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Abstract—Exascale, a new era of computing, is knocking at
the door. Leaving behind the days of high frequency, single-
core processors, the new paradigm of multicore/manycore pro-
cessors in complex heterogeneous systems dominates today’s HPC
landscape. With the advent of accelerators and special-purpose
processors alongside general processors, the role of high perfor-
mance computing (HPC) runtime systems has become crucial
to support different computing paradigms under one umbrella.
On one hand, modern HPC runtime systems have introduced
a rich set of abstractions for supporting different technologies
and hiding details from the HPC application developers. On the
other hand, the underlying runtime layer has been equipped
with techniques to efficiently synchronize, communicate, and map
work to compute resources. Modern runtime layers can also
dynamically adapt to achieve better performance and reduce
energy consumption. However, the capabilities of runtime systems
vary widely. In this study, the spectrum of HPC runtime systems
is explored and evolution, common and dynamic features, and
open problems are discussed.

Index Terms—Dynamic Adaptation, Runtime System, High
Performance Computing

I. INTRODUCTION

Exascale computing is an eventual reality for which the
HPC community is preparing. Even though there have not
been any exascale systems as of now (Fugaku tops the TOP
500 list with 415 Petaflops as of SC20 [1]) some applications
achieved exascale performance with mixed-precision floating
point operations. After the break down of Dennard scaling [2],
multicore and manycore systems along with heterogeneous
nodes are the main enabling technology needed to realize
the dream of achieving exascale machines. Heterogeneous
systems allow machine designers to battle the temperature
barrier that limits increasing computation power in single-
core processors [3], [4]. Heterogeneous systems with multi-
ple GPUs and multi/manycore CPUs are the go-to solutions
for high-performance systems [5]. Moreover, special-purpose
processors such as tensor processing units, deep learning
accelerators, and vision processors are on the rise and soon
to become a part of HPC facilities.

On one hand, to increase the computational power chip man-
ufacturers are developing multicore and manycore processors
such as Intel Xeon and Xeon-phi processors, NVIDIA Volta
GPUs, AMD’s Radeon GPUs, etc. In addition, chip manufac-
turers are now housing a variety of processing units serving
different types of computing needs on a single die in the form
of shared memory heterogeneous systems [6]. While Intel’s
Ivy bridge [7] and AMD’s fusion [8], [9] architectures were
among the early systems combining two compute-capable pro-
cessing units (i.e., CPUs and GPUs) under the same memory

subsystem, later generations of integrated heterogeneous sys-
tems such as NVIDIA’s Tegra Xavier have taken heterogeneity
within the same chip to the extreme. Processing units with
diverse instruction set architectures (ISAs) are present in nodes
in supercomputers such as Summit, where IBM Power9 CPUs
are connected to 6 NVIDIA V100 GPUs. Similarly in inte-
grated systems such as NVIDIA Xavier, processing units with
diverse instruction set architectures work together to accelerate
kernels belonging to emerging application domains. Moreover,
large-scale distributed memory systems with complex network
structures and modern network interface cards adds to this
complexity. To efficiently manage these systems, efficient
runtime systems are needed. While this race toward superior
computing capacity increases the complexity of systems, it
unveils new challenges for HPC runtime systems to efficiently
utilize the resources by providing an effective medium between
the applications and the machines.

Since the beginning of parallel computing, the capabili-
ties of runtime systems have been shaped by innovations
in computer architectures. Starting from a simple messaging
passing architecture to the newest heterogeneous architectures
with accelerators, runtime systems adapt to provide abstraction
and efficient utilization. Over the years, different runtime
systems have emerged to address the needs of the HPC
community. Early HPC runtimes started as bulk synchronous
Message Passing Interfaces (MPI [10]), where heavyweight
processes communicate with each other through messages to
asynchronous multitasking runtime systems and the computa-
tion is decomposed into fine-grained units of work. However
modern HPC runtimes come in a wide variety. Along with
addressing both shared and distributed memory architectures,
runtime systems employ different execution models for run-
ning units of work on different processors in heterogeneous
systems. Runtime systems designed for task-based execu-
tion (OpenMP [11], HPX [12], Charm++ [13], etc.) oper-
ate by decomposing the total workload into sub-workloads.
Runtime systems designed for heterogeneous systems (e.g.,
StarPU [14]) maintain processor-wise queues to effectively
schedule the workload to increase utilization for the system or
to meet the user demand. There are also runtime systems built
for accelerators like GPUs (CUDA runtime by NVIDIA [15]
and HIP [16] by AMD). Runtime systems for accelerators
are designed to efficiently execute the workload due to the
differences in throughput-oriented execution in GPUs and
CPUs.

HPC runtime systems are active entities during the ex-
ecution of an HPC application and capable of providing



dynamic decisions. Dynamic decisions, such as scheduling
computations to processors or load balancing among compute
resources, increase performance and utilization of the system.
Moreover, some runtime systems can provide energy-aware
decisions so that energy consumption is reduced [17]. Because
energy consumption is one of the biggest concerns for exascale
machines [18], having such a feature in a runtime layer is
desirable for future HPC ecosystems. In order to improve the
overall performance of the systems, some runtime systems
expose interfaces to collect data or dynamically tune the
parameters and provide various configurations to guide the
execution. These dynamic features of the runtime systems vary
widely which limit the development of any standard technique
that works universally. Some runtime systems provide hooks
or callbacks for external performance tools (OMPT [19]) but
many others do not.

The evolving ecosystem of HPC runtimes keeps providing
abstractions at the cost of increasing responsibilities at dif-
ferent layers. With access to the application that is running
and the underlying hardware, an HPC runtime positions it-
self as an active component that can take application- and
hardware-aware decisions. By providing a way to interpret
the relationship between application and hardware, runtime
systems are capable of performing more dynamic decisions
to improve performance and reduce energy consumption. For
this reason, the features and dynamic decision capabilities of
runtime systems need to be studied. Moreover, the evolution
of the HPC runtimes needs to be understood to identify what
drives the change in the HPC ecosystem. For this reason, this
study is organized as follows.

Fig. 1: Organization of this study

A. Organization

There are three components of this study: 1) runtime sys-
tems, 2) dynamic adaptation techniques and capabilities of the
runtime systems, and 3) opportunities for dynamic adaption.
Having these three goals, this study is organized as Fig. 1.
First, the definition of different terms and runtime systems
are provided. Next, in order to understand the driving force

behind the evolution of HPC runtimes, major events of the last
35 years are studied. This evolution study also helps to identify
the state-of-the-art HPC runtimes of current times. Then, HPC
runtimes are categorized. Each runtime system is then briefly
studied to understand the concepts. The main features of the
runtime systems are then compared to identify similarities and
dissimilarities. Dynamic adaptation capabilities and features
of the runtime systems are then studied. Finally, based on the
trend of the runtime systems and observation acquired from 35
years, opportunities that would increase the dynamic adaption
capabilities of the runtime systems are identified.

II. DEFINITION OF RUNTIME SYSTEMS

In order to properly define a runtime system, programming
models, execution models, APIs, libraries, language exten-
sions, and languages are discussed first.

A. Programming models and execution models

Both the programming model and execution model are
logical concepts. The programming model is related to how a
programmer designs the source code to perform a particular
task to take advantage of the underlying runtime system and
the hardware [20]. On the other hand, the execution model
decides how a program written by following a particular
programming model is executed in real time [21]. In short, the
programming model is the style that is followed to program
and the execution model is how the program executes. For
example, the programming model of OpenMP defines how to
express parallelism using directives and parallel regions, and
the execution model refers to the multi-threaded execution of
the code.

B. Parallel programming APIs, libraries, language extensions,
and languages

Parallel programming APIs are a collection of entities de-
signed to express the programming model and execution model
in code. An API can be a new language, a language extension,
or a collection of libraries. For example, the OpenMP [22]
programming API is a language extension while the API for
HPX [23] is based on libraries. Every programming language
provides an execution model and enables the use of different
parallel execution model at runtime.

C. HPC runtimes

A runtime system that defines the execution environment
is an interface between the Operating System (OS) and the
application. It abstracts the complexity of an OS and ensures
portability to different OSs [24]. The execution model of
a program is written by following a programming model
through an API and is ensured by the runtime system. For
example, the runtime system of the C language provides
memory management. A C compiler inserts instructions into
the executable and when it runs, the runtime system, which is
a part of the executable, manages the stack to provide all the
memory management functionalities. However, HPC runtimes
go far beyond the capabilities provided by the basic languages.



Fig. 2: Runtime system

An HPC runtime system becomes an active entity that is
capable of making dynamic decisions based on the execution
model and in some cases, performs communication while the
executable is running. Some programming languages in the
HPC domain host powerful runtime systems. For example,
Chapel [25] is a Partitioned Global Address Space (PGAS or
GAS) language; however, its runtime system manages a global
address space. For this reason, some HPC languages are also
considered in this study.

Figure 2 shows a layer-wise diagram of a runtime system.
At the top layer, the programming model is expressed through
source code by calling the API. When the object file is
created, the compiler inserts necessary codes to carry out
necessary runtime activities. In the second layer, when the
executable is built by resolving all the library calls, the
execution model is expressed (partially). When the program
is executed, the runtime system at layer three sits on top of
the communication layer (or the operating system) to reinforce
the execution model by providing all the runtime facilities
such as scheduling, load balancing, collecting data, etc. Since
most of the HPC runtime systems are active components,
there are interfaces, tools, or techniques available for direct
interaction with the runtime layers. Using these interfaces,
the activities of runtime systems can be monitored, altered
or controlled. At level five, the operating system sits where
hardware counter data can be collected. Some runtime systems
collect the hardware counters from the operating system.

D. Example: how programming models and execution models
work together

To demonstrate and clarify the relationship between a pro-
gramming model and an execution model (a relationship that
enables the runtime system to orchestrate the execution), a
simple OpenMP experiment is presented. In this experiment,
an OpenMP parallel region is declared to print the thread
numbers. Figure 3 shows the impact when the compile and

Fig. 3: Example of OpenMP hello-world

linking flag of GOMP (fopenmp) are used and omitted. When
both the compile and linking flag are used, the code fully
works and shows ids of different threads. In this case, the re-
lationship between the programming model and the execution
model is perfectly established and the runtime system can do
its job properly. When no flag is used for both compilation and
linking, the linker provides a linking error since it could not
resolve the OpenMP API call. However, an interesting thing is
observed when the compilation flag is not used but the linking
flag is used. The exact code that is written by following the
programming model and correct API calls only showed the
execution of one thread. This happened because the compiler
could not provide the necessary information to the runtime
system to follow the execution model. This becomes more
visible when the compilation flag is used but the linking flag
is not. In this case, two additional linking errors showed up.
GOMP parallel start() and GOMP parllel stop() are
two function calls inserted by the compiler that enable the
compiler to specify the execution model to the runtime system.

III. EVOLUTION OF HPC RUNTIMES

In this section, the evolution of HPC runtimes is discussed.
In order to understand what shaped contemporary HPC run-
times, major events and runtimes developed over the last
35 years are explored. The reason behind choosing 1985 as
the starting year because parallel computers started becoming
more available around that time. It is no secret that HPC
runtimes are majorly shaped by innovations in the field of
computer architecture. A closer look is taken at the correlation
between the ever-changing computer architectures and the
evolution in runtime systems. The whole period from 1985
to the present day is divided into four parts considering the
events in 10 years duration. After, the state-of-the-art runtimes
are identified to take a closer look.

