonstrate the calculus, consider an evaluation trace of the same program from the previous

sub-section:

(_𝑥 . 𝑥 + 𝑥) (1 + 2) −→+ (_𝑥 . 𝑥 + 𝑥) 3
−→𝑉 (_𝑥. 3 + 𝑥) 3
−→𝑉 (_𝑥. 3 + 3) 3
−→+ (_𝑥. 6) 3
−→𝐺 6

Unlike call-by-name, there is no way to duplicate the evaluation of 1 + 2; similar to call-by-value,

this addition must be done before any occurrence 𝑥 can be replaced with its value. In this trace,

garbage collection is done in the last step, but it could have been done before the addition of 3 + 3

as well.

2.4 Substitutions: Meta Language vs. Object Language
The three calculi that I just presented use meta language to perform the task of substituting variables.

That is, call-by-name and -value make use of a substitution function for replacing variables with

terms, whereas call-by-need makes use of evaluation contexts to search for variables to replace

with values. In both cases, it is necessary to be careful—as an implementer or reader—with the

naming of variables when replacing terms within other terms. To reduce errors that come from

substitutions and to make reduction easier to reason about, two common solutions have evolved

for minimizing meta language: De Bruijn notation and explicit substitutions.

2.4.1 De Bruijn Notation. As mentioned earlier, the literature often considers Λ-terms to be

quotiented by 𝛼-equivalence. In proofs and implementations this is not so simple because one

expression is 𝛼-equivalent to a countably infinite set of expressions. To remedy this in practice,

the Glasgow Haskell Compiler (GHC), for instance, has a large amount of machinery to handle

checking 𝛼-equivalence of terms. Another remedy for this problem is to remove variables entirely

using De Bruijn notation [23] thereby removing the need for the “where” provisos in our rules.

Variables are replaced with natural numbers 𝑛 that refer to the number of _-expressions that must

be skipped to find its binding site (these are underlined to distinguish them from the numeric

constants found in my example programs).

𝑀, 𝑁, 𝐿 ∈ ExpressionDB ::= 𝑛 | _𝑀 | 𝑀 𝑁

For example, the identity function _𝑥. 𝑥 would be represented as _ 0. Unlike with variables where

there are many ways to write this function, e.g. _𝑦.𝑦 and _𝑧. 𝑧, there is only one way to write the

identity. In that respect, De Bruijn notation is the _-calculus quotiented by 𝛼-equivalence.

The definition of substitution and 𝛽-reduction must be redefined for this new style of writing

programs. Substitution is redefined to consider countable sequences of expressions to be substituted.

𝑛[𝑀0, . . .] = 𝑀𝑛

(_𝑀) [𝑁0, . . .] = _𝑀 [0, 𝑁0, . . .]
(𝑀 𝑁) [𝐿0, . . .] = 𝑀 [𝐿0, . . .] 𝑁 [𝐿0, . . .]

Deriving Practical Implementations of First-Class Functions 7

Lookups, denoted by natural numbers, simply index into the sequence of substitutions. When

applying a substitution to a _-expression, a new substitution, where the 0 reference is substituted

for itself and the rest of the substitution is shifted by one index, is applied to the function body.

Applying a substitution to an application applies the substitution to the left- and right-hand-side.

When compared to the definition of substitution that was used for specifying call-by-name and

-value, De Bruijn eliminates the provisos.

Call-by-value 𝛽-reduction is redefined to build a substitution sequence wherein the formal

parameter is at index 0 and every 𝑖 + 1 index is substituted for 𝑖 , i.e. shifted down.

(𝛽DB) (_𝑀) 𝑉 −→ 𝑀 [𝑉 , 0, 1, 2, . . .]

The reason that every variable is decremented by 1 is because the number of _-expressions for

variables in 𝑀 to jump over is also decremented by 1 after an application. As a demonstration

of the new substitution and 𝛽DB rule, consider the following, extra verbose, execution trace of

(_𝑥._𝑦. 𝑥) 42 9 in De Bruijn notation:

(_ _ 1) 42 9 −→𝛽DB (_ 1) [42, 0, 1, 2, . . .] 9
= (_ 1[0, 42, 0, 1, 2, . . .]) 9
= (_ 42) 9

−→𝛽DB 42[9, 0, 1, 2, . . .]
= 42

2.4.2 Explicit Substitutions. In language implementations of these calculi, it is impractical to use

any of the definitions of substitutions seen above because every function application triggers a

substitution and thereby the complete traversal of the function body. Implementations, instead,

delay substitutions until the variable is accessed, thereby making function application a single step.

Capturing single-step function application as a calculus, Curien [19] introduced the _𝜌-calculus

or the calculus of closures, which Abadi et al. [1] later extended to an equational theory in the

_𝜎-calculus or the calculus of explicit substitutions. I will present the latter because they give a

reduction theory. The two papers state plainly that they aim to bridge the gap between language

implementations and the _-calculi. They do this, like De Bruijn, by minimizing the meta-language

further.

The main idea of these calculi is that substitution is no longer a part of the meta-language,

instead it is included in the syntax and semantics of the object language. The expression syntax is

similar to De Bruijn’s extended with an additional syntactic category for substitutions and a new

expression applying those substitutions.

𝐿,𝑀, 𝑁 ∈ Expression ::= 0 | _𝑀 | 𝑀 𝑁 | 𝑀{𝑆}
𝑆,𝑇 ∈ Substitution ::= id | ↑ | 𝑀 · 𝑆 | 𝑆 ◦𝑇

I differentiate the meta-syntactic substitution, seen heretofore, from the syntactic substitution with

square- (𝑀 [. . .]) and curly- (𝑀{. . . }) brackets, respectively. Substitutions are either the identity,
a shift, an extension, or a composition. Unlike De Bruijn, the _𝜎-calculus only contains one lookup

index: 0; all other numbers must be accessed via the shift substitution, e.g. 0{↑ ◦ ↑} is similar 2.

8 Zachary J. Sullivan

There are three sets of reduction rules: one for computation, substitution application, and

substitution simplification:

(𝛽) (_𝑀) 𝑁 −→ 𝑀{𝑁 · id}

(𝜎) 0{id} −→ 0

0{𝑀 · 𝑆} −→ 𝑀

(𝑀 𝑁){𝑆} −→ 𝑀{𝑆} 𝑁 {𝑆}
(_𝑀){𝑆} −→ _𝑀{0 · (𝑆 ◦ ↑)}
𝑀{𝑆}{𝑇 } −→ 𝑀{𝑆 ◦𝑇 }

id ◦ 𝑆 −→ 𝑆

↑ ◦ id −→ ↑
↑ ◦ (𝑀 · 𝑆) −→ 𝑆

(𝑀 · 𝑆) ◦𝑇 −→ 𝑀{𝑇 } · (𝑆 ◦𝑇)
(𝑆1 ◦ 𝑆2) ◦ 𝑆3 −→ 𝑆1 ◦ (𝑆2 ◦ 𝑆3)

The 𝛽-reduction is the call-by-name reduction; Abadi et al. [1] do not give a call-by-value calculus,

but Curien [19] presents both strict and non-strict operational semantics in his paper which I will

discuss in the following section. All rules other than 𝛽 are broadly described as 𝜎-reductions.

De Bruijn notation allowed reasoning about programs without worrying about renaming at

the expense of some readability. Calculi with explicit substitutions removes the meta-language

operation of substitution entirely and prevents the recursive traversal of function bodies during

application at the expense of complex manipulation of explicit substitutions. The example that I

gave in the De Bruijn section explodes with explicit substitutions:

(_ _ 0{↑}) 42 9
−→𝛽 (_ 0{↑}){42 · id} 9
−→𝜎 (_ 0{↑}{0 · ((42 · id) ◦ ↑)}) 9
−→𝛽 0{↑}{0 · ((42 · id) ◦ ↑)}{9 · id}
−→𝜎 0{↑ ◦ (0 · ((42 · id) ◦ ↑))}{9 · id}
−→𝜎 0{(↑ ◦ (0 · ((42 · id) ◦ ↑))) ◦ (9 · id)}
−→𝜎 0{↑ ◦ ((0 · ((42 · id) ◦ ↑)) ◦ (9 · id))}
−→𝜎 0{↑ ◦ ((0{(9 · id)} · (((42 · id) ◦ ↑) ◦ (9 · id))}
−→𝜎 0{((42 · id) ◦ ↑) ◦ (9 · id)}
−→𝜎 0{(42 · id) ◦ (↑ ◦ (9 · id))}
−→𝜎 0{(42{↑ ◦ (9 · id)} · (id ◦ (↑ ◦ (9 · id)))}
−→𝜎 42{↑ ◦ (9 · id)}
−→𝜎 42{id}
−→𝜎 42

3 OPERATIONAL SEMANTICS
Reduction theories specify rules for transforming any sub-term into a smaller one. Thus, running

a program from start to finish, i.e. to a normal form, can result in several evaluation paths. For

instance, these two reduction sequences are valid in the call-by-name reduction theory:

Deriving Practical Implementations of First-Class Functions 9

(_𝑥. 𝑥 + 𝑥) (1 + 2)
−→+ (_𝑥 . 𝑥 + 𝑥) 3
−→𝛽 3 + 3

−→+ 6

(_𝑥 . 𝑥 + 𝑥) (1 + 2)
−→𝛽 (1 + 2) + (1 + 2)
−→+ 3 + (1 + 2)
−→+ 3 + 3

−→+ 6

Indeed, the left reduction sequence is a valid call-by-value reduction in addition to call-by-name (the

reverse is not true). Such ambiguity is especially undesirable in practical programming languages.

A program with IO effects like writing output, for instance, may write out characters in an arbitrary

order if it is specified as a reduction theory. By selecting one reduction ordering, operational

semantics gives a deterministic way to evaluate a term to a normal form. In this section, I present a

number of ways to specify an operational semantics: a small-step semantics [70], using evaluation

contexts [33], natural semantics [40], and big-step environment semantics [79]. Each of these

approaches has a special relationship to how functional languages are specified and implemented.

Indeed, the small-step semantics and semantics with evaluation contexts were introduced by

elaborating the difference between the SECD-machine (a practical implementation) with the call-

by-value _-calculus (a reduction theory).

3.1 Small-Step Semantics
Plotkin’s structural operational semantics [70] describes reduction of a term to a normal form by,

as the name suggests, explicitly examining the syntactic structure of the term. If the top-level of a

term is not in a position for one of the reduction rules to apply, e.g. ((_𝑥 . 𝑥) (_𝑧. 𝑧)) 42 since the
left-hand-side is an application; then another rule must be provided so that the term can take a step

in the right direction. Because of the step-by-step nature of Plotkin’s approach, it has been called

small-step semantics. To demonstrate, consider the rules for reducing an arithmetic expression to a

normal form:

𝑀 ↦−→ 𝑀 ′

𝑀 + 𝑁 ↦−→ 𝑀 ′ + 𝑁
𝑁 ↦−→ 𝑁 ′

𝑚 + 𝑁 ↦−→𝑚 + 𝑁 ′
𝑚 + 𝑛 = 𝑐
𝑚 + 𝑛 ↦−→ 𝑐

The first two rules are described as structural rules; that is, they perform a search through the

structure of the syntax for a unique, reducible sub-expression. An operational semantics is then a

single execution path defined by following evaluation function:

eval(𝑀) = 𝑀 ′ where𝑀 ↦−→∗ 𝑀 ′ ∧ NF(𝑀 ′)

Note that the definition of normal form is unchanged from the reduction theory in Section 2.

Additionally, the arrow (−→) has been exchanged for (↦−→). The former will refer to compatible

arrows—those that apply anywhere in a term—from the reduction theory, whereas the latter refers

to operational arrows for which there is only one.

For evaluating Λ-terms, a call-by-name operational semantics can be described with just two

rules:

𝑀 ↦−→ 𝑀 ′

𝑀 𝑁 ↦−→ 𝑀 ′ 𝑁 (_𝑥. 𝑀) 𝑁 ↦−→ 𝑀 [𝑁 /𝑥]
The first rule is a structural rule evaluates the left-hand-side of an applicative expression one step

thereby enabling the second rule after repeated application. The rule will continue to apply until

the left-hand-side is a function. Thereafter, the second rule for 𝛽-reduction is applied. It is the same

as that seen in the reduction theory. For a call-by-value style reduction, there must be another rule

for evaluating the right-hand-side of a function application:

𝑀 ↦−→ 𝑀 ′

𝑀 𝑁 ↦−→ 𝑀 ′ 𝑁
𝑁 ↦−→ 𝑁 ′

(_𝑥. 𝑀) 𝑁 ↦−→ (_𝑥. 𝑀) 𝑁 ′ (_𝑥. 𝑀) 𝑉 ↦−→ 𝑀 [𝑉 /𝑥]

10 Zachary J. Sullivan

Notice that the new rule for evaluating the right-hand-side requires the left-hand-side to be the first

evaluated to a value. Thus, these rules have made the decision of left-to-right evaluation ordering.

Rules could be given for right-to-left (and I shall present some right-to-left implementations later

in Section 5), but this is the more common operational semantics.

Re-examining the evaluation of (_𝑥. 𝑥 + 𝑥) (1 + 2) at the start of the section reveals that the left

reduction sequence refers only to the call-by-value operational semantics and the right reduction

sequence refers only to that of call-by-name.

3.2 Reduction with Evaluation Contexts
The structural rules above all have the same form: selecting a sub-expression, and when that an

expression steps to a new expression, the outer expression takes a step with the updated sub-

expression. This can lead to an explosion of rules when new data are added to the language;

rules that all essentially do the same thing. Though not the focus of their work, Felleisen and

Friedman [33] reveal that using evaluation contexts can reduce the number of structural rules to

one, thereby making the specification operational semantics more succinct. Earlier, I presented the

call-by-need _-calculus reduction theory with evaluation contexts because they were necessary for

its specification. Now, I show how evaluation contexts can be used for operational semantics (their

original purpose).

After defining a set of evaluation contexts, a semantics with a unique evaluation trace can be

built on top of a reduction theory with a single rule:

𝑀 −→ 𝑀 ′

𝐸 [𝑀] ↦−→ 𝐸 [𝑀 ′]

That is to say, a term which decomposes into the evaluation context 𝐸 with the sub-term 𝑀

deterministically steps to the term composed of the evaluation context 𝐸 with the sub-term 𝑀 ′

when𝑀 reduces to𝑀 ′
.

The following are the set of evaluation contexts for left-to-right evaluation for call-by-name,

call-by-value, and call-by-need, respectively:

Eval Context+ ::= □ | 𝐸 + 𝑁 | 𝑛 + 𝐸
Eval ContextN ::= □ | 𝐸 𝑁
Eval ContextV ::= □ | 𝐸 𝑁 | (_𝑥. 𝑀) 𝐸
Eval ContextL ::= □ | 𝐸 𝑁 | (_𝑥. 𝐸) 𝑁 | (_𝑥. 𝐸 [𝑥]) 𝐸

The set of contexts differ depending on the requirements for their reduction rules to apply. Herein,

the reduction arrow (−→) is not compatible, viz. it only applies at the top level. In call-by-name,

there are two evaluation contexts: the empty context for evaluating the current term and the

context 𝐸 𝑁 which searches for a reducible expression on the left-hand-side of an application. As

soon as the left-hand-side of the application is reduced to a value (which will be a _-expression),

the call-by-name 𝛽-reduction applies. For call-by-value 𝛽-reduction, the argument of a function

must be evaluated as well; therefore, there is an evaluation context (_𝑥. 𝑀) 𝐸 stating that when the

left-hand-side of an application is done, then search for a reducible expression in the right-hand-side.

As before, this means call-by-value evaluates applications from left-to-right. For call-by-need, there

are contexts for evaluating inside of a “heap”, i.e. an applied _-expression; additionally, there is a

context for evaluating the bound expression when its variable occurs in an evaluation context in the

body of the “heap”. The latter can be thought of as forcing an element of the “heap”. Call-by-need

evaluations proceed in the manner: the application and “inside-of-heap” contexts are used until a

variable of the binding occurs in an evaluation context inside of an applied _-expression, then the

bound term is evaluated (matching the (_𝑥. 𝐸 [𝑥]) 𝐸 context), and finally the 𝑉 -reduction applies.

Deriving Practical Implementations of First-Class Functions 11

The execution traces at the beginning of the section would not change when using evaluation

contexts since they only reduce the number of structural rules needed to specify an operational

semantics.

3.3 Big-Step Semantics
Another way to specify an operational semantics is with natural semantics as described by Kahn [40]

which is also known as big-step semantics. Instead of describing the semantics of our language with

a rewriting system—as with both reduction theories and small-step reductions—natural semantics

presents the evaluation of a program as a single derivation tree. This is in contrast with small-step

semantics wherein each reduction step contains a search tree. A big-step semantics must specify,

for each syntactic form, a rule for how to get from a program of this form to a fully normalized

term. For arithmetic expressions, there are only two rules:

𝑀 ⇓𝑚 𝑁 ⇓ 𝑛
𝑀 + 𝑁 ⇓𝑚 + 𝑛 𝑛 ⇓ 𝑛

In English, the first rule states that𝑀 + 𝑁 evaluates to𝑚 + 𝑛 given proofs that𝑀 evaluates to𝑚

and 𝑁 evaluates to 𝑛.

For call-by-name, the judgement has the form 𝑀 ⇓N 𝑅 where 𝑅 stands for the results, i.e. the
normal forms 𝑥 , 𝑐 , and _𝑥. 𝑀 . There are three rules, one for each syntactic form:

𝑥 ⇓N 𝑥 _𝑥 .𝑀 ⇓N _𝑥 .𝑀

𝑀 ⇓N _𝑥 . 𝐿 𝐿[𝑁 /𝑥] ⇓N 𝑅

𝑀 𝑁 ⇓N 𝑅

The application rule contains all of the information needed to evaluate its left-hand-side to a

function and perform the application. Therefore, it can be seen as doing more than the 𝛽-reduction

from the reduction theory and small-step operational semantics. Moreover, the theory is naturally

more efficient. A small step semantics must perform searches for the next reducible expression after

every single reduction with an evaluation context decomposition; whereas the big-step semantics,

in a sense, keeps track of the sub-term that is being evaluated. As an example of this evaluation

mechanism in action, consider again the example from the beginning of the section (_𝑥 . 𝑥+𝑥) (1+2)
which yields the following evaluation derivation:

_𝑥. 𝑥 + 𝑥 ⇓N _𝑥 . 𝑥 + 𝑥

1 ⇓N 1 2 ⇓N 2

1 + 2 ⇓N 3

1 ⇓N 1 2 ⇓N 2

1 + 2 ⇓N 3

(1 + 2) + (1 + 2) ⇓N 6

(_𝑥. 𝑥 + 𝑥) (1 + 2) ⇓N 6

The call-by-value rules are written 𝑀 ⇓V 𝑉 with the same set of values/results (they are the

same here) as that of call-by-name. The only difference in the two semantics is the extra evaluation

in the call-by-value application case:

𝑥 ⇓V 𝑥 _𝑥 .𝑀 ⇓V _𝑥. 𝑀

𝑀 ⇓V _𝑥 . 𝐿 𝑁 ⇓V 𝑊 𝐿[𝑊 /𝑥] ⇓V 𝑉

𝑀 𝑁 ⇓V 𝑉

The evaluation of the example program is the following:

_𝑥 . 𝑥 + 𝑥 ⇓V _𝑥 . 𝑥 + 𝑥
1 ⇓V 1 2 ⇓V 2

1 + 2 ⇓V 3

3 ⇓V 3 3 ⇓V 3

3 + 3 ⇓V 6

(_𝑥. 𝑥 + 𝑥) (1 + 2) ⇓V 6

As with the small-step semantics, the call-by-value approach avoids the redundant evaluation of

1 + 2 seen in call-by-name. In specifying an operational semantics for call-by-value with structural

12 Zachary J. Sullivan

rules, I had to make a choice between left-to-right or right-to-left evaluation of applications. This

would be made even more complex when considering data containing more than two reducible

sub-terms. However, using the big-step semantics this distinction of ordering is unobservable. To

make such a thing important would require the addiction of an effect system.

