
Online Monitoring for High-Performance Computing Systems
Chad Wood

Department of Computer and Information Science

University of Oregon

Eugene, OR, United States

cdw@cs.uoregon.edu

ABSTRACT
In this work we explore the area of online monitoring systems in

high-performance computing. This area of research is increasingly

important as software and machines grow in scale and architectural

complexity. We begin by outlining the terms of the art and scope of

the area being considered. We provide a high-level overview of on-

line monitoring within the context of high-performance computing,

including various subtopics. Significant features of each subtopic

are discussed, as well as the reasoning behind the integration of

these topics into a holistic area of research. This leads into a deeper

discussion of the special constraints imposed by high- performance

computing, and how various solutions have evolved along with

this unique computational landscape. We then provide a survey of

the current and prior tools and techniques for online monitoring.

Finally, we end this work with a brief discussion of open research

areas for significant future efforts in this domain.

KEYWORDS
online, runtime,monitoring, observability, introspection, high-performance

computing, HPC, in situ, scalability, exporting, storage, provenance,

logging, ensembles, code-coupling, workflows, interactivity, opti-

mization, tuning

Contents

Abstract 1

Contents 1

1 Introduction 1

2 Observability 2

3 Capturing and Using Data 6

4 Monitoring for HPC: Dedicated Frameworks 14

5 Monitoring for HPC: General Topics 21

6 Concluding Remarks 23

References 24

1 INTRODUCTION
The general theme of this paper is that of gaining insights that facil-

itate greater productivity in a high-performance computing context.

This is why we are interested in online monitoring, analysis, and

feedback systems. We will be considering both low-level and high-

level aspects of insight and productivity. Note that these terms are

intentionally used loosely and relatively in this document, merely

to lend a rough sense of scope. The term low-level is taken to mean

closer to the machine or software engineering. We use high-level to
indicate something is closer to the application behavior, the science

purpose of an application, or the goals of human users or managers.

Insights might be gained by investigating something as low-level

as hardware counters and source code performance hotspots, or

as high-level as application data dependency graphs, simulation

state, or human-in-the-loop evaluation of scientific visualizations.

Productivity also refers to a plurality of possible goals. It can in-

dicate low-level enhancements to the use of network resources,

application runtimes, communication slack, power utilization, ma-

chine temperatures, etc. Productivity can just as well mean making

improvements to the correctness of scientific results, the quality

and timeliness of reports and images, the speed at which software

can be developed and debugged, or the portability of source codes

and optimizations between various machines.

High-performance computing (HPC) refers to a specialized branch
of computing traditionally used to tackle problems too large to be

effectively solved using commodity computational resources. HPC

architectures often couple powerful integrated compute nodes to-

gether using a high-speed interconnect. The HPC systems we are

concerned with in our area of research almost exclusively run a

variant of the POSIX-compliant Linux operating systems. The op-

erating system of each compute node runs various services and

specialized hardware drivers that allow applications to take advan-

tage the resources which are distributed across several nodes. Such

services usually include:

• Networking and shared memory region APIs: Allows for

applications, libraries, and services to communicate with

each other. This communication can take place within a

single physical resources, or between processes running on

different devices.

• Batch Manager (ex. IBM®Job Step Manager [76] or the Slurm
Workload Manager [96]): Queues, allocates, launches, and
manages user’s jobs in a batch scheduling environment,

breaking apart a parallel task into ranks and establishing

a shared runtime environment that may span one or more

nodes.

• Network Filesystem (ex. Lustre [14] or IBM®’s General Par-
allel Filesystem [69]): Provides a coherent filesystem view

across many nodes in parallel, where reads and write to the

filesystem from multiple ranks are eventually synchronized

and available to all nodes within a parallel job’s allocation.

• Message Passing Interface (MPI [31]): Allows ranks of appli-
cations to communicate amongst themselves and coordinate

their activity via point-to-point messaging and safe synchro-

nous collective data operations.

We will look at how these common HPC software resources, among

others, can be exploited for our monitoring, analysis, and feedback

purposes.



University of Oregon, Winter 2021, Eugene, OR C. Wood

This paper explores an intersection of three different topics:

monitoring, analysis, and feedback. We use the term feedback to

imply interacting with applications and execution environments,

based on analysis of monitored information, potentially within the

same job being monitored.

Modern HPC has introduced extreme scale parallelism, large and

complex codes, interactivity between coupled software components,

and an unprecedented velocity of data creation, consumption, and

displacement. The introduction of these changes has given rise to

new computational models, performance paradigms, design chal-

lenges, and research possibilities. These recent developments in

HPC have both created new roles for and also expanded the prior
roles of monitoring, analysis and feedback.

It is important to understanding the structure of this effort that

we are ultimately building towards the current state of the art where

these three topics are able (and desired) to be integrated. At times

we will discuss monitoring, analysis, or feedback as a standalone

topic, but will attempt to explain why the coverage is only partial

in a those specific moments as a way of giving insight into the

computing landscape at the time of that prior work. Always bear

in mind that we are building to what exists in the present features

of HPC research in this area.

2 OBSERVABILITY
Before something can be monitored, analyzed, or utilized online, it

needs to be observable.
Computation involves applying operations to a set of data inputs

in order to transform that data according to those operation’s stable

rules, resulting in reliable and reproducible output. The output

produced by a piece of software can be used to validate limited

but crucial properties of that software, such as its mathematical

precision or the correctness of the computed results compared to a

trusted independent measure.

But what of the behavior of the software itself?

By the time an application has completed its work and generated

its output, information about the execution of an application that

is not observed and stored is lost. Observations such as the basic

behavior of the software and the efficiency of its algorithms, and

the interactions of its internal components and external execution

environment. Information relevant to the performance of an ap-

plication may include a variety of data sources, both within and

external to the application. In order to make informed decisions

regarding the behavior of an application, this behavior needs to be

observed, annotated, and stored for later use.

Observability is a critical first step into online monitoring, but it

is worth noting that points where something is made available for

monitoring are often also points were feedback from analysis can

be applied.

The depth and significance of observation will vary based on

the method, completeness, and invasiveness of the techniques em-

ployed. Observability can be achieved or enhanced by a variety of

techniques, principally including:

• Application Source Instrumentation

• Shared Library, Runtime, or Service Instrumentation

• Sampling and Tracing

• Probing and Inferences from Indirect Sources

We will now discuss each of the preceding techniques in turn.

2.1 Application Source Instrumentation
Instructions to capture observations, compiled directly
into the executable code of an application.

Software source code can be instrumented to self-report its progress

from state to state. Such instrumentation takes the form of function

calls (or macros) that are embedded in-line between normal appli-

cation code. Once instrumentation is in place, it is encountered and

evaluated during the normal course of application execution. This

placement can be done by hand, embedding direct calls to some an-

notation API, or it can be done programmatically by an automatic

code instrumentation tool. Hand-instrumentation is more inva-

sive and labor-intensive than tool-based instrumentation, requiring

developer time and expertise. In exchange for the extra work to

emplace and maintain it, there are some added benefits to using

hand-instrumentation over tool-based solutions. By selectively in-

strumenting specific code regions, a developer can minimize the

cost of observing a piece of software. Since no code can be observed

without the computer doing a little bit of extra work, doing too

much of this extra work will mask off the underlying application

behaviors of interest. A developer can use their judgement to skip

the observation of areas that are not of interest, or that are exe-

cuted so frequently that the overhead of making observations would

dominate any application performance that could be observed.

Hand-instrumentation is also able to introduce high-level an-
notations to the observed low-level execution features. High-level

annotations are essentially labels which identify the nature or pur-

pose of the region of code being observed. They allow for that

data to be quickly individuated from other observations, to allow

for efficient categorization and analysis (to be discussed in later

sections). Developers do not always know what regions of their

code are important, or the code that is having the most significant

impacts on the applications’ behavior will change as the codebase

evolves or new inputs are fed into the program. To remedy this, it

is useful to have a variety of mechanisms available to observe and

explore the performance of an application. Common instrumenta-

tion interfaces [13] being embedded in codes show promise in this

regard. They provide a point at which many different performance

tools can be attached and activated to provide observation of the

software, without needing to edit code or recompile applications.

When not in use, these instrumentation interfaces would not im-

pose any significant overhead. It will be interesting to see whether

this idea gains broad support going forward.

Because instrumentation involves inserting extra instructions

into code, regardless of the kind of instrumentation that is in place,

it is sometimes desirable to temporarily disable it. Instrumentation

is typically disabled when code moves from being actively devel-

oped and optimized into a "production" scenario where maximum

efficiency is desired and introspection of application behavior is less

important. To this end, it is important for instrumentation to have

an "off switch" of some kind. One option is to excise the instrumen-

tation from the application code at compile time, so that the source

code remains instrumented, but those blocks of instructions are

skipped over by the compiler and do not appear in the application

binary at all. Recompilation can be costly, but will yield the most



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

efficient application binary. Another option is to disable code with a

setting that can be checked by a program in execution. This means

leaving the instrumentation in the code, but while the code is run-

ning, whenever some instrumentation is encountered, first have it

check to see if it has been disabled, and then if so skip over the block

of instrumentation code and resume normal execution. With this

method, it is important to be able to "do nothing, quickly", so that

the impact of the extant (disabled) instrumentation is minimized.

This would be an appropriate method to use if the instrumentation

were not directly embedded in an application code, but emplaced

in the code of a shared library or service that an application makes

use of. When the application is recompiled, that library or service

might not be, so runtime enabling or disabling of instrumentation

is required if a system is to be observable in this way. We will now

discuss that scenario.

2.2 Shared Library, Runtime, or Service
Instrumentation
Making observations within the code which is executed
when an application makes API calls to an external
library or service, or when a runtime platform is evalu-
ating collections of instructions (code or queries).

HPC software is often built up out of multiple libraries being in-

teracted with by the core logic of an application. When an applica-

tion is launched by the operating system, any libraries that it has

been linked into will also be loaded into memory and initialized. C
and C++, for example, offer standard libraries which provide many

features essential to applications written in those languages, from

collections of optimized data structures to network and multithread-

ing routines. Higher-level libraries exist to provide domain-specific

features, such as SAMRAI: Structured Adaptive Mesh Refinement
Application Infrastructure [91], an implementation of optimized

data structures and algorithms of general utility for adaptive mesh

refinement codes, common in physics simulations. In the absence

of direct application source code instrumentation, shared libraries

can be good targets for observing application behavior. Through

calls into the API of that library, execution will pass into the code

compiled within it. Any instrumentation within will then be exe-

cuted.

As will be discussed in later sections, especially "Exposing Data"

(§ 3.4), the information that is generated or observed by instrumen-

tation needs to either be made available for use, or stored to be used

elsewhere or at another time. Control flow through the execution

of a program binary is typically fixed at compile time, where the

operating system will establish the basic execution environment

and protected memory, initialize the stack, and begin execution at

the designated starting function of a program, main in the C family

of languages, for example. This process does not automatically pro-

vide hooks for tools to be initialized or optional accessory services

to be started. In the case that memory needs to be allocated for

storage, or services need to be invoked that can capture and operate

on monitored information, the shared library instrumentation path

offers another useful engineering options: static singletons. This
refers to a C++ language convention where code objects can be can

be marked as static and be executed at program initialization, and

through clever means cause the initialization of a class that uses

the singleton design pattern, where only one instance of an object

is allowed to exist. This combination of techniques allows a shared

library to execute some initialization routines at the beginning of

a program, merely by being linked into the program and loaded

when that program starts.

Two common ways to instrument libraries by adding code are

to pre-load a surrogate (or wrapper) library, or provide customized

header files that implement some instrumentation. Wrapper library

instrumentation can also be achieved without needing to recom-

pile an application. LD_PRELOAD is a special environment variable

supported by the Linux operating system. When paths to shared

libraries are set into that variable, those libraries will also be loaded

by the operating system when an application is launched. This

can be used to to flexibly provide instrumentation around existing

libraries without needing to access their source or recompile them.

The wrapper library should expose all of the same function signa-

tures to the invoking application, such that normal API calls to the

shared library will instead invoke the same function in the wrapper.

On its first invocation, the wrapper can then manually load the

normal shared library and populate a table of function pointers all

of the normally-exposed functions within. As the normal library’s

functions are called and return back, the wrapper is able to track

these timings and perform any other desired instrumentation or

monitoring-layer interactions desired.

If recompilation of the application is not a burden, customized

header files are also an option, and can impose a slightly lower per-

formance impact as less runtime activity is required to resolve API

calls. Customized header files will require the calling application

to be recompiled, and its source code or build scripts updated to

point to that custom header file. Within the header file, functions

can be implemented instead of merely defined, and these functions

can embed instrumentation around calls to the normal library. The

header file technique usually requires an API to be expressed in

two layers, with a public-facing API wrapping calls to an internal

implementation API. This avoids the problem of namespace collision,
what occurs when an object has two different definitions within the

same callable scope, and the compiler does not know which of the

two is being referenced as it attempts to build or link the software.

A successful example of header file instrumentation in the real

world is provided by the MPI codebase. MPI’s public API calls all

begin with MPI_ and every such call jumps into a tiny wrapper func-

tion that immediately and only calls its implementation function,

which is prefixed PMPI_ and which provides the actual implemen-

tation code. Developers can add code to the wrapper functions in

that header file, as a way of intercepting calls to the MPI routines.

Both of these technique are able to facilitate a variety of advanced

interactivity, such as making adjustments to the parameters being

passed through the wrapper into the normal library, or changing

the behavior of the normal library based on some performance

observations or goals.

2.3 Runtimes and Services
Many HPC applications take advantage of standardized libraries

and packages designed to grant traditionally-engineered software

access to the unique advantages enabled by HPC hardware, without

requiring wholesale re-writes.



University of Oregon, Winter 2021, Eugene, OR C. Wood

One such library is OpenMP [17], which presents a standard for

annotating, or "decorating", the parallel regions of a block of code,

and then compiler extensions which can intelligently and safely

adapt the code according to those notes for it to be automatically

parallelized. The primary mechanism for parallelizing codes that

OpenMP uses is the spawning of multiple threads, distribution of

data between those threads, and the gathering of the results pro-

duced in parallel back into a unified memory location for processing

by the serial portions of the program. In addition to the injection of

inline codes, OpenMP provided a flyweight runtime within the pro-

cess, to manage the creation and destruction of threads, or teams of

threads, achieving safe management of the memory regions those

threads were operating over.

Automatic code generation, especially in this case where it pro-

foundly altered the characteristics of the code’s execution, intro-

duced some complexity to the various source-instrumentation-

based means of observing codes, though techniques were devel-

oped [46] to address this. Iterating over the years, as more modern

generations of the OpenMP frameworks were designed, a tools

interface named OMPT [19] was added to OpenMP to provide an

organized and flexible means of interacting with the OpenMP run-

time and observing the application, providing hooks into the normal

semantics of the program as well as events unique to the internal

activity of the OpenMP runtime. One especially useful feature of

the OMPT interface is that tools can be enabled or disabled at run-

time, not requiring an application to be recompiled from source.

For the many HPC applications which make use of OpenMP, this in-

terface can be a useful source of information for online monitoring

frameworks.

Elaborated further under "Distributed Computing" (§ 5.1.1), the

Message Passing Interface (MPI) runtime can be an indispensible re-

source when monitoring HPC applications. In addition to posessing

a number of valuable datum related to the execution of a single dis-

tributed task, the runtime is also potentially managing many other

processes distributed across the machine concurrently. MPI is aware

not only of some performance measures of the application, but of its

own configuration and performance. With higher-level permissions

and a common observational infrastructure, it is possible to observe

complex interactions between parallel jobs of parallel processes

in situ and online [10], observations which by necessity require

shared service-level instrumentation and online monitoring.

Task-based runtimes or applications written using partitioned
global address space (PGAS) languages [95] [18], like HPX [35] or

Charm++ [36], or even distributed workflow managers such as

Swift/T [93], can make it difficult to cleanly separate out the work-

ings of the runtime service layer from the program that the service

layer is facilitating the execution of. That is, a program can be

broken up into so many different asynchronous parts that tradi-

tional monitoring patterns do not effectively capture coherent or

developer-relevant performance data. The ratio of monitoring over-

head to the overall productive work performed by the application

can quickly become undesirable, especially if tasks are dispatched

and retired at a very fine-grain, and have short lifespans. Tools

such as the Autonomic Performance Environment for Exascale

(APEX) [60] have been developed specifically to address [48] many

of these challenges, but it remains an open area of research.