A. Before 1985

In the 1970s, for providing the highest performance, vec-
tor computing was the go-to solution [26] (such as single-
processor machine Cray-1 [27] and multiprocessor machine Il-
liac [28]). In the 1980s, multiprocessor vector machines started
becoming available in the form of Massively Parallel Proces-
sors (MPPs) (e.g. the concept of a hypercube [28])). Such
an example is Caltech’s Cosmic Cube [29] (fully operational



Fig. 4: Evolution of HPC runtimes for the last 35 years

in 1983) which was built using 64 nodes in point-to-point
connection without shared memory. With this configuration
message passing between nodes was necessary. Even though
the idea of messaging passing architecture is successfully
demonstrated by Cosmic Cube, the idea of message passing
for distributed memory system already existed in other efforts,
such as the Eden project for object style programming for
distributed systems [30]. After the success of Cosmic Cube,
other manufacturers started building cube machines and the
trend lasted for a decade. At the same time, cluster computing,
where compute nodes were loosely connected through network
interface cards, was also gaining popularity in the 1980s for its
simplicity in design [31]. Even though there were differences
in architectures between hypercubes and clusters, during this
decade it was established that a message passing architecture
could provide high scalability at a low cost.

B. HPC runtimes in 1985-1995: message passing architecture

Having realized the potential of message passing architec-
tures, vendors, national labs, and academia started providing
programming interfaces that could facilitate message passing
for distributed memory systems. Intel developed the NX/2
operating system [32] which provided messaging passing
interface through system calls. Parasoft developed the Ex-
press [33] library that made a program portable to differ-
ent machines (supported C and Fortran). Argonne National
Laboratory (ANL) introduced p4 [34]. Similarly, IBM in-
troduced the Venus [35] communication library for message
passing. Moreover, PVM [36], a collaboration between Oak
Ridge national laboratory (ORNL), University of Tennessee,
and Emory University supported message passing for het-
erogeneous parallel computing. Chameleon [37] from ANL
provided interoperability between different message passing
libraries. These efforts focused on enabling message passing
for parallel computing and took place in the late 1980s and
early 1990s. However, because of different implementations by
different manufacturers, portability became an important as-
pect. For this reason, in 1992, 60 people from 40 organizations

started the Message Passing Interface (MPI) standardization
effort at a workshop called “Workshop on Standards for
Message Passing in a Distributed Memory Environment”. By
1993, the standard was completed and presented at SC93. In
hindsight, this probably was one of the biggest initiatives that
shaped modern high performance computing domain. After
the standardization, MPICH [10] was released. MPICH (CH
comes from Chameleon) is still one of the popular MPI
implementations today. Even in 2021, MPI is the de-facto
standard for HPC and it will not be an overstatement to say
“MPI is everywhere”.

Apart from the rise of MPI, some other events took place
which did not immediately become as successful as MPI,
but planted the seed for the future. One such effort is the C
language extension Split-C [38], which enabled the idea of a
global address space by providing the option for declaring dis-
tributed array. With this configuration, one processor could ref-
erence pointers to another processor through communication.
Even though the idea of a global address space was not new at
that time, (Amber systems [39] mentions a similar idea about
global address spaces) Split-C is considered to be the precursor
of UPC, a PGAS language of modern times (SHMEM is
also credited for one-sided communication which is one of
the ideas of PGAS model [40]). Moreover, Charm++ [13],
introduced in 1993, implemented a task programming model
and is a precursor to the asynchronous many tasks (AMT)
based runtimes. Another work, Active Messages [41], provided
the idea of efficient message driven computation (opposed
to message passing) which is found in modern HPC run-
times. The idea of loose synchronization is mentioned by
Midway [42], which provided an opportunity to synchronize
caches in distributed memory systems. The runtime carried
out the synchronization through a barrier that is expressed by
the programmer. The main idea was to have loosely bound
synchronization criteria where the programmer was in charge
of deciding whether a synchronization was necessary or not.



C. HPC runtimes in 1996-2005: shared memory and dis-
tributed shared memory

MPI standardization effort provided a great example of how
a community-led effort could streamline an HPC Program-
ming model. Riding off the success of MPI in distributed
memory, a standard for shared memory programming models
was introduced in 1997. First for Fortran and then for C,
the OpenMP architecture review board (OARB) [11] released
its standard to provide an alternative to MPI for increasing
parallelism in shared memory systems. The standardization
provided portability for OpenMP and was widely accepted by
industry and academia. With OpenMP and MPI standardized,
the HPC community was given two means to program both
shared memory and distributed memory systems. By the end
of the 1990s, the HPC community realized the drawbacks
of explicit synchronous message passing at the front end
for data transfer. For this reason, the concept of distributed
shared memory gained traction and the concept of Partitioned
Global Addressed Spaces (PGAS) was introduced. Three
PGAS languages were launched in the late 1990s and early
2000s. UPC for C [43], Co-array Fortran for Fortran [44] and
Titanium for Java [45]. These separate languages provided
options to declare distributed arrays where the runtime system
for the languages performed one-sided communication through
communication interfaces like the GASNet communication
library [46]. The GASNet communication interface is capable
of using MPI for its one-sided communication. Later two more
prominent PGAS languages were introduced, X10 [47] and
Chapel [48], which introduced an asynchronous task model for
distributed execution while utilizing a global address space.

D. HPC runtimes in 2005-2015: multicore, manycore and
heterogeneity

In the mid-2000s, processor manufacturers were hit with
the temperature barrier, which limited them from increasing
processor performance by increasing the frequency in a single
core. This obstacle led to the start of the manycore boom.
Even though manycore processors existed previously, after
2005 they became mainstream for all levels of computing.
This opportunity was realized by NVIDIA, a graphics pro-
cessor manufacturer, who started manufacturing their graphics
processor for general-purpose computing. This brought about
the era GPGPUs. With the release of CUDA [49] by NVIDIA
in 2007, accelerator programming drew the attention of the
HPC community. As a result, runtime system providers started
working towards supporting GPUs in their programming en-
vironments. Heterogeneous systems, where CPUs and GPUs
are housed in a single node, led runtime developers to invent
new approaches to harness the computing power from such
systems. Programming standards and APIs for heterogeneous
systems such as OpenCL [50], OpenACC [51] and StarPU [52]
were introduced. These two major changes (multicore CPUs
and manycore GPUs) increased in-node parallelism and ex-
posed the disadvantages of using synchronisation-based mes-
sage passing in MPI. Since explicit message passing with
bulk synchronous barriers make both sender and receiver wait,

it restricts the utilization of processor cores to reach their
peak utilization (later MPI started providing asynchronous
communication). For this reason, fine-grain tasks (instead of
heavy MPI ranks or OpenMP threads) became one the most
active fields in runtime systems research. Since lightweight
tasks can be easily yielded and resumed when compared
to heavy-weight OS threads, the asynchronous task based
execution model received attention for increasing utilization of
multicore processors. To provide high computation and com-
munication overlap, many Asynchronous Many Task (AMT)
runtime systems appeared, such as HPX [12], Cilk Plus [53],
TBB [54], Legion [55], etc. Moreover, with C++11 released,
highly templated code with improved asynchronous features
began to be adopted by the runtimes. The AMT execution
model is considered by the community to be a better fit for
exascale computing, which is envisioned to appear by the early
2020s.

E. HPC runtimes in 2015-Present: asynchronous many task
and abstraction

After 2015, the HPC community started focusing more on
abstraction since multiple computing paradigms (CPU and
GPU) in one node became common. For this reason, initiatives
for providing programming approaches in a portable way
(such as Kokkos [56]) started appearing. Moreover, AMD
released its open-source GPU programming capability ROCm
platform (HIP) [57]. Since there were already a considerable
number of AMT runtimes introduced, the HPC community
also started realizing the need for an AMT interface. A group
of runtime system researchers from industry, national labs, and
academia launched Open Community Runtime (OCR) [58]
by releasing its specification. Moreover, Argobots [59] was
introduced to work with different asynchronous many task
execution runtimes.

F. Reduction and identification of state of the art

At this point, it is clear that there are a several domains
into which HPC runtimes can be divided. Even though the
MPI+X model is the commonly adopted model for scientific
applications nowadays, many of the modern runtime systems
use MPI at a communication level where MPI message
sending and receiving is done by the runtimes rather than
the programmer. Considering the recent developments, HPC
runtimes can be categorized into four categories: 1. shared
memory runtimes, 2. task based runtimes, 3. GAS based
runtimes (languages), and 4. heterogeneous runtimes. Figure 5
shows the distribution of HPC runtimes. It is easy to notice
that 20 runtime systems are chosen that represent the whole
HPC runtime spectrum. HPC runtime survey papers [60], [61]
are consulted to choose these runtimes. Some runtimes can
provide multiple features, but the categorization is based on
what the runtime is commonly known for. In order to show
the overlap in the features provided by the runtimes, Table I
shows which runtimes support which features. In this table,
“Main” indicates the main objective of the runtime systems,
“Extension” indicates later adoption, and “Supports” indicates



Fig. 5: Different state-of-the-art HPC runtime systems. White
Text = Category name and Black Text = Runtime name.
Runtime systems’ color coding, Blue = Many task runtime,
Green = GAS based runtime, Red = Heterogeneous capa-
bility enabler runtimes (Accelerator runtime included in this
category), and Purple = Shared memory runtime. This color
coding is followed throughout the paper. Note: MPI is not
here. Because it’s the top view. MPI is now part of many of
the runtime systems.

the runtime is capable of supporting the feature, but that is not
the main target for the runtime system.

Name Shared Mem Aync. MT GAS Heterogeneity

Cilk Plus Main Main No No
TBB Main Main No No

OpenMP Main Extension No Extension
Nanos++ Main Main No Extension
Qthread Main Main No No

Charm++ Supports Main Main Extension
HPX Supports Main Main Extension

Legion Supports Main Main Main
OCR Supports Main No Main

Argobots Supports Main No Main
Uintah Supports Main No Extension

PaRSEC Supports Main No Extension
UPC Supports Extension Main Extension

Chapel Supports Main Main Supports
X10 Supports Main Main Extension

StarPU Main Main No Main
OpenCL Main No No Main

OpenACC Main No No Main
CUDA Main No No Main

HIP Main No No Main

TABLE I: Runtime systems categorisation. Main = main
feature, Extension = extended later on, Supports = provide
supports, and No = Does not support.

IV. SHARED MEMORY RUNTIME SYSTEMS

In this section, shared memory runtime systems are briefly
discussed. Table II lists the shared memory runtime systems.

A. Cilk plus

Cilk [62] originated from MIT in the mid-1990s and later
Intel acquired it when MIT licensed it to Cilk Arts [63]. Intel
released Cilk Plus [53], [64] as a part of the ICC compiler
suite. Cilk plus uses a nonblocking spawn function to generate
new tasks in a DAG which later syncs (spawn-sync), which
implements the fork-join model. Cilk plus extended C/C++
by adding three keywords cilk for, cilk spawn, and cilk sync.
Cilk Plus provides a compiler-driven approach for task-level
parallelism in shared memory machines. When tasks are
spawned, they become a part of a DAG where data dependency
exists. The scheduler enables the execution of the DAG by
placing these tasks into OS threads when the tasks are ready
to be executed. Cilk plus was supported by the Intel, GCC,
and CLANG compilers. However, recently Intel decided not
to continue support for Cilk Plus in the future releases.