Call-by-need natural semantics, like its other semantics, stands apart from that of call-by-name

and -value. Here, I present the lazy semantics given by Launchbury [44] which, since it shares

repeated evaluation of variables, must use a heap. I refer to a pairing of a heap with a term to be

evaluated as a configuration; thus, the syntax require for evaluation is the following:

𝑉 ∈ Value ::= 𝑐 | _𝑥. 𝑀
𝑅 ∈ Result =Heap × Value
Φ ∈ Heap ::= Y | Φ, 𝑥 ↦→ 𝑀

𝐶 ∈ Configuration ::= ⟨Φ ∥ 𝑀⟩

Since the heap must be threaded through the sub-derivations of an evaluation, the syntax must

also distinguish values from results. Values, herein, are the normalize subsets of terms. Results are

returned from evaluation and must pair a normalized term with a heap, viz. they are like answers

from the call-by-need reduction theory.

The evaluation judgement has the form ⟨Φ ∥ 𝑀⟩ ⇓L (Φ′,𝑉) and relates configurations with

results. Its rules vary greatly from those of call-by-name and -value:

⟨Φ0 ∥ 𝑀⟩ ⇓L (Φ′
0
,𝑉)

⟨Φ0, 𝑥 ↦→ 𝑀,Φ1 ∥ 𝑥⟩ ⇓L ((Φ′
0
, 𝑥 ↦→ 𝑉 ,Φ1),𝑉)

⟨Φ, _𝑥 . 𝑀⟩ ⇓L (Φ, _𝑥 . 𝑀)

⟨Φ ∥ 𝑀⟩ ⇓L (Φ′, _𝑥 . 𝐿) ⟨Φ′, 𝑥 ′ ↦→ 𝑁 ∥ 𝐿[𝑥 ′/𝑥]⟩ ⇓L 𝑅

⟨Φ ∥ 𝑀 𝑁 ⟩ ⇓L 𝑅

Firstly, if a variable 𝑥 is not in the heap, then evaluation is stuck unlike the call-by-name and

-value big-step semantics. Secondly, the lazy natural semantics does not treat variables as normal

forms; it must evaluate them and update the heap. Additionally, that rule splits the heap into

two parts: one for variables bound before 𝑥 and one for variables bound after. Intuitively, this

follows the call-by-need calculus closely. For example, considering the call-by-need expression

(_𝑥. (_𝑦. (_𝑧.𝑦) 𝐿) 𝑁) 𝑀 . If 𝑦 is evaluated then it will evaluate 𝑁 ; thereby changing the objects

referred to by the free variables of 𝐿, but not𝑀 since 𝑦 is not in scope there.𝑀 could be “forced” to

a value by the evaluation of𝑀 , whereas 𝐿 will only contain pointers to𝑀 and 𝑁 as the variables 𝑥

and 𝑦 respectively. Evaluating this example in the lazy natural semantics, the expression 𝑁 , which

𝑦 is bound to, would be evaluated with the heap 𝑥 ↦→ 𝑀 . A second difference from the call-by-name

and call-by-value semantics is the application case wherein a renaming is performed instead of a

normal substitution. Obviously, the expression needs to be added to the heap if its evaluation is

to be memoized. Less obviously, the renaming is necessary for avoiding variable capture when a

function is applied multiple times. For instance, consider evaluating (_𝑓 . 𝑓 (𝑓 1)) (_𝑥 . 𝑥): upon the

second application of 𝑓 , 𝑥 would already be in the heap, and thus the evaluation could not proceed

correctly without renaming.

Deriving Practical Implementations of First-Class Functions 13

To demonstrate the updating mechanism of the lazy natural semantics, consider the following

example from the previous section about call-by-need (which I evaluate in an empty heap):

⟨∥ (_𝑥 . 𝑥 + 𝑥)⟩ ⇓L (, _𝑥 . 𝑥 + 𝑥)

⟨∥ 1⟩ ⇓L (, 1) ⟨∥ 2⟩ ⇓L (, 2)
⟨∥ 1 + 2⟩ ⇓L (, 3)

⟨𝑥 ↦→ 1 + 2 ∥ 𝑥⟩ ⇓L (𝑥 ↦→ 3, 3)
⟨∥ 3⟩ ⇓L (, 3)

⟨𝑥 ↦→ 3 ∥ 𝑥⟩ ⇓L (𝑥 ↦→ 3, 3)
⟨𝑥 ↦→ 1 + 2 ∥ 𝑥 + 𝑥⟩ ⇓L (𝑥 ↦→ 3, 6)

⟨∥ (_𝑥. 𝑥 + 𝑥) (1 + 2)⟩ ⇓L (𝑥 ↦→ 3, 6)

3.4 Big-Step Environment Semantics
In Launchbury’s semantics the heap can be said to close the term; that is, all of the free variables of

the term are present in the heap. Extending this idea to the other evaluation strategies yields an

environment semantics. Essentially, this is a style of natural semantics in which configurations of

environments and terms, not terms themselves, are evaluated to results. Such semantics can also

be found in [56, 79].

An aspect that these semantics have in common—and that they also share with the calculus

of explicit substitutions—is that they do not contain eager substitutions, i.e. those performed by

applying a substitution operation on syntax before continuing. Rather, variables are looked up

lazily in the environment when they are encountered. This is important when considering practi-

cal implementation because substitutions, which environments replace, require code-generation;

something not available in our modern computer architectures. Moreover, say that code-generation

were possible by having a data representation of the term, substitution would be less efficient

since it performs a recursive traversal of the term. Yet another reason for using an environment is

presented in Kahn’s paper on natural semantics [40]: using environments therein appears to be

motivated by its similarity to the type environment found in type-theoretic static semantics (which

I will explore later in Section 7).

A non-strict non-memoizing, or call-by-name-like
4
, environment semantics depends on the

following syntax for configurations and evaluation derivations:

𝐶 ∈ Configuration ::= ⟨Σ ∥ 𝑀⟩
Σ ∈ Environment ::=Variable ⇀ Value
𝑉 ∈ Value ::= (Σ, 𝑀)
𝑅 ∈ Result ::= 𝑐 | (Σ, _𝑥 . 𝑀)

Like with the semantics that have been presented thus far, values refer to objects that are associated

with variables. However, values herein are objects composed of an unevaluated term together with

an environment that it needs for evaluation. As in the substituting big-step semantics, a result is

either a constant or a function waiting for an argument; like values which require an environment,

a function result requires an environment to give meaning to its free variables. I refer to the value

environment-term pairs as thunk closures and the result environment-function pairs as function
closures.

4
I guard this statement with call-by-name-like because I have not proved, nor seen a proof, that shows this semantics to be

equivalent to the call-by-name calculus.

14 Zachary J. Sullivan

The rules for non-strict non-memoizing evaluation reveal how these new closure objects are

used:

Σ(𝑥) = (Σ′, 𝑀) ⟨Σ′ ∥ 𝑀⟩ ⇓N 𝑅

⟨Σ ∥ 𝑥⟩ ⇓N 𝑅 ⟨Σ ∥ _𝑥 .𝑀⟩ ⇓N (Σ, _𝑥 . 𝑀)

⟨Σ ∥ 𝑀⟩ ⇓N (Σ′, _𝑥 . 𝐿) ⟨Σ′, 𝑥 ↦→ (Σ, 𝑁) ∥ 𝐿⟩ ⇓N 𝑅

⟨Σ ∥ 𝑀 𝑁 ⟩ ⇓N 𝑅

Whereas nothing happened in the variable case of the call-by-name big-step semantics since

variables would be substituted
5
, the environment big-step semantics must lookup a closure in

the environment and evaluate it. The function evaluation rule must construct a function closure.

Finally, the application rule needs to both unpack a function closure and construct a thunk closure.

Therein, the body of the function is evaluated with the environment in its closure extended with

the thunk closure of its argument.

A strict, or call-by-value-like, environment semantics differs from that of a non-strict non-

memoizing semantics in its values and results, viz. it keeps the same configuration and environment

definitions. Since in call-by-value the argument of a function must be evaluated to a normal form

before 𝛽-reduction, the environment semantics must also produce a result before adding it to the

environment. It follows that values and results coincide.

𝐶 ∈ Configuration ::= ⟨Σ ∥ 𝑀⟩
Σ ∈ Environment ::=Variable ⇀ Value
𝑉 ∈ Value ::= 𝑐 | (Σ, _𝑥 . 𝑀)
𝑅 ∈ Result ::= Value

Despite the strict strategy, the handling of variables is still somewhat lazy. That is, there is still

a variable lookup rule, whereas the earlier big-step semantics would have already replaced the

variable with some other value. The set of rules is the following:

Σ(𝑥) = 𝑉
⟨Σ ∥ 𝑥⟩ ⇓V 𝑉 ⟨Σ ∥ _𝑥. 𝑀⟩ ⇓V (Σ, _𝑥 . 𝑀)

⟨Σ ∥ 𝑀⟩ ⇓V (Σ′, _𝑥 . 𝐿) ⟨Σ ∥ 𝑁 ⟩ ⇓V 𝑊 ⟨Σ′, 𝑥 ↦→𝑊 ∥ 𝐿⟩ ⇓V 𝑉

⟨Σ ∥ 𝑀 𝑁 ⟩ ⇓V 𝑉

When I introduced environment semantics, I described them as a style of semantics wherein

configurations are evaluated to results and substitutions are delayed until variables occurrences.

Launchbury’s semantics already satisfies the former, but not the latter because it contains a renaming

substitution in its application rule. As with any other substitution, this is a roadblock for practical

implementation because it would require code generation. The problem is solved, like with the

non-strict non-memoizing and strict semantics, by using a local environment which contains

pointers to heap objects. This approach, seen in Sullivan et al. [79], also appears in Sestoft [75].

Therein, the latter performs a similar transformation to his abstract machine semantics to remove

renaming.

The syntax for such an evaluation mechanism is much more complicated than those seen earlier.

Of course, configurations must now contain heaps, local environments, and terms. Values herein

5
Such a case would not occur in a closed program.

Deriving Practical Implementations of First-Class Functions 15

are only pointers to heap objects
6
. Objects in the heap are either normal forms or thunk closures.

𝐶 ∈ Configuration ::= ⟨Φ ∥ Σ ∥ 𝑀⟩
Φ ∈ Heap ::= Y | Φ, 𝑙 ↦→ 𝑂

Σ ∈ Environment ::=Variable ⇀ Value
𝑂 ∈ Heap Object ::= (Σ, 𝑀) | 𝑅
𝑉 ∈ Value ::= 𝑙

𝑅 ∈ Result ::= 𝑐 | (Σ, _𝑥 . 𝑀)
𝐴 ∈ Answer ::= (Φ, 𝑅)

As our goal, there is no renaming. However, there is also a change in variable lookup. In the

earlier lazy semantics there was only a single rule since unevaluated terms and normal forms were

treated in the same way. In the closure semantics, unevaluated terms are thunk closures (Σ, 𝑀)
and normal forms are not. Therefore, the environment semantics requires two evaluation rules for

either case.

Φ(Σ(𝑥)) = (Σ′, 𝑀) ⟨Φ ∥ Σ′ ∥ 𝑀⟩ ⇓L (Φ′,𝑉) update(Φ′, Σ(𝑥),𝑉) = Φ′′

⟨Φ ∥ Σ ∥ 𝑥⟩ ⇓L (Φ′′,𝑉)

Φ(Σ(𝑥)) = 𝑉
⟨Φ ∥ Σ ∥ 𝑥⟩ ⇓L (Φ,𝑉) ⟨Φ ∥ Σ ∥ _𝑥. 𝑀⟩ ⇓L (Φ, (Σ, _𝑥 . 𝑀))

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓L (Φ′, (Σ′, _𝑥 . 𝑀)) alloc(Φ′, (Σ, 𝑁)) = (Φ′′, 𝑙) ⟨Φ′′ ∥ Σ′, 𝑥 ↦→ 𝑙 ∥ 𝑁 ⟩ ⇓L 𝑅

⟨Φ ∥ Σ ∥ 𝑀 𝑁 ⟩ ⇓L 𝑅

A property of this semantics—one that would become more obvious if data were added—is that it is

order dependent because it must thread the heap through the sub-derivations in the correct order.

This semantics is taken from Sullivan et al. [79] and thus it contains a different heap model from

that used in Launchbury. Launchbury’s heap was split into two parts for each lookup; such a rule

is not common in practical implementations of a heap. In this semantics, the heap is treated as a

black box with lookup, update, and allocation operations. This is not necessary for an environment

semantics, but it is inline with considering the implementation of these different semantics in

practice.

4 COMBINATORS AND THEIR MACHINES
De Bruijn notation, explicit substitutions, and big-step environment semantics all aim to reduce

the problems caused by variables in giving a semantics to Λ-terms. Another approach to handling

variables (and removing their importance) comes from combinatory logic [22]. Combinators are
expressions with no free variables. In combinatory logic, all “user-defined” functions can be replaced

by only two primitive combinators known as S and K. Using this as inspiration for programming

language implementation yields abstract machines that run combinators. This section explores a

few of these combinator-based implementations chronologically including the seminal SK-machine,

the Categorical Abstract Machine, and finally the G-machine. The order in which these machines

are presented shows a progression in the complexity of the set of combinators accepted by the

machines.

6
The naming scheme does not map exactly to Sullivan et al. [79] wherein the notion of results and answers are switched.

This is done to better match the terminology of the call-by-need calculus literature.

16 Zachary J. Sullivan

4.1 Fixed Combinator Machines
Turner introduced the idea of combinator machines with his SK-Machine [81]. It is named SK

because it requires only the S and K combinators in order to run programs. In practice, however,

adding more combinators reduces the number of reductions. The definitions of some of these

combinators are as follows:

S 𝑓 𝑔 𝑥 = 𝑓 𝑥 (𝑔 𝑥)
K 𝑥 𝑦 = 𝑥

I 𝑥 = 𝑥

plus 𝑥 𝑦 = 𝑥 + 𝑦
The first combinator, suggestively named S, can be seen as similar to the application rule for

substitution. That is, 𝑓 is applied to 𝑔; because 𝑓 and 𝑔 depend on 𝑥 , the combinator passes 𝑥 to

both. The K and I combinators are more straight forward. The former is the constant function

that returns its first argument and the latter is simply the identity function. Finally, I included an

addition combinator for computing on constants. The machines input language is composed only

of these combinators, constants 𝑛, and applicative expressions𝑀 𝑁 .

Obviously, our syntax of Λ-terms does not match up with that of the SK-machines input language

and must be compiled into it. Unfortunately for my exposition, Turner does not consider the

_-calculus as its source; rather, it makes use of the SASL programming language which is similar

to Haskell without anonymous functions.
7
In SASL, every function gets a name; for instance, the

following is an example of a SASL function definition:

def double 𝑥 = 𝑥 + 𝑥
To turn the SASL definition above into a program consisting of only these combinators, Turner

gives the following translation:

J𝑥K 𝑥 = I

J𝑥K 𝑦 = K 𝑦

J𝑥K (𝑀 𝑁) = S (J𝑥K𝑀) (J𝑥K 𝑁)
Applying this translation to the function double above yields the following:

def double = S (S (K plus) I) I
For function definitions with multiple arguments, the translation is applied to the variables from

left to right over the former parameters until they are all eliminated. Turner also presents, as

an optimization, an additional translation from this program of combinators into a larger set of

combinators.

The essential aspect of Turner’s machine, and that of all combinator based systems, is that

𝛽-reduction is not used. Rather, the only rewrites applied are given by the combinators. Turner’s

machine follows a normal-order reduction (i.e. top-most left-most order) on a graph. Using a graph

enables sharing thereby replicating a call-by-need operational semantics. For instance, the following

is an execution trace of double 42 with combinator reductions:

(S (S (K plus) I) I) 21
−→S (S (K plus) I) 21 (I 21)
−→S (K plus) 21 (I 21) (I 21)
−→K plus (I 21) (I 21)
−→2

I plus 21 21

−→+ 42

7
Barendregt [14] gives a translation from Λ into a combinator calculus, but I am focused on Turner’s presentation.

Deriving Practical Implementations of First-Class Functions 17

Unfortunately, the machine itself is not presented in the text. Fromwhat Turner describes it operates

on a representation of the program similar to the trace above.

Expanding on the ideas of Turner, Cousineau et al. [18] introduced the Categorical Abstract

Machine (CAM). Instead of taking their combinator set from combinatory logic, Cousineau et al.
elect to use a set of primitive combinators with a relation to _-calculus models in category theory,

i.e. Cartesian closed categories. In contrast to Turner, they provide abstract machines for evaluating

strict and non-strict languages.

4.2 Super-combinator Machines
With Turner’s machine, a graph reduction operated on a program composed of as little as two

combinators: S and K. With the CAM, a machine operates on programs composed of a larger set

of combinators. Expanding the number of combinators to infinity, super-combinator machines

evaluate programs composed of combinators derived directly from the source program. Instead

of the one or two argument combinators that have been shown thus far, super-combinators are
closed, arbitrarily long chains of _-expression. Implementations convert source programs into ones

composed only of super-combinators and applications through a transformation called lambda-
lifting. Like Turner’s machine, these programs are evaluated through graph reduction. Additionally,

the insights of lambda-lifting and source-derived combinator reduction have been adapted for a

CAM-style machine in the Categorical Multi-combinator Machine [49].

4.2.1 Lambda-lifting. Lambda-lifting arose in the context of lazy language compilers [13, 36, 38, 63].

The transformation works by 𝛽-expanding on the free variables of substitutable expressions—be it

a function or an argument to a function—until it is left as a closed _-expression that is partially

applied. Next, the closed functions are then given a name, removed from the program, and placed

in a set of global variables for the G-machine to use.

To demonstrate this, consider the following program:

(_𝑥 . (_𝑓 . 𝑓 3 + 𝑓 4) (_𝑦. 𝑥 + 𝑦)) 2

There are three functions in this code which lambda-lifting must create super-combinators for and

lift to the top level. Lambda-lifting will convert this program to the following:

super combs
s0 is _𝑥 . s2 (s1 𝑥)
s1 is _𝑥 ._𝑦. 𝑥 + 𝑦
s2 is _𝑓 . 𝑓 3 + 𝑓 4

main
s0 2

Since the source program only contained one function with a free variable, only one 𝛽-expansion

was performed. That is, the function _𝑦. 𝑥 + 𝑦 depends on the external variable 𝑥 , so it is replaced

by the partial application (_𝑥._𝑦. 𝑥 + 𝑦) 𝑥 . Later, its super-combinator is given the name s0 lifted,
leaving s0 𝑥 in its place.