Another way to observe processes in vivo is by stepping outside

of their execution environment entirely, and then turning around

to look back in. This is most often observed in cases of commercial

"cloud computing", where a system image is hosted by a virtual ma-

chine hypervisor, and applications are run within that virtualized

environment. Through extensions to the hypervisor agent, such

as with the ongoing work with Xen introspection extensions [82],

the performance, progress, or various other information can be ob-

served from outside the runtime instance with only relatively small

increases in overhead compared to running unobserved within the

virtual machine. These increases in overhead would be propor-

tional to the overhead of monitoring the same application running

natively on physical hardware.

2.4 Sampling and Tracing
Exploiting binary formats, memory layout conventions,
and explicit operating system APIs to apply instrumen-
tation to a compiled application without modifying its
source code.

Sampling means inspecting the state of an application and read-

ing the available performance counters provided by the operating

system. It is usually performed at some regular interval of time, so

inferences can be made about the activity that transpired between

those intervals, and the impact those activities had on the sampled

parameters. Sampling is by far the most efficient method for gath-

ering observations to use when monitoring an HPC system, and

as such is favored for online monitoring systems. Sampling can be

done directly by a tool, by making calls to the Linux operating sys-

tem’s perf_events API, reading counters from the /proc/stats
virtual filesystem furnished by the operating system kernel, or

through registering counters of interest and making inquiry into a

pre-packaged introspection tool like PAPI [51].

Tracing deviates from sampling in that every single action an

application takes has the opportunity to be counted as a significant

event and measured, though each action might not be of interest.

In order to achieve the extremely fine-grained analysis afforded by

tracing, many additional instructions are inserted around those of

the application, able to capture and count the application’s instruc-

tions and follow the control flow’s branching paths through the

application logic based on the input data and the evolving results

of computation at runtime.

Traces often have orders of magnitude higher overhead to gather

than performance measures arrived at through sampling. Hand-

annotated source code has the added benefit (and developer over-

head) of an expert identifying the significant regions of an applica-

tion, so that uninteresting information does not need to be collected

or analyzed. This lowers the overhead of performing a trace, in

both time spent gathering measurements, and by reducing the space

required to store any performance measurements. It also allows for

code regions to be intelligently named for quick identification, for

cases where a person is utilizing a monitoring system, and such

insights can be exploited for code tuning, etc.

Tracing can be performed over specific domains of application

events, such as tracing only the I/O of an application, the loading

and storing of regions of system memory, or just generally serarch-

ing for latency [65]. One could choose to trace only the interactions



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

between an application and the operating system kernel, or even

to trace only the activity within the kernel.

While outside the scope of this survey, note that there are many

types and implementations of tracers [27] available to trace both

kernel and user-space activity, including ftrace [11] [26], perf [53],

LTTng [25] [16], and some commercial offerings such as Intel PT

("Processor Trace"), etc. Much of the lower level tracing infrastruc-

ture, such as the Linux perf_events subsystem, is available to be

used in other user-space tools like Valgrind [55] or PAPI [51] to pro-

vide aspects of their overall performance information set, including

data associated with branches and traces.

2.5 Probing and Inference from Indirect
Sources
Combining multiple external sources and epochs of in-
formation to form intuitions about the behavior of a
system and its components.

There are a variety of questions an interested party may wish for

their monitoring system to answer that, while requiring online

monitoring, are not well-suited to the mechanics, scope, or fre-

quency of events which are revealed by directly observing a single

application, or even a single instance of a complex workflow, as the

source of information. Some examples:

• On average, how long are jobs waiting in dispatch queues

before being launched, including as ratios of their actual and

requested runtime?

• What portion of a job’s occupancy is spent waiting on shared

resources to become available (i.e. physical tape archives of

large data sets that need to be fetched and brought online

by an automated robot)?

• How much do the power requirements of the entire facil-

ity deviate through the day, and is there a correlation with

specific jobs, or machine workloads, or the exterior environ-

ment’s temperature and humidity?

• How often do the processors on the nodes slow their clock

rate in order to stay within their configured thermal enve-

lope?

• What portion of the energy budget of the total machine (and

its enclave within the broader HPC facility) is spent on con-

trolling temperature, vs. on providing compute capability?

• Which applications, and at what allocation sizes, result in

the greatest amount of contention for shared resources like

the network interconnect?

• When job occupancy is high and network congestion is low,

but CPU or GPU utilization is also low, what are the jobs

that are running at that time, to inspect for some bottleneck

which is preventing codes from fully exploiting the available

hardware?

• How much do identical measurements vary across nodes,

and how much do identical measurements vary for each

node across time?

• Are there any deviations from normal performance measures

that can be accurate predictors of pending hardware failure?

• How often are job walltime limits reached, and how often do

jobs terminate (successfully) without using some significant

portion of the walltime that they had requested?

• What are the most used system libraries, compiler versions,

and versions of applications?

• What are the most frequent causes of a program being ter-

minated by the operating system?

• What are the least-utilized components of the total machine

architecture?

These are just a handful of such questions, by no means a compre-

hensive list. What may stand out in that list is the frequency with

which the word "job" appears.

Often some measure of interest will not be observable without

increasing the sample size beyond the one application or workflow

that a user may have enabled instrumentation for. Observations of

multiple programs and also observations of sources outside of the

scope of applications are needed to answer most such questions.

Some of these observations can be accessed within its context using

open-source toolkits or system APIs, while other data points may

get emitted from a vendor’s proprietary drivers, and one must write

tools to get access to and appropriately contextualize this informa-

tion. Moreover, all information needs to be gathered continually,

online, and retained over various epochs, in order to be interro-

gated later on to yield answers not anticipated by the developer

who originally made some information observable in the first place.

Looking at online monitoring for HPC from a holistic perspective

like this allows for interesting questions to be asked and answered,

but the necessary software and sensor infrastructure gets compli-

cated, invasive, and expensive, very quickly.

Herewe can see yet again thatmonitoring systems serve a variety

of purposes, and so their deployment and use will have a diversity of

motivations. An application developer is unlikely to be personally

concerned with the thermal consequences of using a high-speed

solver library that activates additional circuitry and causes more

heat to be dumped by a compute core over the duration of their

job. The types of jobs which coorellate with an increased load on

the cooling infrastructure, and the peaks and valleys and averages

of such thermal readings, likely will be of interest to someone

who is tasked with managing a machine, budgeting for power, or

maximizing the longevity of machine parts.

Gathering and making use of these data sets means taking on a

wide array of engineering and design challenges, many of which

are discussed in the next section and later areas. One such challenge

has to do with the diversity of epochs and frequencies of measure-

ments, and the need to capture and compose information efficiently.

Thermal readings and power settings can be measured from a com-

pute core in tiny fractions of a second, whereas some facility-wide

sensors may have significant hystersis in reporting and only be

updated every several minutes. This means that short-lived events

can be more difficult to make accurate judgements about, for exam-

ple. When composed against and considering their influence on the

longer timelines described by coarse-grained measurements like

power draw readings for a row of server racks, average ambient

air temperature around a row of servers, or the power draw of

the HVAC system responsible for cooling the entire building, etc.,

such short-lived events are difficult to render judgements about.

They are also typically not able to be efficiently stored in any detail

over many jobs or longer periods of time, to allow for sophisticated

meta-analysis, though there are some serious efforts to do just this,



University of Oregon, Winter 2021, Eugene, OR C. Wood

such as the Sonar [39] [29] project at Lawrence Livermore National

Laboratory.

When integrating observations made at different system lay-

ers and produced by different development teams, the semantics

of what is being reported can vary widely, and must be carefully

considered when composing data. One sensor might be reporting

absolute temperature in Kelvin, and another may be reporting the

delta between two temperatures in Farenheit. One must record units

of measure at some datum’s origin, or have a brokered ingestion of

information into the monitoring system, such that various sources

are processed by bespoke aggregation functions to be made avail-

able as normalized statistical metrics.

The complexities inherent to online monitoring systems quickly

become apparent, especially as the monitoring need grows beyond
a single point of measurement or is desired to fulfill more than a
single purpose. From this understanding, it becomes relevant to

more deeply explore the topic of capturing and using information.

3 CAPTURING AND USING DATA
Once an event or some state in an HPC system has been observed,

it must be represented in a stable format to be useful. Our practical

research interest is in the type of data that can be accumulated or

streamed through algorithms to discover and react to trends and

patterns. This sort of data can usually be stored for reference or

data-mining as a member of a set of data that can span multiple

scales or epochs, being combinable to reveal facts beyond what

is locally available during the immediate execution of an isolated

process.

3.1 Overview
Representing, disclosing, aggregating, storing, and ac-
cessing observed facts about processes, configurations,
input data, activity, and the HPC execution environ-
ment.

This section focuses on the mechanics of making and using data

out of something that has previously been rendered observable, in

one or several of the ways outlined in the prior section. In order

to adequately characterize the sort of data we are interested in,

something will need to be said about each of the aspects listed here:

• Representation and Meaning

• Patterns Within HPC

• Exposing or Exporting Data

• Introspection, Opacity, and Interface Standardization

Still, it is worth pointing out that not all observations have the same

complexity or purpose. For example, some observations do not need

to be retained or even exported from a process to be useful. Those

observations may be temporarily fixed and used to inform a process-

local or immediate decision-making process, and then discarded or

overwritten. Such transient observations still must be encoded and

accessible in a coherent format to be utilized – even by logic within

the same process. A discussion of the fullest life-cycle of data sets

from observations will also serve to inform the treatment of data

sets with more limited purposes and characterization requirements.

So what do we do, once something is observable?

3.2 Representation and Meaning
It is important in all journeys to start off in the direction of one’s

goal. Any eventual application of observations will be counting

on the observations being correct, consistent, and precise. Further,

information must include not only the measurements, but some

standard notion of interpreting the measurements. Mistakes or

omissions here in this fundamental consideration can invalidate or

undermine the entire purpose of monitoring HPC phenomena.

An engineering specification that only included the numeric

component of measurements for its dimensions might give a clue

about the proportions of the design in reference to itself, but would

not be helpful to understand its overall scale in relationship to its

environment or other engineered objects. This would lead to the

design object being difficult or impossible to accurately reproduce,

or for people unfamiliar with it to have useful intuitions about its

purpose or place simply by looking at that partially-annotated spec-

ification. Perhaps the simplest notion of a standard for interpreting

measurements is the expression of units of measure, noting what
"1" means in terms of units of length, volume, temperature, chrono-

logical element, etc. Once the standard for one unit is expressed, all

measurements of that type can be scaled off of that unit. Time can

pass in seconds, or in milliseconds, or in days, or even be denoted

by abstract and unscaled CPU "ticks" within the context of a single

architecture.

Units of measure can themselves be complex entities. Know-

ing that some numerical representation refers to a temperature in

Celsius may only tell you half the story. A measurement may be

referring to:

• an observation of an event or state at one point in time

• rate of change between two points in time

• result of a function relating multiple observations across

time or domains

When considering an application for performance data like con-
structing performance models using machine learning methods, it

is worth noting that some forms of machine learning are designed

to function well over completely opaque or unannotated data sets,

such as deep learning using neural networks. Typically the overall

data set this type of learning is applied to has at least been pre-

filtered and organized into a regular structure by some domain

expert to contain distinctions of likely relevance presented in a

consistent layout, to allow for the learning algorithm to recognize

and adapt to some notion of concepts or categories within this

unannotated data. There are always trade/offs to be made regard-

ing the selection of machine learning algorithms, such as speed,

overhead, accuracy, timeliness, consistency of input data layout,

and the amount of data needed to make good decisions. For now let

us assume that information is needed for purposes beyond training

deep learning models, and so correct annotations will have impor-

tance across a variety of purposes, and look at what is entailed by

that idea.

3.2.1 Encoding the Data and Metadata. The simplest things can

go unnoticed but be deeply important. One of these is the way in

which information is encoded. In addition to storing a value for the

measurement of a temperature, and having some way of knowing it

refers to a change in temperature for some epoch of time, it matters



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

how that floating point value is encoded. For example, floating point

values can be stored in the condensed IEEE 754 formatting, where

there are special meanings for subsequences of bits in the byte

words of a 16, 32, or 64-bit encoding. This format strikes a balanced

trade/off between storage and representational accuracy, and is how

most floating point numbers are stored and operated over from

the perspective of a CPU. If the number were to be pulled up in an

ASCII text editor and reviewed by a human, it is unlikely that they

would be able to determine the precise floating point value with

their manual review. Numerical values can be projected out into a

character string, which is much easier for a human to understand,

but consumes much more storage space, and cannot be processed

for mathematical operations by a CPU without converting back

into the IEEE 754 encoding, potentially decaying the accuracy in

the process.

In addition to the encoding of observations, the formatting of

multiple observations bundled together is a significant factor in that

information’s openness to exploitation. Opaque file formats, or un-

documented network protocols, bearing messages or observations,

can be difficult or impossible to exploit, if the information has not

been orchestrated into some consistent arrangement. There do exist

remedies for this, with formatting standards like CSV, YAML, XML,

or JSON. These standards make no assumption about the meaning

or semantics of the data they contain, but they do impose rules

on how data generally will be encoded, so that at a minimum the

raw values can be parsed from the collection into its individual

components through consistent mechanisms.

There are higher-level standards which emerge from more fun-

damental encoding standards, such as the Open Trace Format

(OTF) [38] [41] [21], which is purpose-built to store the perfor-

mance measurements of HPC applications.

3.2.2 Encoding the Expertise. There are many kinds of expertise

in the HPC field. For our purposes, we will focus on three:

• Users

• Developers

• Optimizers

The users of HPC applications, especially in the scientific commu-

nity, such as the Dept. of Energy (DOE), are often domain experts.

Users will have a deep understanding of the purpose of an applica-

tion, what it is that the software system is helping them to explore,

understand, or control. A user can also be thought of as a stake-

holder, or someone who approves funding for projects, manages

a budget that covers a machine, an entire premise, or who needs

to make decisions balancing the purpose of the software with the

overhead and mechanisms of building and maintaining that soft-

ware. Developers need to be experts in the mechanics of software

architecture generally, from design to deployment to long-term

software integrations and standards. They understand the process

of designing codes, connecting components together, interpreting

compiler error messages, etc. Developers are sometimes also do-

main experts, and users of codes, and they are usually motivated

to write code that runs reasonably optimally, though it is not as

incentivized as correctness. Optimizers are developers whose role

is less about building software to meet the needs of a user, but

about maintaining the effectiveness of codes over time. This means

porting codes to new architectures, tuning adjustable parameters

to best exploit the hardware to achieve the computational task.

No person can perfectly prognosticate about future architectural

evolution and its specific optimizations for any given algorithm, so

there is always a role for personnel who specialize in the tasks of

porting and tuning codes. Generally, it is a fuzzy distinction, but it

can be said that application developers are primarily rated on their

application running correctly, consistently, and are not primarily

tasked with maximizing the performance of codes, where the role

of an optimizer of codes is to facilitate maximum performance, as

well as code lifespan through portability to novel architectures.

The roles of user, developer, and optimizer will each have inter-

secting but distinct domains of expertise. What people consider

important, when it comes to observations made about HPC systems

and software, will be strongly influenced by a person’s various

responsibilities and their areas of expertise. Some examples of mo-

tives:

Users or system stakeholders might be more interested in min-

imizing the time their jobs sit in batch queues, or in the failure

rate of parts, or in network congestion or other metrics related

to shared resources. They may want to know things like machine

temperature, or what versions of codes are being run the most.

Application developers might be interested in using local and remote

system state or application progress to make better decisions about

task assignments or dynamic simulation domain refinement within

a simulation step. They may be interested in using in situ runtime

services to couple together workflows out of legacy components

that are not engineered by themselves to be coupled together asyn-

chrously, and concepts of direct in situ monitoring at the application

level come into play.

Optimizers can be interested in data at all sorts of levels of detail.

They may wish to observe the frequency with which a function

is called during a run, or its average evaluation time. They may

wish to see how much time is spent in application logic vs. in the

system libraries the application makes use of, seeking places where

optimization can be found. They may need to observe the behaviors

of a complex workflow in situ and at scale, to find performance

bottlenecks that only emerge online, during the course of a run, and

are not readily apparent through offline static analysis or manual

code review. Drilling into deep and invasive observations, optimiz-

ers may need to record high-frequency samples of measurements,

pathtrace data to map the flow of execution, or correlate full sets of

application data with batteries of performance observations gener-

ated when those inputs were being processed. This can be especially

important when porting codes to a novel architecture that may offer

general compatibility with the previous, but have significantly dif-

ferent resources types and capacities, such that an optimizer must

observe how the detailed internal components of a large complex

application are occupying the machine and how [in]efficiently it

is running as a whole. Discovering optimal compilation options is

sometimes as significant a contributor to performance gains as is

learning the optimal runtime tuning parameters.