B. TBB

OS thread-based solutions for programming multi-core sys-
tems are not portable. For this reason Intel TBB [54], [65]
(oneTBB) is a C++ template library for threading abstraction.
TBB is mainly designed for shared memory multicore CPUs.
It expresses the parallelism in terms of logical tasks (C++
objects) which are scheduled to a pool of OS threads. In other
words, it provides a wrapper to use the OS threads to make
the program portable. The logical task provides a faster way
to create work for OS threads, since creating and terminating
OS threads are expensive operations (TBB tasks are 18 times
faster than OS thread creation and termination). TBB provides
a range of tools for parallel algorithms, including for loop, for-
each loop, scan, reduce, pipeline, and sort implementations.
These parallel constructs can be applied to various data
structures such as queues, hash maps, unordered maps and
sets, and vectors. TBB also supports both blocking and Lamba-
based continuation-passing styles.

C. OpenMP

OpenMP [66] is one of the most popular and widely used
names in the HPC community for its shared memory program-
ming model. It is managed by OpenMP Architecture Review
Board (OARB) [67]. This board has members from all leading
manufacturers. OARB published the first specification [22] in
1997 for Fortran and in the following year, a C/C++ standard
was released. The increasing availability of cache-coherent
scalable shared memory multiprocessors (SSMPs, now called
SMPs) in the mid-1990s inspired the creation of such a model.
One of the main reasons the HPC community depended on
MPI was the lack of cache coherence in the early machines
(MPI’s popularity for distributed memory systems is another
reason). However, MPI was unable to provide increasing
parallelism, which propelled the creation of OpenMP. In the
beginning, OpenMP was targeted for data-parallel execution
for CPUs only in Single Instruction Multiple Data (SIMD)
fashion. In 2007, the task parallelism construct was proposed
to increase the usability for OpenMP 3.0 specification and
adopted the popular concept [68]. Later in 2013, OpenMP



4.0 specification included computation offloading options for
GPUs. Using directives, parallel regions are declared. There
is one master thread that forks multiple threads for data and
task parallel computation. When a computation finishes, all
the threads are joined to the master thread. For this reason,
OpenMP is often referred to as a fork-join model.

D. OmpSs and Nanos++

OmpSs [69], [70] is an effort from Barcelona Supercom-
puting Center (BSC) which made an appearance in the HPC
world in 2011. The main idea of OmpSs is to extend OpenMP
and StarSs [71] for a directive-based asynchronous task exe-
cution model that also supports accelerators such as GPUs,
FPGAs, etc. along with CPUs. OmpSs is implemented as an
extension to OpenMP that enables asynchronous task features
that target newer architectures like GPU, FPGA, etc. Over the
years, many features from OmpSs were included in OpenMP
specification [70]. (Similar to the relationship between C++
standard and Boost libraries). For this reason, OmpSs is
considered as a forerunner of accelerator-based OpenMP. Like
OpenMP, OmpSs also supports distributed computing through
MPI. In OmpSs, provides data access directionality clauses
(in, out, inout) to provide node level asynchronous execution
by expressing data dependencies [72]. It also supports a single
source file approach for accelerators. OmpSs is built on top of
Mercurium source to source compiler [73] and the Nanos++
runtime system [74]. The Nanos++ runtime provides user-level
task parallelization based on data-dependencies.

E. Qthreads

Qthreads [75], [76], an effort from Sandia lab introduced in
2008, is a user-level library for on-node multithreading. The
initial target was to provide massive level multithreading with
rich synchronisation [77]. With Qthreads, when an application
exposes parallelism (specified by the user) in a massive
number of lightweight user-level threads, the runtime system
dynamically manages the scheduling of tasks. Apart from
supporting a standalone execution option, Qthreads also used
as a backend runtime for Chapel language [48]. Moreover,
the Kokkos C++ library, a performance portability initiative
from Sandia Lab for efficient management of data layout
and parallelism for manycore processors is also extended
to work with the Qthreads runtime [78]. For memory level
synchronization, Qthreads uses the Full/Empty bit concept. In
Qthreads, several shepherds are created during initialization.
Shepherds are collections of user-level threads used to express
memory regions (NUMA), processors, etc. A thread can be a
part of multiple shepherds. The Qthreads API can limit the

number of threads being created through futures, which is a
user-level thread yet to be executed.

V. TASK BASED RUNTIME SYSTEMS

Task based runtime systems are discussed in this section.
Table III shows task based runtimes.

A. Charm++

Charm++ [13] is one of the pioneers of modern asyn-
chronous task based runtimes. It originated at the University of
Illinois at Urbana Champaign (UIUC) in 1993. The Charm++
programming model and runtime implements a message-
driven paradigm where computation starts after receiving
messages. It works through parallel processes called chares
which are C++ objects. These objects have entry points which
are executed when a message is received. A program is
over decomposed in terms of chares and the execution is
completely non-deterministic since chares are invoked asyn-
chronously [79]. The runtime maintains queues for ready
messages and distributes them to processing elements for
execution. Charm++ also maintains a global address space.
For the last 30 years, Charm++ has matured and is one of
the well-researched runtime systems in the HPC domain. It
provides compatibility with new hardware, accelerators, and
network technologies.

B. HPX

HPX [12] runtime is from Louisiana State University (LSU)
and was introduced in 2014. HPX implements the concepts of
the ParalleX execution model [80]. HPX strictly conforms to
C++ standards and enables wait-free asynchronous execution.
HPX implements active messages where computation is sent
to data instead of sending data towards computation. In HPX,
active messages are called parcels and processing elements are
called localities. The runtime system implements an Active
Global Address Space (AGAS) that is capable of object
migration. AGAS generates the Global ID and GIDs that are
used to locate an object in the system. Unlike systems such
as X10 [81], which are based on PGAS, AGAS systems use
a dynamic and adaptive address space that evolves over the
lifetime of an application. Like Charm++, HPX is also built on
the idea of over-decomposition of the work. The asynchronous
nature of the execution ensures the compute resources are
highly utilized since computation and communication are
overlapped.

Name Who When Open Source Implementation Target One line description

Cilk Plus MIT, Intel 1995 Yes Extension CPU Spawn-join with non blocking task creation.
TBB Intel 2007 Yes Library CPU Light task/threads on OS threads with work-stealing scheduling.

OpenMP OARB 1997 Yes Extension CPU and GPU Directive based shared memory programming.
Nanos++ BSC 2011 Yes Extension CPU and GPU Forerunner of OpenMP for asynchronous execution.
Qthread Sandia 2008 Yes Library CPU Back-end runtime for shared memory many tasks.

TABLE II: Shared memory runtime systems



Name Who When Open Source Implementation Target One line description

Charm++ UIUC 1993 Yes Extension Distributed Pioneer of many task massage driven computation.
HPX LSU 2014 Yes Library Distributed Moving data to work and active GAS.

Legion Stanford 2012 Yes Library Distributed Logical region with GAS.
OCR Intel, Rice U. 2016 Yes Library Distributed An open community runtime interface.

Argobots ANL 2016 Yes Extension Distributed lightweight low-level threading API with stacking schedulers.
Uintah Univ. of Utah 2000 Yes Library Distributed Concurrent CPU-GPU scheduler for asynchronous execution.

PaRSEC Utk Knoville 2013 Yes Library Distributed Uses data-flow model in distributed heterogeneous environment.

TABLE III: Asynchronous many task runtime systems

C. Legion

Legion [82], [83] is an effort from Stanford University
and Los Alamos National Laboratory (LANL). Legion is a
data-centric programming model targeted for heterogeneous
distributed systems. Legion aims to provide locality (data
close to the computation) and independence (computation on
disjoint data and can be placed on any compute component
of the system). The main idea of Legion is based on three
abstractions for data partitioning: using logical regions, a tree
of tasks for using the regions, and a mapping interface for the
underlying hardware. Logical regions are described by index
spaces of rows and field space of columns. Each region can be
sub-divided into sub-regions through index spaces (rows) and
fields of spaces (columns). A tree of tasks starting from the
root level with tasks spawning recursively into sub-tasks has
specific access to logical regions. All tasks must specify which
logical regions they have access to. A tree of tasks with its
associated logical regions is mapped to different processing
components in a distributed environment using the mapping
interface of Legion. The mapping interface assigns the logical
regions into physical memory. While the mapping decision
can impact performance, it ultimately provides correct results.
The mapping can be tuned for specific hardware because
a mapping decision that can be best in one hardware may
not be the best for other systems. While the correctness
provides portability, the tuning is done by the users for better
performance. Both the partitioning and mapping to hardware is
the user’s responsibility, while the runtime ensures coherence
of data system-wide. Legion provides communication through
another low-level runtime system called Realm [84] which
supports asynchronous, an event-based runtime for task-based
computations. Through Realm, Legion provides a global view
of memory and support for CUDA. Realm is dependent on
GASNet for communication through RDMA.

D. OCR

A comparatively new runtime system, the Open Community
Runtime (OCR) [85] is a joint work from Intel and Rice
University. Currently the University of Vienna [86] and PNNL
have implementations of OCR, which are called OCR-Vx [86]
and P-OCR [58], respectively. The main target of the runtime
is to realize the opportunity of exascale systems. The authors
argue that, in the exascale era, the HPC community will
look for an alternative to MPI+X model. OCR started with
its formal specifications [87]. The interface specification is
similar to the MPI and OpenMP specification.s OCR is an

asynchronous many task (AMT) runtime system for exascale
where the main idea is to express computations through tasks,
events, and data blocks. The data blocks are part of the
application which is managed by the runtime. In a DAG of
tasks, events are used to set up and resolve a dependency. OCR
terms these tasks as event-driven tasks (EDTs). EDTs can run
asynchronously and the runtime system guarantees when all
the dependencies are met, EDT will run in the future. The
tasks, events, and data blocks are presented as an object with
pre and post slots for expressing the dependencies.

E. Argobots

Argobots is a lightweight low-level threading API developed
at Argonne National Laboratory (ANL) as part of the project
Argo in 2016 [59], [88]. Argobots provides integrated support
for MPI, OpenMP, and I/O services. Argobots provides richer
capabilities when compared to existing runtimes, offering
more efficient interoperability than production OpenMP, a
lower synchronization cost when MPI is used, and better I/O
services. In Argobots, functions are expressed as ULT (ultra-
light tasks) and tasklets. ULTs have a stack (similar to OS
threads but smaller) which provides faster context-switching.
ULTs can be yielded for dependency. On the other hand,
tasklets are smaller and they use OS thread’s memory space.
Tasklets can not be yielded. These two levels of control beyond
OS threads provide more options to express the parallelism
in Argobots. Work units are expressed through creation, join,
yield, yield to, migration, and synchronizations primitives.
Argobots developers are working to support Charm++ [89],
OmpSs [70], Cilk [63], OpenMP [11] (BOLT [90]), Xcal-
abeMP [91], and PaRSEC [92].