As presented by Hughes’ dissertation [36], this transformation can be done in two steps. The first

being a 𝛽-expansion of all of the closing is specified by the following expansion transformation:

LLJ𝑥K = 𝑥

LLJ_𝑥 .𝑀K = (_𝑦0. . ._𝑦𝑛 ._𝑥 . LLJ𝑀K) 𝑦0 · · ·𝑦𝑛 where 𝑦0. . .𝑦𝑛 = FV(_𝑥. 𝑀)
LLJ𝑀 𝑁 K = LLJ𝑀K ((_𝑦0. . ._𝑦𝑛 . LLJ𝑁 K) 𝑦0 · · ·𝑦𝑛) where 𝑦0. . .𝑦𝑛 = FV(𝑁)

18 Zachary J. Sullivan

Following this expansion, a simple recursive function can traverse the program giving names to

the super-combinators and pulling them out.

Lift(𝑥) = (Y, 𝑥)
Lift(_𝑥0. . ._𝑥𝑛 . 𝑀) = (sup ∪ {f ↦→ _𝑥0. . ._𝑥𝑛 . 𝑀

′}, f)
where𝑀 ≠ _𝑦. 𝑁 and Lift(𝑀) = (sup, 𝑀 ′)

Lift(𝑀 𝑁) = (sup
0
∪ sup

1
, 𝑀 ′ 𝑁 ′)

where Lift(𝑀) = (sup
0
, 𝑀 ′) and Lift(𝑁) = (sup

1
, 𝑁 ′)

A notable difference between my presentation and much of the literature, however, is that they

do not consider 𝛽-expansion of function arguments. This is because they work with a source

language which has been normalized so that all function arguments are variables that were bound

to let-expressions. As extensions to simple lambda-lifting, Johnsson [38] adds mutually recursive

blocks to the language which greatly increases the complexity of the transformation and Hughes

[36] considers several optimizations. Among Hughes’ optimizations are considering the effect of

the order in which variables are expanded out and expanding out maximal free expressions instead

of only variables themselves. Since the goal of these optimizations is to increase sharing, Hughes

appropriately names his transformation: full laziness.

4.2.2 G-Machines. A lambda-lifted program serves as the source language for Johnsson’s G-

machine [37]. As the name implies, the machine makes use of graph representation of programs.

The graph is represented as a mutable heap wherein each stored data block refers to a node in the

graph. The machine syntax, compilation rules, and transitions are given in Figure 1. A machine

state is composed of a code pointer, a graph node stack, a value stack, a heap containing the graph

information, and a dump for returning from functions. Unlike the full machine given by Johnsson

has 36 transition rules, I have greatly simplified the machine since I am primarily interested in

functions. Specifically, I removed the output register, the global environment of super-combinators

since it does not change throughout execution, and instructions to handle algebraic data types. I

keep numbers and addition because they are particularly interesting in call-by-need evaluation

needing to be evaluated strictly as unboxed values.

The compilation of a lambda-lifted source program is made up of four sub-translations. The

first FJ−K translates super-combinators into G-code by translating the body of the combinator

then adding update and return instructions. The latter three translations are all meant to translate

expressions and are indexed by a mapping from variables to stack locations and a stack depth. EJ−K
is meant to generate code for evaluating the expression on the top of the stack. BJ−K translates
arithmetic expressions. And finally, CJ−K translates graph constructing expressions. For demon-

stration, compiling the lambda-lifted program from the previous subsection yields the following

G-machine code wherein I use 𝑛 to differentiate stack accessing natural numbers from numeric

constants as in De Bruijn:

super combs
s0 is PushFun s2; PushFun s1; Push 2; MkApp; MkApp; Update 2; Ret 1

s1 is Push 0; Eval; Unbox; Push 2; Eval; Unbox; Add; MkNum; Update 3; Ret 2
s2 is
Push 0; PushNum 3; MkApp; Eval; Unbox;
Push 1; PushNum 4; MkApp; Eval; Unbox;
Add; MkNum; Update 2; Ret 1

main
PushFun s0; PushNum 2; MkApp; Eval

Deriving Practical Implementations of First-Class Functions 19

Syntax
𝐶 ∈ Code ::= 𝐼 | 𝐼 ;𝐶
𝐼 ∈ Instruction ::= Eval | Unwind | Update 𝑛 | Ret 𝑛

| PushFun s | PushNum 𝑛 | PushVar 𝑛
| MkNum | MkApp | Unbox | PushUnboxNum 𝑛 | Add

𝑆 ∈ Stack ::= Y | 𝑙 · 𝑆
𝑉 ∈ Primitive Stack ::= Y | 𝑐 · 𝑆
𝐺 ∈ Graph ::= Location ⇀ Node
𝑁 ∈ Node ::= Num 𝑐 | Fun 𝑓 | Ap 𝑙 𝑙
𝐷 ∈ Dump ::= Y | (𝐶, 𝑆) · 𝐷

Machine State ::= ⟨𝐶 ∥ 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷⟩
Compilation

FJ_𝑥0, . . . , 𝑥𝑛 . 𝑀K = EJ𝑀K 𝑟 (𝑛 + 2); Update 𝑛 + 2; Ret 𝑛 + 1

where 𝑟 = 𝑥0 ↦→ 𝑛 + 2, . . . , 𝑥𝑛 ↦→ 2

EJ𝑐K 𝑟 𝑛 = PushNum 𝑐
EJ𝑀 + 𝑁 K 𝑟 𝑛 = BJ𝑀 + 𝑁 K 𝑟 𝑛; MkNum

EJ𝑥K 𝑟 𝑛 = PushVar 𝑛 − 𝑟 (𝑥); Eval
EJ𝑀K 𝑟 𝑛 = CJ𝑀K 𝑟 𝑛; Eval

otherwise

BJ𝑐K 𝑟 𝑛 = PushUnboxNum 𝑐
BJ𝑀 + 𝑁 K 𝑟 𝑛 = BJ𝑀K 𝑟 𝑛; BJ𝑁 K 𝑟 (𝑛 + 1); Add

BJ𝑀K 𝑟 𝑛 = EJ𝑀K 𝑟 𝑛; Unbox
otherwise

CJ𝑐K 𝑟 𝑛 = PushNum 𝑐
CJ𝑥K 𝑟 𝑛 = PushVar 𝑛 − 𝑟 (𝑥)
CJfK 𝑟 𝑛 = PushFun f

CJ𝑀 𝑁 K 𝑟 𝑛 = CJ𝑀K 𝑟 𝑛; CJ𝑁 K 𝑟 (𝑛 + 1); MkApp
Transitions

⟨Eval;𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Ap 𝑙𝑥 𝑙𝑦] ∥ 𝐷 ⟩ ↦−→ ⟨Unwind ∥ 𝑙 · Y ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Ap 𝑙𝑥 𝑙𝑦] ∥ (𝐶, 𝑆) · 𝐷 ⟩
⟨Eval;𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩

where𝐺 (𝑙) = Num 𝑐 or𝐺 (𝑙) = Fun s
⟨Unwind ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Ap 𝑙𝑥 𝑙𝑦] ∥ 𝐷 ⟩ ↦−→ ⟨Unwind ∥ 𝑙𝑥 · 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Ap 𝑙𝑥 𝑙𝑦] ∥ 𝐷 ⟩

⟨Unwind ∥ 𝑙 · 𝑙1 · · · 𝑙𝑘 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Fun 𝑓] ∥ 𝐷 ⟩ ↦−→ ⟨𝐶s ∥ 𝑙 ′′
1
· · · 𝑙 ′′

𝑘
· 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Fun s] ∥ 𝐷 ⟩

where s = (𝑘,𝐶s) and ∀𝑖 .𝐺 (𝑙𝑖) = Ap 𝑙 ′𝑖 𝑙
′′
𝑖

⟨Unwind ∥ 𝑙 · 𝑙1 · · · 𝑙𝑘 · Y ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Fun s] ∥ (𝐶′, 𝑆′) · 𝐷 ⟩ ↦−→ ⟨𝐶′ ∥ 𝑙𝑘 · 𝑆′ ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩
where s = (𝑗,𝐶s) and 𝑘 < 𝑗

⟨Update 𝑛;𝐶 ∥ 𝑙0 · 𝑙1 · · · 𝑙𝑛 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙0 ↦→ 𝑁, 𝑙𝑛 ↦→ _] ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑙1 · · · 𝑙𝑛 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙0 ↦→ 𝑁, 𝑙𝑛 ↦→ 𝑁] ∥ 𝐷 ⟩
⟨Ret 𝑛 ∥ 𝑙0 · · · 𝑙𝑛 · 𝑙 · Y ∥ 𝑉 ∥ 𝐺 ∥ (𝐶, 𝑆) · 𝐷 ⟩ ↦−→ ⟨𝐶′ ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩

where𝐺 (𝑙) = Num 𝑐
⟨Ret 𝑛 ∥ 𝑙0 · · · 𝑙𝑛 · 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨Unwind ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩

where𝐺 (𝑙) = Ap 𝑙𝑥 𝑙𝑦 or𝐺 (𝑙) = Fun s
⟨PushFun s;𝐶 ∥ 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Fun s] ∥ 𝐷 ⟩
⟨PushNum 𝑛;𝐶 ∥ 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Num 𝑛] ∥ 𝐷 ⟩

⟨PushVar 𝑛;𝐶 ∥ 𝑙0 · · · 𝑙𝑛 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑙𝑛 · 𝑙0 · · · 𝑙𝑛 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩
⟨MkNum;𝐶 ∥ 𝑆 ∥ 𝑛 ·𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Num 𝑛] ∥ 𝐷 ⟩

⟨MkApp;𝐶 ∥ 𝑙𝑦 · 𝑙𝑥 · 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ App 𝑙𝑥 𝑙𝑦] ∥ 𝐷 ⟩
⟨Unbox;𝐶 ∥ 𝑙 · 𝑆 ∥ 𝑉 ∥ 𝐺 [𝑙 ↦→ Num 𝑛] ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑆 ∥ 𝑛 ·𝑉 ∥ 𝐺 [𝑙 ↦→ Num 𝑛] ∥ 𝐷 ⟩

⟨PushUnboxNum 𝑛;𝐶 ∥ 𝑆 ∥ 𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑆 ∥ 𝑛 ·𝑉 ∥ 𝐺 ∥ 𝐷 ⟩
⟨Add;𝐶 ∥ 𝑆 ∥ 𝑛 ·𝑚 ·𝑉 ∥ 𝐺 ∥ 𝐷 ⟩ ↦−→ ⟨𝐶 ∥ 𝑆 ∥ (𝑛 +𝑚) ·𝑉 ∥ 𝐺 ∥ 𝐷 ⟩

Fig. 1. G-machine

20 Zachary J. Sullivan

After compilation to G-machine code, the evaluation process begins with the Eval instruction. If
the current node on the top of the stack is an application, then the machine must start to unwind
the application, i.e. to search for the next reducible expression down the left-hand-side of the

application. When unwinding transitions finally land on a label which maps to function data, one

of two transitions can happen depending on whether there are enough arguments on the stack;

note that arguments are actually labels the point to application nodes containing their arguments.

If there are enough arguments, then the program replaces the application nodes on the stack with

their argument part and enters the code in the body of the function. Otherwise, there are not

enough arguments on the stack, and therefore, the function returns prematurely with only the

top application on the stack; note that this means the under-applied application will need to be

unwinded again when there are enough arguments.

As seen in the G-machine code generation, exiting a super-combinator will perform an update

and return. The former selects a specific node in the stack and updates it with the node at the top of

the stack. The latter has two cases. Returning a number simply places the last element of the stack

on the stack in the dump and start executing the dump code. Otherwise, the node being returned is

a function or application; thus, an unwind state is entered and the dump is not restored yet.

The instruction for evaluating numbers—i.e. MkNum, PushNum, PushUnboxNum, Unbox, and Add—
are interesting in that they must destruct the graph and make use of the value stack. In the graph

machine, unboxed or primitive numbers cannot be passed through variables instead they are

hidden inside of boxes. This can lead to inefficient unboxing and reboxing for chains of arithmetic

expressions [65].

Following the development of the machine, there have been a number of incremental improve-

ments on the it. Since it is inefficient in that it spends several transitions constructing and updating

the graph representation of program, Burn’s Spinless G-machine [15] made improvements by

reducing the updates to the graph when unwinding an expression. The G-machine above was

specifically inefficient in rebuilding the spine, i.e. unwinding applications, for under-applied func-

tion. Another lazy machine built to execute with source-derived combinators is Fairbairn’s [32]

which reduced the number of instructions needed to execute lambda-lifted programs to three in

the Three Instruction Machine (TIM). Drawing a great deal of inspiration from TIM, the Glasgow

Haskell Compiler today uses the Spineless Tagless G-machine, which discards using combinators

as an approach to compilation [66].

5 ABSTRACT MACHINES
Whereas combinator based evaluation strategies where developed to implement programs in a

calculus of combinators, the abstract machines I present in this section are designed to run Λ-terms

themselves (or simple instructions from trivial code generation). However, there are some striking

similarities with those machines presented before because combinator and abstract machines share

the fact that they store a notion of evaluation context as state. This makes them more efficient in

practice than a small-step semantics which must search again for the next redex after each step. I

will discuss four machines: the SECD, Krivine, ZINC, and STG machines. The first two are early

examples of abstract machine executing a strict and non-strict evaluation strategy, respectively.

The last two machines are more recent versions that are optimized for fast curried function calls, a

common occurrence in function programs.

Although I have heretofore focused on classifying semantics according to their evaluation

strategy, the level of abstract machines presents another kind of classification to be aware of:

the difference between push/enter and eval/apply style applications. The difference is focused

on how application is performed. Considering the former, for which the Krivine machine is a

part, arguments are pushed on the stack and the left-hand-side of the application is entered. In

Deriving Practical Implementations of First-Class Functions 21

Syntax
𝑆 ∈ Stack ::= Y | 𝑉 · 𝑆
𝐸 ∈ Environment ::= Y | 𝐸, 𝑥 ↦→ 𝑉

𝐶 ∈ Control ::= Y | 𝑀 ·𝐶 | ap ·𝐶
𝐷 ∈ Dump ::= Y | (𝑆, 𝐸,𝐶, 𝐷)
𝑉 ∈ Value ::= 𝑐 | (𝐸, _𝑥 . 𝑀)

Machine State ::= ⟨𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩
Transitions

⟨𝑉 · Y ∥ 𝐸 ∥ Y ∥ (𝑆 ′, 𝐸 ′,𝐶 ′, 𝐷 ′)⟩ ↦−→ ⟨𝑉 · 𝑆 ′ ∥ 𝐸 ′ ∥ 𝐶 ′ ∥ 𝐷 ′⟩
⟨𝑆 ∥ 𝐸 ∥ 𝑥 ·𝐶 ∥ 𝐷⟩ ↦−→ ⟨𝐸 (𝑥) · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩

⟨𝑆 ∥ 𝐸 ∥ _𝑥 .𝑀 ·𝐶 ∥ 𝐷⟩ ↦−→ ⟨(𝐸, _𝑥 . 𝑀) · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩
⟨(𝐸 ′, _𝑥 . 𝑀) ·𝑉 · 𝑆 ∥ 𝐸 ∥ ap ·𝐶 ∥ 𝐷⟩ ↦−→ ⟨Y ∥ 𝐸 ′, 𝑥 ↦→ 𝑉 ∥ 𝑀 · Y ∥ (𝑆, 𝐸,𝐶, 𝐷)⟩

⟨𝑆 ∥ 𝐸 ∥ 𝑀 𝑁 ·𝐶 ∥ 𝐷⟩ ↦−→ ⟨𝑆 ∥ 𝐸 ∥ 𝑁 ·𝑀 · ap ·𝐶 ∥ 𝐷⟩

Fig. 2. SECD machine

contrast, eval/apply machines like SECD evaluate both sides of an application first; afterwards,

the application site knows how to pass arguments and enter the function body. At first glance,

push/enter seems to align with a call-by-name evaluation strategy because it is easy to push an

argument on the stack and continue with the function. On the other hand, eval/apply seems suited

for call-by-value evaluation since the argument must be evaluated before entering the function.

However, this turns out not to be the case as seen by Marlow and Peyton Jones [51] wherein both

of these approaches are shown to work in call-by-need (and eval/apply is faster). And the ZINC

machine is indeed a push/enter call-by-value machine.

5.1 The SECD Machine
The earliest cited _-calculus abstract machine was Landin’s SECD machine [43]. The call-by-value

machine is named for the four parts of its state: 𝑆 , an intermediate result stack; 𝐸, an environment

containing mappings from variables to values;𝐶 , a control stack; and 𝐷 , a dump of a machine state.

Figure 2 gives the syntax and transition rules for the machine. The result stack holds only values

and the environment maps to values. The notion of value for the SECD machine, and many other

abstract machines (at least all of those that I will present), is different from the notion used for

the reduction theory and structural operational semantics wherein values are a subset of Λ-terms.

Instead, values refer to objects that can be mapped to from the environment as seen in the big-step

environment semantics. For an object that behaves like an integer, constants like 4 are values

whereas arithmetic expressions like 3 + 1 must be evaluated before they can be placed on the

result stack or in the environment. In the case of functions, the SECD machine constructs function

closures, e.g. _𝑥.𝑦 must be evaluated to (𝐸, _𝑥 .𝑦) for some environment 𝐸.

The control stack is so named because the next state transition always depends on the value at

the top of this stack. When the top of the control stack is an application expression, the application

is deconstructed and an application marker, the function, and the argument are placed on the

control stack, in that order. This deconstruction does the same work as evaluation contexts from

the operational semantics: searching for the next expression to evaluate. When both the argument

and the function are evaluated to a value, an application marker will be at the top of the control

stack which triggers the application.

22 Zachary J. Sullivan

Syntax
^ ∈ Continuation ::= Y | 𝑉 · ^
Σ ∈ Environment ::= Y | Σ, 𝑥 ↦→ 𝑉

𝑉 ,𝑊 ∈ Value ::= (Σ, 𝑀)
Machine State ::= ⟨𝑀 ∥ Σ ∥ ^⟩

Transitions
⟨𝑀 𝑁 ∥ Σ ∥ ^⟩ ↦−→ ⟨𝑀 ∥ Σ ∥ (Σ, 𝑁) · ^⟩

⟨_𝑥. 𝑀 ∥ Σ ∥ (Σ′, 𝑁) · ^⟩ ↦−→ ⟨𝑀 ∥ Σ, 𝑥 ↦→ (Σ′, 𝑁) ∥ ^⟩
⟨𝑥 ∥ Σ, 𝑥 ↦→ (Σ′, 𝑀) ∥ ^⟩ ↦−→ ⟨𝑀 ∥ Σ′ ∥ ^⟩

Fig. 3. Krivine machine

The dump of the SECD machine is used to return from function calls. When a function is applied,

the state of the machine is saved. The state is re-instantiated when the function returns and the

value computed by the function call is added to the result stack.