Differences in expertise lead to different priorities and values,

and this means that every system will involve trade/offs in terms of

implementation, integration, runtime overhead and application per-

turbation, since there is no free lunch. This justifies the important

design priority for online systems that can be selectively enabled



University of Oregon, Winter 2021, Eugene, OR C. Wood

and/or invasive, and that offer some general utility across multiple

domains of expertise.

3.2.3 Time, Change, Identity, and Consistency. The continuous in-
teractions of discrete elements, and the ability to reason about

observations of change over time, is central to the purpose of on-

line monitoring systems. A brief detour to discuss these concepts

and terminology is warranted, given their constant presence in

background of this entire area of study. It is not the purpose of

this paper to give a thorough examination of these delicate and

important conceptual underpinnings. Rather it can be said that

since we will make use of the concepts mentioned in this section

without completely justifying them, we wish to be reasonably clear

about what is understood.

Time is a fundamental dimension of analysis for the study of

computational performance. This is true in both obvious and subtle

ways. One obvious way time in itself is a factor is in the definition

of the objective function that directs performance tuning choices:

When a region of code executes in less time, it could be considered to

be more optimal than code which takes longer to execute. Normally

the distinctions discussed here are implicit to the examination of

code performance or the design of systems that monitor and evalu-

ate it. It is worth taking a moment to pause and consider the subtler

manner in which time is fundamental to observability, because of

the profound ramifications that it has on short-term measurement

obligations and the feasibility of long-term objectives.

For change (or similarity) to be observed, there must be some-

thing to compare an immediate observation to. A subtle and contin-

gent way then that time is a fundamental consideration can emerge

when one reflects on the semantic nature of observed phenomena,

and then also on the identity of phenomena as both a type and a

token. At this point in the discussion the level of detail or relevance

to performance is not significant, merely the formal precondition

for consistency.

Synchronic consistency refers to the stability of meaning for phe-

nomena that are fixed within a single epoch, regardless of that

epoch’s unit of measure. These are coocurrent entities, that is to

say, distinct observational artifacts that are claims about states or

events that were extant within an interval of measure. The priority

of synchronic consistency is the semantic load, or the meaning,

of these observations. Synchronically consistent datum that are

denoted as being the same type of event would connote a consistent

meaning, or use a compatible scale of measurements, etc.

Diachronic consistency on the other hand speaks to the sense that

as some phenomena are observed across epochs of time, the identity
of the observed thing, state, or event, is apparent and conserved. In

order to establish this kind of consistency, some provenance needs

to be included as a component of the observations. This requires the

observed phenomena to endure long enough to be named uniquely

and be distinguishable from other similar entities. In simple terms:

The story that is being observed and recorded may be changing,

but the character that this story is about is the same character at

every point in the story.

Consistency is generally assumed by designers and developers

when working within their own projects. That is to say, most ob-

servational systems both assume and combine synchronic and di-

achronic consistency, because they were built for a singular purpose

or by a team driven by a shared motivation. As such, consistency

is often silently imported, and exists as a mere assumption. One

reason to be aware of these assumptions is that without attention,

the assumptions can become false assertions, and the observations

then fail to reflect the truth or support comparison with other obser-

vations thought to be of the same nature. No system of monitoring

can capture every aspect of everything that is true at every time,

the system itself would come to dominate its own observations and

lead to a nonsensical infinite regress. Trade/offs have to be made

about the amount of specificity that is tracked in a system in order

to provide safeguards to ensure synchronic and diachronic consis-

tency. These specifiers, or meta-observations, should be chosen to

maximize their value in lending stability to the observed perfor-

mance phenomena they are correlated with, in order to justify the

overhead of capturing and retaining them.

Meta-observations can be thought of as qualifiers that say things
about an observation, as well as the observed thing, helping to

distinguish both the reference and referent. Qualifiers help to estab-

lish and refine functional categories, prevent contradictions, and

give hand-holds to grasp and utilize the observations for practical

purposes. These qualifiers need something stable to be tagged to,

and this is the object of the consistency described in the above

paragraphs. Here of course we encounter a regress of rigors, where

qualifiers need something attached to in order to enunciate for that

thing its stability of identity and meaning, and yet the qualifiers
themselves seem as though they would need qualifiers in order to
be stable in the meaning or identity they are capable of conferring.
This regress of observations and meta-data qualifiers is potentially

infinite in theory, but in practice is rarely deeper than one or two

layers of abstraction, and so does not emerge as problematic in

most systems.

One way in which synchronic and diachronic consistency can

be thought of is in the language of ontology, in the differentiation

of types and tokens. There emerge many differences in the kinds

of knowledge we might have, and the kinds of claims that our

systems of observation might make about the observed. Types

are used to enunciate what something is, while tokens are used to

enunciate that something is. The distinction between knowledge-of

and knowledge-that is useful for further unpacking the distinct

between the synchronic and diachronic.

The establishing of types is a way of encoding knowledge syn-

chronically. We might know it is true that 2 + 2 = 4, but that
does not tell us that "4" exists somewhere in the world, or that 4 of

something exists or that something happened 4 times. For an easy

to grasp example, let’s think of how one knows what a tiger is. We

can have some idea of what a tiger is, for example, being a big cat

with striped fur, without there needing to be a tiger nearby to point

to as a means of providing a more robust ostensive definition. In

this sense, we can construct some kinds of knowledge about what

a tiger is by assembling other concepts productively to establish a

new type. This type of thing is a cat, it is a big cat, it is a striped cat,
etc. Types can be as simple or as specific as needed for practical

purposes.

When once we observe something, we may identify it and wish

to make note of it. What we are identifying at that point is a token
instance of that type of thing. We can say that "A tiger is over there



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

drinking water, on the other side of the river..." This form of tiger-

knowledge entails an existential claim, that not only does a tiger
possibly exist, but that specific tiger exists, at a certain point in

time and space. Further, it should be mentioned explicitly here that

one does not need to know the type of a thing in order to know

that the thing exists, but in order to reason or communicate about

that existential knowlege,some type will necessarily be applied

to it. When this happens, this observation of an un-typed thing,

observers will often reach for more general types and begin an

ad-hoc construction of compound type: "Big stripey animal thing
over there..." Particular to our topic of performance observations

within HPC, this automatic attribution of types and identities to

"existential knowledge" can be a major factor in general limiting

our ability to utilized those observations for analysis, optimization,

and feedback.

Ending this pedantic excursion into the realm of the abstract, and

returning to the applied topic of online monitoring for HPC, this

discussion of time, types, and identities must remain incomplete.

Hopefully the distinctions called out in this section will lend some

clarity to the reasoning that is done elsewhere in this text, regarding

the formal requirements for systems of observation.When an online

monitoring system makes observations, an essential aspect of what

gets observed and recorded must be these qualifiers that establish

some stability in the type of thing, and in the identity of things

over time.

3.2.4 Combination and Unit Semantics.

Domains, complexity, incompatibility, and a brief look
at one approach to the challenge by the Scrubjay project.

As has been mentioned several times so far, there is a wide dissaray

of data in the HPC universe. Data can represent activity or state

from differing domains, sourced at different intervals, from various

tools, encoded in unique formats, with varying degrees of online

accessibility. Development tools like TAU [72] or HPCToolkit [6]

will describe the application domain, where other technologies like

Ravel [87] [63] and Multipath Internet Protocol (MPIP) [81] can

both describe and adapt activity in the networking or interconnect

domain. Other information can be drawn from facility monitoring

sensors, vendor introspection APIs for racks, power, and thermal

management, etc.

There are various Operational Data Analytics (ODA) platforms

that exist, some of which will be discussed later in "Monitoring

for HPC: Dedicated Frameworks" (§ 4). For the most part, these

integrated monitoring solutions are targeted to serve the needs of

users from a particular domain, such as machine administrators,

and do not offer value to users in other domains than that for which

the ODA was not designed. Having a specific purpose, these moni-

toring solutions will often have built-in data processing routines,

visualizations, logs, and reports which apply aggregation, transfor-

mation, and presentation of a priori designated domain-appropriate

information.

It is interesting to conceive of a scenario where all monitored

information could be retained and made available for many kinds of

online and offline purposes, not limited in utility to a single domain,

and where the set of data had not been transformed or aggregated in

ways that would restrict its ability to be used to answer questions

not anticipated at the time the system was deployed or metrics

were gathered. While the computational and data storage resources

necessary for such a system are themselves not trivial and would

represent a significant investment of time and capital to field in

production, another concern emerges regarding the dissaray of

information. This is especially true when all of the data is not being

prepackaged for an ODA infrastructure.

Solving the challenge of complex combinations of units and data

semantics remains an open research area within HPC. A notworthy

contribution to this topic was made by the ScrubJay [28] project.

Scrubjay provided a constellation of tools to gather, store, annotate,

and process queries over precisely the complex types of data we’ve

just described. Effectively, it decouples the collection, representa-

tion, and semantics of data.

Scrubjay allows for data gathered from any source to be placed

in a wrapper which represents it in a common format that can be

transported, stored, and queried. Data is useless without meaning

being ascribed to it, so Scrubjay also provides a framework for ap-

plying semantics to the wrapped data. These semantics are reusable,

and can be applied automatically to all data arriving from various

sources, after they are first annotated manually by a user with

some system expertise. These stable semantics provide the basis for

composable derivation functions, which define rules for inferring

information from or computing relationships between various data

sets. Because the number of derivations is potentially vast, the final

contribution of Scrubjay is a derivation engine that navigates this
space to efficiently find sequences of derivations that are appropri-

ate to resolve queries over the wrapped and semantically-annotated

data.

When queries are processed over this data, results are con-

structed combining both natural joins as well as interpolative joins,
which are translations and projections of compatible kinds of data

into the semantic categories or units of measure that a user has

requesting in their query. When results are delivered, the rules the

derivation engine used when making any interpolative joins are

also presented, so that the derived results are open to verification

and the resulting data set is reprodicible even if additional data or

semantics are added to the system in the future which would cause

the derivation engine to resolve the same query differently. Unlike

a traditional query where a user will specify tables and columns of

data, and apply specific join rules and aggregation clauses, Scrubjay

provides its own query format. In this novel format, a performance

analyst needs only identify a set of data sources, and then an expres-

sion of the measurements of interest, specifying the dimensions of

the domains, and the dimensions and units of the measurements

of interest. Scrubjay then determines whether this request can be

satisfied, and if so assembles the resulting data, allowing for it to be

passed through additional filtering stages which facilitate classic

relational database query semantics.

While the support requirements for the Scrubjay platform are

non-trivial, as it relies on a dedicated cluster of HPC servers to

store and process continuously streaming site-wide monitoring

data, the approach and the tools provided by Scrubjay represent a

meaningful step forward in this open research area.



University of Oregon, Winter 2021, Eugene, OR C. Wood

3.3 Patterns Within HPC
Qualifiers and considerations common within HPC sce-
narios, such as versioning, configuration of operating
environments, hardware variability, communication
hysterysis, and undifferentiated noise in observations,
etc.

Application codes evolve over time, as well as the characteristics of

the input data that codes operate over. Underlying the application’s

code, the operating system code, its version and configuration, the

versions of system libraries and vendor drivers, the versions of

linked libraries, and the general machine environment can be sig-

nificant to the performance of codes in execution. Performance ob-

servations are often relevantly connected to various combinations

of these factors, in addition to direct choices made by application

developers and resulting from the algorithms they implement.

Furthermore, user priority level and permissions may have a

direct impact on the performance characteristics. Some users may

have their codes run transparently on assets that are shared between

multiple users, and experience wild performance fluctuations that

are completely beyond their ability to influence. Higher-priority

users on a machine may delay or even evict lower-priority users,

leading to variability in observations that would require this condi-

tion to be known in order for a user or automated system to make

sense of.

Observations of software in highly-variable environments can
make it difficult to gain insights into the actual performance char-

acteristics of the software. If the code configuration or input set is

always changing, it can be hard to know the ground truth about

general system performance. If the relative priority of a user or

utilization of shared resources are always in flux, it can mask-off the

behavior of particular versions of software. Without some "stable

middle" of observations made about any given configuration, and

a sequence of observations showing that a centroid of observed

values has shifted in one direction of another, it is a challenge to

know whether performance was gained or lost by any given change

to the system configuration or an application’s code.

When the density or distribution of noisey sets of observations

are not regular, a case can be made for simply throwing away the

irregular or outlying information and using what lies more towards

themedian. In such cases, using less of what is observed can actually

be beneficial to the cause of general performance understanding. It

is important to point out though that in order to detect that there is

noise, and that the noise is irregularly dense and centered around a

stable middle, all of the observations of some epoch under consider-

ation will have to have been made and analyzed. Just because some

observation is later deemed to be the result of noise doesn’t de-

crease the importance of it being either exported into a monitoring

system, or exposed to inspection.

On that point, let’s unpack what it means for something to be

exposed or exported.

3.4 Exposing Data
Observability, even in an online sense, does not necessarily require

information to be actively moving around within the operating

environment or monitoring system. It may be sufficient to the

needs of the online monitoring system that various components

are available to be interrogated as needed, that is, that relevant

performance metrics are merely exposed to a monitoring system.

Many sources of information in traditional HPC operating en-

vironments are regular system components that exhibit this "in-

spectability" property. A common way for performance data to be

gathered is to inspect the statistics of a running process via operat-

ing system API calls, or by interrogating a filesystem abstraction

such as /proc/stats which makes this data available through the

form of memory-mapped files which are continuously updated with

new statistics for processes.

In-memory logs and filesystem storage cannot be continuously

populated by performance observations, this could consume all

available resources over a long enough period of time. Because

of the need to not burden the system with it own introspection,

information that is made continuously available via exposure to

inspectability is also often transient in nature. For example, the

history of values in /proc/stats is not retained forever, it is con-

tinuously updated in place, obliterating the prior observations as

new observations are made.

This update-in-place behavior imposes limitations to the types

of understanding that can be gained, such as preventing the chance

to identify that some average performance degradation was due to

the interaction of two independent processes both simultaneously

bursting with abnormal amounts of activity. Another point is that

these systems usually do not retain performance measurements for

processes which are no longer actively running on the machine,

though they may be contributing in essential ways to the perfor-

mance of processes which are still running, such as the case of

complex scientific workflows that integrate the inputs and outputs

of many independent processes, and where metrics are reflecting

the behavior of the workflow in its aggregate performance from

beginning to end.

While there may be counters and averages that track activity

over arbitrary spans of time, the precise update interval, event

density, or general distribution of events that are accounted for

are not features that can be seen without this exposed information

being retained in some way.

3.5 Exporting Data
Given the simple and limited nature of exposing information, in

order to do more sophisticated things with data in our monitoring

systemwemust retain it, and this will involve exporting, or recording
and migrating that information between components of the system.

This movement of information can happen in a number of ways.

Information could be copied immediately, and in full, over to the

receiving component. Or perhaps a lightweight reference to that

information might be dispatched, taking the form of an event record

or data pointer, to make some other element in the system aware

that this information now exists and may be consumed.

In cases of lightweight dispatch of event records or pointers to

data, other structures are implied, such as reference management,

caching, or queing of records, transaction management services,

etc. so that the information those records point to does not get

"garbage collected" and vanish unaccountably. There are trade/offs

here, like everywhere else, in the balance of retention policies for

this information, and the needs of the monitoring system to not



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

consume too large a share of the resources which are meant to be

dedicated to productive computation.

Any time information is moved from one context to another,

leaving the boundaries of a process, a shared library, a tool, or a

machine, it can be said to be exported, for our purposes in describing
this research area. Here are some of the primary techniques or

models for exporting information:

• logging

• checkpoint

• cacheing

• polling and pulling

• broadcast or push

• hybrid push/pull

• publish/subscribe

We will now discuss each of these techniques in turn.

3.5.1 Logging. Generally this method involves a "fire and forget"

or write-only approach to recording information into a monitoring

system. Sources that generate data and spool it out into a log do

not typically also read back from that log. This allows the logging

mechanism to be optimized for low-latency intake of data, such

that it does not pause the work of the application any longer than

necessary.

The mechanics of logging systems are able to be much simpler

than some of the alternatives below, which make this a popular

choice for developers who do not have sophisticated observational

needs. Logs can be as simple as appending output to an asymp-

totically growing file containing messages for a particular session.

Being relatively passive systems, logging mechanisms are typi-

cally enabled (or disabled) via the use of environment variables or

command-line options to applications.

Some logging systems allow for "levels" of logging to be enabled,

so for example one can see only critical messages at a certain level,

or could see all available log output at a different level. This log

level control allows a user to control the amount of overhead that

the logging mechanism imposes at runtime.