F. Unitah

Uintah [93]–[95] is a set of libraries for large-scale sim-
ulation. It provides a unified heterogeneous task scheduler
and runtime which originated from the University of Utah’s
Imaging institute. Originally, Uintah supported an MPI-only
approach for out-of-order execution. However, when multi-
core processors became common the MPI-only approach did
not work very well because MPI ranks need to send and
receive messages to transfer data, even if the ranks are housed
in the same SMPs. For this reason, a master-slave model
is adopted by Uintah runtime where MPI ranks have multi-
threaded execution. The master thread does the data commu-
nication with other MPI ranks and other threads work on the
computation. Later, the design of the scheduler was changed
in Uintah to support a computation offload model where



Uintah can work on heterogeneous systems to offload work
for CPUs and GPUs. However, the master-slave scheduler
created problems such as the volume of work (communication
and management) to be handled by the master thread. In
2013, Uintah launched a unified scheduler to address this
problem, and as a result the scheduling was decentralized.
The new scheduler can work asynchronously by creating
DAG based execution model where a task can be scheduled
in CPUs and GPUs simultaneously. The Uintah scheduler
is capable of overlapping computation and communication
through an asynchronous execution scheme of the DAG (the
initial implementation was static). The heterogeneous master-
slave scheduler maintains multiple queues for CPU and GPUs.
The GPU queues are capable of maintaining multi-streams
which enables the use of multiple GPUs. The data transfer
from GPU to host is done by the runtime system. In the current
scheduler, multiple CPU and GPU queues exist where tasks
reside. The worker threads and GPUs pull tasks from that and
executes.

G. PaRSEC

PaRSEC [26], [92], an effort from the University of Ten-
nessee, Knoxville, was introduced in 2012. PaRSEC provides
a dataflow programming model. The main idea is to express a
program through dataflow between different parts of the code.
When dataflow is defined, the dependencies get exposed. This
representation of the dataflow acts as a hint to the runtime
system for orchestrating the DAG execution on available
hardware. At first, the sequential dataflow expressed by the ap-
plication developer is translated using PaRSEC. The translated
version is called JDF representation. The JDF representation
is then pre-compiled into C code. The pre-compiled C is then
linked with the application binary. For this reason, the source
program and the JDF (the dataflow representation) become
available to the runtime system. This particular feature is not
common in other runtime systems. Since the dependencies
are already part of the executable, PaRSEC can do necessary
communication implicitly without any user intervention. The
runtime implements non-blocking communication which facil-
itates computation and communication overlap.

VI. GAS BASED RUNTIME SYSTEMS

In this section, GAS based runtimes are discussed. Table IV
shows information about the GAS based runtimes.

A. UPC

UPC [96] is one of the pioneers of modern PGAS lan-
guages. It originated from LBNL in 1999. As previously
mentioned, it is considered to be the descendent of SPLIT-
C [38]. It provides an option for distributed data structures
that are available for reading from and writing to different
nodes. In other words, data structures reside in nodes but
can be accessed from other nodes. UPC provides a fixed
SPMD model where parallelism is fixed from the beginning
of a program. UPC can be imagined as a collection thread
executing in a globally shared address space. In the beginning,

UPC was an extension of the C language. However, in 2014,
UPC++ was released to support object-oriented design in
C++, asynchronous execution with multidimensional arrays,
and support for integrating other runtime systems to provide
PGAS support [97]. Using the C++11 standard’s async library,
UPC++ provides the option for asynchronously accessing data
structures through the global address space.

B. Chapel

Chapel [25] is a programming language that emerged from
CRAY’s effort in DARPA high performance computing system
program (HPCS). Chapel [98] is a PGAS language (a separate
language) which similar to high-level programming languages
like C, Java, and Fortran that provides a global view of
the system it is running on and supports a block-imperative
programming style. The main reason for a new language,
the authors argue, is to set the users in the right state of
mind where users know that this is not a sequential program;
instead, it is a parallel program. Chapel provides all the basics
of high-level programming such as loops, conditions, types,
etc. Along with regular high-level programming language
constructs, Chapel provides parallel constructs such as domain
(similar to array concept), parallel iteration forall loops. The
domains (data structures) can be distributed among locales
(nodes). Chapel supports task parallelism when specified by
the programmer (using begin and co-begin statement). Data
distribution is hidden, unlike UPC.

C. X10

The X10 language [47], [81] is a member of the PGAS
family. It was introduced by the IBM Watson lab in 2005
as part of the DARPA High-Performance computing program
(HPCS). X10 was introduced at the start of the many-core era,
and was targeted for large shared multiprocessor (SMP) en-
vironments where processors would have non-uniform access
to memory (NUMA). X10 introduces object-oriented facilities
by having JAVA as the foundation for sequential programming
languages. It was a risky decision because JAVA was not
particularly popular in the HPC community. However, the
assumption was, by 2010, JAVA developers would bridge the
performance gap between Java and C/C++. X10’s goal was
to provide a way for programmers to go beyond standard
JAVA constructs and provide HPC-specific constructs that do
not depend on JAVA, such as asynchronous execution and
multidimensional arrays. Moreover, X10 programs would run
on top of the JAVA virtual machine, and at the lower level
X10 would support shared memory models such as OpenMP
and for communication and distributed memory. X10 would
use MPI or RDMA communication for the asynchronous
PGAS support. X10 provides distributed arrays through PGAS
support, where different places (processors) can have local
data and can access remote data. Through the X10 constructs
place and activity, X10 can provide asynchronous tasking with
an option for accessing globally available data structures. X10
also supports parallel loops.



Name Who When Open source Implementation Target One line description

UPC UCB, LBNL 1999 Yes Extension Distributed PGAS based parallel programming language for C
Chapel Cray 2007 Yes Language Distributed High level language for Global view and asynchronous tasks

X10 IBM 2005 Yes Language Distributed A PGAS language on top of Java virtual machine

TABLE IV: Runtime systems for PGAS languages.

VII. HETEROGENEOUS RUNTIME SYSTEMS

Heterogeneous runtime systems are discussed in this sec-
tion. Table V shows the heterogeneous runtimes.

A. OpenCL
The Open Computing Language (OpenCL) [50] standard

is managed by the Khronos group. The first specification for
OpenCL 1.0 was released in 2009. OpenCL is designed for
heterogeneous systems with different devices from different
manufacturers. OpenCL provides queues for each device and
the CPU is considered as host. The host can enqueue ker-
nels for execution in a blocking and non-blocking way. The
API provides means to transfer data between the host and
the device and various synchronization functionalities. The
abstraction layer provided by OpenCL makes creating scalable
code for different vendors easy (all accelerators are devices).
The OpenCL execution model has different hierarchies. When
a device from a specific vendor is chosen, those hierarchical
execution constructs are mapped to the underlying device
driver.

In 2015, a C++ programming layer for OpenCL, SYCL was
launched [99]. SYCL provides C++ single-source program-
ming for both host code and kernels. Moreover, the Celer-
ity [100] runtime system is developed using SYCL and MPI.
The celerity runtime system can execute SYCL code in GPU
clusters in a distributed memory environment. Celerity divides
the data structures using specified mapping and executes them
on different GPUs. The communication is taken care of by the
runtime system and hidden from the user.

B. OpenACC
Realizing the popularity of the directive-based program-

ming approach, Cray, NVIDIA and PGI developed the Ope-
nACC [101] programming standard for accelerators in 2012.
The main idea was to simplify parallel programming for
heterogeneous CPU/GPU systems. High-level abstractions
through directives hide all the detail of offloading a ker-
nel to GPUs. Moreover, it ensures portability to different
manufacturers. OpenACC treats every compute element as
a device including CPUs. It reserves one CPU thread for
host operation and unlike OpenCL, the rest of the threads
can be used as a device where parallel execution can be
performed in a shared memory environment. The concept of
OpenACC is similar to OpenMP when it comes to serial and
parallel regions. However, the host thread can asynchronously
offload computation to the device and progress the execution.
The host thread also can check the status of the queue for
synchronization. Data transfer to and from a device is also
done through directives. OpenACC is gaining popularity for
its simplistic design.

C. StarPU

The StarPU [14] runtime system was introduced in 2011
by the Inria Institute, located in France. The main idea of
StarPU is to provide a task-based programming model which
is capable of heterogeneous execution (CPU/GPU). The main
data structure of StarPU is called a codelet. A computational
kernel is expressed as a codelet where the kernel can be
executed in a CPU, CUDA device, or in an OpenCL device.
A task is another data structure that is associated with a
codelet and the dataset on which the codelet will execute.
The dependency between tasks can be deduced by the runtime
system from data dependency, or the dependency can be
manually expressed. When a codelet is designed, a target
device is specified. During execution, if a task is executed in
CUDA or OpenCL device, the runtime system carries out the
data transfer activity. Task execution in StarPU is nonblocking
and hence, provides an asynchronous task execution model.
Each device has a task queue and because of non-blocking
communication, the queued tasks can be rearranged for better
performance. A codelet with a CPU or GPU target device can
be executed on either device, making StarPU a unified model
for heterogeneous architecture. One of the strengths of StarPU
is its multiple schedulers from which users can choose while
launching the StarPU application.

D. CUDA

CUDA [49] is a platform and application programming
interface developed by NVIDIA and was introduced in 2007.
CUDA is the catalyst for bringing GPGPUs to high per-
formance community. Because of its throughput-oriented ap-
proach, CUDA was capable of providing significant com-
putation power. CUDA became popular quickly and now,
CUDA devices are found in every large compute facility.
CUDA devices have a large number of low-performance cores
where CUDA threads run. CUDA implements the host and
device concept where the host CPU is capable of offloading
computation to a CUDA device through the CUDA API.
CUDA provides different levels of synchronization.

E. HIP

Similar to CUDA, AMD launched its ROCm [57] plat-
form for GPUs. The ROCm platform consists of different
tools, compilers, and libraries. In 2016, AMD introduced the
Heterogeneous Compute Interface for Portability (HIP) API
for GPUs. The ROCm stack consists of user code at the
top, the HIP API that expresses the programming model, the
HCC compiler that compiles HIP code, the HSA API and
runtime for AMD GPUs, and at the end, the amdkfd driver
for AMD GPUs. In this document, the name HIP is used



Name Who When Open Source Implementation Target One line description

StarPU Inria 2011 Yes Library Heterogeneous A task based runtime for heterogeneous system
OpenCL Khronos 2009 Yes Library Heterogeneous Pioneer for open-source heterogeneous computing

OpenACC Cray, NVIDIA, PGI 2012 Yes Library Heterogeneous Directive based heterogeneous programming
CUDA NVIDIA 2007 No Library NVIDIA GPU NVIDIA’s CUDA device driver

HIP AMD 2016 Yes Library AMD and NVIDIA AMD’s API for AMD and NVIDIA GPUs

TABLE V: Heterogeneous runtime systems

to describe both the programming API and the driver. The
HIP [16] C++ Runtime API and Kernel Language can create
portable code that runs both on NVIDIA and AMD GPUs.
HIP is considered lightweight and does not have much impact
over coding directly in CUDA mode. HIP provides features
such as templates, C++11 lambdas, classes, and namespaces.
Moreover, The HIPIFY tool is capable of converting CUDA
code to HIP code.