As an example, consider the evaluation trace for the program (_𝑥. _𝑦. 𝑥) 4 2 with an arbitrary

starting 𝑆 , 𝐸, 𝐶 , and 𝐷 (i.e. anywhere in a program):

⟨𝑆 ∥ 𝐸 ∥ (_𝑥. _𝑦. 𝑥) 4 2 ·𝐶 ∥ 𝐷⟩
↦−→ ⟨𝑆 ∥ 𝐸 ∥ 2 · (_𝑥. _𝑦. 𝑥) 4 · ap ·𝐶 ∥ 𝐷⟩
↦−→ ⟨2 · 𝑆 ∥ 𝐸 ∥ (_𝑥. _𝑦. 𝑥) 4 · ap ·𝐶 ∥ 𝐷⟩
↦−→ ⟨2 · 𝑆 ∥ 𝐸 ∥ 4 · _𝑥. _𝑦. 𝑥 · ap · ap ·𝐶 ∥ 𝐷⟩
↦−→ ⟨4 · 2 · 𝑆 ∥ 𝐸 ∥ _𝑥. _𝑦. 𝑥 · ap · ap ·𝐶 ∥ 𝐷⟩
↦−→ ⟨(𝐸, _𝑥 . _𝑦. 𝑥) · 4 · 2 · 𝑆 ∥ 𝐸 ∥ ap · ap ·𝐶 ∥ 𝐷⟩
↦−→ ⟨Y ∥ 𝐸, 𝑥 ↦→ 4 ∥ _𝑦. 𝑥 · Y ∥ (2 · 𝑆, 𝐸, ap ·𝐶, 𝐷)⟩
↦−→ ⟨(𝐸, 𝑥 ↦→ 4, _𝑦. 𝑥) · Y ∥ 𝐸, 𝑥 ↦→ 4 ∥ Y ∥ (2 · 𝑆, 𝐸, ap ·𝐶, 𝐷)⟩
↦−→ ⟨(𝐸, 𝑥 ↦→ 4, _𝑦. 𝑥) · 2 · 𝑆 ∥ 𝐸 ∥ ap ·𝐶 ∥ 𝐷⟩
↦−→ ⟨Y ∥ 𝐸, 𝑥 ↦→ 4, 𝑦 ↦→ 2 ∥ 𝑥 · Y ∥ (𝑆, 𝐸,𝐶, 𝐷)⟩
↦−→ ⟨4 · Y ∥ 𝐸, 𝑥 ↦→ 4, 𝑦 ↦→ 2 ∥ Y ∥ (𝑆, 𝐸,𝐶, 𝐷)⟩
↦−→ ⟨4 · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩

An important detail to note about evaluation is that it is right-to-left, i.e. it evaluates the argument

of a function to a value before the function itself. This is not equivalent to call-by-value operational

semantics when considering some computational effects. For non-termination, it does not matter

whether the argument 𝑀 or 𝑁 loops forever in the program 𝐿 𝑀 𝑁 since the observable effect

would be that the program loops forever. However, if the program was callcc (_𝑘. 𝐿 (𝑘 1) (𝑘 2)),
then the program would not produce the same output as a call-by-value execution.

5.2 The Krivine Machine
For call-by-name languages, the Krivine machine is the earliest abstract machine despite remaining

unpublished folklore until 2007 [21, 28, 42]. As published, the Krivine machine operates on a special

version of DeBruijn indices, but I present, instead, a machine that operates on variables because

to ease readability. The machine’s syntax and transitions are shown in Figure 3. Like the SECD

machine, the Krivine machine has a notion of call stack which contains only arguments to functions.

Whereas SECD has a stack for values and a dump for returning from function calls, the Krivine

machine encodes all of this information with its single stack.

Since the non-strict machine does not evaluate the arguments to functions and substituted

unevaluated expressions may contain free variables, the machine creates closures for everything

that is added to the environment. These closures are constructed eagerly when they are pushed

Deriving Practical Implementations of First-Class Functions 23

on the stack. Unlike the SECD machine which did not properly implement call-by-value, the

Krivine machine indeed implements call-by-name by avoiding the evaluation of its argument and

proceeding directly to evaluating the left-hand-side of the application.

As an example of execution, consider again the program (_𝑥 . _𝑦. 𝑥) 4 2:
⟨(_𝑥 . _𝑦. 𝑥) 4 2 ∥ Σ ∥ ^⟩
↦−→ ⟨(_𝑥. _𝑦. 𝑥) 4 ∥ Σ ∥ (Σ, 2) · ^⟩
↦−→ ⟨_𝑥. _𝑦. 𝑥 ∥ Σ ∥ (Σ, 4) · (Σ, 2) · ^⟩
↦−→ ⟨_𝑦. 𝑥 ∥ Σ, 𝑥 ↦→ (Σ, 4) ∥ (Σ, 2) · ^⟩
↦−→ ⟨𝑥 ∥ Σ, 𝑥 ↦→ (Σ, 4), 𝑦 ↦→ (Σ, 2) ∥ ^⟩
↦−→ ⟨4 ∥ Σ ∥ ^⟩

5.3 Fast Curried Function Calls
Noting that the most important operation in functional languages is function application, Cardelli

[16] strove to improve on these machines with the Functional Abstract Machine (FAM). The

SECD and Krivine machines shown thus far only contained single function application; a fact

which can be improved upon. In particular, it is important to fuse multiple applications of curried

function calls. To demonstrate the importance, the program (_𝑥. _𝑦. 𝑀) 1 2 could perform the

top-left application, return (_𝑦.𝑀 [1/𝑥]) 2, and then perform the second application. In the big-step

environment semantics and the SECD machine, such an execution would generate two closures;

one for each time a function is returned. Fusing these calls would prevent the creation of these

extra data structures. I will show how this problem is solved in a call-by-value and call-by-need

language with the ZINC and STG machines.

5.3.1 ZINC Abstract Machine. Leroy’s ZINC abstract machine (ZAM) [45] was designed to be

a strict abstract machine optimized for multi-arity function calls. The machine can be seen as a

modification of the Krivine machine to support strict evaluation and multi-arity function calls.

As presented above, the Krivine machine cannot support these two features by simply evaluating

function arguments. Since the argument may be evaluated to a _𝑥 .𝑀 , the machine needs to know

to stop evaluating and return a function closure instead of entering this function; this needs to

be done in the presence of other elements on the stack, and therefore the solution to wait till the

stack is empty, as Krivine does, does not work. The ZAM solves this problem by pushing marks

on the stack at the beginning of a multiple-application; if a function occurs and the mark is not

present, then the machine knows it is evaluating an argument and returns a function closure. The

ZAM’s combination of being strict and being push/enter means that no intermediate closures are

constructed during curried function calls, unless the value of an argument is a function.

The syntax, compilation, and transition rules for the ZAM are given in Figure 4. Unlike the

machines seen so far, the machine relies on a simple instruction language which the De Bruijn

_-calculus source language is compiled into. A machine state is a 5-tuple containing a list of

instructions, an accumulator register, an environment, and an argument and return stack. The

argument stack is where function arguments are placed in preparation for entering a function,

obviously. It holds not only values but also marks, which indicate the end of the argument list. The

return stack is used for reinstating the environment after exiting a function call—like the SECD’s

dump register—and thus, it requires code and an environment to return to.

Compilation of a De Bruijn expression contains two sub-translations: CompJ−K is the top-level
translation and RetJ−K is a special translation to be used for the bodies of functions. If the program

has nested _-expressions like __ 1, then CompJ−K would generate Cur(Grab; Access(1); Return)
which would involve shuffling a closure to the accumulator register before immediately entering it.

The RetJ−K will avoid this shuffle and just grab an argument from the stack.

24 Zachary J. Sullivan

Syntax

𝐶 ∈ Code ::= 𝐼 | 𝐼 ;𝐶
𝐼 ∈ Instruction ::= Access(𝑛) | Pushmark | Push | Apply | AppTerm

| Grab | Cur(𝐶) | Return
𝑉 ∈ Value ::= (𝐶, 𝐸) | 𝑐
𝐴 ∈ Accumulator ::= Y | 𝑉
𝐸 ∈ Environment ::= Y | 𝑉 · 𝐸
𝑆 ∈ Arg Stack ::= Y | 𝑉 · 𝑆 | • · 𝑆
𝑅 ∈ Return Stack ::= Y | (𝐶, 𝐸) · 𝑆

Machine State ::= ⟨𝐶 ∥ 𝐴 ∥ 𝐸 ∥ 𝑆 ∥ 𝑅⟩
Compilation

CompJ𝑛K = Access(𝑛)
CompJ𝑀 𝑁0 · · ·𝑁𝑛K = Pushmark; CompJ𝑁𝑛K; Push; . . . ; CompJ𝑁0K; Push; CompJ𝑀K; Apply

CompJ_𝑀K = Cur(RetJ𝑀K; Return)

RetJ𝑛K = Access(𝑛)
RetJ𝑀 𝑁0 · · ·𝑁𝑛K = CompJ𝑁𝑛K; Push; . . . ; CompJ𝑁0K; Push; CompJ𝑀K; AppTerm

RetJ_𝑀K = Grab; RetJ𝑀K
Transitions

⟨Access(𝑛);𝐶 ∥ 𝐴 ∥ . . .𝑉𝑛 . . . ∥ 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ∥ 𝑉𝑛 ∥ . . .𝑉𝑛 . . . ∥ 𝑆 ∥ 𝑅⟩
⟨Appterm;𝐶 ∥ (𝐶 ′, 𝐸 ′) ∥ 𝐸 ∥ 𝑉 · 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ′ ∥ (𝐶 ′, 𝐸 ′) ∥ 𝑉 · 𝐸 ′ ∥ 𝑆 ∥ 𝑅⟩
⟨Apply;𝐶 ∥ (𝐶 ′, 𝐸 ′) ∥ 𝐸 ∥ 𝑉 · 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ′ ∥ (𝐶 ′, 𝐸 ′) ∥ 𝑉 · 𝐸 ′ ∥ 𝑆 ∥ (𝐶, 𝐸) · 𝑅⟩

⟨Push;𝐶 ∥ 𝐴 ∥ 𝐸 ∥ 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ∥ 𝐴 ∥ 𝐸 ∥ 𝐴 · 𝑆 ∥ 𝑅⟩
⟨Pushmark;𝐶 ∥ 𝐴 ∥ 𝐸 ∥ 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ∥ 𝐴 ∥ 𝐸 ∥ • · 𝑆 ∥ 𝑅⟩
⟨Cur(𝐶);𝐶 ′ ∥ 𝐴 ∥ 𝐸 ∥ 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ′ ∥ (𝐶, 𝐸) ∥ 𝐸 ∥ 𝑆 ∥ 𝑅⟩

⟨Grab;𝐶 ∥ 𝐴 ∥ 𝐸 ∥ • · 𝑆 ∥ (𝐶 ′, 𝐸 ′) · 𝑅⟩ ↦−→ ⟨𝐶 ′ ∥ (𝐶, 𝐸) ∥ 𝐸 ′ ∥ 𝑆 ∥ 𝑅⟩
⟨Grab;𝐶 ∥ 𝐴 ∥ 𝐸 ∥ 𝑉 · 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ∥ 𝐴 ∥ 𝑉 · 𝐸 ∥ 𝑆 ∥ 𝑅⟩

⟨Return;𝐶 ∥ 𝐴 ∥ 𝐸 ∥ • · 𝑆 ∥ (𝐶 ′, 𝐸 ′) · 𝑅⟩ ↦−→ ⟨𝐶 ′ ∥ 𝐴 ∥ 𝑉 · 𝐸 ′ ∥ 𝑆 ∥ 𝑅⟩
⟨Return;𝐶 ∥ (𝐶 ′, 𝐸 ′) ∥ 𝐸 ∥ 𝑉 · 𝑆 ∥ 𝑅⟩ ↦−→ ⟨𝐶 ′ ∥ 𝐴 ∥ 𝐸 ′ ∥ 𝑆 ∥ 𝑅⟩

Fig. 4. ZINC abstract machine

As an example, the program (_ _ 1) 42 9 compiles to the ZAM code:

Pushmark;
Num(9); Push; Num(42); Push;
Cur(Grab; Access(1); Return);

Apply; Halt

Deriving Practical Implementations of First-Class Functions 25

I have added two instructions for the example: Num(𝑛) returns a constant to the accumulator register

and Halt ends the program with the accumulator register as the result.

⟨Pushmark; · · · ∥ Y ∥ Y ∥ Y ∥ Y⟩
↦−→ ⟨Num(9); · · · ∥ Y ∥ Y ∥ • · Y ∥ Y⟩
↦−→ ⟨Push; · · · ∥ 9 ∥ Y ∥ • · Y ∥ Y⟩
↦−→ ⟨Num(42); · · · ∥ 9 ∥ Y ∥ 9 · • · Y ∥ Y⟩
↦−→ ⟨Push; · · · ∥ 42 ∥ Y ∥ 9 · • · Y ∥ Y⟩
↦−→ ⟨Cur(Grab; Access(1); Return); · · · ∥ 42 ∥ Y ∥ 42 · 9 · • · Y ∥ Y⟩
↦−→ ⟨Apply; Halt ∥ ((Grab; Access(1); Return), Y) ∥ Y ∥ 42 · 9 · • · Y ∥ Y⟩
↦−→ ⟨Grab; Access(1); Return ∥ ((Grab; Access(1); Return), Y) ∥ 42 · Y ∥ 9 · • · Y ∥ (Halt, Y) · Y⟩
↦−→ ⟨Access(1); Return ∥ ((Grab; Access(1); Return), Y) ∥ 9 · 42 · Y ∥ • · Y ∥ (Halt, Y) · Y⟩
↦−→ ⟨Return ∥ 42 ∥ 9 · 42 · Y ∥ • · Y ∥ (Halt, Y) · Y⟩
↦−→ ⟨Halt ∥ 42 ∥ Y ∥ Y ∥ Y⟩

The only closures that appear in this program are on the return stack and the accumulator register.

Since they may be returned from functions and then used as function arguments later, only closures

in the environment must be heap-allocated. This means that our example program performs no
heap allocation. Only if the example had some non-strict applications or one of the arguments to

the function was a function, would heap allocation be required.

Like SECD, this machine evaluates in a right-to-left (observe the compilation of applications)

order which is not actually compatible with the call-by-value _-calculus with effects other than

non-termination.

5.3.2 STG Machine. As mentioned in Section 4, many lazy language implementations made use of

super-combinator graph-reduction machines. The Spineless Tagless G-machine [64, 66], which is

still used in GHC today, does away with graph-reduction. That is to say, it no longer opts to keep an

explicit representation of the source code’s structure, rather it uses a global heap that hold closures

representing partial applications and holding free variables. And instead of lambda-lifting, which

turned every free variable into a function argument later captured in the graph, the STG-machine

simply constructs closures at runtime for the free variables. Thus, the unique evaluation method

of call-by-need compilers was ousted in favor of the approaches already found in call-by-value

abstract machines like SECD and ZAM. Also like the ZAM, it is a push/enter machine that is

optimized to handle multiple applications.

Following the trend of lazy language discussion in the literature [38, 44], its source language

is in a special form of Λ-terms wherein all arguments to functions are atomic (i.e. variables or
primitive values), the free variables of functions are explicitly stated, and all functions occur bound

to let-expressions. The syntax is the following:

𝑀, 𝑁, 𝐿 ∈ Expression ::= let 𝑥 = _[𝑥]𝑦.𝑀 in 𝑁 | 𝑥 𝛼 | 𝑛
𝛼 ∈ Atom ::= 𝑥 | 𝑛

As notation, I use 𝑥 to denote a list and, in the case of _-expressions, the variable list enclosed in

brackets [𝑥] refers to the free variables of the function. Given this syntax, unevaluated expressions,

i.e. thunks, would be written _[𝑥] . 𝑀 since they have no formal parameters. Note, I have removed

algebraic data types and mutual recursion from the STG language to focus on high-order functions.

The machine’s syntax and transitions are given in Figure 5. In addition to my language not

support everything in Peyton Jones’ work, I have removed global bindings. An unfortunate side-

effect is that any thunk that computes a number will not be memoized. Adding call-by-need data

which contain primitive numbers is the way that their computations are memoized in the full

STG-machine [65]. Herein, the only computations that are memoized is that of partial function

26 Zachary J. Sullivan

Syntax
𝐶 ∈ Code ::= Eval𝑀 𝐸 | Enter 𝑙 | Int 𝑛
𝐴 ∈ Argument Stack ::= Y | 𝑉 · 𝐴
𝑈 ∈ Update Stack ::= Y | (𝐴, 𝑙) ·𝑈
𝐻 ∈ Heap = Location ⇀ Value

𝑉 ,𝑊 ∈ Value ::= 𝑛 | 𝑙
Machine State ::= ⟨𝐶 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩

Transitions
⟨Eval (let 𝑥 = _[𝑥]𝑦 → 𝑀 in 𝑁) 𝐸 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Eval 𝑁 𝐸 [𝑥 ↦→ 𝑙] ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ′⟩

where 𝐻 ′ = 𝐻 [𝑙 ↦→ (val(𝐸, 𝑥), _[𝑥]𝑦 → 𝑀)]
⟨Eval (𝑓 𝛼) 𝐸 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Enter 𝐸 (𝑓) ∥ val(𝐸, 𝑥) · 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩

⟨Eval 𝑓 𝐸 [𝑓 ↦→ 𝑛] ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Int 𝑛 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩
⟨Eval 𝑛 𝐸 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Int 𝑛 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩

⟨Enter 𝑙 ∥ 𝑉 · 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Eval𝑀 (𝑤 ↦→𝑊,𝑥 ↦→ 𝑉) ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩
where 𝐻 (𝑙) = (𝑊, _[𝑤]𝑥 → 𝑀)

|𝑉 | = |𝑥 | > 0

⟨Enter 𝑙 ∥ 𝑉 ∥ (𝐴′, 𝑙 ′) ·𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Enter 𝑙 ∥ 𝑉 · 𝐴′ ∥ 𝑈 ∥ 𝐻 ⟩
where 𝐻 (𝑙) = (𝑊, _[𝑤]𝑥 → 𝑀)

|𝑉 | < |𝑥 | > 0

𝐻 ′ = 𝐻 [𝑙 ′ ↦→ ((𝑙,𝑉), _[𝑓 , 𝑥] . 𝑓 𝑥)]
⟨Enter 𝑙 ∥ 𝐴 ∥ 𝑈 ∥ 𝐻 ⟩ ↦−→ ⟨Eval𝑀 𝑤 ↦→ 𝑉 ∥ Y ∥ (𝐴, 𝑙) ·𝑈 ∥ 𝐻 ⟩

where 𝐻 (𝑙) = (𝑉 , _[𝑤] → 𝑀)

val(𝐸, 𝛼) =
{
𝐸 (𝑥) 𝛼 = 𝑥

𝑛 𝛼 = 𝑛

Fig. 5. STG machine

applications. As a result of this omission, the return stack is unnecessary since it was used to hold

the continuations for returning from case expressions.

So the machine I present is made of four parts: a code element, an argument stack, an update stack,

and a heap. The code element is either an evaluation of an expression with an environment, a thunk

entry, or halting the computation on an integer. Values can either be labels or numbers whereas

in the source language atomic arguments could either be variables or numbers. An update stack

contains an argument stack and the label to be updated. For transitions, the evaluation transitions

follow closely those of other push/enter machines; that is, let-expressions extend the heap with a

closure and local environment with its point, and function applications push arguments on the

stack then proceed to a closure entry state. In the restricted STG language setting, eval-statements

stepping into an Int 𝑛 state will halt the machine. For the closure entering transitions, there is

a rule for entering a function with enough arguments on the stack, entering a functions with

too few arguments on the stack, and entering a thunk closure. Only the last of those pushes an

update frame; as seen with big-step environment semantics: functions are not memoized. For the

under-applied case, the update frame on the stack is consumed so that its closure is mutated to a

partial application, and the argument stack that it contains is added underneath the current one.

Thereby, more arguments are made available to the under-applied function and the work made to

get to this state is saved.