3.5.2 Checkpoint. Long-running HPC applications that operate

over large datasets do not typically have enough time to continu-

ously write their intermediate results out to the stable long-term

storage. This is due to the relatively slower speed of I/O that ad-

dresses the long-term storage, in contrast to the high speed system

bus and volatile memory. In order to provide some safeguards

against losing all progress in the event of an application crash, or to

be able to rewind a simulation and advance down a different search

path, applications can choose to periodically write out their data

at some user-defined intervals. These snapshots of data are called

checkpoints.

One technique used for the export and storage of performance

observations is to embed the performance measurements alongside

the application data, and amortize the cost of measurement and I/O

into the cost of creating and storing the checkpoints that the appli-

cation is already producing. The Cheeta [45] codesign framework

provides an excellent example of this, where an overall job man-

agement tool (Savanna) and a low-level performance monitoring

tool (TAU) would emit their metadata and measurements into the

streaming I/O layer (ADIOS) used by the application, embedding,

contextualizing, and preserving performance observations.

This technique achieves two things. Firstly, the amount of over-

head and additional I/O imposed by the performance metrics often

dissapears into the large volume of work done to create and store an

application checkpoint. Secondly, it provides a natural correlation

between the productive work that an application performed, and

the measurements of the performance metrics as it did that work.

When "replaying" the checkpoint data, a developer has at the same

moment a picture of the work performed, as well as the measure-

ments of the execution environment and how efficiently the code

was able to produce that work. This embedding of performance

measures and metadata into an application’s output, or into its

checkpoint snapshots, gives a fair amount of additional provenance,

including the scale of the job and the machine it was run on, so

insights could be gained in future reviews by comparing similar

jobs on the same or similar resources, to observe the impact of code

changes on application efficiency over time.

3.5.3 Cacheing. In some systems, information is generated contin-

ually during an application’s execution, and it is not overwritten in

place but retained, and yet it is also not immediately exported fully

into its final storage location. In such cases, information needs to

be exported into a cache of some kind.

There are diverse reasons for caching information at various

stages of a monitoring system. One simple and intuitive reason

would be to avoid interrupting communication that is being done

by the applications that are being monitored. Communications are

typically orders of magnitude slower than computations. Overhead

can be lowered and performance improved in many cases by re-

taining high-frequency events locally, and perhaps doing some

compression, filtering, or other operations on the data, prior to its

re-export and further transmittal.

Cacheing systems can range in sophistication from something

as simple as a first-in-first-out (FIFO) queue, to complex event-

processing layers with scriptable behaviors allowing custom logic

that can react to the contents of things being stored in the cache.

While it is not required, ideally all caching systems will have some

mechanism in place to alert the user and perform appropriate fail-

safe actions in the event that the cache grows beyond some reason-

able size.

A cache can be implemented as a variety of different data struc-

tures, sometimes embedded within additional data structures. A

ring buffer or unbouned queue is just as valid a means for retain-

ing cached observations as a hash table. The data structure that

is utilized should be selected based on the desired use-case of the

system. A good example of this can be found in the Caliper [12]

performance introspection tool. Caliper uses different data storage

models depending on which services a user has activated at runtime.

This allows it to record information in a manner optimized for low

overhead, factoring in both the type of contextualization that is

needed for observations, and the granularity of observations being

requested.

Nearly all online monitoring systems employ some form of

cacheing or another, especially if they offer support for network

communication of observed data. A monitoring system typically

pools or stages information before writing it out to disk into a



University of Oregon, Winter 2021, Eugene, OR C. Wood

log file, or sending it out over the network in a publish/subscribe

system. In such cases we’d describe it as using a cache, but gener-

ally the system would be a logging system or a publish/subscribe

system, as that reflects the behavior of the system as a whole.

3.5.4 Polling and Pulling. When monitoring information is re-

tained, but frequency or volume of information, or the operating

environment’s sensitivity to overhead is high, it may make sense

to use a pull-based model for monitoring. In this context, pulling

refers to the request and receipt of information being exported from

one context into another. This usually takes places via interprocess

communication methods, and can be within a single computing

node, or coordinated remotely across the interconnect between

nodes.

Oftentimes as well, due to the simplicity of its design, a polling
mechanism is built-in that allows for remote processes to determine

whether it is time to pull information, or perhaps what information

they would like to pull. In this model, the monitoring system will

provide a mechanism for remote components to interrogate the

sources of information to determine whether new information

exists, or the transmission of that information is warranted. Polling

ranges in sophistication from full complex query languages where

results are computed and returned, to simple call-and-response

notifications where the polling message essentially says, "I’m ready,

send what you have."

What is distinctive about polling and pulling models is that com-

munication of the exported information is directed by the receiving

end, and the sending side operates passively, cacheing its informa-

tion and servicing the remote requests for it.

3.5.5 Broadcast or Push. Both the broadcast and push models are

similar in that the sender of information is in charge of the content

and frequency of what is exported. A system can be said to be

broadcasting if it is indiscriminately dispatching information out

to all other components of the system that are capable of receiving

it, regardless of the content of the message or the capacity of the

receiver to use it productively. This can be useful in cases where

network interconnects or on-node IPC can very efficiently duplicate

information out and provide it to multiple recipients within the

same timeframe or with the same resource consumption as it would

take to deliver it to a single recipient.

3.5.6 Hybrid Push/Pull. Push/pull systems [5] allow for disparate

components to discover and engage with each other, but do not

impose a particular coordination scheme or global state to be main-

tained. Each side of communication waits for incoming requests (or

results from their previous outbound requests). Both sides are also

freely permitted to fire off messages or push information out into

the system at their own prerogative. This is useful for observing

parallel applications that have ranks or components that operate in-

dependently of each other or that may finish out of synchronization

with each other.

3.5.7 Publish/Subscribe. Monitoring systems that provide a pub-

lish/subscribe model are able to offer the finest-grain control over

the movement of information of all the models discussed so far.

These systems provide brokering services which connect receivers

and senders together, and facilitate the orderly exporting of in-

formation through the system. In addition to the movement of

monitoring information, these systems also must coordinate the

state of the publishers and subscriber agents themselves, in order

to provide notice about the availability and information sources,

and the presence of information sinks to transmit to. These systems

can make powerful contributions to the orderly operation on an

online monitoring system at scale. Because of their capabilities,

they are can also be difficult to implement, and can require greater

configuration to effectively deploy.

3.6 Introspection, Opacity, and Interface
Standardization

A particularly lamentable fact about extant online monitoring sys-

tems is that they generally have bespoke or opaque interfaces,

protocols, and data formats. Since the beginning of the discipline of

computer science, one of the running jokes amongst practicioners

has been the sarcastic pronouncement, "The great thing about stan-
dards is that there are so many of them to choose from!" This applies
to numerous subdisciplines in computing, but online monitoring

no less. When one does not know that an information source exists,

or when one does not know how to properly interact with it, it

may as well not exist except for the overhead that is incurrent in

its processing.

Many monitoring sources in HPC are produced for specific re-

search experiments as one-off accessories, or for the utility of a

single integrated workflow, or the operation of a specific physical

compute resource. It can be difficult if not impossible to exploit

the capabilities of these masked-off sources to make contributions

to any more generalized online monitoring frameworks. Expert

knowledge and specially-targeted and tailored code would need

to be written in each instance of a deployed monitoring system

in order to discover and then tap into these otherwise-observable

subjects for online monitoring. That kind of knowledge and that

amount of labor, for both initial implementation and for project

maintenance, is obviously prohibitive in comparison to the com-

monly marginal value that can be discovered and extracted through

online monitoring, as the opportunities for large gains are assumed
to be discovered and integrated into the layer of the project-specific
internal introspection that is already in place, having the property

of being opaque that is being discussed here.

It may not be the case though that the introspection capabilities

internal to a particular project or vendor-specific OS and hard-

ware management were future-proofed or able to fully capture

and exploits the opportunities for optimization that are available,

where being integrated into a broader or more holistic monitoring

framework potentially could.

Oftentimes capabilities have been available but the desire to

utilize these abilities is newly emergent, and can be hamstrung by

the lack of observability or accessible control points. One solution

to the challenge of introspection is the use of generic performance

annotation hooks, source-level instrumentation that is disabled by

default and imposes no overhead, but can be activated to yield a rich

set of information at runtime, with detailed contextualization. The

PerfStubs [13] project proposes anAPI and toolkit for this. PerfStubs

is not tied to any specific tools, but provides hooks for performance

monitoring tools to tap into and observe programs in execution.

This means some tools can engage with it in sparse flyweight ways



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

that avoid the overhead of something like full callpath tracing and

context tracking, and take actions more suitable for always-on

runtime monitoring or ocassional auto-tuning.

Understanding application-level context, such has having ex-

plicitly identified iteration boundaries, or having clearly defined

divisions between communication and computation phases, allows

a generic annotation framework to go beyond simple introspection

tasks. Having performance-related annotations already baked into

application codes can render them into both sources of information

and targets of tuning within an online monitoring framework.

The more sophisticated the purpose-built or project-internal in-

trospection system is, the more capabilities it is able to provide for

configuration and efficient operation, there is an increasing like-

lihood that it is difficult to observe or interface with. Very simple

models like logging, for example, where observable surface-area of

noteworthy events are exported into plain-text log files with light-

weight structure such as having tab or comma-delimited data fields,

are relatively trivial to observe and integrate into a broader moni-

toring platform. More complex end-to-end workflow management

systems with support for internal logic and dynamic behaviors and

a robust online information flow implementing publish/subscribe

capabilities, can from the outside be entirely opaque and mask off

the events and status of internal components within the events and

status of the management systems’ data model and protocols.

It is unlikely that pure generality of observables will be achieved,

given the multitudes of design influences and priorities that factor

into fielding and operating even the simplest of HPC platforms

in the modern era. Pure generality would mean that such that all

observables can be heirarchically integrated from multiple perspec-

tives, and with unrestricted visibility of any subsets of phenomena,

and phenomena have stable identities and productively-combinable

semantics. This would, of course, require incredible discipline and

thoughtfulness in the design of the first-order lowest-level compo-

nents of the system. Interfaces between ascending layers of integra-

tion would be required to conform to protocols that conserved the

observability of any desired element operated over or participating

in the computational task acting above it. There are many justifide

reasons why data and activity live mostly in unobservable enclaves

owned and arbitrarily operated over by so many processes. Not

least among these reasons is efficient use of storage resources, and

a desire to maximize the proportion of computation that produces

output significant to users, compared to the amount of work done

to facilitate that productive work.

What we may clearly percieve here is how complicated the

trade/offs become, at multiple levels of understanding. There are

broad and almost existential trade/offs of purpose between the

partially-overlapping motives of stakeholders, developers, users,

and optimizers of HPC systems. Then there are comparitavely mi-

croscopic trade/offs with enormous downstream implications that

are made at the software and hardware design and integration lev-

els of HPC. We can see then that embedding capababilities and

increasing the sophistication within one design layer, or within a

single component of a larger system, can have the consequence

of decreasing the visibility of that layer or component to outside

observers. At the same time, the activity observed by that introspec-

tion system will have high enough overhead to export elsewhere

that it becomes increasingly likely it will not be considered worth

the percieved benefits of doing so.

3.7 Case Study: The CDC 6600 Mainframe
HPC, or "supercomputing", hasmoved through several different eras

from the single-core mainframes of the 1950s, to vector machines,

into the era of distributed memory, heterogeneity, and extreme

scales of devices. As time and technology progressed, the innova-

tions of prior eras were integrated into the newer designs, often

combined into unified components that were then multiplied in

number and interconnected to provide expanded compute capabili-

ties. These growing numbers and increasing reliance on complex

communication patterns led to cyclical renewal to the challenges of

understanding and fully utilizing the available resources of those

machines. In addition to increasing performance of codes, having

insight into the state and behavior of these complex machines could

also increase the performance of developers and users. The easier

some HPC resource is to understand, develop for, and debug, the

more productive work can be achieved with it.

One of the earliest commercially available mainframe machines

was known as the CDC 6600 produced by the by the Control Data

Corporation [83]. Principally designed by Seymour Cray [52], one

of the legendary early innovators of HPC technology, the 6600

introduced a number of ideas which became fundamental to nearly

every HPC system which followed. We mention it here not only

because it was a conspicuously popular and important machine in

the history of HPC development, but because it also shows two

major challenges which are still with us today: Parallel complexity,

and the trade off between opacity and operational efficiency.

The 6600 was designed with multiple functional units which

were able to operate in parallel with each other, at the same time,

reducing the gaps in productive work that are the natural result

of operations stalling as data or new instructions get fetched from

memory. In addition to a central processor (CP) which executed

the majority of user code, there was an instruction cache put in

place to facilitate pipelining, and a cohort of 10 different "peripheral

processors" (PP). This queueing of instructions, and the processing

of the different steps of an instruction (i.e. loading, evaluating,

branching, storing, etc.) simultaneously, where new instructions can

be introduced at the front end of the process as older instructions

are partway through being evaluated and eventually retired, is

typically referred to as pipelineing. Even naive implementations are

capable of providing significant speedups, and these will typically

be bounded by the depth of the execution pipeline and the frequency

with which instructions cause unavoidable delays in the handling

of a stage of execution, preventing that stage from vacating and the

preceding stages from moving forward, delays which are known

as stalls. The 6600’s inclusion of an instruction cache was an early

example of this pipelining idea, which has grown into much richer

and incredibly sophisticated forms in modern HPC.

The overall performance of codes running on this hardware was

in large part a factor of how efficiently a developer could take ad-

vantage of the parallelism the multiple PPs offered. At the time of

the 6600’s development, operating systems and compilers were also

(relatively) new concepts, and were not able to provide many of the

modern advancements of automated optimization or parallization



University of Oregon, Winter 2021, Eugene, OR C. Wood

of code regions. The complexity of how the CP and the parallel PP

components would cooperate to create a kind of pipelining, also

created a novel burden for code developers targeting that platform,

to design their implementations of algorithms around the optimal

behaviors suitable for the 6600’s specific internal coordination pat-

terns. If a programmer did not take advantage of the parallelism on

offer, the machine was hardly able to do it for them, but a higher

degree of expertise and design overhead was thus introduced and

imposed on HPC developers.

While the 6600 was not a true "multiprocessor" system in the

modern sense of the term, it did support some forms of pure par-

allelism, where real work was being done concurrently, and not

merely seeming concurrent through time/sharing techniques like

context switching. The 10 PPs each operated independently of each

other and the CP. Their primary task was to load and store infor-

mation from the main memory of the 6600, freeing the CP to use its

time more productively to perform complex multi-step operations

on that data once it had been fetched from memory. The 0th PP was

dedicated to running the operating system of the entire mainframe,

including the CP. The 9th PP was dedicated to running the user

terminal, managing the display and interactivity for users running

programs and evaluating the results. Activity for memory accesses,

the PPs, and the CPs, was coordinated by setting values for different

states into registers. Importantly, these private registers were not

addressable by user code running on the machine.

Here we see one of the first instances of an intentional trade/off

which remains an interesting challenge all through HPC into the

modern era: Exchanging opacity for efficiency. Private registers effec-
tively created a communication channel for the operating system,

nascent though it was at the time, to orchestrate the behavior of the

machine in support of user software demands, without needing to

impose the overhead of synchronization with the specific activity

of user programs. This did, however, mean that the state of the

machine itself could not be easily introspected on by any software

that was running on it, leading to novel challenges when searching

for optimal use patterns, or debugging a code that was behaving

unexpectedly. Another way in which this opacity exchange could

be seen was in the physical presence of the machine itself. Unlike

many of the machines which preceded it, the 6600 did not have

any integrated display panel of lights to represent the values of

the different registers. Normally these had been used to inspect the

machine state or to perform debugging, even if only for the initial

startup of the machine, after which printouts or a cathode-ray tube

(CRT) display could be used to check state.

It would not have been feasible for the 6600 to offer a lightbulb-

array-based "live look" into the state of the machine registers, as

the physical layout of the device was too dense, and the number of

registers that would need to be displayed was too great to be prac-

tical. So even this early on in the field of HPC, it was understood

that monitoring systems are not free, that there is a trade/off. By

choosing to forgo a physical monitoring system for the 6600, Sey-

mour Cray was able to lower the power requirements, reduce the

operating temperature, and bring the components of the computer

closer together. The physical locality of resources in HPC systems

is significant, because at the cutting edge of design, having reduced

wire length translates directly into performance gains. This informs

the physical layout of the 6600, taking the form of a star-shape with

the CP in the center of the device, to be as close as possible on

average to each of the PPs and memory banks.