VIII. RUNTIME FEATURE COMPARISON

This section compares and contrasts different runtime sys-
tems based on their programming models, APIs, execution
models, memory models, and synchronization strategies. Later
in this section, runtime systems are compared based on their
communication and distributed execution features.

A. Programming API and model

A programming API provides a means of expressing the
programming model for a runtime system. Programming APIs
that conform to a high-level language standard come in various
forms. This layer is typically the highest level of abstraction
provided by the underlying runtime system.

Programming APIs play a critical role in determining the
usability of a runtime system. There is a trade-off between
abstraction and control. On one hand, if the API provides a
very high-level of abstraction, a user may unwillingly cede
control of fine-grained optimizations to the runtime. On the
other hand, if a user wants to control fine-grained optimiza-
tions through the API, the source code can lose readability.
For example, in MPI programs, the memory mapping strategy
and synchronization techniques are explicitly expressed in the
code. Compared to modern runtime systems such as HPX,
MPI does not provide a high level of abstraction. However,
it offers the user full control over the key factors affecting
performance. Modern runtime systems carefully balance this
trade-off by providing different levels of control to empower
users.

The APIs of modern HPC runtimes are written in a high-
level language such as C/C++/Fortran/Java. Table VI shows
the language and the compiler for different programming APIs.
There are similarities in how these programming models are
expressed. We describe these similarities below.

1) Directive based: Directive-based programming models
are favored by many runtimes for their capability to provide
a high level of abstraction and the ease with which they
allow the user to express loop-level parallelism. The two most
common directive-based programming models are OpenMP
and OpenACC. Both of these programming models provide

Runtime Language Compiler support

Cilk Plus C/C++ Built in Intel compiler and others
TBB C++ Built in Intel compiler and others

OpenMP C/C++/Fortran In all major compilers
Nanos++ C/C++ Mercurium for OmpSs
Qthread C/C++ Standard compilers

Charm++ C/C++ Charm has it’s compiler
HPX C++ Standard C++11, 14, 17

Legion C/C++/Regent Standard/Regent compiler
OCR C/C++/Fortran Several implementation

Argobots C/C++ OpenMP (GNU) and MPI
Uintah C/C++ MPI+X

PaRSEC C/C++ Own compiler for two stages
UPC UPC UPC compiler

Chapel Chapel Chapel compiler
X10 X10 X10-Java compiler

StarPU C Standard compilers
OpenCL C/C++/Python Standard compilers

OpenACC C/C++/Fortran Standard compilers
CUDA C/C++/Fortran nvcc compiler from CUDA

HIP C/C++ hcc compiler from ROCm

TABLE VI: Programming model and API

execution schemes for the CPU and the GPU. To express
parallelism, a user identifies a parallel region, and through
a compiler directive (pragma), notifies the runtime of the
execution strategy to implement. This simplicity has made
OpenMP one of the most popular and ubiquitous programming
models in high-performance parallel computing. The OmpSs
programming model from Nanos++ and Bolt [90] from Ar-
gobots also provide a directive-based approach for expressing
parallelism.

2) Expressing asynchronous execution: Many runtimes of-
fer asynchronous execution. However, the programming model
and the programming API provide the flexibility to the user
to specify which portion of the code to run asynchronously.
While some AMT runtimes such as Charm++, HPX, Cilk,
and StarPU provide implicit asynchronous execution schemes
based on data-dependency graphs and non-blocking execution,
the APIs of other runtimes offer special constructs for asyn-
chronous execution. Chapel introduces the “cobegin” construct
that instructs the runtime system to execute the task in parallel.
However, a descendent or child of the parallel task executes
asynchronously depending on the implicit data-dependencies
in the program. Similarly, OmpSs uses the “concurrent” con-
struct to implement relaxed data-dependency. OCR uses event-
driven tasks (EDT) for asynchronous execution. X10 uses
“async” to create asynchronous tasks, while Charm++ and
HPX use futures.

3) GPU programming: Programming models for enabling
parallel execution on GPUs are significantly different from



those that run on CPUs. OpenMP 4.0 and OpenACC suc-
cessfully hide GPU-specific support, and the runtime system
takes care of implementing those details. However, OpenCL,
CUDA, and HIP provide a low-level programming API to
express the GPU programming model. Table VII shows the
similarities in how OpenCL, CUDA, and HIP allow the user
to express parallelism. Generally, all of these programming
models divide a GPU computation into a grid of thread-
blocks. The runtime then maps these thread-blocks onto the
streaming multiprocessors (SM) (AMD calls these “compute
units” (CU)). While the concept is similar, the terminologies
are different in OpenCL, CUDA, and HIP. OpenCL provides
separate computation queues for the various GPU devices on
the system. The OpenCL runtime also offers multiple compu-
tation queues for different heterogeneous compute elements.
OpenCL supports both NVIDIA and AMD GPUs. ROCm
provides a layer for translating CUDA code into HIP code
that allows CUDA code to run on AMD GPUs.

Runtime Grid Thread Block Thread Warp

OpenCL NDRange work group work item sub-group
CUDA grid block thread warp

HIP grid block work item/thread wavefront

TABLE VII: Similarity between CUDA, HIP and OpenCL

4) New Language with special compiler: Some runtime
systems offer compilers alongside their programming APIs.
Chapel provides a compiler for its language. X10’s compiler
translates X10 code to Java or C++ code. Charm++ uses its
compiler wrapper for Charm++ codes. PaRSEC also provides
a pre-compiler to translate its data-flow representation of
the task-graphs into C code. The programming APIs that
are implemented as library and language extensions can be
compiled through standard compilers. Some APIs use recent
features of high-level programming languages. For example,
HPX uses constructs from C++11, C++14, and C++17.

B. Execution model

The execution model refers to the actual execution scheme
a program follows while executing. After the program is
compiled, the binary has all the instructions for the runtime
to shape its execution. Similar-looking code can behave dif-
ferently depending on the underlying runtime system. All
HPC runtime systems support distributed execution, usually
through the SPMD execution model. However, the detail of
the execution model varies. Table VIII provides an overview
of the execution models supported by different HPC runtime
systems. The commonly found characteristics are described
below.

1) Task parallel vs Data parallel: In the task-parallel
model, disctinct tasks execute in parallel. This is in contrast to
the data-parallel model, which extracts parallelism from SIMD
instructions. Historically OpenMP followed a data-parallel
execution model before OpenMP 4.0, which introduced task
parallelism. Task-parallel execution provides more flexibility
for the user to extract parallelism from situations where data-

Runtime Execution model

Cilk Plus Asynchronous task (DAG), Fork-join, SIMD
TBB Asynchronous task (DAG), Fork-join, SIMD

OpenMP Fork-join, SIMD
Nanos++ Asynchronous task (DAG), Fork-join, SIMD
Qthread Asynchronous task (DAG), Fork-join, SIMD

Charm++ Message driven asynchronous execution. DAG of tasks
HPX Message driven asynchronous execution. DAG of tasks

Legion Asynchronous execution builds a Tree of tasks
OCR Event driven Asynchronous execution. DAG of tasks

Argobots Fork-Join execution that builds a DAG of tasks
Uintah MPI + X DAG of Tasks

PaRSEC Event driven Asynchronous execution.DAG of tasks
UPC Pthreads with GAS (supports asynchronous execution)

Chapel Asynchronous execution builds a DAG of tasks
X10 Asynchronous execution builds a DAG of tasks

StarPU Asynchronous execution builds a DAG of tasks
OpenCL Heterogeneous execution: different execution scheme

OpenACC Heterogeneous execution: different execution scheme
CUDA Data parallel execution

HIP Data parallel execution

TABLE VIII: Execution model

parallelism does not apply. However, OpenMP tasks are heavy-
weight OS threads which makes context switching slow. Thus,
OpenMP provides tasking at a coarse-grained level. The same
is true when MPI + X applications employ OpenMP. OpenMP
follows a fork-join model. Even though OmpSs and Nanos++
are considered fore-runners of OpenMP, they do not support
the fork-join model. However, Cilk, TBB, and Argobots follow
the fork-join model.

2) Asynchronous many task parallel: Because OS threads
are bulky and creating and destroying them incurs a pro-
hibitively high overhead, using them within many task run-
times is not feasible. For this reason, many task runtimes
use lightweight tasks. These tasks can be a simple function
call or a group of instructions within a function. These tasks
are easy to create and destroy, and they also yield quickly.
Asynchronous execution runtimes which employ lightweight
tasks take advantage of the fact that these tasks leave a
small memory footprint to reduce context-switching latency.
The asynchronous many task model of execution has become
popular in modern runtime systems. Such execution models
create a graph of tasks with and without dependency among
the nodes. In such a model, the number of tasks can be in the
range of millions (some distributed memory runtimes report
handling up to 100 million tasks). Cilk, TBB, and Qthreads
are examples of such many task runtimes. As they employ a
shared memory model, the number of tasks is significantly
smaller when compared to the distributed memory model.
Runtime systems that can work with distributed memory
architectures such as HPX, Charm++, and Legion can spawn
a very high number of tasks to provide parallelism. OCR,
Argobots, PaRSEC, Chapel, X10, and StarPU also follow the
many task execution model.

3) Message driven vs message passing: The message-
passing model expresses code in an SPMD model. Messages
allow the transfer of data between two processes. In such
a model, computation is in the driving seat. For example,



the MPI + X model follows the message-passing paradigm.
Runtime systems such as Uintah and Argobots follow the
message-passing model. In the message-driven model, the
data dependency dominates program execution, and messages
coordinate the execution flow. HPX and Charm++ follow the
message-driven execution model. Data or a message is sent to
different chares in Charm++, while HPX sends computation
towards the data. Moreover, there is another model called
event-driven execution that is similar to the message-driven
paradigm. OCR and PaRSEC belong to this category.

4) GPU execution: The GPU execution model follows a
single-instruction, multiple-thread (SIMT) model. As shown
in Table VII, the runtime scheduler assigns thread blocks to
different streaming processors. The runtime then divides the
threads into a set of warps (32 threads form a warp on an
NVIDIA GPU and 64 threads in AMD GPUs) [102]. These
warps or wavefronts execute in SIMD fashion. OpenACC
and OpenCL provide a high-level construct to utilize the
heterogeneous platform. Both OpenCL and OpenACC employ
device-wise queues to enqueue different kernel executions.

C. Memory model and synchronization

Memory handling is one of the main bottlenecks of achiev-
ing high performance since synchronization is needed when
multiple compute entities try to access the same memory.
Moreover, synchronization is necessary for both the ap-
plication developer to express the computation in a well-
coordinated manner, and also for the runtime system to
coordinate with different computing entities. Early runtime
systems provided synchronization constructs where the entire
program synchronized both in distributed memory and shared
memory systems. This is referred to as the bulk synchronous
model. Bulk synchronous models are easy to implement and
understand. However, they suffer from performance penalties
and also reduces the utilization of the system. For this rea-
son, asynchronous models are now popular in the runtime
community, as they provide fine-grained synchronization to
improve utilization. Table IX shows the memory model and
synchronization in runtime. The memory model is discussed
first, followed by a discussion of synchronization in the
runtime systems.