Deriving Practical Implementations of First-Class Functions 27

As an example demonstrating how multiple application works in the STG machine, consider the

following program wherein 𝑔 is a function with arity two and ℎ appears as 𝑔 applied to only one

argument:

let 𝑔 = _[]𝑥,𝑦. 𝑥 in
let ℎ = _[𝑔] . 𝑔 42 in
ℎ 0

Running it on the machine would yield the following trace:

⟨Eval (let 𝑔 = _[]𝑥,𝑦. 𝑥 in . . .) Y ∥ Y ∥ Y ∥ Y⟩
↦−→ ⟨Eval (let ℎ = _[𝑔] . 𝑔 42 in . . .) [𝑔 ↦→ 𝑙𝑔] ∥ Y ∥ Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥)]⟩
↦−→ ⟨Eval (ℎ 0) [𝑔 ↦→ 𝑙𝑔, ℎ ↦→ 𝑙ℎ] ∥ Y ∥ Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩
↦−→ ⟨Enter 𝑙ℎ ∥ 0 · Y ∥ Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩
↦−→ ⟨Eval (𝑔 42) [𝑔 ↦→ 𝑙𝑔] ∥ Y ∥ (0 · Y, 𝑙ℎ) · Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩
↦−→ ⟨Enter 𝑙𝑔 ∥ 42 · Y ∥ (0 · Y, 𝑙ℎ) · Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩
↦−→ ⟨Enter 𝑙𝑔 ∥ 42 · 0 · Y ∥ Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩
↦−→ ⟨Eval 𝑥 [𝑥 ↦→ 42, 𝑦 ↦→ 0] ∥ Y ∥ Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩
↦−→ ⟨Int 42 ∥ Y ∥ Y ∥ [𝑙𝑔 ↦→ (Y, _[]𝑥,𝑦. 𝑥), 𝑙ℎ ↦→ (𝑙𝑔, _[𝑔] . 𝑔 42)]⟩

This example clearly demonstrates how applications are delayed in the machine until all of the

arguments are available. Note in the fourth step of the trace wherein an update frame is pushed

on the stack. Unfortunately, it does not result an interesting memoization because the partial

application 𝑔 42 is memoized to be itself. If, instead, there was some work to be done before arriving

at such a memoization, then that work would be memoized.

6 COMPILATION THROUGH INTERMEDIATE LANGUAGES
Abstract machines can be improved through the addition of more intelligent runtime systems. There

exists another school of compiler design, beginning with Steele’s Rabbit compiler for Scheme [78],

wherein the compiler is constructed with a series of intermediate languages that represent getting a

step closer to real hardware. These intermediate languages are languages in their own right; that is

to say, they have a semantics that allows the compiler to perform optimizations. Whereas abstract

machines are optimized through ever more complex runtime systems, these compilers optimize by

transformations on their increasingly lower-level intermediate representations.

A notable call-by-value example of this style of compiler is the SML New Jersey compiler [9, 10]

which has the following compiler pipeline:

SML System F ΛCPS Λ
clos

Λ
alloc

ASM
𝑇𝐶/𝐷𝑒𝑠𝑢𝑔𝑎𝑟 𝐶𝑃𝑆 𝐶𝑙𝑜𝑠. 𝐶𝑜𝑛𝑣. 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝐴𝑙𝑙𝑜𝑐. 𝐶𝑜𝑑𝑒 𝐺𝑒𝑛.

A desugaring phase removes the syntactic sugar that occurs in the source language; for instance a let-

expression that also pattern-matches let (𝑥,𝑦) = . . . in . . . is transformed into a case-expression.

ΛCPS is a key optimization language known as continuation-passing-style for the compiler wherein

inlining, which is not sound in call-by-value, is possible and all function calls are tail calls. Λclos

is a closure-converted language, meaning that its semantics does not rely on a runtime system

that knows how to construct closures. Finally, the language Λalloc makes manipulation of memory

explicit.

In the realm of lazy language compilers, the premier compiler is the Glasgow Haskell Compiler

(GHC) which compiles Haskell through the following intermediate languages:

Haskell System FCJ STG Cmm ASM
𝑇𝐶/𝐷𝑒𝑠𝑢𝑔𝑎𝑟 𝑁𝑜𝑟𝑚./𝐸𝑟𝑎𝑠𝑢𝑟𝑒 𝐶𝑜𝑑𝑒 𝐺𝑒𝑛. 𝐼𝑛𝑠𝑡𝑟 . 𝑆𝑒𝑙𝑒𝑐𝑡 .

Following a similar desugar transformation to SML New Jersey, GHC’s enters its core optimization

language: System FCJ. Therein, GHC performs a number of optimizations including inlining (though

28 Zachary J. Sullivan

not entirely sound), constant folding, and fusion of unboxed operations. Following the core language,

GHC enters the STG language which I have discussed before; the language has the advantage of

being untyped which allows some optimizations that do not preserve types. The final intermediate

language is Cmmwherein low-level details like interactions with the garbage collector, e.g. allocation,
are exposed.

This section discusses these intermediate languages and the transformations between them. First,

I discuss continuation-passing-style and its successor administrative-normal-form which were

initially created for call-by-value compilers. Next, I expand on a problem with the two approaches

above: that there are two different compiler pipelines for different interpretations of a similar

source language. I discuss a couple of remedies for this, thunking and call-by-push-value which

could merge these two compilers. Finally, I discuss a necessary transformation for any functional

language doing C-like code generation: closure-conversion. The desugared languages that are

variants of System F will not be addressed since they are, from the point of view of this document,

extensions of the source language Λ.

6.1 Continuation-Passing Style
A problem using call-by-value in our intermediate language is that its restricted 𝛽-reductionmakes it

harder to optimize than a call-by-name language. A fundamental code manipulation transformation,

inlining, is not universally applicable. In the program (_𝑥. 𝑀) (𝑁 𝐿), for instance, the expression
𝑁 𝐿 cannot be inlined at compile time because 𝛽-reduction does not allow it. If 𝑁 𝐿 were to

diverge, then inlining would change the meaning of the program. This is the main motivation

for continuation-passing-style CPS to be used as a compiler intermediate representation in SML

New Jersey [9, 10]. The transformation or something akin to it is also found in the early Scheme

compilers [3, 78]. Additionally, Sabry with his coauthors [71–73] have shown the correctness of

these transformations as well as the equations preserved by source and target.

Intuitively, the transformation will convert an entire program into one that manipulate a contin-
uation which is a function containing the work left to do in the program. When a source program is

a normal form or value, the continuation, or left-over work function, can be applied to the program.

When a source program is a computation, e.g. an application, the function part of the application

must be evaluated and given a new continuation that knows to evaluate the right-hand-side as well.

The transformation itself is the following wherein all cases become functions on a continuation 𝑘 :

KVJ𝑐K = _𝑘. 𝑘 𝑐

KVJ𝑥K = _𝑘. 𝑘 𝑥

KVJ_𝑥. 𝑀K = _𝑘. 𝑘 (_𝑥 .KVJ𝑀K)
KVJ𝑀 𝑁 K = _𝑘.KVJ𝑀K (_𝑚.KVJ𝑁 K (_𝑛.𝑚 𝑛 𝑘))

Examining the function case reveals that the order of evaluation has been enshrined in the syntax

of the program, because the left-hand-side of the function is evaluated and given a continuation to

evaluate the right-hand-side. This matches the left-to-right order of evaluation presented in the

call-by-value operational semantics (Section 3). Another consequence of this transformation is that

function calls never return. The left-hand-side of the application KVJ𝑀K is given the continuation

that knows how to evaluate the entire rest of the program; therefore, there is no need to return

back to this point after evaluating KVJ𝑀K. This means that KVJ𝑀K (_𝑚. . . .) is a tail call which
allows the runtime system to avoid creating a new activation record for called tail call elimination

8
.

8
That this is a tail call is contested by some because applying the continuation 𝑘 is similar to returning from a function.

Deriving Practical Implementations of First-Class Functions 29

Has the transformation achieved its goal? Yes. The call-by-value 𝛽-reduction is always applicable,

and therefore so is inlining, since the right-hand-side of an application in the image of KVJ−K is
always a function value.

A major theme of this document thus far has been the sundering of implementations because

of evaluation strategy; the CPS transformation above is no different. Since call-by-name has an

unrestricted 𝛽-reduction, a CPS’ed intermediate language is not necessary. Of course, call-by-need

is not call-by-name and does not have a 𝛽-rule; however, inlining can be done at the risk of losing

sharing. Despite this lack of necessity, CPS transformations do exist for these non-strict languages

and studying them can reveal insights about implementation. For instance, Plotkin [69] showed

that a program in continuation-passing style will return the same result regardless of whether or

not the target language is evaluated in a call-by-value or call-by-name manner.

The essential difference in call-by-name CPS transformation is that variables will be bound to

computations awaiting a continuation. The full translation is the following:

KNJ𝑐K = _𝑘. 𝑘 𝑐

KNJ𝑥K = 𝑥

KNJ_𝑥 .𝑀K = _𝑘. 𝑘 (_𝑥.KNJ𝑀K)
KNJ𝑀 𝑁 K = _𝑘.KNJ𝑀K (_𝑚.𝑚 KNJ𝑁 K 𝑘)

Since variables will be bound to continuation accepting computations, variable case simply compiles

to itself. The application case appropriately continues with𝑚 KNJ𝑁 K 𝑘 stating that evaluating the

call𝑚 KNJ𝑁 K will return before consuming the continuation 𝑘 .

Okasaki et al. [60] present a call-by-need variant of the non-strict CPS transformation. For call-

by-name, accessing a CPS’ed variable will return the same CPS’ed delayed expression regardless

of how many times this is done. Call-by-need requires that variable lookups are shared, and

therefore, the CPS’ed expression must be replaced after its first call. In Okasaki’s presentation, this

is accomplished by adding mutable references to the target language of CPS and presenting the

following transformation (newk and derefk are CPS variants of creating a new mutable cell and

accessing that cell):

KNJ𝑐K = _𝑘. 𝑘 𝑐

KLJ𝑥K = 𝑥

KLJ_𝑥. 𝑀K = _𝑘. 𝑘 (_𝑥 .KLJ𝑀K)
KLJ𝑀 𝑁 K = _𝑘.KLJ𝑀K (_𝑚. newk (_𝑙 . 𝑙 := (_𝑘 ′.KLJ𝑁 K (_𝑛. 𝑙 := (_𝑘 ′′. 𝑘 ′′ 𝑛);𝑘 ′ 𝑛));

𝑚 (_𝑘 ′. derefk 𝑙 (_𝑘 ′′. 𝑘 ′′ 𝑘 ′)) 𝑘))

All the changes from call-by-name are found in the application case. Therein, the continuation

handed to the translation of the function first allocates a mutable cell for the argument. That

mutable cell is assigned to hold a CPS’ed version of the function argument that will update itself

upon access.

Unfortunately, the inclusion of memory side-effects in code makes the target of call-by-need

CPS harder to reason about. This begs the question of what is gained by such a translation since

lazy compilers make use of 𝛽 for optimization already; though they may lose sharing. Okasaki’s

study does provide evidence that once a call-by-need language is compiled down to a language

that makes explicit control flow, it will require mutable references.

The CPS transformations above make inlining with 𝛽-reduction a valid optimization trans-

formation at the expense of mangling the input program entirely. Flannagan et al. [34] propose
administrative normal-form achieving the goal of CPS, inlining, but with a much lighter touch.

That is, it does not completely mangle our program making everything a tail call; in fact, its output

30 Zachary J. Sullivan

language is quite legible:

𝑀, 𝑁 ∈ Expression ::= 𝑉 | let 𝑥 = 𝑉 in𝑀 | let 𝑥 = 𝑉 𝑊 in𝑀 | 𝑉 𝑊

A special quality of A-normal form is that it explicitly differentiates tail calls 𝑉 𝑊 from those that

need to return to a binding let 𝑥 = 𝑉 𝑊 in𝑀 .

ANF is not strictly better than a CPS language. Kennedy [41] points out that, although 𝛽-reduction

is valid in the ANF language, reductions in the language are not closed. Therefore, a compiler

making use of an ANF intermediate language would require a renormalization pass after every

optimization transformation. He suggests a refinement of CPS as the intermediate language based

on a graph. More recently, CPS-like intermediate languages, based on the sequent calculus, have

even found their way into lazy compilers because of their ability to represent join points [30, 52];

in contrast with CPS however, these languages have been shown to help optimize the use of data

types.

6.2 A Unified Compiler Pipeline
Upon introducing his language call-by-push-value, Levy [48] notes the amount of duplicated work

that programming language researchers engaged in for the purpose of working with either strict

or non-strict languages. Theorems must be proved for one strategy and then the other. Completely

separate compilers were constructed for each. Plotkin’s work [69] shows that CPS could remedy

this work duplication since one target language can be transformed to run on the other. Indeed,

part of the motivation for call-by-need CPS from Okasaki et al. [60] was to make use of the CPS

compiler backends already implemented. Herein, I examine two more approaches to removing this

problem by compiling to another intermediate language: thunking and call-by-push-value.

6.2.1 Thunking. As seen in the big-step environment semantics, Krivine and STG machines, non-

strict language runtimes require the creation of thunk closures. The thunking transformation

[35, 60] embeds a non-strict language in a call-by-value one, by adding the construction of thunk

closures as a language feature of the target. The thunking transformation is then specified as

follows:

TJ𝑥K = force 𝑥
TJ_𝑥 .𝑀K = _𝑥 . TJ𝑀K
TJ𝑀 𝑁 K = TJ𝑀K (delay TJ𝑁 K)

Since both call-by-name and call-by-need must create these thunk structures for arguments only,

this one transformation can be used for both source languages.

Figure 6 presents the target language for thunking and along with rules for many of the types

of the semantics seen heretofore. The target language is simply Λ-terms extended with delay

and force expressions. In the syntax, I also specify evaluation contexts for specifying a structural

operational semantics. The first semantics given is a reduction rule stating that a delayed expression

is eliminated when it interacts with a force expression. In the operational semantics, such a state

is arrived at by evaluating the right-hand-side of a force expression until the reduction rule fires.

The second semantics given is a non-memoizing environment semantics, which is the semantics

that must be used for a call-by-name thunking transformation. Therein, closures are constructed

for delay expressions since they may contain free variables. The final semantics is a memoizing

environment semantics for a call-by-need target language. It will store delay expressions in the

heap and pass around their pointers as values.

The gap between the source and target languages appears large because their is a change in

evaluation strategy. However, examining the environment semantics shows that all that has changed

is that the encoding of thunk closures, which was done in the source’s semantics implicitly, is now

Deriving Practical Implementations of First-Class Functions 31

Syntax
𝑀, 𝑁, 𝐿 ∈ Expression ::= 𝑥 | _𝑥 .𝑀 | 𝑀 𝑁 | delay𝑀 | force𝑀

𝐸 ∈ Eval. Ctx . ::= □ | 𝐸 𝑁 | (_𝑥. 𝑀) 𝐸 | force 𝐸
Non-Memoizing Reduction

force (delay𝑀) −→ 𝑀

Non-Memoizing Environment Semantics

⟨Σ ∥ delay𝑀⟩ ⇓V (Σ, delay𝑀)
⟨Σ ∥ 𝑀⟩ ⇓V (Σ′, delay 𝑁) ⟨Σ′ ∥ 𝑁 ⟩ ⇓V 𝑉

⟨Σ ∥ force𝑀⟩ ⇓V 𝑉

Memoizing Environment Semantics
alloc(Φ, (Σ, delay𝑀)) = (Φ′, 𝑙)
⟨Φ ∥ Σ ∥ delay𝑀⟩ ⇓V! (Φ′, 𝑙)

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V! (Φ′, 𝑙) Φ′(𝑙) = (Σ′, 𝑁) ⟨Φ′ ∥ Σ′ ∥ 𝑁 ⟩ ⇓V! (Φ′′,𝑉) update(Φ′′, 𝑙,𝑉) = Φ′′′

⟨Φ ∥ Σ ∥ force𝑀⟩ ⇓V! (Φ′′′,𝑉)

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓V! (Φ′, 𝑙) Φ′(𝑙) = 𝑉
⟨Φ ∥ Σ ∥ force𝑀⟩ ⇓V! (Φ′,𝑉)

Fig. 6. Thunk semantics

marked by delay and force expressions in the target. Additionally, the call-by-name 𝛽-reduction of

the source is in some sense preserved in the target language with only call-by-value 𝛽-reduction.

This is because delay 𝑀 is a value in the reduction theory and the translation TJ−K guarantees
that the right-hand-side of every application is a thunk.

6.2.2 Call-by-Push-Value. Another approach to unifying the evaluation strategy schism is to use

Levy’s call-by-push-value [48] which aims to subsume call-by-value and call-by-name instead

of converting one into the other. The language combines the best of both worlds (in regards to

evaluation strategy) for a compiler intermediate language because it has always applicable 𝛽 and

[-laws for optimization. His work is greatly influenced by Moggi’s computational _-calculus [57]

and therefore resembles monadic programs in Haskell today. Though such a language is not used

as an intermediate form for today’s languages, a closely related language with similar benefit, the

mixed-strategy sequent calculus [30, 52], is used into today’s GHC.

The language, seen in Figure 7, is built from two distinct syntactic categories: values and com-

putations. The former contains variables, suspended computations which Levy calls thunks, and

constants. The latter is anything that can be evaluated including let-expressions, function appli-

cations, and thunk forcing. There are two kinds of let-expressions: those that give a name to a

value, written let 𝑥 = 𝑉 in𝑀 , and those that are a monadic binding operation which sequence

two computations and are written 𝑀 to 𝑥 in 𝑁 . The semantics presented in the figure are the

big-step presented by Levy [48]. They bear resemblance to both call-by-name and call-by-value.

For instance, function application evaluates the left-hand-side and then enters the function body

while substituting the formal parameter. This is similar to the call-by-name application rule except

that the argument of the function is already restricted to be a value. That restriction is similar to

the call-by-value application rule.

Call-by-push-value subsumes call-by-name and -value but requires a transformation from our

respective source language. PNJ−K is a transformation from Λ into the set of computations from

32 Zachary J. Sullivan

Syntax
𝑉 ,𝑊 ∈ Value ::= 𝑥 | thunk𝑀 | 𝑐
𝑀, 𝑁 ∈ Computation ::= return 𝑉 | _𝑥 .𝑀 | 𝑀 𝑉 | force 𝑉

| let 𝑥 = 𝑉 in𝑀
| 𝑀 to 𝑥 in 𝑁

𝑇 ∈ Terminal Comp. ::= return 𝑉 | _𝑥 .𝑀
Big-step Semantics

return 𝑉 ⇓ return 𝑉 _𝑥.𝑀 ⇓ _𝑥 .𝑀

𝑀 ⇓ _𝑥 . 𝑁 𝑁 [𝑉 /𝑥] ⇓ 𝑇
𝑀 𝑉 ⇓ 𝑇

𝑉 = thunk𝑀 𝑀 ⇓ 𝑇
force 𝑉 ⇓ 𝑇

𝑀 [𝑉 /𝑥] ⇓ 𝑇
let 𝑥 = 𝑉 in𝑀 ⇓ 𝑇

𝑀 ⇓ return 𝑉 𝑁 [𝑉 /𝑥] ⇓ 𝑇
𝑀 to 𝑥 in 𝑁 ⇓ 𝑇

Fig. 7. Call-by-push-value

CBPV:

PNJ𝑥K = force 𝑥
PNJ𝑐K = return 𝑐

PNJ_𝑥. 𝑀K = _𝑥. PNJ𝑀K
PNJ𝑀 𝑁 K = PNJ𝑀K (thunk PNJ𝑁 K)

There are striking similarities with the thunking transformation from before. That is, the variable

case forces a thunk and the right-hand-side of application is wrapped in a delay (called thunk in

CBPV). The constant case is different, however, because the transformation must be a computation.