The 6600 is one machine, but a representative example, showing

the origins to a couple of the enduring challenges for development

and monitoring in HPC.

3.8 Observability: In Conclusion
Now having familiarized ourselves with both practical and theoret-

ical aspects of making online observations in an HPC environment,

we are equipped to proceed into the discussion of tools and tech-

niques with a richer understanding of the means and meaning

underlying what is being discussed.

4 MONITORING FOR HPC: DEDICATED
FRAMEWORKS

As should be apparent from the discussion so far, the topic of online

monitoring can take on many dimensions in the HPC context. Data

sources may be as diverse as the version numbers of software being

run, XML files emitted by proprietary commercial sensors and

software that report the power of a building’s HVAC systems every

few minutes, or hundreds of temperature sensors scattered around

the server roomwith data being aggregated every few seconds, to in

situ (online) probes of scientific workflow components executing on

massive clusters, high-resolution performance data being captured

and aggregated by the millisecond.

The manner and means by which data sources, applications,

tools, and system services conspire to produce the general outcome

of online monitoring are as diverse as these examples. There are

as many purposes for online monitoring as there are individual

contributors or consumers to the monitoring infrastructure or the

system that it is monitoring.

It is therefore worth making note of the basic fact: Online moni-
toring for HPC is rarely the exclusive role of a single tool dedicated
to monitoring a single aspect of the HPC system. In Monitoring for

HPC: General Topics (§ 5) we will discuss some of the common

challenges of HPC that are closely related to online monitoring,

analysis, and feedback, but are not necessarily centered on a partic-

ular monitoring concept or tool.

For now, in this section, we’ll survey some of the past and present

heavy-hitters amongst purpose-built online monitoring systems [33].

4.1 SuperMon
SuperMon [77] is a set of tools for cluster monitoring, engineered

to be high-speed and to minimize overhead. Delivered during the

terascale era of HPC in the early 2000’s, one of SuperMon’s design

goals and achievements was to allow for low-impact monitoring

high-frequency events, making previously invisible behaviors of

the cluster open to observation.

The system operated online, and could gather data from all nodes

and assemble it into a coherent single perspective of the cluster as a

whole. SuperMon’s developers described the state of the art as being

extraordinarily primitive, being little more than shell scripts that

would periodically run the ping command to test the responsiveness

of nodes. If the ping attempt failed, or if a support notice arrived

from a user saying their job failed or they could not log into a node,



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

machine administrators would then direct their attention to manu-

ally determining the cause of the failure. The monitoring sensors

available to administrators were, in the scenario they describe, lim-

ited to the server daemon that handled user logins, and the daemon

that would respond to ping commands. There were other solutions

which might have worked on their newly constructed Linux-based

terascale cluster, but that did not meet their design requirements

for minimizing overhead and application performance perturbation.

One such tool they mention is rstatd for "remote status" based on

the SunRPC protocol. Again, it was deemed too slow, and also at 20

years old did not offer sufficient flexibility to describe the dynamism

of events and hardware that were beginning to show up in HPC

clusters. They considered this inadequate for terascale computing,

and set about to construct their own solution.

The Supermon cluster monitoring system was built from three

distinct parts:

• Linux kernel module to observe and emit performance data.

• mon: In situ data server to capture and cache data from the

kernel module, and to service requests for that data.

• Supermon: To compose samples from any number of nodes

into a single set of samples that represents the state of the

cluster.

Supermon, like maymonitoring systems, also utilized its own client-

server protocol to exchange information between the three compo-

nents. Its developers used a clever encoding of performance data

into self-describing s-expressions, something like modern-day XML,

but designed originally as a part of the LISP programming language

in the 1950s. These recursively-defined self-describing packets in

the Supermon protocol were advances in utility and flexibility over

the existing RPC packets, which were strictly defined and packed

into binary formats. S-expressions could vary in size and content,

and could be easily processed and composed into various repre-

sentations or aggregations as desired. They found that processing

packets of this nature, even in plain text, was faster than what was

needed to serialize and deserialize everything into rigidly defined

structures, and had the added benefit of not requiring the use of

special RPC compilers or inspection tools.

This system represented a major step forward for online monitor-

ing of HPC clusters, being faster, more efficient, more flexible, and

easier to use than the immediately outdated RPC-based monitoring

state of the art.

4.2 MonALISA
With grid computing, often teams would be using computing sys-

tems that were connected over the internet, distributed across a

nation and even around the world. The number of constituent sys-

tems in a computing grid, and the extreme heterogeneity of them,

posed a challenge to administrators and users who wished to be

able to observe the system in aggregate. Around 1998 the MonAL-

ISA project was born, looking to provide practical solutions to this

problem.

Monitoring Agents in A Large Integrated Services Architecture
(MonALISA) utilized forward-deployed "station servers" positioned

at each of themajor grid system locales. These station servers would

run a variety of agent-based services, forming a dynamic distributed

services architecturem, capable of deploying, starting, stopping,

discovering, and utilizing arbitrary monitoring agents online. This

system was not overly concerned with maximizing throughput of

monitoring data, focusing rather on flexibility and self-organizing

capabilities. It was considered acceptable and also useful for an

agent to capture individual or summarymeasures of its grid location

once a minute, and to aggregate on the order of hundreds of station

server’s data from around the world every several minutes. By

modern standards this is not impressive, but at the time this was

very useful, especially given the deep configurability and flexibility

of the agent-based system. MonALISA was also not concerned

about overhead and performance perturbation, since agents were

running on their own server attached to the grid facility’s network.

In fact, much of the infrastructure of MonALISA was developed in

JAVA, rather than the traditional high-performance languages like

FORTRAN, C, and C++.

Much work was done in this project to facilitate the distributed

nature of grid computing, or to model this monitoring solution

around the features of distributed computing. Agents would place

themselves in a common registry, report changes in their avail-

ability, and report what information they were able to provide.

Monitoring clients could then subscribe to the information streams

from those agents, and this subscription would propagate through

the system, and that client would begin to receive streams of in-

formation from all active and available agents of that type. The

MonALISA framework was built to be resilient to the vissictitudes

of internet connectivity, and so all operations were asynchronous

and all interacting components were loosely-coupled. Individual

sites, or entire enclaves of sites, were capable of performing just as

effectively in isolation as they would when completely joined and

online together.

This project also included a client which could project the moni-

toring data over a global map, allowing for useful dashboard-style

visualizations of a variety of topics, for example: system availability,

load balance, and data link saturations. More than just collecting

and presenting information, MonALISA could also be used to opti-

mize grid-based workflows, based on the types of agents deployed

and the sensitivity of an application to receiving directives and

adjusting plans mid-run. MonALISA interfaced with a variety of

other on-site monitoring tools we will discuss here, such as MRTG

and Ganglia. Those interfaces is where MonALISA gathered much

of the actual site data that was ingested and shared by agents. While

we are in this survey mostly interested in the in situ (online) moni-

toring that is closer to the nodes, applications, and facility sensors,

the ability to step out and up another layer and provide monitoring

across vast distances, uniting multiple clusters into an aggregated

perspective, is a noteworthy achievement by the MonALISA team.

This project can serve as an example for how to think about and

even implement some of the technologies that are required to per-

form those tasks.

4.3 MRTG
The Multi Router Traffic Grapher (MRTG) [57] [56] first emerged

as a single-purpose tool, designed to monitor the inbound and

outbound traffic on a internet gateway router. This perl script would

read the octet counters of the router every 5 minutes, and then

generate a graph which could be seen by visiting a web page hosted



University of Oregon, Winter 2021, Eugene, OR C. Wood

on the same server where the script was running. After it became

open source, people from all over the world began to use it andmake

code contributions, even porting parts of it to C for performance

increases. MRTG quickly grew in sophistication, configurability,

and monitoring capability.

The main bottleneck slowing MRTG’s early adoption was the

need for an external client library to interface with routers over

the Simple Network Management Protocol (SNMP), since not all

potential users had access to or the ability to build such libraries.

Eventually, a perl-based SNMP implementation was integrated into

MRTG and the project was then entirely self-contained and trivially

easy to configure and use. Being implemented in perl, it was also

automatically portable to every platformwhere perl code ran, which

was just about everywhere. Since it was simple, self-contained,

useful for a variety of tasks, free, and open-source, by the mid 1990s

MRTG had become a very popular monitoring tool within the IT

world. Usability cannot be underestimated, when considering the

value and effectiveness of monitoring solutions.

Another way in which MRTG facilitated usability was by em-

bracing a functional opinion about monitoring data: that it is less

important the less recent it is. This allowed for a "lossy data storage"
paradigm in MRTG’s implementation, which would allow MRTG to

compress expiring data into rolling averages of the prior measure-

ment periods, preventing server storage from filling up with old

monitoring data if MRTG was left running for an arbitrary amount

of time. While also offering a boon to administrators who did not

need to manually flush logs or purge databases, it also dovetailed

with the automatic activity graphs that MRTG produced. By default

it would offer a 5-minute resolution of the last 24 hours, every 30

minutes for the last week, and average values for every 2 hours

for the last month. Two years worth of history are archived, but

compressed further to where entries represent the average value

over two day periods. Having the monitoring data constantly flat-

ting and coarsening like this kept the service running smoothly,

and provided handy reports to summarize both immediate events

in detail, and longer-term trends from an overview perspective.

Though only a simple approach, it was very practical, and had the

effect of making this monitoring solution useful for both system

administrators, and site resource managers who needed to keep an

eye on system utilization in order to make purchasing decisions

about new systems or increases in networking capacity.

4.4 RRDTool
The same creator of MRTG also produced a toolkit for rapidly devel-

oping one’s own monitoring solutions, the Round Robin Database

Tool (RRDtool), which was released back in 1999. The core function-

ality it provides is a time-series data model and a suite of utilities

for accessing the monitoring data repository. RRDTool is the cen-

tral data storage solution running beneath a number of popular

monitoring solutions, such as Ganglia, Cacti, Collectd, etc. One

modern incarnation of this tool is the SE-RRDTool [97], which ex-

tends the core features of RRD with the ability to provide semantic

enhancements, that is to say semantic annotations, to data sources.

These annotations improve the ability of tools to utilize informa-

tion gathered within the system, especially for automated learning

systems that do not accomodate "human in the loop" expert review

of monitoring data. SE-RRDTool allows for the expression of data

ontologies for values that are captured in a monitoring service that

utilizes it, including units, quality of service metrics, system heirar-

chy such as cloud entities, and other custom user-defined typings.

In addition to marking up the data, it also enhances queries, allow-

ing for semantic-based retrieval of values with a cursory support

for automatically generating derived or projected values based on

the semantic rules built into user-defiend ontologies.

4.5 Ganglia
Ganglia [66] [42] is a popular distributed monitoring solution that

targets both clusters and Grid computing environments. The Grid

computing is especially supported by the heirarchical design of the

Ganglia data model and services. Its implementation uses XML for

encoding its data, and the previously discussed RRDTool for data

storage and analysis / visualization. By 2004, Ganglia was in use at

over 500 compute clusters worldwide.

Ganglia is built around a monitoring daemon that uses TCP/IP

multicast listen/announce protocols to monitor activity within a

cluster, gathering a set of built-in metrics as well as allowing plugins

to capture arbitrary user-defined metrics. It leans into the idea of

federations of clusters very heavily, supporting this through the

ability to pull in collections of child data sources from various

clusters periodically, and aggregate this information into a unified

data store.

Generally Ganglia has operating overhead below 0.1%, since it

is focused on coarse-grained sampling of metrics like hardware

counters, temperatures, general system activity, network traffic,

etc., and does not need to engage with or interrupt application

processes, and its use of RRDTool for data management means it

does not need to retain large data sets indefinetly. Though it has

local services that run in situ, and it aggregates its information

online, its focus on collecting samples of metrics at a coarser-grain

than the individual processes or components of a workflow lends

it more value to system administration types than to developers

or even users of HPC systems. As discussed above, Ganglia isn’t

intended to be used in all scenarios, and can be complemented or

even potentially replaced for certain production environments or

user sets by other online metric collection services such as LDMS.

4.6 Nagios
Nagios [47] [37] is another online monitoring tool with a strong

emphasis on monitoring of network devices and their service sta-

tuses, to provide automatic notice to administrators when there are

service failures or capacity is being approached. Like Ganglia and

many other services described here, it has an in situ server that runs

in the background local to the nodes of a cluster. This service period-

ically probes the state of the machine and services, and can fire off

triggered behaviors depending on what is observed. Nagios offers a

very flexible plugin system, and over the years has gained hundreds

of plugins and been used as the core component of many different

commercial monitoring solutions, where the commercial product

contributes their added value features in the form of proprietary

plugins which run on the basic Nagios software stack.

There are some limitations to Nagios, including being user-

unfriendly to configure (perhaps why it is often wrapped up into



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

a commercial product), and also not having its own data storage

solution built in. However, despite these limitations, it’s being light-

weight and, when configured, a stable and reliable system monitor-

ing tool, and one that can be infinitely extended through plugins,

Nagios endures as a commonly available monitoring tool for mak-

ing observations to support the management of HPC clusters.

4.7 TACC stats
In 2013, Texas Advanced Computing Center (TACC) fielded a set of

sweeping updates and enhancements to the monitoring solution for

their Linux-based HPC clusters, though keeping the rather straight-

forward name for their project: TACC stats [22]. The central premise

to TACC stats is that users and developers and adminstrators do not

need to do anything in order for it to be enabled and functioning.

TACC stats is constantly enabled and accumulates performance

and utilization metrics for every single job that runs on the cluster.

It utilizes a variety of sources for information, from the filesystem

to the messaging services to the job scheduler, to operating system

performance introspection APIs. All metrics gathered into TACC

stats are resolved to the job and hardware device, so individual jobs

and applications can be analysed separately. Many kinds of metrics

are gathered by this system, from core-level CPU usage, socket-

level memory usage, swapping and paging statistics, system and

block device counters, interprocess communication, interconnect

fabric traffic, memory controller cache, NUMA coherence agents,

and the power control units on servers. TACC stats is built to be

modular, and can be extended to track arbitrary additional data

points based on user interest and data availability.

TACC stats is a fine example of what can be achieved with an

always-on monitoring solution. The overhead of collecting the

monitioring data is simply amortized into the operational over-

head of the cluster itself. Because it has records of every single

job going back to 2013, long-term trends can be observed in use

patterns, so stakeholders can get clear and detailed reports about

how their machines are being used, and what users needs may

be for the design and purchase of future resources, or the target-

ing of talent and funding to support the improvement of software

packages which are seeing the most use. System administrators are

also able to take a more proactive approach to the detection and

diagnoses of hardware failures or configuration issues, since the

system is continuously collecting and integrating the monitoring

data, and constantly reviewing that data for anomalies or events

which were able to be correlated with problems that had previously

been discovered and resolved.

4.8 ProMon
Observing that the vast majority of performance tooling in HPC

systems is targeted at heavyweight program introspection during

development, the ProMon [71] system was developed and fielded in

2015 to offer another approach to online introspection in HPC. The

defining design principle for ProMon captured by it’s full name:

Production Monitoring. Like TACC stats, ProMon is aligned with the

vision of always-on monitoring, so that developers, administrators,

and users do not need to take any additional actions in order to have

access to runtime introspection data, and the potential benefits that

it might enable.

ProMon’s developers are motivated like many in the online mon-

itoring community by the need for introspection into the runtime

environment and into long-running jobs on HPC systems. Remark-

able increases in system scale and heterogeniety, the integration of

massive and complex software projects into campaigns of scientific

workflows operating over in situ data stores, and the complex entail-

ments of individual component failure or soft error accumulation

over a long run, all add increasing motivation to the case for online

in situ monitoring for HPC. The challenge then is to provide flexible

low-overhead facilities to meet this monitoring need, without neg-

atively impacting system stability or software usability. Only then

will users and stakeholders of large and expensive HPC systems be

willing to broadly introduce online monitoring to their production

environment, and not only their development environment.

Since ProMon is a generic and programmable platform, it can be

configured in ways which will cause large amounts of performance

perturbation to applications. However, in realistic scenarios, its

developers have claimed less than 1% overhead by the deployment

and use of ProMon in a production environment. On the develop-

ment side, the ProMon concept outlines how value can be gained

by doing more heavyweight profiling of applications, which can be

stored in performance databases and later integrated to enrich the

more flyweight measurements taken on the production side at run-

time. Given the focus on online monitoring in HPC, we will focus

on the production aspects of the ProMon design. On the production

side, ProMon consists of several components:

• Analyzer

• Injector

• Reporter

• Parser

• FlowGrapher

Other components can be added in the future, but these are the

essential core of ProMon. The Injector inserts monitoring probes

into applications using Dyninst [90] to perform binary instrumenta-

tion, using either static or dynamic instrouemtnation. These probes

collect and organize some local data and then send them over to

the Analyzer using TCP or UDP protocols.