1) Memory model: In the shared memory model, all the
processors share the same cache-coherent memory space. Ev-
ery compute element can access any memory location through
the memory channel without communicating through the net-
work interface. Cilk, TBB, OpenMP, OmpSs, and Qthreads
are examples of runtime systems that run on shared memory.
Threads can access shared data structures where they can read
and write. However, individual threads have their own mem-
ory space and private data. In a distributed memory model,
network interfaces connect different nodes. OCR, Argobots,
Uintah, and PaRSEC have distributed memory runtimes. In
distributed memory runtimes, over-the-network communica-
tion is necessary to access remote memory. However, this
communication is not explicitly visible to the user, and the run-
time system performs the communication underneath the hood.

Runtime Memory model Synchronisation

Cilk Plus Shared memory Cilk join
TBB Shared memory Mutex

OpenMP Shared memory Directives
Nanos++ Shared memory Directives
Qthreads Shared memory Mutex and FEB
Charm++ Distributed shared memory Message, Futures

HPX Distributed shared memory LCOs
Legion Distributed shared memory Custom locks
OCR Distributed memory Events, Data-Block

Argobots Distributed memory Mutex, futures
Uintah Distributed memory Mutex, MPI

PaRSEC Distributed memory Dependency based
UPC Distributed shared memory Locks, barriers

Chapel Distributed shared memory Sync, single
X10 Distributed shared memory Clocks

StarPU Heterogeneous memory Locks, barriers
OpenCL Heterogeneous memory Barriers

OpenACC Heterogeneous memory Directives
CUDA GPU memory Library call

HIP GPU memory Library call

TABLE IX: Memory model and synchronisation

Charm++, HPX, Legion, UPC, Chapel, and X10 provide a
distributed shared memory space programming model. Within
a compute node consisting of GPUs, the PCIe bus connects
the GPU and CPU memories. Data transfers between the CPU
and GPU memories are required to share memory between the
two devices. StarPU, OpenACC, and OpenCL operate through
this type of GPU-CPU shared memory model. CUDA and
HIP operate within a GPU memory structure that hosts a
global memory, a local memory, and a shared memory. Both
global memory and local memory are slow. Global memory
is accessible by all the threads, whereas local memory is
local to every thread. Shared memory resides on a streaming
multiprocessor (SM), and the threads of the thread block share
this memory.

2) Synchronisation: As described in the previous section
on execution models, many runtime systems support asyn-
chronous execution where the sequence of execution is non-
deterministic. In such execution scenarios, synchronization
happens at the task level based on the DAG of dependencies.
On the one hand, Cilk, TBB, OmpSs, and Qthreads provide
fine-grained synchronization since asynchronous execution is
allowed in these runtimes. Cilk provides join [53], TBB
provides atomic locks and mutexes [103], OmpSs provides
data dependencies and directives [70] and Qthreads provides
mutex and FEB for synchronizing the tasks [76]. On the
other hand, OpenMP synchronizations are not fine-grained.
OpenMP provides directive-based barriers [22]. HPX also uses
local control objects such as futures, dataflow objects, etc.,
that implement the synchronization in a way that ensures
that the tasks can keep working without being completely
blocked [23]. Charm++ uses messages for data synchronisa-
tion [79] and uses futures for task synchronization.

For data access, Legion provides an option for relaxed
synchronization. There are two types of coherence: exclusive
coherence and relaxed coherence. In exclusive coherence,
the synchronization is strict, where Legion follows an order.



Runtime Communication Distributed support GPU support

Cilk Plus None No (through MPI+X) NA
TBB None No (through MPI+X) NA

OpenMP None No (through MPI+X) 2013
Nanos++ None No (through MPI+X) 2011
Qthread None No (through MPI+X) NA

Charm++ RDMA Yes (through GAS) 2016
HPX Parcel Yes (through GAS) 2014

Legion GASNet Yes (through GAS) 2012
OCR MPI messages Yes (through MPI) NA

Argobots MPI Messages yes (MPI + X) 2016
Uintah MPI Messages yes (MPI + X) 2013

PaRSEC MPI messages yes (Through MPI) 2012
UPC GASNet Yes (through GAS) 2014

Chapel GASNet Yes (through GAS) 2019
X10 MPI Messages Yes (through MPI) NA

StarPU None No (through MPI+X) 2011
OpenCL None No (through MPI+X) 2011

OpenACC None No (through MPI+X) 2012
CUDA None No (through MPI+X) 2009

HIP None No (through MPI+X) 2016

TABLE X: Communication, distributed support, and GPU
support

However, in relaxed coherence, the synchronization order
is not maintained. Rather, Legion ensures access. Atomic
coherence serializes the access without ordering, and as
the name suggests, simultaneous coherence lets two threads
partially execute simultaneously. Legion provides reserva-
tion (small scope) and phase barriers (user-defined larger
scope) for synchronization [82]. In OCR, events are the
main synchronization point since OCR uses an event-driven
paradigm. For data synchronization between tasks, OCR uses
data blocks where access priority determines the serializa-
tion of data accesses [58]. PaRSEC provides dependency-
based synchronisation [104]. UPC uses locks and barriers
for synchronisations [105]. Chapel uses full or empty syntax
for synchronization. It supports two types of synchronization
variables: sync and single [25]. The sync variable switches
state from full to empty for access control, and the single
variable indicates that it can only be read once. X10 uses
clocks for synchronisation [47]. Clocks ensure deadlock-free
operation by waiting for some time and then releasing. StarPU
provides locks, nested locks, critical sections, and barriers for
synchronization [52]. OpenCL provides three types of barriers.
The first kind is to ensure that OpenCL executes all the items
in the queue. The second kind synchronizes all the work-
items in a work-group on a device. The third kind ensures the
synchronization among sub-groups [50]. OpenACC provides
directive-based synchronisation through barriers [101]. CUDA
and HIP provide synchronization for devices, streams, and
threads [16], [49].

D. Communication, distributed support, and GPU support

Communication is necessary to provide distributed support.
Table X shows communication mechanisms and distributed
execution options for runtime systems. It also shows the time
when a runtime system first reported support for GPUs.

Efficient communication is a prerequisite for ensuring high
performance in runtimes. Runtime systems either use their

own communication framework or use already existing, opti-
mized libraries. Charm++ uses messages for communication.
It supports different communication libraries such as MPI
and UDP. Charm++ also provides the option for one-sided
communication in an RDMA-enabled network. Through the
communication interface, Charm++ provides a global address
space for supporting distributed execution [89]. HPX consists
of a Parcel subsystem that carries out communication across
nodes. The Parcel subsystem can communicate using TCP
ports or MPI. By using active messages through the Parcel
subsystem, HPX enables a global address space for distributed
execution [23]. Legion, UPC, and Chapel use the GASNet [46]
one-sided communication library for distributed execution.
PaRSEC and X10 use MPI messages for communication.
The shared memory and accelerator runtimes do not use
communication across nodes. However, they can be a part of
the MPI + X execution model to support distributed execution.

Most of the modern runtimes support GPUs. Runtime
systems use a CUDA, HIP, or OpenCL runtime to provide
GPU support in their ecosystem. Cilk Plus, TBB, Qthread,
OCR, and X10 do not report support for GPUs.

E. Discussion

Two trends are visible in the runtime system domain. The
first trend is the adoption of an asynchronous task-based ap-
proach for improving overall resource utilization. The second
trend is including heterogeneous capabilities. The first trend
shows the direction where the runtime system community
is heading, whereas the second trend results from hardware
improvements. For this reason, the HPC community has more
control over the first trend. However, the task-based runtimes
have not yet agreed upon a standard. Every runtime system has
its methodologies for implementing the asynchronous task-
based approach. Initiatives such as OCR showcase attempts
from the HPC community to design a specification for task-
based systems. Argobots is another research effort to bring
a variety of runtime systems under one umbrella. This trend
suggests the need for standardization of asynchronous many
task execution approaches.

IX. DYNAMIC ADAPTATION IN RUNTIMES

This section explores the dynamic features of modern HPC
runtime systems. Specifically, we consider the features that
are primarily responsible for providing better performance and
energy consumption.

A. Scheduling and load balancing

Scheduling is one of the most critical tasks that an HPC
runtime performs. In early parallel programming models,
scheduling used to be mostly static. After expressing the par-
allelism through programming APIs in early MPI or OpenMP
applications, the mapping between work and resource did not
change during execution. However, in modern HPC runtimes,
the scheduling scenario is highly dynamic. It is almost im-
possible to determine the optimal mapping between work and



Runtime Scheduling Load balancing

Cilk Plus Tasks on Worker thread pool Yes (work-stealing)
TBB Tasks on Worker thread pool Yes (work-stealing)

OpenMP Heavy OS threads Yes (work-stealing)
Nanos++ Tasks on Worker thread pool Yes (work-stealing)
Qthread Tasks on Worker thread pool Yes (work-stealing)

Charm++ Tasks on Worker thread pool Yes (through migration)
HPX Tasks on Worker thread pool Yes (through migration)

Legion Tasks on Worker thread pool Yes (work-stealing)
OCR Tasks on Worker thread pool Yes (work-stealing)

Argobots Stacked custom scheduling Yes (work-stealing)
Uintah Tasks on Worker thread pool Yes (Dynamic adaptive)

PaRSEC Tasks on Worker thread pool Yes (work-stealing)
UPC None None

Chapel Future plan Future plan
X10 Tasks on Worker thread pool Yes (work-stealing)

StarPU Multiple Yes (work-stealing)
OpenCL Heterogeneous queues Dependent

OpenACC Heterogeneous queues Dependent
CUDA GPU scheduling Yes

HIP GPU scheduling Yes

TABLE XI: Scheduling and load balancing

resources since the optimal fine-grained mapping keeps chang-
ing. The main idea behind this non-deterministic mapping is
to increase the utilization of underlying hardware. As a result,
scheduling is one of the areas where dynamic adaptation plays
an important role. Dynamic scheduling enables better load-
balancing that, in turn, results in better system utilization.
We discuss the scheduling and load balancing strategies of
different runtime systems below.

Table XI shows the scheduling approaches adopted by
different runtime systems. Each category presented in the table
is further elaborated in the following sections.

1) Scheduling using OS threads: OpenMP uses direct task
mapping on OS threads. Every time OpenMP creates a task,
OpenMP assigns the task to an OS thread. This OS thread is
created at the beginning of the parallel region and joins with
the master thread when the parallel region ends. However,
OpenMP is unaware of the task-to-thread mapping strategy to
implement in advance (it can be specified). OpenMP standard
provides five types of scheduling: 1) static, 2) dynamic, 3)
guided, 4) auto, and 5) runtime [22]. It also provides the
option to change the chunk size. The number of loop iterations
each OS thread gets assigned depends on the chunk size. Static
scheduling distributes the number of iterations equally if the
chunk size is not specified. If the chunk size is specified,
OpenMP allocates chunks to different threads in a round-robin
fashion. In dynamic scheduling, each thread works on an initial
chunk and requests more chunks as required. Guided schedul-
ing works like dynamic scheduling, except that the chunk size
keeps decreasing. When the user specifies auto as the schedul-
ing option, the compiler decides the data distribution. When
the runtime scheduling is selected, OpenMP determines the
chunk sizes at runtime. Using dynamic scheduling, OpenMP
can achieve work-stealing load-balancing. OmpSs [70] also
implements the same strategies.