Therefore, the case is the computation which returns a constant.

For call-by-value, the transformation needs to evaluate its argument before calling the function.

Thus, the application case uses the monadic let-expression to force the left- then right-hand-side of

an application:

PVJ𝑥K = return 𝑥
PVJ𝑐K = return 𝑐

PVJ_𝑥. 𝑀K = return (thunk (_𝑥 . PVJ𝑀K))
PVJ𝑀 𝑁 K = PVJ𝑀K to 𝑥 in PVJ𝑁 K to 𝑦 in (force 𝑥) 𝑦

The function case appears a bit odd as well. Why is it wrapped in a thunked return statement while

the call-by-name transformation simply returned a function? Indeed, this has to do with preserving

the semantics of call-by-value in the presence of effects like printing output. In call-by-value, the

argument needs to be evaluated before entering the function; therefore, if the argument prints 1

then the program should print 1. However, in the call-by-value structural operational semantics the

left-hand-side of the application is performed before the right-hand-side. So if the left-hand-side

printed 2 before returning a function, then that effect should be registered before the effects of

evaluating the right-hand-side. The strange function and application cases in this call-by-value to

call-by-push-value transformation is to get this behavior correct.

Of course, no one actually implements call-by-name languages in practice so a sharing version

of the language is necessary. Fortunately, McDermott and Mycroft extend call-by-push-value to

consider call-by-need evaluation [53].

Deriving Practical Implementations of First-Class Functions 33

6.3 Closure-Conversion
Of the intermediate language seen so far, one focused on enabling more optimizations for the

intermediate language and the others focused on avoiding duplication of work from different

evaluation strategies. Now, I will focus on a transformation that is necessary if our compiler

uses C or LLVM IR as its backend: closure-conversion. Since those target languages do not have

closure constructing higher-order functions, this transformation converts those kinds of functions

in the Λ source language into global C-like functions that know nothing of closures. Since this

transformation essentially eliminates the notion of higher-order function, it is usually performed at

the end of the compilation pipeline. Such a transformation was first seen in Steele’s Rabbit compiler

for Scheme [78] and later SML New Jersey [9]. It did not make it into the lazy language compiler

GHC until they stopped using the G-machine which manipulated graphs [66].

The transformation accomplishes its goal by generating code for constructing closures of an

environment and a code pointer for functions. Whereas the big-step environment semantics and

abstract machines seen earlier require that the semantics or runtime take on the responsibility of

constructing and unpacking closures, in a closure-converted program the construction of closures

is embedded in the syntax of the program thereby requiring a simpler runtime system. In fact,

function applications in a closure-converted programs can be implemented as simple jumps with

an argument on the stack.

To get an intuition for the transformation, consider as an example, the following program:

let 𝑥 = (let 𝑦 = 1 + 2 in _𝑧.𝑦 + 𝑧) in
𝑥 3 + 𝑥 4

which is closure-converted into the target language as:

let 𝑥 = (let 𝑦 = 1 + 2 in ((𝑦), _((𝑦), 𝑧). 𝑦 + 𝑧)) in
(𝜋1 𝑥) (𝜋0 𝑥, 3) + (𝜋1 𝑥) (𝜋0 𝑥, 4)

First, let me point out, this is a call-by-value closure-conversion similar to that found in Minamide

et al. [54]. The _-expression from the source program has been replaced by a pair containing a

tuple of free variables—in this case, only 𝑦—and a function which knows the structure of that

tuple. The function, like the super-combinators shown earlier, is a scope-independent function.

The transformation itself is defined recursively:

CCJ𝑥K = 𝑥

CCJ𝑐K = 𝑐

CCJ_𝑥. 𝑀K = ((𝑦0, . . . , 𝑦𝑛), _𝑧. case 𝑧 of ((𝑦0, . . . , 𝑦𝑛), 𝑥) → CCJ𝑀K)
where 𝑦0, . . . , 𝑦𝑛 = FV(_𝑥 .𝑀)

CCJ𝑀 𝑁 K = case CCJ𝑀K of (𝑦, 𝑧) → 𝑧 (𝑦,CCJ𝑁 K)

The translation is more verbose than the example above which takes let-expressions and projections

𝜋𝑥 as syntactic sugar.

Closure-conversion’s target language and semantics are presented in Figure 8. As the translation

implied, the target language is simply the Λ-terms extended with products; though, in a typed

program existential types are required to preserve types when closure-converting. For the semantics

of the target language, I use a big-step environment semantics because it reveals that closures are not

constructed by the runtime system. Whereas the big-step environment semantics for call-by-value

given in Section 3 would construct closures for functions and unpack them in applications, the

target language of closure-conversion already considers functions to be results and simply enters

the body of the function with the formal parameter in applications, which is like C function calls.

34 Zachary J. Sullivan

Syntax

𝑀, 𝑁, 𝐿 ∈ Expression ::= 𝑥 | _𝑥. 𝑀 | 𝑀 𝑁

| (𝑀0, . . . , 𝑀𝑛) | case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁

Big-step Semantics
Σ(𝑥) = 𝑉
⟨Σ ∥ 𝑥⟩ ⇓ 𝑉 ⟨Σ ∥ _𝑥 .𝑀⟩ ⇓ _𝑥 .𝑀

⟨Σ ∥ 𝑀⟩ ⇓ _𝑥. 𝐿 ⟨Σ ∥ 𝑁 ⟩ ⇓𝑊 ⟨𝑥 ↦→𝑊 ∥ 𝐿⟩ ⇓ 𝑉
⟨Σ ∥ 𝑀 𝑁 ⟩ ⇓ 𝑉

⟨Σ ∥ 𝑀0⟩ ⇓ 𝑉0 . . .

⟨Σ ∥ (𝑀0, . . .)⟩ ⇓ (𝑉0, . . .)
⟨Σ ∥ 𝑀⟩ ⇓ (𝑊0, . . .) ⟨Σ, 𝑥0 ↦→𝑊0, . . . ∥ 𝑁 ⟩ ⇓ 𝑉

⟨Σ ∥ case𝑀 of (𝑥0, . . . , 𝑥𝑛) → 𝑁 ⟩ ⇓ 𝑉

Fig. 8. Strict target language for closure-conversion

Since our closure-converted program can be run correctly in this closure-free/closure-ignorant

runtime, the goal of embedding closures in the syntax is achieved.

6.3.1 Closure Representation. As closure-conversion is a well studied and popular implementation

technique, there exists a lot of work on how to optimize the closures created [10, 54, 76, 78]. These

optimizations manipulate the structure of the closure and what is to be included therein. For

instance, in the translation above the free variables of a function are captured in data structure

which is a simple array of values. This means that the code for constructing a closure runs in a

time proportional to the number of free variables in its body and looking up a variable in this data

structure in constant time. Instead, a more complicated environment representations can be created

by linked lists of closures providing more efficient construction of closures [76, 77]. Therein, the

construction of the closure is much less since it has a link to the previous environments closure

and it only needs to add the newly introduced free variables. There is a trade off, however, because

now looking up a variable stored in the closure’s environment is slower since it involves traversing

a linked list.

6.3.2 Non-strict Closure-Conversions by Thunking. Non-strict closure-conversions [79] are made

more complicated because unevaluated expressions are considered values in these languages, i.e.
thunk closures. As result of maintaining the environment for these expressions, there are many

more closures for both the source and target languages for non-strict evaluation when compared

to a strict one. In fact, the new thunk closures are different in many ways to those required by the

strict transformation.

Looking at non-strict closure-conversion, consider again the program:

let 𝑥 = (let 𝑦 = 1 + 2 in _𝑧.𝑦 + 𝑧) in
𝑥 3 + 𝑥 4

This is closure-converted in a non-strict manner into the following program (I avoid the necessary

closure-conversion for 𝑥 , 3, and 4 for clarity):

let 𝑥 = let 𝑦 = ((), _() . 1 + 2) in
((𝑦), _((𝑦), 𝑧). (𝜋1 𝑦) (𝜋0 𝑦) + 𝑧)

in (𝜋1 𝑥) (𝜋0 𝑥, 3) + (𝜋1 𝑥) (𝜋0 𝑥, 4)
In addition to the closures constructed for functions like in call-by-value closure-conversion, a

thunk closure is also necessary for let-bound expressions and function arguments. A less obvious

part of this transformation is that the target language is strict! If the let-expression and the pair

((𝑦), _((𝑦), 𝑧). (𝜋1 𝑦) (𝜋0 𝑦) + 𝑧) were not evaluated strictly, then the runtime system would have

Deriving Practical Implementations of First-Class Functions 35

no idea what the variable 𝑦 is. To understand why, consider the big-step environment evaluation

rule for a non-strict pair:

⟨Σ ∥ (𝑀0, . . . , 𝑀𝑛)⟩ ⇓N (Σ, (𝑀0, . . . , 𝑀𝑛))

Since non-strict data are not evaluated until forced by their context (like functions which are

also codata), a closure is needed to provide the correct environment later. This is why the target

language for closure conversion is forced to used strict functions and data instead of their non-strict

counterparts; that is, strict data will lookup the values of the free variables in the generated closure

structure. Additionally, it follows that since there is nothing in the non-strict target language other

than strict functions and products, it is a strict language. The semantics still preserves the non-strict

evaluation of the source language because the expressions, like 1 + 2 in the example, are hidden

behind _-expressions and will not be evaluated until applied to their environment.

Having a strict target language complicates memoizing non-strict closure-conversion. In the

example above, the second access to the variable 𝑦 would have to recompute 2 + 1 since there is no

mechanism to share this computation. In order to share, the thunk bound to 𝑦 must be replaced, or

mutated, after its first evaluation. Obviously, this can be accomplished by adding mutable heap

objects wherein 𝑦 would not be a reference to a thunk in the environment rather a heap cell which

initially contains a thunk. With this in mind, the handling of the thunk 𝑦 in the example above

would be transformed for lazy closure-conversion as the following:

let 𝑥 = let 𝑦 = new (inr ((), _(). 1 + 2)) in

((𝑦), _((𝑦), 𝑧). (case !𝑦 of

inl 𝑣 → 𝑣

inr (𝑒, 𝑓) → let 𝑦 ′ = 𝑓 𝑒 in 𝑦 := inl 𝑦 ′;𝑦 ′) + 𝑧)
in (𝜋1 𝑥) (𝜋0 𝑥, 3) + (𝜋1 𝑥) (𝜋0 𝑥, 4)

At the definition site, 𝑦 is allocated as a tagged thunk on the heap; that is, inr tags the thunk as

unevaluated. At the call site, the value of the heap cell is accessed; if it contains a value (inl 𝑣), then
the value is returned; otherwise, it is a thunk (inr (𝑒, 𝑓)) which is then evaluated, the heap cell

is updated with the resulting value, and then that value is returned. Function closures receive no

different treatment than they did in call-by-name or call-by-value. This is because no sharing can

occur for functions because they depend on their argument which may be different for each call.

Using the thunking transformation I presented in Section 6.2, closure-conversion from all three

source evaluation strategies can be defined in terms of only the call-by-value closure extended with

conversions for delay and force expressions:

CCV = CC

CCN = CCT ◦ T
CCL = CCTmemo ◦ T

These extended translations are given in Figure 9. Performing a non-strict closure-conversion

through thunking differs from the non-strict conversions originally given by Sullivan et al. [79], but
appears as a synthesis of Hatcliff and Danvy’s work which showed that call-by-name CPS can be

decomposed into thunking then call-by value CPS [35] and Okasaki et al. ’s work on call-by-need

CPS [60] with the goal of closure-conversion.

7 REASONING ABOUT IMPLEMENTATIONS
Thus far, I have focused on the mechanisms for evaluation of _-calculus programs and how they

change given a different evaluation strategy. Do these different semantics respect that of the

36 Zachary J. Sullivan

Non-memoizing

CCTJdelay𝑀K = ((𝑦0, . . . , 𝑦𝑛), _(𝑦0, . . . , 𝑦𝑛).CCTJ𝑀K)
where 𝑦0, . . . , 𝑦𝑛 = FV(𝑀)

CCTJforce𝑀K = case CCTJ𝑀K of (𝑒, 𝑓) → 𝑓 𝑒

Memoizing

CCTmemoJdelay𝑀K = new (inr ((𝑦0, . . . , 𝑦𝑛), _(𝑦0, . . . , 𝑦𝑛).CCTmemoJ𝑀K))
where 𝑦0, . . . , 𝑦𝑛 = FV(𝑀)

CCTmemoJforce𝑀K = let 𝑙 = CCTmemoJ𝑀K in
case !𝑙 of
inl 𝑣 → 𝑣

inr (𝑒, 𝑓) → let 𝑣 = (𝑓 𝑒) in (𝑙 := inl 𝑣 ; 𝑣)

Fig. 9. Thunked closure-conversion

original calculus? Especially with machines like SECD wherein evaluation requires manipulation

of a machine state with multiple stacks, it is not obvious that they will evaluate a program to the

same result. Closure-conversion is another non-obvious case of correctness since a function is

transformed into a data structure that is later manipulated by more generated code. In this section,

I show some of the properties of these implementation techniques. I focus on abstract machines

and compilation with program transformations because these are the approaches found in today’s

language implementations. I answer the following: how abstract machines reflect the semantics of

the source language; how a static semantics of the sub-terms of programs, i.e. typing, is preserved
by program transformations; and, how a stronger technique known as logical relations is used to

prove various properties relating to the semantics of the source language.

Interestingly, incorporating call-by-need is not as straight forward as other strategies; therefore,

I discuss separately how these techniques must have extra reasoning for heaps. That is not to say

that correctness of call-by-need implementations do not exist [4–6, 67, 75]. Indeed, their reasoning

covers all of the evaluation strategies without call-by-need languages without trouble. Piróg et al.
is a special case because they consider the full STG machine. Extending this work further is the

work of Encina et al. [24–26]. Whereas, the previous approaches defined their abstract machine

over the source syntax, they give some form of translation of the source language to a machine.

Though I will not explore them here, two other well used approaches to reasoning about imple-

mentation are denotational methods and bisimulation. Denotational methods rely on the mathe-

matical models of the _-calculus proposed by Scott [74]. Therein, Λ-terms are mapped to complete

partial orders. Proving a transformation, e.g. closure-conversion, correct requires, first, denota-
tion for both the source and target languages, then it must be shown that before and after the

transformation the denotation is the same. Launchbury often proves correctness of call-by-need

transformations by showing how image of a transformation is related to the denotational semantics

of the language [44, 65]. Bisimulation based approaches are another case of reasoning that I omit

here [2, 39, 46, 47]. These methods describe the observable behavior of programs and correctness is

defined as having no observable difference.

7.1 Machine Reflection
One way to show some correctness, which I refer to as machine reflection, is demonstrated by Leroy

in his technical report for the ZAM [45]. Therein, he shows that every transition of an abstract

machine corresponds to an equality derivable from an equational theory. He shows that this is

Deriving Practical Implementations of First-Class Functions 37

the case for the Krivine machine and the calculus of explicit substitutions. A similar approach to

correctness is given by Krivine himself [42] and Sestoft [75].

For example, to show that the Krivine machine in Figure 3 is correct, I must provide a translation

from a machine state back into a term from the calculus, i.e. the source language. This is the

reflection. Intuitively, the environment Σ is a substitution applied to the term𝑀 and the call stack

𝐾 are an ordered set of expressions to which𝑀 is applied. Thus, the translation of a machine state

is the following (I assume𝑀 is a De Bruijn expression):

J⟨Σ ∥ 𝑀 ∥ (Σ0, 𝑁0) · · · (Σ𝑛, 𝑁𝑛) · Y⟩K = 𝑀{JΣK} 𝑁0{JΣ0K} · · ·𝑁𝑛{JΣ𝑛K}

Translating an environment into a substitution is not all that different from a call stack since it is

also a sequence of closures:

J(Σ0, 𝑁0), . . . , (Σ𝑛, 𝑁𝑛)K = 𝑁0{JΣ0K} · · ·𝑁𝑛{JΣ𝑛K} · id

The theorem makes use of the an equational theory denoted by 𝛽𝜎 ⊢ 𝑀 = 𝑀 ′
. This is just an

equality derived from the reduction theory (recall that De Bruijn has a 𝛽 rule and a set of 𝜎 rules)

with the inclusion of a symmetry rule:𝑀 −→ 𝑀 ′ =⇒ 𝑀 = 𝑀 ′
and𝑀 = 𝑀 ′ =⇒ 𝑀 ′ = 𝑀 .

Theorem 7.1 (Machine Reflection). If ⟨Σ ∥ 𝑀 ∥ 𝐾⟩ ↦−→ ⟨Σ′ ∥ 𝑀 ′ ∥ 𝐾 ′⟩, then 𝛽𝜎 ⊢ J⟨Σ ∥ 𝑀 ∥
𝐾⟩K = J⟨Σ′ ∥ 𝑀 ′ ∥ 𝐾 ′⟩K.

For the proof, there are only 3 cases to consider: one for each transition of the Krivine machine.

In addition to the call-by-name Krivine, Leroy also provides a Krivine machine that evaluates

call-by-value from right-to-left like the SECD machine. That machine also reflects the source

semantics with a similar argument.

7.2 Type Preservation
Another property that can be proved about our semantics and transformations is that of type

preservation. Before I can describe the assurances that this gives us of correctness, I must describe

what types are. Types, which I have avoided discussing thus far, are static properties of Λ-terms

closely connected to logic that govern how various syntax can be used. For instance, a _-expression

behaves like a function type which consumes an argument type and uses the argument to produce

an output type. In natural deduction, this corresponds to an implication connective 𝐴 ⊃ 𝐵 which

states that 𝐵 can be proved given a proof of 𝐴. Herein, I make use of the simply typed _-calculus

which only contains simple function types and integers:

𝜏, 𝜌 ∈ Type ::= int | 𝜏 → 𝜌

Λ-terms are described as well-typed if a typing derivation can be constructed from their syntax

using the following rules (where Γ is a mapping from variables to types):

𝑥 :𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏 Γ ⊢ 𝑐 : int

Γ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜌

Γ ⊢ _𝑥 .𝑀 : 𝜏 → 𝜌

Γ ⊢ 𝑀 : 𝜏 → 𝜌 Γ ⊢ 𝑁 : 𝜌

Γ ⊢ 𝑀 𝑁 : 𝜌

Now, type preservation arguments say that the type of a Λ-term is identical before and after a

transformation, be it a computation or compilation step. This is a desirable property to have. For

instance, in the expression𝑀+5,𝑀 is expected to behave like an integer. If𝑀 steps to some𝑀 ′
, then

our program ought to be able to treat that as an integer as well. For compilation, type preservation

is an important property because the types encode how a term is expected to behave in the target

language. Additionally, types can even be used to speed up runtime operations. Morrisett et al. [58]
show that an SML/NJ style compiler can preserve types all the way from its intermediate language,

System F, to an assembly language with types. Finally, there are a number of properties, like strong

38 Zachary J. Sullivan

normalization, that can be proved given a well-typed program; and therefore, a transformation

preserving types may also preserve these properties.

As an important case study, consider the type preservation of closure-conversion. Recall that the

transformation converts a source _-expression into a pair of a code pointer and an environment.