The FlowGrapher is where users of ProMon can identify parts of

their applications that they are interested inmonitoring, to drive the

selection of targets for the insertion of probes. Work on this compo-

nent is ongoing, but it is able to provide textual output identifying

loops within codes which the user can then select from by a numer-

ical identifier. The Analyzer is a robust service capable of receiving

information from a variety of processes from different applications

simultaneously. Implemented as a daemon server, it also integrates

the streaming probe data into a data store with provenance that

can be used to disambiguate similar types of data, or data from

different sources that was generated in parallel. The Analyzer op-

erates on single or dual-event types, where single events represent

milestones such as the end of a simulation step, and dual events

reperesent beginning and end times, or other forms of encoding

events in terms of their duration of overlap with other events.

Like the SuperMon system, ProMon utilizes its own plain-text

data format to exchange information in a simple to use self-describing

format. ProMon’s format is named the Production Monitoring Lan-

guage (PML) and is compliant with the XML standard to make it



University of Oregon, Winter 2021, Eugene, OR C. Wood

very easy to parse, and open the use of countless extant libraries

and commercial data processing tools. It comes bundled with a

variety of tags for annotating performance events in rich ways,

and these tags can be combined, embedded, or added to in order to

extend the capabilities of ProMon to suit an arbitrary array of use

cases.

ProMon is an actively developed project and in its design and

implementation seems to be taking a very sensible and effective

angle of attack on the more difficult aspects of in situ (online)

monitoring at scale and in production HPC environments.

4.9 SOS and SOSflow
This author’s own research work falls squarely within the domain

of online monitoring for HPC, the initial contribution being the Scal-

able Observation System (SOS) model for online characterization

and analysis of HPC applications, and its reference implementation

in the SOSflow [92] project.

Three principles were core to the design and implementation of

SOS when it was introduced in 2016: First, that an effective monitor-

ing system needs to be deployed in situ and running online at the

same time as and colocated with the subjects that it is monitoring.

Secondly, the system needed to provide the ability for interactive

exploration of monitoring data online, in order to support real-time

analysis of metrics, as well as feedback and code-steering. Finally,

the system needed to have a small footprint in terms of memory and

CPU requirements, such that it did not perturb the environment

that it was monitoring.

This also meant that interactions with the SOS system would

need to be loosely-coupled and asynchronous, so that no steps

in observing or communicating information into and out from or

through the SOS system would require an application or operating

environment to block and cease doing productive work. By co-

locating the observation system’s online processing and analysis of

measurements with the workflow components, SOS could improve

the fidelity of system performance data without requireing the

costly delays of synchronization or congestion of shared network

and filesystem resources. While SOS had various other motivating

concepts and grew to enable a wider variety of purposes than simple

observation and online analysis, those are its core tenets.

SOS comprises several components:

• Information Producers: APIs for bringing information into

SOS.

• Information Management: Online and optionally persistant

databases and caches.

• Introspection Support: Services to provide online access to

the SOS databases and high-speed caches.

• In Situ Analytics: Components to perform online analysis, in-

cluding APIs to additional languages condusive to analytics,

such as Python.

• Feedback System: APIs for sending information to non-SOS

entities, as well as providing feedback to sources of data such

that control loops can be established for purposes such as

code steering.

These components work together to provide SOS’s core features:

• Online: Observations are gathered and available at runtime

to capture and exploit features that may only emerge in

that complex interactive moment, and may not be discover-

able during development or with offline single-component

analysis.

• Scalable: SOS is a distributed runtime platform, and as the

scale of the deployment increases, so too does the amount

of available resources for the operating of SOS adjacent a

running HPC application. Because SOS uses loosely-coupled

asynchronous protocols for all of its interactions with ap-

plications and within itself, communication bottlenecks can

be avoided by adjusting settings to perform analysis in situ

rather thanmigrating information online to centralized repos-

itories which might become bottlenecks at extreme scales.

• Global Information Space: Information gathered from nu-

merous sources, system layers, or actors within an execution

environment, all are captured and stored within a common

context, both on-node and across the entire allocation of

nodes. This information is characterized by:

– Multiple Perspectives - Queries over the observed data

in SOS can isolate or aggregate the data in entirely arbi-

trary ways, so the system can service both fine-grained

analysis as well as high-level dashboard views of the sys-

tem state or an application’s progress. Workflows or even

campaigns can be observed in their entirety, and then in-

dividual components of those workflows can be selected

and introspected on in greater detail.

– Time Alignment - All values captured in SOS are time-

stamped so that events which occured in chronological

sequence but in different parts of the system can later be

aligned and correlated.

– Reusable Collection - Information gathered into SOS

can be used for multiple purposes and be correlated in

various ways without having to be gathered or transmitted

multiple times.

– Unilateral Interactivity - Sources and sinks of informa-

tion need not coordinate with other workflow or SOS

components about what to publishj, they can submit infor-

mation and rely on the SOS runtime to decide how best to

utilize it. The SOS framework will automatically migrate

information where it is needed, or resolve online queries

in a parallel distributed manner when that is superior to

migrating all data online for central analysis. SOS is also

capable of managing the retention of unused information,

and allows users to control this selectively at runtime, as

well.

SOSflow was implemented as a multithreaded Linux daemon

and client library, both coded in the C language and designed to be

nearly entirely self-contained so to be easy to integrate into existing

applications, workflows, performance tools, or broader monitoring

infrastructures. It is also coded at that lower level and without other

runtime service dependencies to maximize its performance while

minimizing its runtime footprint in the in situ environments it is

distributed across. SOS runs in user-space, and is invoked at the

beginning of a parallel job script, and brought down at the end of a

user’s job, with the option of exporting the database of observations

to persistant storage for offline analysis.



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

Early versions of SOS were tested out to hundreds of nodes and

the overhead of the system even in early development phases was

typically below 2%, with the highest overhead as a percentage in-

crease in walltime for jobs codeployed with SOS being extremely

short-lived processes, where the presence of SOS increased the

runtime by only 3%, likely to do with the distributed launching of

the SOS runtime daemon within the user’s allocation. The asyn-

chronous and online nature of SOS, and the efficiency of its internal

communication protocols, is one of its most robust aspects. While

the distributed persistent data stores would sometimes increase in

queue depth for transactional commits of batches of data during

times of heavy traffic, queues would eventually drain out and the

time between a value being published into SOS and it being avail-

able for querying or other uses would eventually fall back down to

its initial baseline. Regardless of the system load from codeployed

simulation software or the volume of traffic being processed into

the persistent data stores on the backplane of the SOS runtime, the

velocity of data capture, the time cost of API calls made to SOS

in the client library, and the RTT for probe messages between the

client and the daemon, all remained constant and exteremely high

in all experiments.

SOSflow is being actively developed and has found a variety

of uses in different experiments and projects in the years since

its initial release. One such experiment, an integration with the

ALPINE (Ascent) project for online projection of performance met-

rics into the domain of simulation geometry, will be discussed in a

later section, as it is a neat example of the power of flexible online

monitoring tools designed for the modern in situ HPC paradigm.

4.10 FogMon
While we’ve primarily focused on leadership-class massively paral-

lel Linux clusters in our discussions of HPC, there is room here to

talk about some rather cutting-edge and monitoring technologies

that are looking ahead to possible futures and rather exotic dynamic

computing topologies, though these works to have immediate sig-

nificance to classical HPC concerns.

One such monitoring tool that has recently been developed is

FogMon [24], a lightweight self-organizing distributued monitoring

framework for Fog infrastructures. Cloud computing has introduced

utility computing as a cost-effective way to ship software services

to their final users by substantially reducing the operational effort

required by service providers. Over the same epoch, the Internet

of Things (IoT) has been constantly growing, from the rich com-

pute and sensor capabilities of cellular devices, to the embedding of

wifi and low-power general computational capability in nearly any

device with a power cord or a battery. The number of connected

IoT devices has caused the amount of data being generated to in-

crease explosively, though it is noteworthy that these so-called edge
devices are often much more resource contrained than traditional

HPC machines or cloud servers. Consequently, deployments of IoT

applications are typically broken into two categories: IoT+Cloud

where the majority of computing is offloaded to cloud services, and

IoT+Edge where data is processed locally on the device, and depen-

dence on availability of cloud resources is minimized. IoT+Cloud

gains the massive compute capacity of cloud resources, but can

suffer latency, network congestion, or even service unavailability,

while IoT+Edge allows for immediate interactivity, but can aggres-

sively consume limited resources such as battery life or storage

space, and can impose a great deal of complexity on IoT application

developers to have safe and coordinated information synchroniza-

tion between local and cloud resources.

Addressing these constraints, the paradigm of Fog computing
is beginning to gain traction, where applications are split into mi-

croservices which can be, along with the appropriate data, migrated

and executed at the location or service layer where it is most appro-

priate to. Fog-enabled designs make it possible to reduce network

traffic by processing and filtering IoT data before sending it to the

cloud, and to reduce application response times by suitibly placing

latency-critical services in proximity to the information consumer

at the point of interactivity. In the abstract, Fog computing relies

on a common orchestration layer which delivers a Monitoring,

Analysis, Planning, and Execution loop that can theoretically sup-

port the dynamic, adaptive life-cycle management of multi-service

data-aware Fog applications. FogMon is an actively developed re-

search project which aims to support that orchestration layer, with

a strong emphasis on the monitoring component, and a design that

takes the Fog environment with resources contraints and unstable

connectivity as a first principle. In the FogMon paper cited above,

the authors provide a robust technical account of their research

accomplishments and experimental validation.

FogMon and projects like it have an interesting relationship

with the history of online monitoring in HPC. In one sense, Fog

computing is only the latest evolution of classic Grid computing,
which also involved the loose coupling of powerful HPC resources

over relatively slow or unstable Internet connections, and which

also benefitted from and existence of an orchestration layer. For

an example see the MonALISA project mentioned above. The self-

organizing agents of MonALISA are almost entirely mappable onto

the concepts inherent in the resource-aware microservices envi-

sioned by Fog computing. Obviously there are differences, especially

in terms of the complexity of the modern IoT and Cloud computing

infrastructure, and in the vast asymmetry in compute capability

between edge devices and Cloud servers compared to the more

evenly distributed compute capability at the nodes of a Grid com-

puting platform. Still, there is a clear line from Fog computing back

to Grid computing, and perhaps developers in the Fog space would

be well-served by surveying the research done in that era.

Looking ahead, the Fog computing concepts are likely to begin

to show up in traditional HPC environments, especially at extreme

scales. Gains made in this field, especially by the development

and validation of fundamental service infrastructures designed

for low-impact and extreme-scales, will have direct implication for

classical HPC compute topologies. Designing systems to be resilient

to component failure is an important paradigm when an individual

job may be distributed to so many hardware components in parallel

that the likelihood of a component failing during a job approaches

100% for jobs of non-trivial duration. Further, in complex integrated

in situ environments with many interacting parts and irregular

spikes in demand for shared resources, there is much to be gained

through thoughtfully engineering data processing systems with the

discipline to not rely on direct and synchronous communication for

productivity and progress. As the FogMon researches clearly are

aware, the design and development of these orchestration layers



University of Oregon, Winter 2021, Eugene, OR C. Wood

and loosely-coupled application paradigms is extremely complex

and sensitive task. There will be much more to say about these

topics in the coming years, and the type of online monitoring that

is required by and enabled by Fog computing is likely to be worth

paying attention to for developers and researches interested in

online monitong for HPC.

4.11 LDMS
One of the most important online monitoring frameworks for cur-

rent petascale and future exascale HPC clusters is the Lightweight

Distributed Metric Service (LDMS) [7] [8] [23] [34]. This service

is widely deployed and in consistent use in both development and

production environments. LDMS was designed to attempt to bridge

the gap between coarse-grained system event monitoring, and fine-

grained (function or message-level) application profiling tools. Be-

cause of the higher cost of collecting fine-grained performance

profiling data, wrapping code and extracting detailed information

at a high frequency, often impinging on the performance of the

code being observed, profiling and application tuning have usually

been deemed episodic activities and not a part of normal or pro-

duction executions. This does leave the vast amount of time that

applications are running on HPC clusters largely opaque to detailed

introspection, including understanding codes’ impact on overall

system behavior and other applications running concurrently but

in different allocations. There are inherent complexities to HPC

machine architectures, both in hardware and in their software. This

is including the complex Cray architectures targeted by LDMS’s

developers, featuring deeply customized hardware and proprietary

operating system extensions and closed vendor-specific drivers. For

such systems, ready-made monitoring frameworks such as Ganglia

(discussed below) were unable tomeet even the basic coarse-grained

monitoring needs which were motivating the creation of LDMS.

Sandia National Laboratory and theOpenGrid ComputingGroup

began a collaboration on a set of HPC monitoring, analysis, and

feedback tools to attempt to begin to fill in this observational gap,

and in 2014 began publishing on the monitoring component of that

project, which is LDMS.

LDMS is a distributed data collection, transport, and storage tool

that is highly configurable, consisting of samplers, aggregators,

and storage components to support a variety of formats. Samplers

periodically sample data according to user-defined frequencies,

defining and exposing a metric set, and running independently

from any other deployed samplers. Memory allocated for a metric

set is overwritten by each successive sample, no history is retained

within a sampler. Aggregators pull data from samplers or other

aggregators, again according to a user-defined frequency. Distinct

metric sets can be collected and aggregated at different frequencies,

but unlike samplers the aggregators cannot be altered once set

without restarting the aggregator. Because of the strict behavior

constraints dealing with both memory and sampling frequency,

LDMS’ samplers and aggregators can be very well-optimized to

collect very high volumes and velocities of information with low-

latency and nearly zero impact on overall system performance.

Further, due to the engineering effort put into a low-level RDMA

communication backplane for LDMS, individual aggregators are

able to collect from an enormous number of distributed hosts, with

initial experiments demonstrating successful aggreation of more

than 15,000:1 for RDMA over Cray’s Gemini transport. Storage can

write to a variety of formats, including MySQL, flat files, and a pro-

prietary structured file format called the Scalable Object Store (not

to be confused with the "Scalable Observation System" mentioned

above).

The base LDMS component is its multi-threaded server daemon

ldmsd which is run in either sampler or aggregator mode, and can

support the storage functionality when running in aggregator mode.

The ldmsd server loads the sampler and aggregators dynamically

in response to commands from the owner of the ldmsd process.

All activity within ldmsd, including the activity of samplers and

aggregators and storage modules, is processed by a commonworker

thread pool. In more recent iterations, LDMS has gained support

for more sophisticated in situ processing of sample data, including

the ability to apply complex operators to metric sets as they flow

through various stages of aggregation, and including the ability

to interact with other services or storage systems at intermediate

stages of aggregation within the cluster. In order to retain its high-

level of efficiency, LDMS does not support many of the dynamic

interactivity features of other online monitoring solutions discussed

here. It also does not support embedded or complex self-describing

data types, nor the capture of arbitrary string-based values, rather

LDMS samplers are only able to capture and encode numerica

values in floating point representation, a strict discipline which

allows for some deep optimization to its performance and to data

movement.

LDMS is a rather straightforward project, employing simple de-

signs to great effect. It does only a few things, but it does them

very effectively, and is able to make larger or more sophisticated

contributions through optional integrations with other projects or

tools, serving either as an information source or a sink for them.

This efficiency and simplicity has led to it being widely deployed

in production environments, which in turn has led to it seeing a

lot of activity with various tools seeking to exploit the fine-grained

performance data it is capturing, or participate in dispatching in-

formation into LDMS for other tools to have access to it at runtime.

LDMS will be playing a central role in online monitoring for HPC

for many more years to come, as it has earned long-range funding,

has deep developer buy-in, and offers multiple types of users or

administrators a considerable monitoring capability and value at

nearly no cost.

4.12 CluMon and ClOver
Based on the CluMon cluster monitoring project’s plugin architec-

ture, the Cluster Overseer (ClOver) [49] tool is designed to allow

a high-level overview of the state of a cluster. ClOver came about

around 2009, and utilized the Intelligent Platform Management

Interface (IPMI) protocol, which by then was becoming a somewhat

standard protocol for online management of large computing sys-

tems. Extending the "at a glance" monitoring overview capability

of CluMon, ClOver’s principle design goal was to more completely

decouple the operation of the monitoring infrastructure from some

of the legacy components that CluMon had employed, such as the

PCP services for monitoring, to facilitate genuine extensibility and

realize the flexibility of the plugin architecture model. It was also



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

desired for ClOver to be able to provide its monitoring features to

a variety of outlets, including streaming databases or web-based

dashboards rather than a traditional desktop GUI client. The ClOver

project showed improved performance, flexibility, and ability to be

integrated with a wider array of components from its predecessor.