2) Worker thread pool: The most common strategy for
scheduling in many task runtime systems is to have a pool

of worker threads. The runtime system has task queues that
contain ready-to-be-executed tasks. Similar to the producer-
consumer approach, when a task’s dependencies are resolved,
it is placed on the ready queue. The pool of worker threads
keeps pulling tasks from the ready queue. A majority of
the many task runtimes implement this strategy. Cilk Plus,
TBB, Nanos++, Qthread, Charm++, HPX, Legion, OCR, Uin-
tah, PaRSEC, and X10 all implement some variant of this
strategy. The main benefit is the increased utilization of the
resources. However, the queue structure and the number of
queues differ in different runtime systems. Uintah implements
a unified schedular where MPI, Pthread, and CUDA can work
together in an out-of-order fashion where the pthreads are
the worker pool that consumes work from the CPU queues.
It has a scheduling option for MPI processes as well. The
load balancer in Uintah can provide dynamic adaptation in
runtime by changing how much computation each processor
performs [95]. Nanos++ holds a ready task queue where all
the tasks have their dependencies resolved (supports yield-
ing) [70]. Qthread employs a similar strategy where the
worker pool is called a ”collection of a shepherd” (uses chunk
size) [75].

In Charm++, each PE (worker thread) has its pool of
messages and a collection of chares. As Charm++ employs
a message-driven paradigm, each PE selects a message from
the pool and executes the method of a chare for which
the message is meant for. Charm++ provides an advanced
load balancing strategy through migration. It can provide
load balancing in a centralized or in a distributed way. It
also employs a measurement-based load balancing strategy.
Charm++ creates a database of information that facilitates
periodical load balancing using prediction of the imbalance. It
also provides different algorithms for load balancing (Greedy,
Refine, Rotate, etc.) [89]. Like Charm++, HPX also keeps
queue(s) of tasks for each OS thread. HPX also provides mul-
tiple priority queues where HPX executes high priority queues
first. HPX provides different scheduling options (Priority lo-
cal scheduling, Priority ABP scheduling, etc.). Through the
Priority ABP scheduling, HPX can provide NUMA sensitive
scheduling where HPX assigns the highest priority to the same
NUMA domain is given high priority [23]. HPX provides
a load balancing option for in-node through work-stealing
among the worker threads and also distributed load balanc-
ing through task migration [106]. In Legion, the underlying
Realm runtime manages the worker thread pool. This pool
creates a queue for each thread and asynchronously executes
them [84]. The mapping interface of legion runtime provides
a mechanism for distributed task-stealing for load balancing
[107]. OCR also uses a worker thread concept where the
load balancing is supported through work-stealing using a
work-first or help-first mechanism. The Habanero runtime (an
upgrade of X10) [108], [109] is the inspiration for OCR’s load
balancing strategy. Argobots uses a stacked scheduler concept
where multiple schedulers can be applied for different software
modules during execution [59]. While using a set of worker
threads, it also uses work-stealing load balancing. Like HPX,



PaRSEC and Nanos++ also provide NUMA-aware scheduling
for better performance [70], [92]. PaRSEC also supports inter-
node and intra-node load balancing using work-stealing [92].
X10 provides load balancing custom work-stealing method
through GLB library [110].

3) GPU scheduling: Both CUDA and HIP provide streams
for devices. Streams execute the kernels sequentially in a first-
come, first-served manner [111]. However, at a lower level,
each streaming processor (SM) schedules warps (a set of
threads) from the assigned thread blocks [102]. Each streaming
processor has multiple warp schedulers that pull ready warps
to execute from the queue to increase utilization. When a
kernel starts executing on the GPUs, the scheduler assigns
thread blocks to SMs. Much detail of the scheduling at the
SM level is not revealed [111].

4) Heterogeneous scheduling: Scheduling in StarPU also
follows a group of workers where the workers can be acceler-
ators as well [14]. The default schedular in StarPU is a work-
stealing scheduler. However, StarPU has different options for
scheduling. StarPU can implement performance models to
find out the appropriate target for specific tasks. Moreover,
when declaring “codelets” in StarPU, the user can specify a
priority for tasks that acts as a hint to the runtime. Based on
these hints, StarPU schedulers can provide greedy scheduling
[52]. The gang, worker, and vector constructs define the
scheduling in OpenACC [112]. Based on the specified size of
these variables underlying heterogeneous processors is used.
Further, the underlying driver for the device implements the
scheduling decision. OpenCL provides device-wise queues for
heterogeneous systems [113]. When scheduled to the device
queues, the device uses its internal scheduling at the execution
time.

5) Discussion: The StarPU runtime system provides some
scheduling mechanism for task placements on CPU and GPUs.
Other runtime systems do not do so. However, the capability
to operate on heterogeneous systems has become common in
almost all modern asynchronous task-based runtimes. For this
reason, a heterogeneous task placement scheduler would be a
fruitful addition to task-based runtimes.

B. Energy aware features and studies

Energy consumption is one of the biggest concerns sur-
rounding the operation of exascale systems [18]. For this
reason, new processors (both CPU and GPU) come with
predefined TDP levels and frequency sets. These new tech-
nologies enable the processors to dynamically adjust their
clock frequencies to ensure that they adhere to the power
budget. Moreover, CPU and GPU vendors provide interfaces
to monitor and allow changing these states through those inter-
faces. For example, Intel provides running average power limit
(RAPL) [114] and NVIDIA provides NVIDIA management
library (NVML) [115] to monitor and control power-related
attributes. These interfaces enable runtime systems (or OS) to
select certain settings to limit energy consumption by sacrific-
ing processing power. Having this “soft” control enables the
runtime system to dynamically select the energy consumption

mode depending on the priority, need, or hardware status. Such
control has proved beneficial as it provides an extra layer of
control to make energy-aware decisions. This section discusses
energy-aware capabilities in runtimes and methods. At first, we
discuss the most common energy-aware techniques suitable for
runtime systems. Later, we present a discussion of the energy-
aware decision capability that exists in current runtimes.

1) Dynamic voltage and frequency scaling (DVFS): Dy-
namic voltage and frequency scaling (DVFS) is one of the
oldest methods to achieve dynamic power behavior. Many
of the current processors have DVFS capability. In a DVFS
capable system, processors and memory have a set of fre-
quencies in which they can operate. In most of the devices,
the frequency is selected by the operating system when DVFS
is enabled. Usually, the frequency selection depends on the
utilization of the unit. There has been a considerable amount
of research done in the area of DVFS. Ma et al. [116] designed
a GreenGPU that dynamically throttles the frequency of the
GPU and the memory. Komoda et al. [117] also studied power
capping using DVFS to find near-optimal frequency settings
for CPU-GPU. Liu et al. [118] designed an energy-aware
kernel mapping strategy that assigns different frequencies to
PUs in a heterogeneous system using DVFS.

2) Power capping: Power capping is a technique that
restricts the instant power consumption of a device. The main
components of a system are the processors and the memory.
Each processor has a certain number of frequencies that it
can operate in, and the same is true for the system memory.
Selecting a higher frequency guarantees a higher speed for
the processor or memory but also consumes more power. For
this reason, by opting for a lower frequency, the runtime can
limit the maximum power consumption of a device instantly.
A modern integrated device such as the NVIDIA Xavier has
a pre-defined power cap. For example, Xavier has five pre-
defined power caps that the runtime software can dynamically
invoke. For example, Zhu et al. [6] dynamically finds the
appropriate frequency to keep the application execution under
a power cap for a heterogeneous system consisting of a CPU
and a GPU. Using a machine learning technique, the strategy
proposed by the authors can select a frequency that is capable
of keeping a device under a power cap.

3) Energy-aware features in runtimes: Some runtimes in-
clude energy-aware features in their design. Charm++ pro-
vides the capability to change the CPU core frequency using
DVFS [79]. Charm++ provides a load balancer that monitors
the average temperature of the chip and changes the core
frequency when the temperature crosses a threshold. These
thresholds are application-specific, and the user can set them.
When the frequency is lowered for a set of cores, the runtime
calculates the load of the processor cores and identifies under-
utilized and overloaded cores. After identification, the runtime
load balancer migrates tasks from the overloaded to under-
loaded cores. The runtime repeats this process many times
during the application’s execution. This approach provided
energy savings without much performance penalty [119].
HPX does not provide energy-aware features, but they claim to



Runtime Interface and online tools Adaptation capability

Cilk Plus No No
TBB No No

OpenMP OMPT interface Exists
Nanos++ Event collection No
Qthread RCRdaemon tool Exists

Charm++ PICs tool Exists
HPX APEX tool Exists

Legion Profiling Interface No
OCR No No

Argobots No No
Uintah No No

PaRSEC No No
UPC GASP interface No

Chapel No No
X10 No No

StarPU Profiling Interface No
OpenCL Profiling Interface No

OpenACC Profiling Interface No
CUDA CUPTI (profiling) No

HIP roc-profiler library No

TABLE XII: Tools and interface for dynamic adaptation

improve overall energy efficiency by increasing the utilization
of the resources through over decomposition of tasks [12].
The same argument is made by OCR [86]. PaRSEC provides
integration with PAPI [120] for power measurement at the task
level. However, the runtime does not dynamically adapt itself
using the power measurements [121]. StarPU provides energy-
aware scheduling where the runtime system turns off the CPU
cores to save energy. A “codelet” can be specified with an
energy model, and based on that model, the runtime system
adjusts the task distribution [52]. Other runtime systems do
not provide energy-aware capabilities.

4) Discussion: Based on the runtime capabilities described
here, runtime systems can provide efficient energy-aware
decisions and offer a good trade-off between energy and
performance. At the same time, it is also evident that not
many runtime systems provide energy-aware features. For
this reason, an energy-aware runtime that works well with
hardware from different manufacturers would be a critical
feature for future exascale systems.

C. Dynamic adaptation tools and interface

The runtime system is an active component that can interact
with external entities. Such interaction can impose control on
the decisions taken by the runtime. However, proper APIs need
to be exposed by the runtimes for external systems to interact
and influence their behavior. Table XII provides a summary
of the different tools and interfaces for dynamic adaptation of
the runtime systems. We discuss these in detail below.

1) Interfaces for runtimes: Some runtime systems reveal
interfaces for the sake of collecting performance data during
execution. Through these interfaces, runtimes allow an external
entity to register callback functions to provide the status or
value of different runtime variables. Having such a generic
interface defined enables tuning runtime variables during exe-
cution. MPI 3.0 specification included MPI T interface that al-
lowed the community to design runtime introspection tools to
change different parameters for efficient communication [122],

[123]. Similarly, OpenMP 5.0 included OMPT, which is a tool
interface for OpenMP. Similar to MPI T, OMPT provides the
ability to register callbacks to get the status of various runtime
system parameters and timers [18], [19]. UPC provides the
GASP [124] interface for registering callbacks. However,
GASP does not provide the flexibility to change any runtime
variables. Rather, GASP provides the facility for other tools to
collect data (similar to the PMPI profiling interface in MPI).
CUDA also provides the CUPTI profiling interface, but it does
not provide an option for changing runtime variables [125].
The roc-profiler [126] of ROCm collects GPU performance
data from AMD’s HSA runtime [127]. StarPU also provides
an online profiling interface and does not provide the option to
change runtime variables [52]. Both OpenACC and OpenCL
also provide a profiling interface designed only to enable
querying and collecting runtime events [50], [101]. Similarly,
Legion provides a profiling interface where the status of
memory and tasks, execution time, and current load of the
system can be obtained [107]. The Nanos++ and OmpSs
ecosystems also provide an instrumentation option that can
provide runtime events [70].