Firstly, that means that showing that types are preserved requires a translation of types in addition

to the translation of terms; this is because a function type will become some data type. For example,

_𝑥. 𝑥 +𝑦 : int → int may become a program (𝑦, _(𝑦, 𝑥). 𝑥 +𝑦) : int × (int × int → int) where
pairs have the following typing rules:

Γ ⊢ 𝑀0 : 𝜏0 . . .

Γ ⊢ (𝑀0, . . .) : 𝜏0 × · · ·
Γ ⊢ 𝑀 : (𝜌0, . . .) Γ, 𝑥 :𝜌0, · · · ⊢ 𝑁 : 𝜏

Γ ⊢ case𝑀 of (𝑥0, . . .) → 𝑁 : 𝜏

However, this naïve approach does not work for type preservation! Two functions with the same

type but different free variables will not have the same type after the transformation, e.g. _𝑥 .𝑦
and _𝑥 . 𝑥 . Minamide et al. [54] remedy this problem by extending the type system of the target

language with existential types. Therein, the type of the free variables are hidden as existential; the

examples from before will have the type ∃𝑋 .𝑋 × (𝑋 × int → int). The typing rules for existential
types are the following:

Γ ⊢ 𝑀 : 𝜏 [𝜌/𝑋]
Γ ⊢ pack𝑀 : ∃𝑋 . 𝜏

Γ ⊢ 𝑀 : ∃𝑋 . 𝜌 Γ, 𝑋, 𝑥 :𝜌 ⊢ 𝑁 : 𝜏

Γ ⊢ unpack𝑀 as 𝑥 in 𝑁 : 𝜏

In regards to the operational semantics, pack-expressions behave like any call-by-value data type

(e.g. pairs) and unpack-expressions behave like case-expressions evaluating their argument𝑀 and

binding it in the body 𝑁 .

To make use of the existential type solution, I must augment the transformation given earlier so

that pack-expressions and unpack-expressions are inserted at the correct location; that is, in the

function case and application case, respectively.

CCJ_𝑥. 𝑀K = pack ((𝑦0, . . . , 𝑦𝑛), _𝑧. case 𝑧 of ((𝑦0, . . . , 𝑦𝑛), 𝑥) → CCJ𝑀K)
where 𝑦0, . . . , 𝑦𝑛 = FV(_𝑥 .𝑀)

CCJ𝑀 𝑁 K = unpack CCJ𝑀K as 𝑥 in
case 𝑥 of (𝑦, 𝑧) → 𝑧 (𝑦,CCJ𝑁 K)

And types are translated from source to target as the following:

CCJ𝜏 → 𝜌K = ∃𝑋 .𝑋 × (𝑋 × CCJ𝜏K → CCJ𝜌K)
CCJintK = int

The type preservation theorem contains extra translations for all of the variables in the type

environment Γ. It can be proved by a simple induction on the source environment.

Theorem 7.2 (Type Preservation of Call-by-Value Closure-conversion). If 𝑥0:𝜏0, . . . , 𝑥𝑛 :𝜏𝑛 ⊢
𝑀 : 𝜏 , then 𝑥0:CCJ𝜏0K, . . . , 𝑥𝑛 :CCJ𝜏𝑛K ⊢ CCJ𝑀K : CCJ𝜏K.

Of course, the above method only applied to call-by-value closure-conversion. In both call-by-

name and call-by-need closure-conversion (or their thunked version), values are thunk closures

not normal forms. Therefore, a new type transformation must be given for each. Even before that,

abstract thunking itself must be shown to be type preserving. A type translation for thunking is

interesting in that there is only a transformation of environment values. First, there are new typing

rules for the target language of thunking:

Γ ⊢ 𝑀 : 𝜏

Γ ⊢ delay𝑀 : thunk 𝜏
Γ ⊢ 𝑀 : thunk 𝜏
Γ ⊢ force𝑀 : 𝜏

Deriving Practical Implementations of First-Class Functions 39

The type preservation theorem for thunking only states that the environment is filled with thunked

computations instead of their normal forms.

Theorem 7.3 (Type Preservation of Thunking). If 𝑥0:𝜏0, . . . , 𝑥𝑛 :𝜏𝑛 ⊢ 𝑀 : 𝜏 , then it follows that
𝑥0:thunk 𝜏0, . . . , 𝑥𝑛 :thunk 𝜏𝑛 ⊢ TJ𝑀K : 𝜏 .

Thunked closure-conversion then requires a new transformation on the new thunk types wherein
they become existential packages of closed functions from their environment to the normal form

transformation.

CCTJthunk 𝜏K = ∃𝑋 .𝑋 × (𝑋 → CCTJ𝜏K)

Of course, the transformation of terms must also be adjusted to insert and remove packing. As with

the transformation itself, Sullivan et al. [79] presents this transformation in a single step.

CCTJdelay𝑀K = pack ((𝑦0, . . . , 𝑦𝑛), _(𝑦0, . . . , 𝑦𝑛).CCTJ𝑀K)
where 𝑦0, . . . , 𝑦𝑛 = FV(𝑀)

CCTJforce𝑀K = unpack CCTJ𝑀K as 𝑥 in case 𝑥 of (𝑒, 𝑓) → 𝑓 𝑒

For the memoized closure-conversion used in implementing memoization, the transformation

is different still. Firstly, I must extend the typing rules even further to include type preserving

mutable references:

Γ ⊢ 𝑀 : 𝜏

Γ ⊢ new𝑀 : ref 𝜏
Γ ⊢ 𝑀 : ref 𝜏
Γ ⊢ !𝑀 : 𝜏

Γ ⊢ 𝑀 : ref 𝜏 Γ ⊢ 𝑀 : 𝜏

Γ ⊢ 𝑀 := 𝑁 : 1

and the standard sum types:

Γ ⊢ 𝑀 : 𝜏

Γ ⊢ inl𝑀 : 𝜏 + 𝜌
Γ ⊢ 𝑀 : 𝜌

Γ ⊢ inr𝑀 : 𝜏 + 𝜌
Γ ⊢ 𝐿 : 𝜌0 + 𝜌1 Γ, 𝑥 :𝜌0 ⊢ 𝑀 : 𝜏 Γ, 𝑦:𝜌1 ⊢ 𝑁 : 𝜏

Γ ⊢ case 𝐿 of {inl 𝑥 → 𝑀 ; inr 𝑦 → 𝑁 } : 𝜏

The type translation turns a thunk type into a reference to either a normal form type or an existential

package to compute a normal form type:

CCTmemoJthunk 𝜏K = ref (CCTmemoJ𝜏K + ∃𝑋 .𝑋 × (𝑋 → CCTmemoJ𝜏K))

And finally, packing and unpacking have to be inserted into the term translation at the correct

place:

CCTmemoJdelay𝑀K = new (inr (pack ((𝑦0, . . . , 𝑦𝑛), _(𝑦0, . . . , 𝑦𝑛).CCTmemoJ𝑀K)))
where 𝑦0, . . . , 𝑦𝑛 = FV(𝑀)

CCTmemoJforce𝑀K = let 𝑙 = CCTmemoJ𝑀K in
case !𝑙 of
inl 𝑣 → 𝑣

inr 𝑥 → unpack 𝑥 as (𝑒, 𝑓) in let 𝑣 = (𝑓 𝑒) in (𝑙 := inl 𝑣 ; 𝑣)

The theorem for type preservation of thunked closure-conversion can be stated the same for both

memoizing and non-memoizing implementations. The proof follows by induction on the typing

derivation.

Theorem 7.4 (Type Preservation of Thunked Closure-conversion). If 𝑥0:𝜏0, . . . , 𝑥𝑛 :𝜏𝑛 ⊢ 𝑀 :

𝜏 , then 𝑥0:CCTmemoJ𝜏0K, . . . , 𝑥𝑛 :CCTmemoJ𝜏𝑛K ⊢ CCTmemoJ𝑀K : CCTmemoJ𝜏K.

40 Zachary J. Sullivan

Call-by-Value Relations

CJ𝜏K = {(𝐶,𝐶 ′) | ∀𝑉 .𝐶 ⇓ 𝑉 =⇒ ∃𝑉 ′.𝐶 ′ ⇓ 𝑉 ′ ∧ (𝑉 ,𝑉 ′) ∈ VJ𝜏K}

VJintK = {(𝑐, 𝑐) | 𝑐 ∈ Z}
VJ𝜏 → 𝜎K = {((Σ,𝑉),𝑉) | ∀(𝑊,𝑊 ′) ∈ VJ𝜏K.

(⟨Σ ∥ 𝑉 𝑊 ⟩, ⟨Y ∥ (𝜋1 𝑉) (𝜋0 𝑉 ,𝑊)⟩) ∈ CJ𝜎K}

EJΓK = {(Σ, Σ′) | ∀𝑥 :𝜏 ∈ Γ. (Σ(𝑥), Σ′(𝑥)) ∈ VJ𝜏K}
Call-by-Name Relations

CJ𝜏K = {(𝐶,𝐶 ′) | ∀𝑅.𝐶 ⇓ 𝑅 =⇒ ∃𝑅′.𝐶 ′ ⇓ 𝑅′ ∧ (𝑅, 𝑅′) ∈ RJ𝜏K}

RJintK = {(𝑐, 𝑐) | 𝑐 ∈ Z}
RJ𝜏 → 𝜎K = {((Σ,𝑉),𝑉 ′) | ∀(𝑊,𝑊 ′) ∈ VJ𝜏K.

(⟨Σ ∥ 𝑉 𝑊 ⟩, ⟨Y ∥ (𝜋1 𝑉 ′) (𝜋0 𝑉 ′,𝑊 ′)⟩) ∈ CJ𝜎K}

VJ𝜏K = {((Σ, 𝑀),𝑉 ′) | (⟨Σ ∥ 𝑀⟩, ⟨Y ∥ (𝜋1 𝑉 ′) (𝜋0 𝑉 ′)⟩) ∈ CJ𝜏K}

CJΓK = {(Σ, Σ′) | ∀𝑥 :𝜏 ∈ Γ. (Σ(𝑥), Σ′(𝑥)) ∈ VJ𝜏K}

Fig. 10. Logical relations for closure-conversion

7.3 Logical Predicates and Relations
Another technique for proving properties of programs is that of logical predicates and relations

known as Tait’s method [80] or logical relations. The method works by first specifying a number

of predicates over Λ-terms indexed by types; if a term is in the predicate, then it will have some

important property. For proving strong normalization [29, 55]), for instance, terms that are in

the predicate are terms with the property that they evaluate to a normal form. These predicates

can be expanded to binary relations to prove contextual equivalence [7, 31, 68] and compilation

correctness [8, 54, 62] wherein the first component of an element of the relation is the source term

and the second is the compiled target term.

I will demonstrate the use of logical relations for proving that closure-conversion preserves the

source semantics. Establishing correctness for this transformation is not straight forward because

a function in the source becomes a pair in the target. (Logical relations are sufficient for such a

proof, but I am unaware of discussion that shows they are necessary.) Because of the difference

in structure, correctness depends on showing that the pair in the target behaves like the function
in the source. In the Minamide et al. [54] of call-by-value closure-conversion correctness, they

specify a type-indexed logical relation for values, terms, and substitutions of the source and target

languages. However, like Sullivan et al. [79], I elect to construct relations between configurations

for the big-step environment semantics since such a relation between source and target better

demonstrates the essence of closure-conversion.

Figure 10 presents a family of logical relations for call-by-name and call-by-value closure-

conversion. Fitting a theme in this document, call-by-name is more complicated than that of

call-by-value since it must consider separately values and the output of computation i.e. results.
The “top level” relation, C, states that a source configuration is related to a target configuration

if the source evaluating to a result implies that the target will evaluate to a related result. A

known limitation of this approach is that diverging source computations are related to any target

Deriving Practical Implementations of First-Class Functions 41

configurations; however, this is not a problem in a simply typed setting where divergence is not

possible. The relationV is different depending on evaluation strategy. For call-by-name, values

are all thunks; and therefore, a source thunk is related to a target thunk unpacking if the two

produce related configurations. On the other hand, the call-by-value value relation must relate

values. A numeric constant is related to a target constant when they are identical and a function

closure is related to a target package if they produce related configurations when applied to related

values. Call-by-name normalized terms are described as results; and thus, the result relation R
captures the same ideas as the call-by-value value relation. Finally, the E relation states that a

source environment is related to a target environment for some type environment Γ when all of

the variables in the type environment have related values. It does not matter that either the source

or target environment can contain extra bindings; the type environment dictates where the two

must agree.

Using these relations, the adequacy theorem states that any typed term will produce related

configurations for closure-conversion. From adequacy, semantic preservation follows. It states that

a program computing an integer computes the same integer after closure-conversion.

Theorem 7.5 (Adeqacy). If Γ ⊢ 𝑀 : 𝜏 and (Σ, Σ′) ∈ EJΓK, then (⟨Σ ∥ 𝑀⟩, ⟨Σ′ ∥ CCJ𝑀K⟩) ∈
CJ𝜏K.

Theorem 7.6 (Semantic Preservation). If Γ ⊢ 𝑀 : int and ⟨Y ∥ 𝑀⟩ ⇓ 𝑛, then ⟨Y ∥ CCJ𝑀K⟩ ⇓ 𝑛.

7.4 Stores and Heaps
The reasoning above was missing call-by-need evaluation. Downen et al. [29] have incorporated
similar reasoning about the call-by-need sequent calculus, but such calculi—as this document has

been exploring—are not well suited for use in practical implementations. Instead, to reason about

call-by-need in practical implementations requires reasoning about stores and heaps as seen in

environment semantics and abstract machines.

Logical relations for reasoning about heaps do exist in call-by-value languages [7, 31, 68]. These

papers discuss contextual equivalence of the strict _-calculus with type preserving mutable ref-

erences; coincidentally, this is the target language for call-by-need closure-conversion. However,

when considering the properties of the heap in the call-by-need source language, this call-by-value

target language, as presented in Ahmed’s dissertation [7], differs in non-trivial ways. First and

foremost, a language with mutable references allows one to create cycles in the heap. For instance,

the following program stores in 𝑟 an expression with a reference to 𝑟 :

let 𝑟 = ref (_𝑥. 𝑥) in
let 𝑓 = _𝑥 . !𝑟 𝑥 in
𝑟 := 𝑓 ; !𝑟 42

Though cycles in the heap are possible in any language with general recursion, this document

studies the simpler simply-typed call-by-need language which cannot create them. The cycles

forced Ahmed to use a powerful technique known as step-indexing to give well-founded logical

predicates for her language. Therein, an index 𝑖 ∈ N is used to guard the lookup depth of the heap.

Her approach is an instance of Kripke-esque or possible worlds logical relations wherein the worlds

are some notion of heap with a step-index; that is, a world𝑊 is element of N × (Location ⇀ Type).
Each relation/predicate is extended with a notion of world. For instance, the following logical

predicate for values used is for type safety in Ahmed [7]:

RJ𝜏 → 𝜎K def

= {(𝑊,Φ, (Σ, _𝑥 . 𝑀)) | ∀𝑉 ∈ VJ𝜏K,𝑊 ′.𝑊 ⊑𝑊 ′ =⇒ ⟨Φ′ ∥ Σ, 𝑥 ↦→ 𝑉 ∥ _𝑥. 𝑀⟩ ∈ CJ𝜎K}

42 Zachary J. Sullivan

A function must now work on any world/heap that is accessible from the current world/heap,

denoted by𝑊 ⊑ 𝑊 ′
. In her definition of accessibility, a future heap must contain values of the

same type as cells of the current heap.

Though this presents a flavor of reasoning about heaps, the call-by-need mutable store is fun-

damentally different from that of a call-by-value language with mutable references. In the latter,

the program itself manages the allocation and mutation of the values in the store, whereas in

call-by-need all updates to the store are governed by the semantics of the language. Miquey and

Herbelin [55] work directly with call-by-need languages, and unlike Downen et al. [29], they do

have a separate heap semantics. They refer to their model as a realizability, but it shares many

aspects with logical relations. Their heap model rests on a single binary relation on heaps which

they call compatibility (this is different from the notion of compatibility in a reduction theory):

Φ ⋄Φ′ def

= ∀𝑥 ∈ (dom(Φ) ∩ dom(Φ′)).Φ(𝑥) = Φ′(𝑥)
This says that two heaps are compatible if they map to the same terms or coterms (their language

is based on the sequent calculus, not the _-calculus) for every single variable that they have in

common. In their proof of strong normalization, they extend their realizers (logical predicates) with

the ability to work with any compatible heap to the one in the realizer. For instance, the realizer

for function “strong” values is the following:

RJ𝜏 → 𝜎K def

= {(Φ, _𝑥 . 𝑀) | ∀𝑉 ∈ VJ𝜏K,Φ′.Φ ⋄Φ′ =⇒ ⟨ΦΦ′, 𝑥 ↦→ 𝑉 ∥ 𝑀⟩ ∈ CJ𝜎K}
There is an issue lurking here, unfortunately, and it is because of the interaction between their

definition of compatibility and the semantics of call-by-need evaluation. Therein evaluation of a

variable will replace its thunk in the heap with value which is not equal! Indeed, the error in this

method’s proof is in the case of updating the heap. Moreover, their notion of heap compatibility is

odd in that it does not satisfy properties that the call-by-value heap models from Ahmed satisfy.

Notably, their notion of heap compatibility is not transitive, which is a property that a heap that

monotonically grows during evaluation should enjoy (even with garbage collection it should be

observably monotonic).

Noting the problems with Miquey and Herbelin’s heap model, Sullivan et al. [79] describe the
properties necessary for a heap model that may allow the closure-conversion relations to extend to

call-by-need evaluation. And like the two previous approaches, their reasoning rests on how to

define a binary relation on heaps. They state a few properties that this relations (⊑) must have.

First, if an element of any of the relations is related with a particular heap, then it must be related

for any future related heaps. Second, future related heaps are still related when combined with

another pair of distinct related heaps. And third, updating any thunk in the heap with the result of

its evaluation will produce a valid future heap. Unfortunately, they are unable to specify such a

relation and conjecture that its existence would allow them to prove adequacy. They state that the

work of Mizuno and Sumii [56] is a promising future direction for searching for such a relation.

Therein, they give a relation between call-by-need heaps and call-by-name heaps that has some of

the necessary properties.