Where there are monitoring needs and available developers,

there will soon be a system implemented. These two projects in

pairing are a good example of what can sometimes happen in the

HPC research space: When one project begins to show its seams

or has an unavoidable dependency that doesn’t translate well into

newer execution environments, rather than updating or extend-

ing the prior work it is often more fruitful to simply recreate the

project anew but with new tools, techniques, and integrations. This

type of perennial re-design and re-writing of projects is far from

inefficient in many cases, and can lead to better tools with less

baggage, and a more positive ongoing impact. Something to bear in

mind considering our favorite HPC projects and tools, as the pace

of innovation in the HPC world seems unlikely to slow down in

the coming decades.

4.13 Additional Monitoring Solutions of Note
For continued exploration of dedicated monitoring solutions, the

following frameworks may be of interest to the reader:

• Performance Co-Pilot (PCP) [4]

• PerSyst [32]

• LIKWID [85] [64]

• MPCDF [78]

• OpenNMS [73]

• Prometheus [79] [80] + Kubernetes [44]

• Pandora FMS [59]

• Telegraf [15] [62] + InfluxDB [54]

• Zabbix [1] [75] [88]

• collectd [3]

• Periscope [9]

• Ovis [43]

• XDMoD [89]

5 MONITORING FOR HPC: GENERAL TOPICS
As discussed in prior sections, online monitoring for HPC is rarely

a simple as deploying a single service and satisfying a single user

or stakeholder’s interests. Online monitoring for HPC represents a
complex constellation of interests, tools, techniques, challenges, and
possibilities. Oftentimes what is desired from a system will require

understanding and leveraging a variety of perspectives, talents,

and technologies. These solutions can be esoteric and bespoke to

individual HPC deployments or teams, but over the years and across

many sites and projects some common themes emerge. Here we

present a grab-bag of some of the more common challenges (or

scenarios that offer opportunities) related to the online monitoring,

analysis, and feedback dimensions of HPC.

All of this is to say that monitoring solutions are often deployed

for one or two specific purposes, and so a discussion of some of

those purposes is an important part of understanding the role of

monitoring in HPC environments. In each case we will look at a

selection of representative solutions.

5.1 Portability Frameworks as Monitoring
Opportunities

Several underlying principles or themes are motivating this entire

area of research into Online Monitoring, Analysis, and Feedback for

HPC. One of them is productivity, and portability is a key contributor
to productivity.

There have emerged many standards, toolkits, and techniques

now to give HPC developers a consistent API to address, with

consistent behavior, that will achieve the same effect portably on

different systems, past, present, and as far as can be anticipated

into future of HPC architectures. Portability frameworks make

for good instrumentation targets for a variety of reasons, beyond

their widespread adoption. Typically they have well-documented

semantics, the way in which they are used is consistent across

various projects, and in recent times they often offer generic plugin-

like interfaces for instrumentation or tools to connect to at runtime

and interact with applications. Let’s take a look at several of these

solutions and their relationship to monitoring in HPC.

5.1.1 Distributed Computing. Distributed computing refers to a

program running in parallel across several logical or physical com-

pute resources, where each of the "ranks" of the program is isolated

from the other and must communicate via the computer network

interfaces rather than by being able to inspect each other’s memory

directly. It is no simple feat to connect multiple compute resources

together in a way that enables software to run in multiple loca-

tions, discover, and coordinate in parallel to solve tasks. One would

need to write networking code, become aware of load-balancing

concerns, learn about efficient transport algorithms, interact with

low-level device drivers, and implement all of this infrastructure

quickly, bug-free, with security in mind, and then maintain it along

with the main HPC application one set off to implement in the first

place. Coordinating multiple distributed processes and meeting

all of the above criteria is a dauntingly complex task, and yet this

represents a very common need within HPC software. This has

been the case for decades, and this has led in that time to the de-

velopment and widespread adoption of several important solutions

for distributed computing. Here are some of the mechanisms that

have emerged over the years to help HPC developers meet these

common challenges with a high-degree of productivity:

Message Passing Interface (MPI): Arguably one of the most

influential and essential pieces of software in HPC, no conversa-

tion could be complete without discussing MPI [2]. With its roots

going back into the late 1970s, MPI refers severally to its abstract

model for distributed computation, a community-driven standard

with official guides produced for each version, a fully-functional

reference implementation of the standard (MVAPICH [58]), any

standards-compliant API and library to link applications to, and a

collection of runtime services deployed over a cluster in order to

launch and manage the interactions of processes using MPI to send

and receive messages.

In addition to MVAPICH, there are various alternative imple-

mentations such as OpenMPI [30] or more recently ExaMPI [68].

These alternative implementations are often able to provide com-

patibility with new or more experimental features of MPI before

they make their way into the standard reference implementation.

Vendor-specific implementations are also common, as this allows



University of Oregon, Winter 2021, Eugene, OR C. Wood

the vendor to optimize the MPI runtime environment to fit and

exploit features of their chipsets or a cluster’s interconnect tech-

nology that may be protected intellectual property. An example of

this is Intel MPI, and they even issued product-specific optimized

MPI libraries like DCFA-MPI [74], tailored for their Intel Xeon Phi

architecture.

Three common techniques for monitoring and interacting with

MPI applications are through the use of the MPI Profiling Interface
(PMPI, and more recently QMPI), and via the MPI Tools Information
Interface (MPI_T). PMPI works by allowing for any calls to MPI

routines to be intercepted by a tool which implements a wrapper

function with the same signature, and then internally calls the ac-

tual MPI routine. PMPI is rather rudimentary in its functionality, in

that it uses the linking phase of compilation to embed the tool into

the application, connecting the application to the tool’s implementa-

tion of certain API calls, and then connecting any "uninstrumented"

MPI calls directly to the MPI library. This has the benefit of being

extremely efficient, as the entire interface step can be compiled

out of the application, as it is for any routines which are not inter-

cepted by a tool, in the event a tool is being included. A negative

consequence of this design is that, without some careful tool-to-

tool coordination, only one tool at a time can be observing MPI

activity, since the linker will select only one library to link any

give MPI call to, at the exclusion of alternatives. Further, swapping

from one tool to another can in some cases require an application

to be rebuilt entirely. Any software which latches into MPI using

PMPI in order to provide extended functionality will then prevent

other tools from successfully doing the same at runtime, though

often in a way that does not appear to fail to the tools which are

excluded, though their routines do not get called. Depending on

the order in which shared libraries are loaded and resolved by the

host operating system, software with multiple components making

use of PMPI can have undefined behavior without ever emitting

errors a priori, which is deeply undesirable.

The QMPI [20] represents the most cutting edge enhancements

to the classic PMPI model, and it provides a more flexible remedy for

multiple-tool integrations, overcoming PMPI’s limits while adding

additional features and enhancements. QMPI allows for multiple

tools to be registered, and for the wrapper routines of those tools

to be executed concurrently, when calls are made to the parts of

the MPI API the various tools have implemented hooks for.

Introduced in the MPI 3.1 standard[2], MPI_T provides a general

purpose API and enumerated set of tags that tool writers can use to

interrogate any standards-compliant MPI runtimes and get consis-

tently formatted and representative metrics describing the system

and job’s configuration or activity. MPI_T also provides a standard

interface for providing hints or adjusting the settings of the MPI

runtime online, with varying degrees of control based on the spe-

cific type of directive given and the state of the MPI application in

execution. These routines can be a great opportunity to perform

direct monitoring, analysis, and automated tuning feedback, as has

been done recently using a module of TAU [72] that engages with

MPI_T so that TAU coordinates a parameter sweep for settings,

observes and analyzes performance, and is able to optimize [61]

MPI runtime settings online. MPI_T does not supplant the need for

PMPI or QMPI, in fact may of the routines that MPI_T supports are

implemented internally using calls to PMPI or QMPI.

5.2 Monitoring and Multiple Domains
Oftentimes it is beneficial, if not necessary, to combine observations

of multiple layers or domains of a system in order to understand the

behavior of individual applications or system components. When

general end-to-end performance results for an application can be

influenced by factors outside of the selection of algorithms or qual-

ity of the source code, it is especially useful to be able to observe

beyond the source code measurements and application behavior. In

2011, Schultz, et al. identified and discussed [70] three high-level

domains of analysis: Hardware, Application, and Communication.

These intuitive domains have some natural overlap, but a result of

their work was observing an increase in understanding of perfor-

mance data when observations from one domain could be overlayed

or projected over observations made in another.

LBNL’s NetLogger [84] monitoring tool from the late 1990s used

source instrumentation to capture and log performance measure-

ments, and included a suite of offline analysis scripts to assemble

detailed graphs showing flow of application data through a process,

including measurement of time data moved between processes over

a network. Events within NetLogger refer to traces of the processing

of individual chunks of data. Flowing from their source-annotated

origin as a logical application event, timing data could be captured

showing processing through the hardware stages of loading into

cache, being operated on, being queued up, transmitted, and ulti-

mately received for processing on the remote of a distributed paral-

lel system. Tracing chunks of application data rather than logging

flat application performance measurements on a per-code-block ba-

sis gave this tool the power to reveal the complex interactions and

emergent processing bottlenecks which might occur, and express

these observations in a way that was relevant and actionable to the

application user or developer. It also allowed for the performance

impacts with origins outside of the application to be revealed in

terms of their influence on the specific behaviors of the application,

which can be a great help when determining where to focus effort

when attempting to improve application performance.

Uniting observations from sources of information across multi-

ple domains can become a challenge in itself, with many factors

impacting the feasibility of the task and the overhead of the mech-

anisms engaged to provide a solution. The Scalable Observation

System (SOS) [92] was introduced in 2016 with the notion of facili-

tating this kind of cross-domain online monitoring, engineered to

be optimized for interacting with HPC systems and applications

without introducing excessive overhead or blocking the progress

of components which might interact with the SOS runtime. Later

in 2017, SOS was used along with the ALPINE [40] in situ scientific

visualization infrastructure to automatically capture and project

performance data over the geometry being simulated by the ap-

plication. The SOS and ALPINE integration captured a number of

different performance observations, aggregated them online, and al-

lowed for the simulation to be observed in real-time as the geometry

evolved. Users could then select among the available performance

measurements and have that projected out over the geometry of

the simulation. This projection of hardware performance measures

into the application domain allowed for an application developer

to observe the performance of their code not in terms of individual



Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

code regions, but in terms of the complex behaviors that emerge

dynamically as a simulation progresses.

An application algorithm might begin to drift away from opti-

mality in certain conditions, and it is beneficial to easily identify

those conditions, perhaps to then design and introduce an updated

behavior in the application that can perform a test and then switch

processing over to the most suitable algorithm. For example, as two

elements in a system approach each other and begin to influence

each other within the simulation, an approach like this could make

visible as hotspots such conditions as cache misses, mapped out

over the surface of those elements. Markers could be displayed

over those elements in the full context of the scene, or animated as

the simulation progresses, indicating such things as an increased

number of messages between the two parallel application ranks

each responsible for one of the two elements.

While it is possible to discover many origins of performance

issues through direct analysis of tabulated measurements, or by

using traditional performance measurement tools [94], the ability

to watch a simulation evolve online and immediately see the rel-

ative performance disturbances in brightly-enunciated graphical

forms, paired to the phenomena which trigger the degradation of

performance, makes the task of finding and fixing input-dependent

issues much more straightforward.

5.3 Online Monitoring for Large and Complex
Codes
Tools that automatically pinpoint certain aspects of ar-
bitrarily complex software stacks through online moni-
toring, facilitating discovery and correction of bugs or
execution bottlenecks.

Diagnosing performance variation in an HPC environment, auto-

matically, online, or otherwise, is a significant challenge. Experi-

ments [86] [50] show that it is a problem that indeed can be solved,
despite the numerous difficulties to overcome, and so the great work

ever continues. There are at present no one-size-fits-all solutions,

and solutions that are being designed and deployed [67] use parts

of other solutions, or take inspiration from many other projects.

6 CONCLUDING REMARKS
Online monitoring for HPC is a vast and complex field with many

different motivations and trade/offs. As long as HPC architectures

are evolving, compute loads are changing, and scales are growing,

there will be a need for innovative ideas and new research efforts.

As the complexity and dynamism and interactivity of HPC work-

loads continues to increase for the foreseeable future, taking every-

thing presented so far into consideration, it is the online monitoring

solutions that are suitable to production environments and not only

development environments which seem to offer the most promise of

research impact and long-term value to the community. Especially

promising are the ideas and designs for in situ (online) solutions to

support automated monitoring and feedback directly into applica-

tions, to help the runtime environment and the applications within

it adapt and become better fitting to maximize performance with-

out costly code interventions or human-in-the-loop supervision by

developers and users.



University of Oregon, Winter 2021, Eugene, OR C. Wood

REFERENCES
[1] [n.d.]. Zabbix Distributed Monitoring Solution. https://www.zabbix.com

[2] 2015. MPI 3.1 Report. https://www.mpi-forum.org/docs/mpi-3.1

[3] 2020. collectd: The system statistics collection daemon. https://collectd.org

[4] 2020. Performance Co-Pilot: System-Wide Monitoring. https://pcp.io

[5] Omar Aaziz, Jonathan Cook, and Hadi Sharifi. 2015. Push me pull you: Integrating

opposing data transport modes for efficient hpc application monitoring. In 2015
IEEE International Conference on Cluster Computing. IEEE, 674–681.

[6] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,

John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for perfor-

mance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685–701.

[7] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos,

Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden,

et al. 2014. The lightweight distributed metric service: a scalable infrastructure

for continuous monitoring of large scale computing systems and applications. In

SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 154–165.

[8] Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile, Sophia Lefantzi,

Steve Monk, Jeff Ogden, Mahesh Rajan, and Joel Stevenson. 2015. Toward rapid

understanding of production HPC applications and systems. In 2015 IEEE Inter-
national Conference on Cluster Computing. IEEE, 464–473.

[9] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. 2010. Periscope: An

online-based distributed performance analysis tool. In Tools for High Performance
Computing 2009. Springer, 1–16.

[10] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs. 2013.

There goes the neighborhood: performance degradation due to nearby jobs. In

SC’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[11] Tim Bird. 2009. Measuring function duration with ftrace. In Proceedings of the
Linux Symposium. Citeseer, 47–54.

[12] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo

Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:

performance introspection for HPC software stacks. In High Performance Com-
puting, Networking, Storage and Analysis, SC16: International Conference for. IEEE,
550–560.

[13] David Boehme, Kevin Huck, Jonathan Madsen, and Josef Weidendorfer. 2019. The

Case for a Common Instrumentation Interface for HPC Codes. In 2019 IEEE/ACM
International Workshop on Programming and Performance Visualization Tools
(ProTools). IEEE, 33–39.

[14] Peter Braam. 2019. The Lustre storage architecture. arXiv preprint
arXiv:1903.01955 (2019).

[15] Nicolas Chan. 2019. A Resource Utilization Analytics Platform Using Grafana and

Telegraf for the Savio Supercluster. In Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (learning). 1–6.

[16] David Couturier and Michel R Dagenais. 2015. LTTng CLUST: a system-wide

unified CPU and GPU tracing tool for OpenCL applications. Advances in Software
Engineering 2015 (2015).

[17] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API

for shared-memory programming. IEEE computational science and engineering 5,

1 (1998), 46–55.

[18] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang

De Meuter. 2015. Partitioned global address space languages. ACM Computing
Surveys (CSUR) 47, 4 (2015), 1–27.

[19] Alexandre E Eichenberger, John Mellor-Crummey, Martin Schulz, Michael Wong,

Nawal Copty, Robert Dietrich, Xu Liu, Eugene Loh, and Daniel Lorenz. 2013.

OMPT: An OpenMP tools application programming interface for performance

analysis. In International Workshop on OpenMP. Springer, 171–185.
[20] Bengisu Elis, Dai Yang, Olga Pearce, Kathryn Mohror, and Martin Schulz. 2020.

QMPI: a next generation MPI profiling interface for modern HPC platforms.

Parallel Comput. (2020), 102635.
[21] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolf-

gang E Nagel, and Felix Wolf. 2011. Open Trace Format 2: The Next Generation

of Scalable Trace Formats and Support Libraries.. In PARCO, Vol. 22. 481–490.
[22] Todd Evans, William L Barth, James C Browne, Robert L DeLeon, Thomas R

Furlani, Steven M Gallo, Matthew D Jones, and Abani K Patra. 2014. Compre-

hensive resource use monitoring for HPC systems with TACC stats. In 2014 First
International Workshop on HPC User Support Tools. IEEE, 13–21.