2) Dynamic adaptation tools for runtimes: APEX [128]
is an autonomic performance measurement and analysis tool
designed for task-based runtimes. It has support for HPX
and OpenMP runtimes. APEX hosts a policy engine that can
monitor runtime events and activate a policy based on that.
Moreover, APEX can also implement a periodic policy. The
APEX policy engine uses the Active harmony library [129]
to change runtime parameters and observe their impact on
performance. If APEX finds that performance improves, the
policy engine continues modifying the runtime knob until it
finds a near-optimal solution. Charm++ provides PICS [130]
which can optimize application performance based on a
control-point centric mechanism. Similar to APEX, PICS also
collects information from the runtime system about the overall
status. Unlike APEX, PICS employs control points both in
the application and the runtime. Using a decision tree, PICS
can tune different applications and runtime knobs based on
the observed data. The RCRdaemon [131] can work with
the Qthreads runtime. RCRdaemon sits continuously monitors
the memory and utilization status from the OS. When the
Qthreads scheduler starts execution with its worker thread
pools (Pthreads), the adaptive scheduler in Qthreads communi-
cates with RCRdaemon to find the optimal number of threads.

3) Discussion: While most runtime systems provide pro-
filing interfaces, only a few expose APIs or provide a tool
for enabling dynamic adaptation. Even though many runtime
systems are open-sourced, building a custom tool for dynamic
adaptation ties that tool to that particular runtime. For this
reason, modern many task runtimes need a general interface
specification solution such as MPI T or OMPT.

X. DYNAMIC ADAPTATION OPPORTUNITIES

The evolution of the runtime system suggests, major
changes happened due to the memory model of parallel
computing architectures. On the other hand, the recent trend



Fig. 6: A logical representation of iSMHS with CPU and GPU
and Kernel queues for ordering and placement: 123|45

suggests the continuation of a heterogeneous environment in
the future. For this reason, research opportunities that combine
these two need to be explored.

A. Open problem - memory contention mitigation in integrated
heterogeneous systems

Integrated shared memory heterogeneous architectures are
widely employed to satisfy the diverse needs of computing.
While specialized processing units (PU) sharing one system
memory improve performance and energy-efficiency by reduc-
ing data movement, they increase contention for memory as
the PUs interact with each other. Collocated kernel execution
on an iSMHS is portrayed in Fig. 6. In this system, the CPU
and GPU are connected to a shared memory and the GPU
does not have a private memory. For such a system, a case
is shown where 5 ready-to-execute kernels with the ordering
and placement (O&P) configuration of 123|45, where kernels
1, 2, and 3 will be executed in order on the GPU and 4
and 5 will be placed for CPU execution. Kernels placed in
different queues have the potential to execute in a collocated
manner and may result in contention on the memory bus. For
this reason, heterogeneous scheduling is impacted by memory
contention. Several studies are presented here which are not
yet part of HPC runtimes but bear the potential to be included.

1) Using machine learning: Machine learning is a powerful
tool and is used to predict contention by some researchers.
In [132], Zhu et al. studied co-scheduling on an integrated
CPU-GPU system. The authors used a staged interpolation
method to predict the execution time degradation. To catego-
rize different kernels, the author used bandwidth as a metric.

2) Using algorithms: Algorithmic solutions are also ex-
plored by researchers. Finding the combination of kernels that
minimizes memory contention requires searching for every
combination. This problem is NP-Hard. For this reason, some
researchers considered greedy solutions and argued that they
can lead to a reasonable result. For example, Zhu et al. [6]
devised a greedy algorithm that addressed memory contention
from degradation in the execution time perspective while
selecting a frequency for power capping. However, they did
not consider the impact of memory contention on power or
energy. They showed their greedy approach with post-local
refinement can lead to a reasonable solution.

3) Addressing bus contention: As mentioned earlier, in
some integrated heterogeneous systems, all processors share
the same bus to access system memory. For this reason,
contention occurs at the system bus level. Some researchers
worked on the bus contention. Cavicchioli et al. [133] studied
different SoCs and fused CPU-GPU devices to characterize
memory contention. The author studied contention at a differ-
ent point in the SoC systems, including bus contention. The
study done by this author was execution-time oriented.

4) Addressing LLC contention: First-generation integrated
heterogeneous systems previously had a shared last-level
cache between processors. Having a shared cache among the
CPU and GPU is adopted from the fact that multiple cores
in CPUs share the cache hierarchy. While this makes the
design simpler, it introduces contention in the Last Level
Cache (LLC) when multiple processors heavily use the cache.
Damschen et al. [134] studied memory contention and stalling
in heterogeneous systems with shared the last-level cache
(LLC). They showed because of the contention collocating
multiple kernels in CPU and GPU at the same time does not
yield good performance. Rai et al. [135] and Pan et al. [136]
designed LLC management strategy for better performance.
Memory contention due to shared LLC has also been studied
by Garcia et al. [137] and Mekkat et al. [138].

5) Addressing contention using performance models: Some
researchers used performance models to predict memory con-
tention, while other researchers relied on machine learning
to form empirical models. Examples of the empirical model
include the work reported in [139]. There has been some effort
on analytical modeling to predict memory contention. Hill et
al. [140] extended the Roofline model for mobile SoCs to
address memory contention from the perspective of bandwidth
usage by the PUs.

6) Distribution of tasks based on the irregularity in work-
loads: Heterogeneous manycore and multicore systems expose
the opportunity to seamlessly distribute workloads. This facili-
tates the re-shaping and re-distributing of a workload based on
the type of workload, and provides the opportunity to select
the appropriate processor. For example, irregular workloads
are known to be more suited for CPUs and perform worse in
a GPU because of the workload’s memory access pattern. Cho
et al. [141] addressed this problem and devised an on-the-fly
strategy to partition irregular workloads in integrated CPU-
GPU systems. At runtime, their strategy is capable of detecting
irregular parts of the applications and scheduling them in
the GPU, while the regular part of the load is scheduled on
the CPU. They implemented their strategy in the OpenCL
runtime. Zhang et al. [142] designed an irregularity-aware fine-
grained workload partitioning technique. This work also finds
the irregular execution chunks of a given application and runs
the chunks in CPUs. The rest of the computation is done in
GPU which provides better results. Pandit et al. [143] also
looked at a similar problem and designed a dynamic work
distribution considering the data transfer need of kernels in
OpenCL runtime.



Fig. 7: Possible flow of performance improvement in an HPC runtime systems by using a performance model.

7) Scheduling based on profiling: Kaleem et al. [144]
studied scheduling using profiling for load balancing between
the CPU and GPU. They used a different version of profiling
to improve on the current method and to fetch the kernel
characteristics efficiently.

8) Individual workload placement on a processor: In a
pipelined execution scheme, it is often important for a runtime
to find the appropriate processor for the next workload. To find
a suitable processor, both the application characteristics and
current system status need to be considered. Panneerselvam
et al. [3] devised a task placement strategy in a CPU-GPU
system, where the runtime system monitors utilization of
the system and decides a suitable placement that meets the
applications’ performance goals. The author also designed
a model that predicts the standalone execution time of an
application in a processor, which is then combined with the
system utilization to make a decision.

Furthermore, Zhang et al. [145] extensively studied 46 ap-
plications to find out which application provides better results
when collocated. Based on a decision tree-based model, their
approach is capable of finding out kernel collocation impact
for different applications in integrated CPU-GPU systems. The
authors further showed the accuracy of the model to decide
placement for an application in CPU or GPU in an integrated
system.

9) Research opportunities: These works indicate the re-
search community’s involvement in scheduling decisions be-
tween CPUs and GPUs in new heterogeneous ecosystems.
Some of them are tested with heterogeneous runtime systems
like OpenCL [141]. Moreover, heterogeneous placement has
energy consumption implications as well [146]. For this rea-
son, energy- and performance-aware task placement in CPUs
and GPUs should be considered in modern runtime systems.

B. Open problem - memory-centric performance modeling

In order to make an efficient decision of task placement
in a suitable processing element (CPU or GPU), the runtime
system should be equipped with performance models for gen-
erating kernel-level prediction. The main difficulty in making
a performance model for predicting execution time or energy
is the complex memory hierarchy in modern HPC compute
resources. This is because memory traffic is the slowest

component and heavily impacts both energy and performance.
For this reason, memory-centric performance modeling is
necessary. Some studies for memory access prediction for
CPUs and GPUs are discussed below.

1) Memory access prediction: Several studies investigated
memory access patterns to make a reasonable prediction. Yu
et al. [147] used an analytical model of different memory
access patterns for investigating application vulnerability. In
Tuyere [148], Peng et al. used data-centric abstractions in an
analytical model to predict memory traffic for different mem-
ory technologies. Moreover, categorizing and understanding
memory access patterns plays an important role in Roofline
models [149] where kernels are defined based on the ratio of
flops and memory access between LLC and DRAM. Allen
et al. [150] investigated the impact of different memory
access patterns on GPUs. Some previous works used load and
store instruction counts to measure memory access and used
that count to predict performance(e.g., COMPASS by Lee at
al. [151]). Compile-time static analysis, such as Cetus [152]
and OpenARC [153], is also used to record instruction-level
counts, which can then be used to measure performance.
However, instruction-level counts do not reflect the role of
the cache hierarchy. The above studies indicate that memory
access prediction is studied but still an open problem in
the HPC domain and should be studied further to empower
runtime system decisions.

C. Discussion

Inspired by the open problems presented in this section,
an example of dynamic adaptation in HPC runtimes can
be viewed in Fig. 7. Box 1 represents the runtime systems
with different kernel queues. Box 2 represents the dynamic
adaptation engine which interacts with the runtime to facilitate
scheduling, load balancing, and energy consumption reduction.
Box 3 represents the offline performance model generation
to feed the kernels of the runtime system and the dynamic
adaption engine.

XI. CONCLUSION

Since the beginning of parallel computing, HPC runtimes
have gone through major changes. These changes are caused



by new architectures, increasing compute capabilities, up-
grades in interconnect technologies, and the introduction of
heterogeneity. Moreover, continuous innovation by the com-
munity and the decision to come together to standardize
popular programming models had a major impact in shaping
today’s runtimes. Increasing layers of abstraction are observed
which helps the modular design of the runtime systems. These
abstractions are increasing the role of the runtime system
during execution. Runtime systems now perform complex
scheduling and load balancing, orchestrate communication,
drive accelerators and asynchronously execute graphs with
billion tasks. In order for the runtime systems to perform as
an active entity during execution, dynamic decision making
and adaptation have become crucial. The trend suggests future
HPC runtimes will perform more activities and provide even
more abstractions.
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