Given such a relation, Sullivan et al. [79] give the logical relations for call-by-need evaluation

seen in Figure 11. Every relation, save that of configurations, is augmented with a set of related

heaps as input; this is because environment depend on heap objects. The configuration relation C
has the added proviso requiring that configurations must work with any future heap. The result

relation, which is indexed by related heaps from the start of the computation that produced them,

states that the heaps within are future heaps of the starting heaps and that the answers are related

given the final heaps. The answer relation A is not all that different from the V relation from

call-by-value: only the function-type case has changed to reflect that all of the call-by-need values

Deriving Practical Implementations of First-Class Functions 43

CJ𝜏K def

= {(⟨Φ𝑠 ∥ Σ𝑠 ∥ 𝑀𝑠⟩, ⟨Φ𝑡 ∥ Σ𝑡 ∥ 𝑀𝑡 ⟩)
| ∀Φ′

𝑠 ,Φ
′
𝑡 , 𝑅𝑠 . (Φ𝑠 ,Φ𝑡) ⊑ (Φ′

𝑠 ,Φ
′
𝑡) ∧ ⟨Φ′

𝑠 ∥ Σ𝑠 ∥ 𝑀𝑠⟩ ⇓ 𝑅𝑠
=⇒ ∃𝑅𝑡 . ⟨Φ′

𝑡 ∥ Σ𝑡 ∥ 𝑀𝑡 ⟩ ⇓ 𝑅𝑡 ∧ (𝑅𝑠 , 𝑅𝑡) ∈ RJ𝜏K(Φ𝑠 ,Φ𝑡)}

RJ𝜏K(Φ𝑠 ,Φ𝑡)
def

= {((Φ′
𝑠 , 𝐴𝑠), (Φ′

𝑡 , 𝐴𝑡)) | (Φ𝑠 ,Φ𝑡) ⊑ (Φ′
𝑠 ,Φ

′
𝑡) ∧ (𝐴𝑠 , 𝐴𝑡) ∈ AJ𝜏K(Φ′

𝑠 ,Φ
′
𝑡)}

AJintK(Φ𝑠 ,Φ𝑡)
def

= {(𝑛, 𝑛) | 𝑛 ∈ Z}

AJ𝜏 → 𝜎K(Φ𝑠 ,Φ𝑡)
def

= {((Σ, _𝑥 . 𝑀), pack (𝑉 ,𝑉 ′))
| ∀(𝑊𝑠 ,𝑊𝑡) ∈ VJ𝜏K(Φ𝑠 ,Φ𝑡).

(⟨Φ𝑠 , 𝑙 ↦→𝑊𝑠 ∥ Σ, 𝑥 ↦→ 𝑙 ∥ 𝑀⟩
, ⟨Φ𝑡 , 𝑙 ↦→𝑊𝑡 ∥ Σ, 𝑥 ↦→ 𝑙 ∥ 𝑉 ′ (𝑉 , 𝑥)⟩) ∈ CJ𝜎K}

VJ𝜏K(Φ𝑠 ,Φ𝑡)
def

= {((Σ, 𝑀), pack (𝑉 ,𝑉 ′)) | (⟨Φ𝑠 ∥ Σ ∥ 𝑀⟩, ⟨Φ𝑡 ∥ Y ∥ 𝑉 𝑉 ′⟩) ∈ CJ𝜏K}
∪
{(𝑉𝑠 ,𝑉𝑡) | ((Φ𝑠 ,𝑉𝑠), (Φ𝑡 ,𝑉𝑡)) ∈ RJ𝜏K(Φ𝑠 ,Φ𝑡)}

EJΓK(Φ𝑠 ,Φ𝑡)
def

= {(Σ𝑠 , Σ𝑡) | ∀𝑥 :𝜏 ∈ Γ. (Φ𝑠 (Σ𝑠 (𝑥)),Φ𝑡 (Σ𝑡 (𝑥))) ∈ VJ𝜏K(Φ𝑠 ,Φ𝑡)}

Fig. 11. Call-by-need closure-conversion logical relations

will be placed in the heap. The value relation V is a union of the value relations for call-by-name

and call-by-value depending on if the value is a thunk closure or a normal form, respectively. Note

that the call-by-need closure-conversion relations given in Sullivan et al. [79] do not include the
memoization in their value relation. As their proof is left as a conjecture, it is unclear whether this

is an issue.

8 DISCUSSION
This document has explored the _-calculus from its roots in Church’s theory to the abstract machines

and compiler transformations used to implement it efficiently. Therein, environments improved

upon substitutions; machines with continuations as state improved upon using evaluation contexts;

and intermediate languages could be used for optimizations and out of necessity. Additionally, I

have explored these semantics with a special eye on the effect that different evaluation strategies

play in implementation. The differences in strategies have resulted in a rift in the literature which

may be filled with the following work in the future.

Deconstructing Lambda-lifting and Closure-conversion. Two transformations presented heretofore,

lambda-lifting (Section 4.2.1) and closure-conversion (Section 6.3), appear to solve the same problem:

remove, in some way, the need to consider free variables created from nested functions. In other

words, they seek to remove lexical scope. Whereas the former prepares code to be run on the

G-machine, the latter compiles a source program into a target language with a more flexible

semantics. The development of the transformations has been mostly independent in the literature

and especially tied to evaluation strategy making it unclear which should be used for a new compiler

today. If I am building a new compiler today, might I use one or the other? Does it matter the evaluation
strategy of my source language? Indeed, I do not need to choose one over the other since the two

44 Zachary J. Sullivan

are composed of the same sub-transformations. Moreover, both work with any of the evaluation

strategies presented in this document.

Lambda-lifting and closure-conversion coincide if we break them into smaller sub-translations:

expansion, lifting, and representation. The expansion sub-transformation is a strategy-dependent

one that expands functions with free variables to functions with no free variables. The target

language is denoted Λcl and it contains only super-combinators, partial application values, and

function applications. The lifting transformation is a strategy-independent transformation that

lifts super-combinators to the top-level of a program. Its target language is a set of named super-

combinators and a “main” expression to evaluate. Finally, representation is a transformation that

represents closed functions as closures. The transformations are composed as the following diagram:

Λ

Λcl

ΛLL ΛCC

Proc

expand

lift represent

represent

lift

The reason a representation transformation for a lambda-lifted language is absent from the literature

is because the languages are interpreted by a graph machine instead of compiled to a language like

C. Unfortunately, it has been the closure-conversion camp that has been interested in correctness,

so lambda-lifters like [36] opt for informal approaches to correctness.

Reasoning about Memoization. The compiler correctness community has done great work proving

properties about their compilers including, most recently, even cost preservation [61]. However,

the style of heap used in these language does not behave like that of call-by-need implementations.

Additionally, even the reasoning found in the call-by-need calculi cannot easily be mapped to that

of lazy language implementation. Therefore, future work is needed for reasoning about lazy heaps

in order to produce a verified compiler for call-by-need. As a corollary, this will also verify the

implementation of memoizing thunks found in call-by-value languages like Ocaml, as demonstrated

in this document with closure-conversion implemented with thunks.

Mixed Strategy Implementation. I have been careful heretofore to discuss call-by-name, then call-

by-value, then call-by-need. Call-by-name is never implemented in practical compilers because of its

work duplication; rather, call-by-need is implemented in its place. Therefore, the literature regarding

compilers often shows a separated development in call-by-value and call-by-need implementation.

Practically, the STG machine [64] begins to bridge this gap in implementation; though, the CAM

[18] and ZAM [45] were instances of strict implementations borrowing ideas from the non-strict.

In reduction and equational theories, the work on polarized languages [27, 48, 53, 59, 84] aims to

bridge this gap in reasoning by constructing languages that contain call-by-value and call-by-need

components. It appears the future of sophisticated implementations will contain a story for both

strategies.

Indeed, these languages have never been totally separate. A call-by-need compiler is not useful

at all without call-by-value data types like strings. A call-by-value language is not even a functional

language without the computation type of functions.

Deriving Practical Implementations of First-Class Functions 45

REFERENCES
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. In Proceedings of the 17th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’90, page 31–46, 1989.

[2] Samson Abramsky. The lazy lambda calculus. In Research Topics in Functional Programming, pages 65–116. Addison-
Wesley, 1990.

[3] Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, and James Philbin. Orbit: An optimizing

compiler for scheme. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’86, 1986.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional correspondence between evaluators

and abstract machines. In Proceedings of the 5th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, 27-29 August 2003, Uppsala, Sweden, pages 8–19. ACM, 2003.

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between call-by-need evaluators and

lazy abstract machines. Inf. Process. Lett., 90(5):223–232, 2004.
[6] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between monadic evaluators and

abstract machines for languages with computational effects. Theor. Comput. Sci., 342(1):149–172, 2005.
[7] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University, 2004.

[8] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equivalence. In Proceeding of the
13th ACM SIGPLAN international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September
20-28, 2008, pages 157–168, 2008.

[9] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[10] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style. In Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, January 11-13, 1989, pages
293–302, 1989.

[11] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus.

In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, pages 233–246, 1995.

[12] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A call-by-need lambda calculus.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’95, page

233–246, 1995.

[13] Lennart Augustsson. A compiler for lazy ml. In Proceedings of the 1984 ACM Symposium on LISP and Functional
Programming, LFP ’84, 1984.

[14] H. P. Barendregt. The lambda calculus: Its syntax and semantics. 1984.

[15] G. L. Burn, Simon L. Peyton Jones, and J. D. Robson. The spineless g-machine. In Proceedings of the 1988 ACM
Conference on LISP and Functional Programming, LFP ’88, pages 244–258, 1988.

[16] Luca Cardelli. The functional abstract machine. Technical report, Bell Labs, 1983.

[17] Alonzo Church. The calculi of _-conversion, volume 6. Princeton University Press, 1941.

[18] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract machine. In Functional Programming
Languages and Computer Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings, pages 50–64, 1985.

[19] Pierre-Louis Curien. Categorical combinators. Information and Control, 69(1-3):188–254, 1986.
[20] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of the Fifth ACM SIGPLAN

International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000., pages 233–243,
2000.

[21] Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of computation under focus. In Cristian S. Calude

and Vladimiro Sassone, editors, Theoretical Computer Science - 6th IFIP TC 1/WG 2.2 International Conference, TCS
2010, Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings, volume 323 of IFIP Advances in
Information and Communication Technology, pages 165–181, 2010.

[22] Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-Holland Publishing Company, 1958.

[23] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipula-

tion, with application to the church-rosser theorem. In Indagationes Mathematicae (Proceedings), volume 75, pages

381–392, 1972.

[24] Alberto de la Encina and Ricardo Pena. Proving the correctness of the STG machine. In Thomas Arts and Markus

Mohnen, editors, Implementation of Functional Languages, 13th International Workshop, IFL 2002 Stockholm, Sweden,
September 24-26, 2001, Selected Papers, volume 2312 of Lecture Notes in Computer Science, pages 88–104. Springer, 2001.

[25] Alberto de la Encina and Ricardo Pena. Formally deriving an STG machine. In Proceedings of the 5th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 27-29 August 2003, Uppsala, Sweden,
pages 102–112. ACM, 2003.

[26] Alberto de la Encina and Ricardo Peña-Marí. From natural semantics to C: A formal derivation of two STG machines.

J. Funct. Program., 19(1):47–94, 2009.

46 Zachary J. Sullivan

[27] Paul Downen and Zena M. Ariola. Beyond polarity: Towards a multi-discipline intermediate language with sharing.

In 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, pages
21:1–21:23, 2018.

[28] Paul Downen and Zena M. Ariola. A tutorial on computational classical logic and the sequent calculus. J. Funct.
Program., 28, 2018.

[29] Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Abstracting models of strong normalization for classical

calculi. J. Log. Algebraic Methods Program., 111:100512, 2020.
[30] Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyton Jones. Sequent calculus as a compiler intermediate

language. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016, pages 74–88, 2016.

[31] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control effects on local relational

reasoning. J. Funct. Program., 22(4-5):477–528, 2012.
[32] Jon Fairbairn and Stuart Wray. TIM: A simple, lazy abstract machine to execute supercombinatorics. In Functional

Programming Languages and Computer Architecture, Portland, Oregon, USA, September 14-16, 1987, Proceedings, pages
34–45, 1987.

[33] Matthias Felleisen and Daniel P. Friedman. Control operators, the secd-machine, and the _-calculus. In Formal
Description of Programming Concepts - III: Proceedings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description
of Programming Concepts - III, Ebberup, Denmark, 25-28 August 1986, pages 193–222, 1987.

[34] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling with continuations.

In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI),
Albuquerque, New Mexico, USA, June 23-25, 1993, pages 237–247, 1993.

[35] John Hatcliff and Olivier Danvy. Thunks and the lambda-calculus. J. Funct. Program., 7(3):303–319, 1997.
[36] John Hughes. The Design and Implementation of Programming languages. PhD thesis, University of Oxford, 1983.

[37] Thomas Johnsson. Efficient compilation of lazy evaluation. In Proceedings of the 1984 SIGPLAN Symposium on Compiler
Construction, Montreal, Canada, June 17-22, 1984, pages 58–69, 1984.

[38] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Functional Programming
Languages and Computer Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings, pages 190–203,
1985.

[39] James H. Morris Jr. Lambda Calculus Models of Programming Languages. PhD thesis, Massachusets Institute of

Technology, 1968.

[40] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, editors, STACS 87,
4th Annual Symposium on Theoretical Aspects of Computer Science, Passau, Germany, February 19-21, 1987, Proceedings,
volume 247 of Lecture Notes in Computer Science, pages 22–39. Springer, 1987.

[41] Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages 177–190, 2007.

[42] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation, 20(3):199–207,
2007.

[43] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320, 1964.
[44] John Launchbury. A natural semantics for lazy evaluation. In Conference Record of the Twentieth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, South Carolina, USA, January 1993,
pages 144–154, 1993.

[45] Xavier Leroy. The ZINC experiment: an economical implementation of the ML language. Technical report 117, INRIA,

1990.

[46] Xavier Leroy. Coinductive big-step operational semantics. In Peter Sestoft, editor, Programming Languages and Systems,
15th European Symposium on Programming, ESOP 2006, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings, volume 3924 of Lecture Notes in
Computer Science, pages 54–68. Springer, 2006.

[47] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf. Comput., 207(2):284–304, 2009.
[48] Paul Blain Levy. Call-by-push-value. PhD thesis, Queen Mary University of London, UK, 2001.

[49] Rafael Dueire Lins. Categorical multi-combinators. In Functional Programming Languages and Computer Architecture,
Portland, Oregon, USA, September 14-16, 1987, Proceedings, pages 60–79, 1987.

[50] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. J. Funct. Program., 8(3):275–317,
1998.

[51] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter vs. eval/apply for higher-order languages.

In Proceedings of the Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP 2004, Snow Bird,
UT, USA, September 19-21, 2004, pages 4–15, 2004.

Deriving Practical Implementations of First-Class Functions 47

[52] Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. Compiling without continuations. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 482–494, 2017.

[53] Dylan McDermott and Alan Mycroft. Extended call-by-push-value: Reasoning about effectful programs and evaluation

order. In Programming Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, pages 235–262, 2019.

[54] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure conversion. In Conference Record of
POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at the
Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 271–283, 1996.

[55] Étienne Miquey and Hugo Herbelin. Realizability interpretation and normalization of typed call-by-need \lambda

-calculus with control. In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation
Structures - 21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in
Computer Science, pages 276–292, 2018.

[56] Masayuki Mizuno and Eijiro Sumii. Formal verifications of call-by-need and call-by-name evaluations with mutual

recursion. In Anthony Widjaja Lin, editor, Programming Languages and Systems - 17th Asian Symposium, APLAS 2019,
Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings, volume 11893 of Lecture Notes in Computer Science, pages
181–201, 2019.

[57] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual Symposium on Logic
in Computer Science, pages 14–23, 1989.

[58] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly language. In POPL
’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA,
USA, January 19-21, 1998, pages 85–97, 1998.

[59] Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and Proofs. PhD
thesis, Université Paris Diderot, 2013.

[60] Chris Okasaki, Peter Lee, and David Tarditi. Call-by-need and continuation-passing style. LISP Symb. Comput.,
7(1):57–82, 1994.

[61] Zoe Paraskevopoulou and Andrew W. Appel. Closure conversion is safe for space. Proc. ACM Program. Lang.,
3(ICFP):83:1–83:29, 2019.

[62] James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-language semantics. In Programming
Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, pages
128–148, 2014.

[63] Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.
[64] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware: the spineless tagless g-machine.

Journal of Functional Programming, 2(2):127–202, 1992.
[65] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-strict functional language.

In Functional Programming Languages and Computer Architecture, 5th ACM Conference, Cambridge, MA, USA, August
26-30, 1991, Proceedings, pages 636–666, 1991.

[66] Simon L. Peyton Jones and Jon Salkild. The spineless tagless g-machine. In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture, FPCA ’89, pages 184–201, 1989.

[67] Maciej Piróg and Dariusz Biernacki. A systematic derivation of the STG machine verified in coq. In Jeremy Gibbons,

editor, Proceedings of the 3rd ACM SIGPLAN Symposium on Haskell, Haskell 2010, Baltimore, MD, USA, 30 September
2010, pages 25–36. ACM, 2010.

[68] Andrew M. Pitts. Reasoning about local variables with operationally-based logical relations. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 152–163.
IEEE Computer Society, 1996.

[69] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci., 1(2):125–159, 1975.
[70] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic Methods Program., 60-61:17–139,

2004.

[71] Amr Sabry. The formal relationship between direct and continuation-passing style optimizing compilers - a synthesis of
two paradigms. PhD thesis, Rice University, 1994.

[72] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. In Proceedings of the
Conference on Lisp and Functional Programming, LFP 1992, San Francisco, California, USA, 22-24 June 1992, pages 288–298.
ACM, 1992.

48 Zachary J. Sullivan

[73] Amr Sabry and Philip Wadler. A reflection on call-by-value. In Robert Harper and Richard L. Wexelblat, editors,

Proceedings of the 1996 ACM SIGPLAN International Conference on Functional Programming, ICFP 1996, Philadelphia,
Pennsylvania, USA, May 24-26, 1996, pages 13–24. ACM, 1996.

[74] Dana Scott. Outline of a mathematical theory of computation. Technical report, Oxford University Computing Lab,

1970.

[75] Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264, 1997.
[76] Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In Proceedings of the 1994 ACM Conference

on LISP and Functional Programming, Orlando, Florida, USA, 27-29 June 1994, pages 150–161, 1994.
[77] Zhong Shao and Andrew W. Appel. Efficient and safe-for-space closure conversion. ACM Trans. Program. Lang. Syst.,

22(1):129–161, 2000.

[78] Guy L. Steele. Rabbit: A compiler for scheme. Master’s thesis, Massachusetts Institute of Technology, 1978.

[79] Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. Strictly capturing non-strict closures. In Proceedings of the 2021
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM@POPL 2021, Virtual Event, Denmark,
January 18-19, 2021, pages 74–89. ACM, 2021.

[80] W. W. Tait. Intensional interpretation of func-tionals of finite type i. Journal of Symbolic Logic, 32:198–212, 1967.
[81] D. A. Turner. A new implementation technique for applicative languages. Softw., Pract. Exper., 9(1):31–49, 1979.
[82] PhilipWadler. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM SIGPLAN International Conference

on Functional Programming, ICFP 2003, Uppsala, Sweden, August 25-29, 2003, pages 189–201, 2003.
[83] Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, University of Oxford, 1971.

[84] Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon University,

2009.

	Abstract
	1 Introduction
	2 Reduction Theory
	2.1 Call-by-Name
	2.2 Call-by-Value
	2.3 Call-by-Need
	2.4 Substitutions: Meta Language vs. Object Language

	3 Operational Semantics
	3.1 Small-Step Semantics
	3.2 Reduction with Evaluation Contexts
	3.3 Big-Step Semantics
	3.4 Big-Step Environment Semantics

	4 Combinators and Their Machines
	4.1 Fixed Combinator Machines
	4.2 Super-combinator Machines

	5 Abstract Machines
	5.1 The SECD Machine
	5.2 The Krivine Machine
	5.3 Fast Curried Function Calls

	6 Compilation through Intermediate Languages
	6.1 Continuation-Passing Style
	6.2 A Unified Compiler Pipeline
	6.3 Closure-Conversion

	7 Reasoning about Implementations
	7.1 Machine Reflection
	7.2 Type Preservation
	7.3 Logical Predicates and Relations
	7.4 Stores and Heaps

	8 Discussion
	References