[23] Steven Feldman, Deli Zhang, Damian Dechev, and James Brandt. 2015. Extending

LDMS to enable performance monitoring in multi-core applications. In 2015 IEEE
International Conference on Cluster Computing. IEEE, 717–720.

[24] Stefano Forti, Marco Gaglianese, and Antonio Brogi. [n.d.]. Lightweight self-

organising distributed monitoring of Fog infrastructures. Future Generation
Computer Systems 114 ([n. d.]), 605–618.

[25] Pierre-Marc Fournier, Mathieu Desnoyers, and Michel R Dagenais. 2009. Com-

bined tracing of the kernel and applications with LTTng. In Proceedings of the
2009 linux symposium. Citeseer, 87–93.

[26] Daichi Fukui, Mamoru Shimaoka, Hiroki Mikami, Dominic Hillenbrand, Hideo

Yamamoto, Keiji Kimura, and Hironori Kasahara. 2015. Annotatable systrace: an

extended Linux ftrace for tracing a parallelized program. In Proceedings of the
2nd International Workshop on Software Engineering for Parallel Systems. 21–25.

[27] Mohamad Gebai and Michel R Dagenais. 2018. Survey and analysis of kernel

and userspace tracers on Linux: Design, implementation, and overhead. ACM
Computing Surveys (CSUR) 51, 2 (2018), 1–33.

[28] Alfredo Giménez, Todd Gamblin, Abhinav Bhatele, Chad Wood, Kathleen Shoga,

Aniruddha Marathe, Peer-Timo Bremer, Bernd Hamann, and Martin Schulz. 2017.

ScrubJay: deriving knowledge from the disarray of HPC performance data. In

Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[29] Alfredo A. Gimenez and USDOE National Nuclear Security Administration. 2018.

Sonar. https://doi.org/10.11578/dc.20190131.3

[30] Richard L Graham, Timothy SWoodall, and Jeffrey M Squyres. 2005. Open MPI: A

flexible high performance MPI. In International Conference on Parallel Processing
and Applied Mathematics. Springer, 228–239.

[31] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-

performance, portable implementation of the MPI message passing interface

standard. Parallel computing 22, 6 (1996), 789–828.

[32] Carla Guillen,WolframHesse, andMatthias Brehm. 2014. The PerSyst monitoring

tool. In European Conference on Parallel Processing. Springer, 363–374.
[33] Ramin Izadpanah, Benjamin A Allan, Damian Dechev, and Jim Brandt. 2019.

Production application performance data streaming for system monitoring. ACM
Transactions on Modeling and Performance Evaluation of Computing Systems
(TOMPECS) 4, 2 (2019), 1–25.

[34] Ramin Izadpanah, Nichamon Naksinehaboon, Jim Brandt, Ann Gentile, and

Damian Dechev. 2018. Integrating low-latency analysis into HPC system moni-

toring. In Proceedings of the 47th International Conference on Parallel Processing.
1–10.

[35] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and

Dietmar Fey. 2014. Hpx: A task based programming model in a global address

space. In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models. 1–11.

[36] Laxmikant V Kale and Sanjeev Krishnan. 1993. Charm++ A portable concur-

rent object oriented system based on C++. In Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and applications.
91–108.

[37] Gregory Katsaros, Roland Kübert, and Georgina Gallizo. 2011. Building a service-

oriented monitoring framework with rest and nagios. In 2011 IEEE International
Conference on Services Computing. IEEE, 426–431.

[38] Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and Wolfgang E

Nagel. 2006. Introducing the open trace format (OTF). In International Conference
on Computational Science. Springer, 526–533.

[39] Steffen Lammel, Felix Zahn, and Holger Fröning. 2016. Sonar: Automated com-

munication characterization for hpc applications. In International Conference on
High Performance Computing. Springer, 98–114.

[40] Matthew Larsen, James Aherns, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk

Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending

from the Ashes of Strawman. In Proceedings of the In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization Workshop (ISAV2017). ACM,

New York, NY, USA.

[41] Allen D Malony and Wolfgang E Nagel. 2006. The open trace format (OTF)

and open tracing for HPC. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. 24–es.

[42] Matthew L Massie, Brent N Chun, and David E Culler. 2004. The ganglia dis-

tributed monitoring system: design, implementation, and experience. Parallel
Comput. 30, 7 (2004), 817–840.

[43] Jackson R Mayo, Frank Xiaoxiao Chen, Philippe Pierre Pebay, Matthew H Wong,

David Thompson, Ann C Gentile, Diana C Roe, Vincent De Sapio, and James M

Brandt. 2010. Understanding large scale HPC systems through scalable monitoring
and analysis. Technical Report. Sandia National Laboratories.

[44] Víctor Medel, Omer Rana, José Ángel Bañares, and Unai Arronategui. 2016.

Modelling performance & resource management in kubernetes. In Proceedings of
the 9th International Conference on Utility and Cloud Computing. 257–262.

[45] Kshitij Mehta, Bryce Allen, Matthew Wolf, Jeremy Logan, Eric Suchyta, Jong

Choi, Keichi Takahashi, Igor Yakushin, Todd Munson, Ian Foster, et al. 2019. A

Codesign Framework for Online Data Analysis and Reduction. In 2019 IEEE/ACM
Workflows in Support of Large-Scale Science (WORKS). IEEE, 11–20.

[46] Bernd Mohr, Allen D Malony, Sameer Shende, Felix Wolf, et al. 2001. Towards a

performance tool interface for OpenMP: An approach based on directive rewrit-

ing. In Proceedings of the Third Workshop on OpenMP (EWOMP’01).
[47] Sophon Mongkolluksamee, Panita Pongpaibool, and Chavee Issariyapat. 2010.

Strengths and limitations of Nagios as a network monitoring solution. In Proceed-
ings of the 7th International Joint Conference on Computer Science and Software
Engineering (JCSSE 2010). Bangkok, Thailand. 96–101.

https://www.zabbix.com
https://www.mpi-forum.org/docs/mpi-3.1
https://collectd.org
https://pcp.io
https://doi.org/10.11578/dc.20190131.3


Online Monitoring for HPC Systems University of Oregon, Winter 2021, Eugene, OR

[48] Mohammad Alaul Haque Monil, Bibek Wagle, Kevin Huck, and Hartmut Kaiser.

[n.d.]. Adaptive auto-tuning in HPX using APEX. ([n. d.]).

[49] D Montaldo, E Mocskos, and D Fernández Slezak. 2009. Clover: Efficient Moni-

toring of HPC Clusters. (2009).

[50] AdamMorrow, Elisabeth Baseman, and Sean Blanchard. 2016. Ranking anomalous

high performance computing sensor data using unsupervised clustering. In 2016
International Conference on Computational Science and Computational Intelligence
(CSCI). IEEE, 629–632.

[51] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. 1999. PAPI:

A portable interface to hardware performance counters. In Proceedings of the
department of defense HPCMP users group conference, Vol. 710.

[52] Charles J Murray. 1997. The supermen: the story of Seymour Cray and the technical
wizards behind the supercomputer. John Wiley & Sons, Inc.

[53] Akihiro Nagai. 2011. Introduce New Branch Tracer ‘perf branch’. Linux Technol-
ogy Center, Yokohama Research Lab, Hitachi Ltd., Copyright (2011).

[54] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. 2017. Time

series databases and influxdb. Studienarbeit, Université Libre de Bruxelles (2017).
[55] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89–100.
[56] Tobias Oetiker. 2001. Monitoring your IT gear: the MRTG story. IT professional

3, 6 (2001), 44–48.

[57] Tobias Oetiker and Dave Rand. 1998. MRTG: The Multi Router Traffic Grapher..

In LISA, Vol. 98. 141–148.
[58] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-

madreza Bayatpour. 2020. The MVAPICH project: Transforming research into

high-performance MPI library for HPC community. Journal of Computational
Science (2020), 101208.

[59] Simon Patarin and Mesaac Makpangou. 1999. Pandora: A flexible network

monitoring platform. (1999).

[60] Kevin A Huck PI, Allen D Malony, and Monil Mohammad Alaul Haque. 2019.

APEX/HPX Integration Specification for Phylanx. (2019).

[61] Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D Malony, Hari Sub-

ramoni, Amit Ruhela, and Dhabaleswar K DK Panda. 2018. MPI performance

engineering with the MPI tool interface: the integration of MVAPICH and TAU.

Parallel Comput. 77 (2018), 19–37.
[62] Prapaporn Rattanatamrong, Yoottana Boonpalit, Siwakorn Suwanjinda, Ayuth

Mangmeesap, Ken Subraties, Vahid Daneshmand, Shava Smallen, and Jason Haga.

2020. Overhead Study of Telegraf as a Real-Time Monitoring Agent. In 2020
17th International Joint Conference on Computer Science and Software Engineering
(JCSSE). IEEE, 42–46.

[63] Laurynas Riliskis, James Hong, and Philip Levis. 2015. Ravel: Programming iot

applications as distributed models, views, and controllers. In Proceedings of the
2015 International Workshop on Internet of Things towards Applications. 1–6.

[64] Thomas Röhl, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2017. LIKWID

Monitoring Stack: A flexible framework enabling job specific performance moni-

toring for the masses. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 781–784.

[65] Steven Rostedt. 2009. Finding origins of latencies using ftrace. Proc. RT Linux
WS (2009).

[66] Federico D Sacerdoti, Mason J Katz, Matthew L Massie, and David E Culler. 2003.

Wide area cluster monitoring with ganglia. In null. IEEE, 289.
[67] Sam Sanchez, Amanda Bonnie, Graham Van Heule, Conor Robinson, Adam

DeConinck, Kathleen Kelly, Quellyn Snead, and J Brandt. 2016. Design and

Implementation of a Scalable HPC Monitoring System. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 1721–
1725.

[68] Derek Schafer, Ignacio Laguna, and Kathryn Mohror. 2020. ExaMPI: A Modern

Design and Implementation to Accelerate Message Passing Interface Innovation.

In High Performance Computing: 6th Latin American Conference, CARLA 2019,
Turrialba, Costa Rica, September 25–27, 2019, Revised Selected Papers, Vol. 1087.
Springer Nature, 153.

[69] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System

for Large Computing Clusters.. In FAST, Vol. 2.
[70] Martin Schulz, Joshua A Levine, Peer-Timo Bremer, Todd Gamblin, and Valerio

Pascucci. 2011. Interpreting performance data across intuitive domains. In Parallel
Processing (ICPP), 2011 International Conference on. IEEE, 206–215.

[71] Hadi Sharifi, Omar Aaziz, and Jonathan Cook. 2015. Monitoring HPC applications

in the production environment. In Proceedings of the 2nd Workshop on Parallel
Programming for Analytics Applications. 39–47.

[72] Sameer Shende, A Malony, G Allen, J Carver, Sct Choi, T Crick, and MR Crusoe.

2016. Using TAU for performance evaluation of scientific software. In Workshop
on Sustainable Software for Science: Practice and Experiences.

[73] Basem Shihada. 2002. Conceptual & Concrete Architectures of Open Network

Management System (OpenNMS).

[74] Min Si, Yutaka Ishikawa, and Masamichi Tatagi. 2013. Direct MPI library for

Intel Xeon Phi co-processors. In 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum. IEEE, 816–824.

[75] Ed Simmonds and Jason Harrington. 2009. SCF/FEF Evaluation of Nagios and

Zabbix Monitoring Systems. SCF/FEF (2009), 1–9.

[76] David George Solt, Joshua Hursey, Austen Lauria, Dahai Guo, and Xin Guo. 2019.

Scalable, Fault-Tolerant Job Step Management for High Performance Systems.

IBM Journal of Research and Development (2019).
[77] Matthew J Sottile and Ronald G Minnich. 2002. Supermon: A high-speed clus-

ter monitoring system. In Proceedings. IEEE International Conference on Cluster
Computing. IEEE, 39–46.

[78] Luka Stanisic and Klaus Reuter. 2019. MPCDF HPC Performance Monitoring

System: Enabling Insight via Job-Specific Analysis. In European Conference on
Parallel Processing. Springer, 613–625.

[79] Nitin Sukhija and Elizabeth Bautista. 2019. Towards a Framework for Monitoring

and Analyzing High Performance Computing Environments Using Kubernetes

and Prometheus. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 257–262.

[80] Nitin Sukhija, Elizabeth Bautista, Owen James, Daniel Gens, Siqi Deng, Yulok Lam,

Tony Quan, and Basil Lalli. 2020. Event Management and Monitoring Framework

for HPC Environments using ServiceNow and Prometheus. In Proceedings of the
12th International Conference on Management of Digital EcoSystems. 149–156.

[81] Liyang Sun, Guibin Tian, Guanyu Zhu, Yong Liu, Hang Shi, and David Dai. 2018.

Multipath IP Routing on End Devices: Motivation, Design, and Performance. In

2018 IFIP networking conference (IFIP networking) and workshops. IEEE, 1–9.
[82] Benjamin Taubmann and Hans P Reiser. 2020. Towards Hypervisor Support for

Enhancing the Performance of VirtualMachine Introspection. In IFIP International
Conference on Distributed Applications and Interoperable Systems. Springer, 41–54.

[83] James E Thornton. 1980. The CDC 6600 Project. Annals of the History of Computing
2, 4 (1980), 338–348.

[84] Brian Tierney, William Johnston, Brian Crowley, Gary Hoo, Chris Brooks, and

DanGunter. 1999. The NetLoggerMethodology for High Performance Distributed

Systems Performance Analysis. (12 1999). https://doi.org/10.2172/764331

[85] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight

performance-oriented tool suite for x86 multicore environments. In 2010 39th
International Conference on Parallel Processing Workshops. IEEE, 207–216.

[86] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J Leung, Manuel

Egele, and Ayse K Coskun. 2017. Diagnosing performance variations in HPC

applications using machine learning. In International Supercomputing Conference.
Springer, 355–373.

[87] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Caesar, and Brighten Godfrey.

2016. Ravel: A database-defined network. In Proceedings of the Symposium on
SDN Research. 1–7.

[88] TaoWang, Jiwei Xu, Wenbo Zhang, Zeyu Gu, and Hua Zhong. 2018. Self-adaptive

cloud monitoring with online anomaly detection. Future Generation Computer
Systems 80 (2018), 89–101.

[89] Joseph PWhite, Martins Innus, Robert L Deleon, Matthew D Jones, and Thomas R

Furlani. 2020. Monitoring and Analysis of Power Consumption on HPC Clusters

using XDMoD. In Practice and Experience in Advanced Research Computing.
112–119.

[90] William R Williams, Xiaozhu Meng, Benjamin Welton, and Barton P Miller. 2016.

Dyninst and MRNet: Foundational infrastructure for parallel tools. In Tools for
High Performance Computing 2015. Springer, 1–16.

[91] Andrew M Wissink, Richard D Hornung, Scott R Kohn, Steve S Smith, and Noah

Elliott. 2001. Large scale parallel structured AMR calculations using the SAMRAI

framework. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing.
6–6.

[92] Chad Wood, Sudhanshu Sane, Daniel Ellsworth, Alfredo Gimenez, Kevin Huck,

Todd Gamblin, and Allen Malony. 2016. A scalable observation system for

introspection and in situ analytics. In Proceedings of the 5th Workshop on Extreme-
Scale Programming Tools. IEEE Press, 42–49.

[93] Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing

Lusk, and Ian T Foster. 2013. Swift/t: Large-scale application composition via

distributed-memory dataflow processing. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, 95–102.

[94] Cong Xie and Wei Xu. 2018. Performance visualization for TAU instrumented
scientific workflows. Technical Report. Brookhaven National Lab.(BNL), Upton,

NY (United States).

[95] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,

Jason Duell, Susan L Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,

et al. 2007. Productivity and performance using partitioned global address space

languages. In Proceedings of the 2007 international workshop on Parallel symbolic
computation. 24–32.

[96] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux

utility for resource management. In Workshop on Job Scheduling Strategies for
Parallel Processing. Springer, 44–60.

[97] Shuai Zhang, I-Ling Yen, and Farokh B Bastani. 2016. Toward semantic enhance-

ment of monitoring data repository. In 2016 IEEE Tenth International Conference
on Semantic Computing (ICSC). IEEE, 140–147.

https://doi.org/10.2172/764331

	Abstract
	Contents
	1 Introduction
	2 Observability
	3 Capturing and Using Data
	4 Monitoring for HPC: Dedicated Frameworks
	5 Monitoring for HPC: General Topics
	6 Concluding Remarks
	References

